1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51
52 #include <trace/events/xen.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81
82 /*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87
88 #ifdef CONFIG_X86_32
89 /*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101
102 /*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119
120 /*
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
123 */
124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125
arbitrary_virt_to_mfn(void * vaddr)126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129
130 return PFN_DOWN(maddr.maddr);
131 }
132
arbitrary_virt_to_machine(void * vaddr)133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 unsigned long address = (unsigned long)vaddr;
136 unsigned int level;
137 pte_t *pte;
138 unsigned offset;
139
140 /*
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
143 */
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
146
147 /* otherwise we have to do a (slower) full page-table walk */
148
149 pte = lookup_address(address, &level);
150 BUG_ON(pte == NULL);
151 offset = address & ~PAGE_MASK;
152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155
make_lowmem_page_readonly(void * vaddr)156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 pte_t *pte, ptev;
159 unsigned long address = (unsigned long)vaddr;
160 unsigned int level;
161
162 pte = lookup_address(address, &level);
163 if (pte == NULL)
164 return; /* vaddr missing */
165
166 ptev = pte_wrprotect(*pte);
167
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 BUG();
170 }
171
make_lowmem_page_readwrite(void * vaddr)172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 pte_t *pte, ptev;
175 unsigned long address = (unsigned long)vaddr;
176 unsigned int level;
177
178 pte = lookup_address(address, &level);
179 if (pte == NULL)
180 return; /* vaddr missing */
181
182 ptev = pte_mkwrite(*pte);
183
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 BUG();
186 }
187
188
xen_page_pinned(void * ptr)189 static bool xen_page_pinned(void *ptr)
190 {
191 struct page *page = virt_to_page(ptr);
192
193 return PagePinned(page);
194 }
195
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 struct multicall_space mcs;
199 struct mmu_update *u;
200
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202
203 mcs = xen_mc_entry(sizeof(*u));
204 u = mcs.args;
205
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
207 u->ptr = virt_to_machine(ptep).maddr;
208 u->val = pte_val_ma(pteval);
209
210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215
xen_extend_mmu_update(const struct mmu_update * update)216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 struct multicall_space mcs;
219 struct mmu_update *u;
220
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222
223 if (mcs.mc != NULL) {
224 mcs.mc->args[1]++;
225 } else {
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 }
229
230 u = mcs.args;
231 *u = *update;
232 }
233
xen_extend_mmuext_op(const struct mmuext_op * op)234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 struct multicall_space mcs;
237 struct mmuext_op *u;
238
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240
241 if (mcs.mc != NULL) {
242 mcs.mc->args[1]++;
243 } else {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 }
247
248 u = mcs.args;
249 *u = *op;
250 }
251
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 struct mmu_update u;
255
256 preempt_disable();
257
258 xen_mc_batch();
259
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 u.val = pmd_val_ma(val);
263 xen_extend_mmu_update(&u);
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266
267 preempt_enable();
268 }
269
xen_set_pmd(pmd_t * ptr,pmd_t val)270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 trace_xen_mmu_set_pmd(ptr, val);
273
274 /* If page is not pinned, we can just update the entry
275 directly */
276 if (!xen_page_pinned(ptr)) {
277 *ptr = val;
278 return;
279 }
280
281 xen_set_pmd_hyper(ptr, val);
282 }
283
284 /*
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
287 */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292
xen_batched_set_pte(pte_t * ptep,pte_t pteval)293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 struct mmu_update u;
296
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 return false;
299
300 xen_mc_batch();
301
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
305
306 xen_mc_issue(PARAVIRT_LAZY_MMU);
307
308 return true;
309 }
310
__xen_set_pte(pte_t * ptep,pte_t pteval)311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 if (!xen_batched_set_pte(ptep, pteval)) {
314 /*
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
319 * instead.
320 */
321 struct mmu_update u;
322
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 }
327 }
328
xen_set_pte(pte_t * ptep,pte_t pteval)329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
333 }
334
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 pte_t *ptep, pte_t pteval)
337 {
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
340 }
341
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
344 {
345 /* Just return the pte as-is. We preserve the bits on commit */
346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 return *ptep;
348 }
349
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
352 {
353 struct mmu_update u;
354
355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 xen_mc_batch();
357
358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 u.val = pte_val_ma(pte);
360 xen_extend_mmu_update(&u);
361
362 xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 if (val & _PAGE_PRESENT) {
369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 unsigned long pfn = mfn_to_pfn(mfn);
371
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
375 else
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 }
378
379 return val;
380 }
381
pte_pfn_to_mfn(pteval_t val)382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 if (val & _PAGE_PRESENT) {
385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 pteval_t flags = val & PTE_FLAGS_MASK;
387 unsigned long mfn;
388
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
391 else
392 mfn = pfn;
393 /*
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
398 */
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 mfn = 0;
401 flags = 0;
402 } else
403 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405 }
406
407 return val;
408 }
409
xen_pte_val(pte_t pte)410 __visible pteval_t xen_pte_val(pte_t pte)
411 {
412 pteval_t pteval = pte.pte;
413 #if 0
414 /* If this is a WC pte, convert back from Xen WC to Linux WC */
415 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
416 WARN_ON(!pat_enabled);
417 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
418 }
419 #endif
420 return pte_mfn_to_pfn(pteval);
421 }
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
423
xen_pgd_val(pgd_t pgd)424 __visible pgdval_t xen_pgd_val(pgd_t pgd)
425 {
426 return pte_mfn_to_pfn(pgd.pgd);
427 }
428 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
429
430 /*
431 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
432 * are reserved for now, to correspond to the Intel-reserved PAT
433 * types.
434 *
435 * We expect Linux's PAT set as follows:
436 *
437 * Idx PTE flags Linux Xen Default
438 * 0 WB WB WB
439 * 1 PWT WC WT WT
440 * 2 PCD UC- UC- UC-
441 * 3 PCD PWT UC UC UC
442 * 4 PAT WB WC WB
443 * 5 PAT PWT WC WP WT
444 * 6 PAT PCD UC- rsv UC-
445 * 7 PAT PCD PWT UC rsv UC
446 */
447
xen_set_pat(u64 pat)448 void xen_set_pat(u64 pat)
449 {
450 /* We expect Linux to use a PAT setting of
451 * UC UC- WC WB (ignoring the PAT flag) */
452 WARN_ON(pat != 0x0007010600070106ull);
453 }
454
xen_make_pte(pteval_t pte)455 __visible pte_t xen_make_pte(pteval_t pte)
456 {
457 #if 0
458 /* If Linux is trying to set a WC pte, then map to the Xen WC.
459 * If _PAGE_PAT is set, then it probably means it is really
460 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
461 * things work out OK...
462 *
463 * (We should never see kernel mappings with _PAGE_PSE set,
464 * but we could see hugetlbfs mappings, I think.).
465 */
466 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
467 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
468 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
469 }
470 #endif
471 pte = pte_pfn_to_mfn(pte);
472
473 return native_make_pte(pte);
474 }
475 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
476
xen_make_pgd(pgdval_t pgd)477 __visible pgd_t xen_make_pgd(pgdval_t pgd)
478 {
479 pgd = pte_pfn_to_mfn(pgd);
480 return native_make_pgd(pgd);
481 }
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
483
xen_pmd_val(pmd_t pmd)484 __visible pmdval_t xen_pmd_val(pmd_t pmd)
485 {
486 return pte_mfn_to_pfn(pmd.pmd);
487 }
488 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
489
xen_set_pud_hyper(pud_t * ptr,pud_t val)490 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
491 {
492 struct mmu_update u;
493
494 preempt_disable();
495
496 xen_mc_batch();
497
498 /* ptr may be ioremapped for 64-bit pagetable setup */
499 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
500 u.val = pud_val_ma(val);
501 xen_extend_mmu_update(&u);
502
503 xen_mc_issue(PARAVIRT_LAZY_MMU);
504
505 preempt_enable();
506 }
507
xen_set_pud(pud_t * ptr,pud_t val)508 static void xen_set_pud(pud_t *ptr, pud_t val)
509 {
510 trace_xen_mmu_set_pud(ptr, val);
511
512 /* If page is not pinned, we can just update the entry
513 directly */
514 if (!xen_page_pinned(ptr)) {
515 *ptr = val;
516 return;
517 }
518
519 xen_set_pud_hyper(ptr, val);
520 }
521
522 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)523 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
524 {
525 trace_xen_mmu_set_pte_atomic(ptep, pte);
526 set_64bit((u64 *)ptep, native_pte_val(pte));
527 }
528
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)529 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
530 {
531 trace_xen_mmu_pte_clear(mm, addr, ptep);
532 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
533 native_pte_clear(mm, addr, ptep);
534 }
535
xen_pmd_clear(pmd_t * pmdp)536 static void xen_pmd_clear(pmd_t *pmdp)
537 {
538 trace_xen_mmu_pmd_clear(pmdp);
539 set_pmd(pmdp, __pmd(0));
540 }
541 #endif /* CONFIG_X86_PAE */
542
xen_make_pmd(pmdval_t pmd)543 __visible pmd_t xen_make_pmd(pmdval_t pmd)
544 {
545 pmd = pte_pfn_to_mfn(pmd);
546 return native_make_pmd(pmd);
547 }
548 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
549
550 #if PAGETABLE_LEVELS == 4
xen_pud_val(pud_t pud)551 __visible pudval_t xen_pud_val(pud_t pud)
552 {
553 return pte_mfn_to_pfn(pud.pud);
554 }
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
556
xen_make_pud(pudval_t pud)557 __visible pud_t xen_make_pud(pudval_t pud)
558 {
559 pud = pte_pfn_to_mfn(pud);
560
561 return native_make_pud(pud);
562 }
563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
564
xen_get_user_pgd(pgd_t * pgd)565 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
566 {
567 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
568 unsigned offset = pgd - pgd_page;
569 pgd_t *user_ptr = NULL;
570
571 if (offset < pgd_index(USER_LIMIT)) {
572 struct page *page = virt_to_page(pgd_page);
573 user_ptr = (pgd_t *)page->private;
574 if (user_ptr)
575 user_ptr += offset;
576 }
577
578 return user_ptr;
579 }
580
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)581 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
582 {
583 struct mmu_update u;
584
585 u.ptr = virt_to_machine(ptr).maddr;
586 u.val = pgd_val_ma(val);
587 xen_extend_mmu_update(&u);
588 }
589
590 /*
591 * Raw hypercall-based set_pgd, intended for in early boot before
592 * there's a page structure. This implies:
593 * 1. The only existing pagetable is the kernel's
594 * 2. It is always pinned
595 * 3. It has no user pagetable attached to it
596 */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)597 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
598 {
599 preempt_disable();
600
601 xen_mc_batch();
602
603 __xen_set_pgd_hyper(ptr, val);
604
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
606
607 preempt_enable();
608 }
609
xen_set_pgd(pgd_t * ptr,pgd_t val)610 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
611 {
612 pgd_t *user_ptr = xen_get_user_pgd(ptr);
613
614 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
615
616 /* If page is not pinned, we can just update the entry
617 directly */
618 if (!xen_page_pinned(ptr)) {
619 *ptr = val;
620 if (user_ptr) {
621 WARN_ON(xen_page_pinned(user_ptr));
622 *user_ptr = val;
623 }
624 return;
625 }
626
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
629 xen_mc_batch();
630
631 __xen_set_pgd_hyper(ptr, val);
632 if (user_ptr)
633 __xen_set_pgd_hyper(user_ptr, val);
634
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
636 }
637 #endif /* PAGETABLE_LEVELS == 4 */
638
639 /*
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
646 * FIXADDR_TOP.
647 *
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
650 *
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
653 */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)654 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
655 int (*func)(struct mm_struct *mm, struct page *,
656 enum pt_level),
657 unsigned long limit)
658 {
659 int flush = 0;
660 unsigned hole_low, hole_high;
661 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
662 unsigned pgdidx, pudidx, pmdidx;
663
664 /* The limit is the last byte to be touched */
665 limit--;
666 BUG_ON(limit >= FIXADDR_TOP);
667
668 if (xen_feature(XENFEAT_auto_translated_physmap))
669 return 0;
670
671 /*
672 * 64-bit has a great big hole in the middle of the address
673 * space, which contains the Xen mappings. On 32-bit these
674 * will end up making a zero-sized hole and so is a no-op.
675 */
676 hole_low = pgd_index(USER_LIMIT);
677 hole_high = pgd_index(PAGE_OFFSET);
678
679 pgdidx_limit = pgd_index(limit);
680 #if PTRS_PER_PUD > 1
681 pudidx_limit = pud_index(limit);
682 #else
683 pudidx_limit = 0;
684 #endif
685 #if PTRS_PER_PMD > 1
686 pmdidx_limit = pmd_index(limit);
687 #else
688 pmdidx_limit = 0;
689 #endif
690
691 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
692 pud_t *pud;
693
694 if (pgdidx >= hole_low && pgdidx < hole_high)
695 continue;
696
697 if (!pgd_val(pgd[pgdidx]))
698 continue;
699
700 pud = pud_offset(&pgd[pgdidx], 0);
701
702 if (PTRS_PER_PUD > 1) /* not folded */
703 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
704
705 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
706 pmd_t *pmd;
707
708 if (pgdidx == pgdidx_limit &&
709 pudidx > pudidx_limit)
710 goto out;
711
712 if (pud_none(pud[pudidx]))
713 continue;
714
715 pmd = pmd_offset(&pud[pudidx], 0);
716
717 if (PTRS_PER_PMD > 1) /* not folded */
718 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
719
720 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
721 struct page *pte;
722
723 if (pgdidx == pgdidx_limit &&
724 pudidx == pudidx_limit &&
725 pmdidx > pmdidx_limit)
726 goto out;
727
728 if (pmd_none(pmd[pmdidx]))
729 continue;
730
731 pte = pmd_page(pmd[pmdidx]);
732 flush |= (*func)(mm, pte, PT_PTE);
733 }
734 }
735 }
736
737 out:
738 /* Do the top level last, so that the callbacks can use it as
739 a cue to do final things like tlb flushes. */
740 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
741
742 return flush;
743 }
744
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)745 static int xen_pgd_walk(struct mm_struct *mm,
746 int (*func)(struct mm_struct *mm, struct page *,
747 enum pt_level),
748 unsigned long limit)
749 {
750 return __xen_pgd_walk(mm, mm->pgd, func, limit);
751 }
752
753 /* If we're using split pte locks, then take the page's lock and
754 return a pointer to it. Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)755 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
756 {
757 spinlock_t *ptl = NULL;
758
759 #if USE_SPLIT_PTE_PTLOCKS
760 ptl = ptlock_ptr(page);
761 spin_lock_nest_lock(ptl, &mm->page_table_lock);
762 #endif
763
764 return ptl;
765 }
766
xen_pte_unlock(void * v)767 static void xen_pte_unlock(void *v)
768 {
769 spinlock_t *ptl = v;
770 spin_unlock(ptl);
771 }
772
xen_do_pin(unsigned level,unsigned long pfn)773 static void xen_do_pin(unsigned level, unsigned long pfn)
774 {
775 struct mmuext_op op;
776
777 op.cmd = level;
778 op.arg1.mfn = pfn_to_mfn(pfn);
779
780 xen_extend_mmuext_op(&op);
781 }
782
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)783 static int xen_pin_page(struct mm_struct *mm, struct page *page,
784 enum pt_level level)
785 {
786 unsigned pgfl = TestSetPagePinned(page);
787 int flush;
788
789 if (pgfl)
790 flush = 0; /* already pinned */
791 else if (PageHighMem(page))
792 /* kmaps need flushing if we found an unpinned
793 highpage */
794 flush = 1;
795 else {
796 void *pt = lowmem_page_address(page);
797 unsigned long pfn = page_to_pfn(page);
798 struct multicall_space mcs = __xen_mc_entry(0);
799 spinlock_t *ptl;
800
801 flush = 0;
802
803 /*
804 * We need to hold the pagetable lock between the time
805 * we make the pagetable RO and when we actually pin
806 * it. If we don't, then other users may come in and
807 * attempt to update the pagetable by writing it,
808 * which will fail because the memory is RO but not
809 * pinned, so Xen won't do the trap'n'emulate.
810 *
811 * If we're using split pte locks, we can't hold the
812 * entire pagetable's worth of locks during the
813 * traverse, because we may wrap the preempt count (8
814 * bits). The solution is to mark RO and pin each PTE
815 * page while holding the lock. This means the number
816 * of locks we end up holding is never more than a
817 * batch size (~32 entries, at present).
818 *
819 * If we're not using split pte locks, we needn't pin
820 * the PTE pages independently, because we're
821 * protected by the overall pagetable lock.
822 */
823 ptl = NULL;
824 if (level == PT_PTE)
825 ptl = xen_pte_lock(page, mm);
826
827 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
828 pfn_pte(pfn, PAGE_KERNEL_RO),
829 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
830
831 if (ptl) {
832 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
833
834 /* Queue a deferred unlock for when this batch
835 is completed. */
836 xen_mc_callback(xen_pte_unlock, ptl);
837 }
838 }
839
840 return flush;
841 }
842
843 /* This is called just after a mm has been created, but it has not
844 been used yet. We need to make sure that its pagetable is all
845 read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)846 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
847 {
848 trace_xen_mmu_pgd_pin(mm, pgd);
849
850 xen_mc_batch();
851
852 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
853 /* re-enable interrupts for flushing */
854 xen_mc_issue(0);
855
856 kmap_flush_unused();
857
858 xen_mc_batch();
859 }
860
861 #ifdef CONFIG_X86_64
862 {
863 pgd_t *user_pgd = xen_get_user_pgd(pgd);
864
865 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
866
867 if (user_pgd) {
868 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
869 xen_do_pin(MMUEXT_PIN_L4_TABLE,
870 PFN_DOWN(__pa(user_pgd)));
871 }
872 }
873 #else /* CONFIG_X86_32 */
874 #ifdef CONFIG_X86_PAE
875 /* Need to make sure unshared kernel PMD is pinnable */
876 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
877 PT_PMD);
878 #endif
879 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
880 #endif /* CONFIG_X86_64 */
881 xen_mc_issue(0);
882 }
883
xen_pgd_pin(struct mm_struct * mm)884 static void xen_pgd_pin(struct mm_struct *mm)
885 {
886 __xen_pgd_pin(mm, mm->pgd);
887 }
888
889 /*
890 * On save, we need to pin all pagetables to make sure they get their
891 * mfns turned into pfns. Search the list for any unpinned pgds and pin
892 * them (unpinned pgds are not currently in use, probably because the
893 * process is under construction or destruction).
894 *
895 * Expected to be called in stop_machine() ("equivalent to taking
896 * every spinlock in the system"), so the locking doesn't really
897 * matter all that much.
898 */
xen_mm_pin_all(void)899 void xen_mm_pin_all(void)
900 {
901 struct page *page;
902
903 spin_lock(&pgd_lock);
904
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!PagePinned(page)) {
907 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
908 SetPageSavePinned(page);
909 }
910 }
911
912 spin_unlock(&pgd_lock);
913 }
914
915 /*
916 * The init_mm pagetable is really pinned as soon as its created, but
917 * that's before we have page structures to store the bits. So do all
918 * the book-keeping now.
919 */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)920 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
921 enum pt_level level)
922 {
923 SetPagePinned(page);
924 return 0;
925 }
926
xen_mark_init_mm_pinned(void)927 static void __init xen_mark_init_mm_pinned(void)
928 {
929 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
930 }
931
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)932 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
933 enum pt_level level)
934 {
935 unsigned pgfl = TestClearPagePinned(page);
936
937 if (pgfl && !PageHighMem(page)) {
938 void *pt = lowmem_page_address(page);
939 unsigned long pfn = page_to_pfn(page);
940 spinlock_t *ptl = NULL;
941 struct multicall_space mcs;
942
943 /*
944 * Do the converse to pin_page. If we're using split
945 * pte locks, we must be holding the lock for while
946 * the pte page is unpinned but still RO to prevent
947 * concurrent updates from seeing it in this
948 * partially-pinned state.
949 */
950 if (level == PT_PTE) {
951 ptl = xen_pte_lock(page, mm);
952
953 if (ptl)
954 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
955 }
956
957 mcs = __xen_mc_entry(0);
958
959 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
960 pfn_pte(pfn, PAGE_KERNEL),
961 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
962
963 if (ptl) {
964 /* unlock when batch completed */
965 xen_mc_callback(xen_pte_unlock, ptl);
966 }
967 }
968
969 return 0; /* never need to flush on unpin */
970 }
971
972 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)973 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
974 {
975 trace_xen_mmu_pgd_unpin(mm, pgd);
976
977 xen_mc_batch();
978
979 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
980
981 #ifdef CONFIG_X86_64
982 {
983 pgd_t *user_pgd = xen_get_user_pgd(pgd);
984
985 if (user_pgd) {
986 xen_do_pin(MMUEXT_UNPIN_TABLE,
987 PFN_DOWN(__pa(user_pgd)));
988 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
989 }
990 }
991 #endif
992
993 #ifdef CONFIG_X86_PAE
994 /* Need to make sure unshared kernel PMD is unpinned */
995 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
996 PT_PMD);
997 #endif
998
999 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1000
1001 xen_mc_issue(0);
1002 }
1003
xen_pgd_unpin(struct mm_struct * mm)1004 static void xen_pgd_unpin(struct mm_struct *mm)
1005 {
1006 __xen_pgd_unpin(mm, mm->pgd);
1007 }
1008
1009 /*
1010 * On resume, undo any pinning done at save, so that the rest of the
1011 * kernel doesn't see any unexpected pinned pagetables.
1012 */
xen_mm_unpin_all(void)1013 void xen_mm_unpin_all(void)
1014 {
1015 struct page *page;
1016
1017 spin_lock(&pgd_lock);
1018
1019 list_for_each_entry(page, &pgd_list, lru) {
1020 if (PageSavePinned(page)) {
1021 BUG_ON(!PagePinned(page));
1022 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1023 ClearPageSavePinned(page);
1024 }
1025 }
1026
1027 spin_unlock(&pgd_lock);
1028 }
1029
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)1030 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1031 {
1032 spin_lock(&next->page_table_lock);
1033 xen_pgd_pin(next);
1034 spin_unlock(&next->page_table_lock);
1035 }
1036
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)1037 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1038 {
1039 spin_lock(&mm->page_table_lock);
1040 xen_pgd_pin(mm);
1041 spin_unlock(&mm->page_table_lock);
1042 }
1043
1044
1045 #ifdef CONFIG_SMP
1046 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1047 we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1048 static void drop_other_mm_ref(void *info)
1049 {
1050 struct mm_struct *mm = info;
1051 struct mm_struct *active_mm;
1052
1053 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1054
1055 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1056 leave_mm(smp_processor_id());
1057
1058 /* If this cpu still has a stale cr3 reference, then make sure
1059 it has been flushed. */
1060 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1061 load_cr3(swapper_pg_dir);
1062 }
1063
xen_drop_mm_ref(struct mm_struct * mm)1064 static void xen_drop_mm_ref(struct mm_struct *mm)
1065 {
1066 cpumask_var_t mask;
1067 unsigned cpu;
1068
1069 if (current->active_mm == mm) {
1070 if (current->mm == mm)
1071 load_cr3(swapper_pg_dir);
1072 else
1073 leave_mm(smp_processor_id());
1074 }
1075
1076 /* Get the "official" set of cpus referring to our pagetable. */
1077 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1078 for_each_online_cpu(cpu) {
1079 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1080 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1081 continue;
1082 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1083 }
1084 return;
1085 }
1086 cpumask_copy(mask, mm_cpumask(mm));
1087
1088 /* It's possible that a vcpu may have a stale reference to our
1089 cr3, because its in lazy mode, and it hasn't yet flushed
1090 its set of pending hypercalls yet. In this case, we can
1091 look at its actual current cr3 value, and force it to flush
1092 if needed. */
1093 for_each_online_cpu(cpu) {
1094 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1095 cpumask_set_cpu(cpu, mask);
1096 }
1097
1098 if (!cpumask_empty(mask))
1099 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1100 free_cpumask_var(mask);
1101 }
1102 #else
xen_drop_mm_ref(struct mm_struct * mm)1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1104 {
1105 if (current->active_mm == mm)
1106 load_cr3(swapper_pg_dir);
1107 }
1108 #endif
1109
1110 /*
1111 * While a process runs, Xen pins its pagetables, which means that the
1112 * hypervisor forces it to be read-only, and it controls all updates
1113 * to it. This means that all pagetable updates have to go via the
1114 * hypervisor, which is moderately expensive.
1115 *
1116 * Since we're pulling the pagetable down, we switch to use init_mm,
1117 * unpin old process pagetable and mark it all read-write, which
1118 * allows further operations on it to be simple memory accesses.
1119 *
1120 * The only subtle point is that another CPU may be still using the
1121 * pagetable because of lazy tlb flushing. This means we need need to
1122 * switch all CPUs off this pagetable before we can unpin it.
1123 */
xen_exit_mmap(struct mm_struct * mm)1124 static void xen_exit_mmap(struct mm_struct *mm)
1125 {
1126 get_cpu(); /* make sure we don't move around */
1127 xen_drop_mm_ref(mm);
1128 put_cpu();
1129
1130 spin_lock(&mm->page_table_lock);
1131
1132 /* pgd may not be pinned in the error exit path of execve */
1133 if (xen_page_pinned(mm->pgd))
1134 xen_pgd_unpin(mm);
1135
1136 spin_unlock(&mm->page_table_lock);
1137 }
1138
1139 static void xen_post_allocator_init(void);
1140
1141 #ifdef CONFIG_X86_64
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1142 static void __init xen_cleanhighmap(unsigned long vaddr,
1143 unsigned long vaddr_end)
1144 {
1145 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1146 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1147
1148 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1149 * We include the PMD passed in on _both_ boundaries. */
1150 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1151 pmd++, vaddr += PMD_SIZE) {
1152 if (pmd_none(*pmd))
1153 continue;
1154 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1155 set_pmd(pmd, __pmd(0));
1156 }
1157 /* In case we did something silly, we should crash in this function
1158 * instead of somewhere later and be confusing. */
1159 xen_mc_flush();
1160 }
xen_pagetable_p2m_copy(void)1161 static void __init xen_pagetable_p2m_copy(void)
1162 {
1163 unsigned long size;
1164 unsigned long addr;
1165 unsigned long new_mfn_list;
1166
1167 if (xen_feature(XENFEAT_auto_translated_physmap))
1168 return;
1169
1170 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1171
1172 new_mfn_list = xen_revector_p2m_tree();
1173 /* No memory or already called. */
1174 if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1175 return;
1176
1177 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1178 memset((void *)xen_start_info->mfn_list, 0xff, size);
1179
1180 /* We should be in __ka space. */
1181 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1182 addr = xen_start_info->mfn_list;
1183 /* We roundup to the PMD, which means that if anybody at this stage is
1184 * using the __ka address of xen_start_info or xen_start_info->shared_info
1185 * they are in going to crash. Fortunatly we have already revectored
1186 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1187 size = roundup(size, PMD_SIZE);
1188 xen_cleanhighmap(addr, addr + size);
1189
1190 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1191 memblock_free(__pa(xen_start_info->mfn_list), size);
1192 /* And revector! Bye bye old array */
1193 xen_start_info->mfn_list = new_mfn_list;
1194
1195 /* At this stage, cleanup_highmap has already cleaned __ka space
1196 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1197 * the ramdisk). We continue on, erasing PMD entries that point to page
1198 * tables - do note that they are accessible at this stage via __va.
1199 * For good measure we also round up to the PMD - which means that if
1200 * anybody is using __ka address to the initial boot-stack - and try
1201 * to use it - they are going to crash. The xen_start_info has been
1202 * taken care of already in xen_setup_kernel_pagetable. */
1203 addr = xen_start_info->pt_base;
1204 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1205
1206 xen_cleanhighmap(addr, addr + size);
1207 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1208 #ifdef DEBUG
1209 /* This is superflous and is not neccessary, but you know what
1210 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1211 * anything at this stage. */
1212 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1213 #endif
1214 }
1215 #endif
1216
xen_pagetable_init(void)1217 static void __init xen_pagetable_init(void)
1218 {
1219 paging_init();
1220 #ifdef CONFIG_X86_64
1221 xen_pagetable_p2m_copy();
1222 #endif
1223 /* Allocate and initialize top and mid mfn levels for p2m structure */
1224 xen_build_mfn_list_list();
1225
1226 xen_setup_shared_info();
1227 xen_post_allocator_init();
1228 }
xen_write_cr2(unsigned long cr2)1229 static void xen_write_cr2(unsigned long cr2)
1230 {
1231 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1232 }
1233
xen_read_cr2(void)1234 static unsigned long xen_read_cr2(void)
1235 {
1236 return this_cpu_read(xen_vcpu)->arch.cr2;
1237 }
1238
xen_read_cr2_direct(void)1239 unsigned long xen_read_cr2_direct(void)
1240 {
1241 return this_cpu_read(xen_vcpu_info.arch.cr2);
1242 }
1243
xen_flush_tlb_all(void)1244 void xen_flush_tlb_all(void)
1245 {
1246 struct mmuext_op *op;
1247 struct multicall_space mcs;
1248
1249 trace_xen_mmu_flush_tlb_all(0);
1250
1251 preempt_disable();
1252
1253 mcs = xen_mc_entry(sizeof(*op));
1254
1255 op = mcs.args;
1256 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1257 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1258
1259 xen_mc_issue(PARAVIRT_LAZY_MMU);
1260
1261 preempt_enable();
1262 }
xen_flush_tlb(void)1263 static void xen_flush_tlb(void)
1264 {
1265 struct mmuext_op *op;
1266 struct multicall_space mcs;
1267
1268 trace_xen_mmu_flush_tlb(0);
1269
1270 preempt_disable();
1271
1272 mcs = xen_mc_entry(sizeof(*op));
1273
1274 op = mcs.args;
1275 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1276 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1277
1278 xen_mc_issue(PARAVIRT_LAZY_MMU);
1279
1280 preempt_enable();
1281 }
1282
xen_flush_tlb_single(unsigned long addr)1283 static void xen_flush_tlb_single(unsigned long addr)
1284 {
1285 struct mmuext_op *op;
1286 struct multicall_space mcs;
1287
1288 trace_xen_mmu_flush_tlb_single(addr);
1289
1290 preempt_disable();
1291
1292 mcs = xen_mc_entry(sizeof(*op));
1293 op = mcs.args;
1294 op->cmd = MMUEXT_INVLPG_LOCAL;
1295 op->arg1.linear_addr = addr & PAGE_MASK;
1296 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1297
1298 xen_mc_issue(PARAVIRT_LAZY_MMU);
1299
1300 preempt_enable();
1301 }
1302
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long start,unsigned long end)1303 static void xen_flush_tlb_others(const struct cpumask *cpus,
1304 struct mm_struct *mm, unsigned long start,
1305 unsigned long end)
1306 {
1307 struct {
1308 struct mmuext_op op;
1309 #ifdef CONFIG_SMP
1310 DECLARE_BITMAP(mask, num_processors);
1311 #else
1312 DECLARE_BITMAP(mask, NR_CPUS);
1313 #endif
1314 } *args;
1315 struct multicall_space mcs;
1316
1317 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1318
1319 if (cpumask_empty(cpus))
1320 return; /* nothing to do */
1321
1322 mcs = xen_mc_entry(sizeof(*args));
1323 args = mcs.args;
1324 args->op.arg2.vcpumask = to_cpumask(args->mask);
1325
1326 /* Remove us, and any offline CPUS. */
1327 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1328 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1329
1330 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1331 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1332 args->op.cmd = MMUEXT_INVLPG_MULTI;
1333 args->op.arg1.linear_addr = start;
1334 }
1335
1336 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1337
1338 xen_mc_issue(PARAVIRT_LAZY_MMU);
1339 }
1340
xen_read_cr3(void)1341 static unsigned long xen_read_cr3(void)
1342 {
1343 return this_cpu_read(xen_cr3);
1344 }
1345
set_current_cr3(void * v)1346 static void set_current_cr3(void *v)
1347 {
1348 this_cpu_write(xen_current_cr3, (unsigned long)v);
1349 }
1350
__xen_write_cr3(bool kernel,unsigned long cr3)1351 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1352 {
1353 struct mmuext_op op;
1354 unsigned long mfn;
1355
1356 trace_xen_mmu_write_cr3(kernel, cr3);
1357
1358 if (cr3)
1359 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1360 else
1361 mfn = 0;
1362
1363 WARN_ON(mfn == 0 && kernel);
1364
1365 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1366 op.arg1.mfn = mfn;
1367
1368 xen_extend_mmuext_op(&op);
1369
1370 if (kernel) {
1371 this_cpu_write(xen_cr3, cr3);
1372
1373 /* Update xen_current_cr3 once the batch has actually
1374 been submitted. */
1375 xen_mc_callback(set_current_cr3, (void *)cr3);
1376 }
1377 }
xen_write_cr3(unsigned long cr3)1378 static void xen_write_cr3(unsigned long cr3)
1379 {
1380 BUG_ON(preemptible());
1381
1382 xen_mc_batch(); /* disables interrupts */
1383
1384 /* Update while interrupts are disabled, so its atomic with
1385 respect to ipis */
1386 this_cpu_write(xen_cr3, cr3);
1387
1388 __xen_write_cr3(true, cr3);
1389
1390 #ifdef CONFIG_X86_64
1391 {
1392 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1393 if (user_pgd)
1394 __xen_write_cr3(false, __pa(user_pgd));
1395 else
1396 __xen_write_cr3(false, 0);
1397 }
1398 #endif
1399
1400 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1401 }
1402
1403 #ifdef CONFIG_X86_64
1404 /*
1405 * At the start of the day - when Xen launches a guest, it has already
1406 * built pagetables for the guest. We diligently look over them
1407 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1408 * init_level4_pgt and its friends. Then when we are happy we load
1409 * the new init_level4_pgt - and continue on.
1410 *
1411 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1412 * up the rest of the pagetables. When it has completed it loads the cr3.
1413 * N.B. that baremetal would start at 'start_kernel' (and the early
1414 * #PF handler would create bootstrap pagetables) - so we are running
1415 * with the same assumptions as what to do when write_cr3 is executed
1416 * at this point.
1417 *
1418 * Since there are no user-page tables at all, we have two variants
1419 * of xen_write_cr3 - the early bootup (this one), and the late one
1420 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1421 * the Linux kernel and user-space are both in ring 3 while the
1422 * hypervisor is in ring 0.
1423 */
xen_write_cr3_init(unsigned long cr3)1424 static void __init xen_write_cr3_init(unsigned long cr3)
1425 {
1426 BUG_ON(preemptible());
1427
1428 xen_mc_batch(); /* disables interrupts */
1429
1430 /* Update while interrupts are disabled, so its atomic with
1431 respect to ipis */
1432 this_cpu_write(xen_cr3, cr3);
1433
1434 __xen_write_cr3(true, cr3);
1435
1436 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1437 }
1438 #endif
1439
xen_pgd_alloc(struct mm_struct * mm)1440 static int xen_pgd_alloc(struct mm_struct *mm)
1441 {
1442 pgd_t *pgd = mm->pgd;
1443 int ret = 0;
1444
1445 BUG_ON(PagePinned(virt_to_page(pgd)));
1446
1447 #ifdef CONFIG_X86_64
1448 {
1449 struct page *page = virt_to_page(pgd);
1450 pgd_t *user_pgd;
1451
1452 BUG_ON(page->private != 0);
1453
1454 ret = -ENOMEM;
1455
1456 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1457 page->private = (unsigned long)user_pgd;
1458
1459 if (user_pgd != NULL) {
1460 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1461 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1462 ret = 0;
1463 }
1464
1465 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1466 }
1467 #endif
1468
1469 return ret;
1470 }
1471
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1472 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1473 {
1474 #ifdef CONFIG_X86_64
1475 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1476
1477 if (user_pgd)
1478 free_page((unsigned long)user_pgd);
1479 #endif
1480 }
1481
1482 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1483 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1484 {
1485 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1486 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1487 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1488 pte_val_ma(pte));
1489
1490 return pte;
1491 }
1492 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1493 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1494 {
1495 return pte;
1496 }
1497 #endif /* CONFIG_X86_64 */
1498
1499 /*
1500 * Init-time set_pte while constructing initial pagetables, which
1501 * doesn't allow RO page table pages to be remapped RW.
1502 *
1503 * If there is no MFN for this PFN then this page is initially
1504 * ballooned out so clear the PTE (as in decrease_reservation() in
1505 * drivers/xen/balloon.c).
1506 *
1507 * Many of these PTE updates are done on unpinned and writable pages
1508 * and doing a hypercall for these is unnecessary and expensive. At
1509 * this point it is not possible to tell if a page is pinned or not,
1510 * so always write the PTE directly and rely on Xen trapping and
1511 * emulating any updates as necessary.
1512 */
xen_set_pte_init(pte_t * ptep,pte_t pte)1513 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1514 {
1515 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1516 pte = mask_rw_pte(ptep, pte);
1517 else
1518 pte = __pte_ma(0);
1519
1520 native_set_pte(ptep, pte);
1521 }
1522
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1523 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1524 {
1525 struct mmuext_op op;
1526 op.cmd = cmd;
1527 op.arg1.mfn = pfn_to_mfn(pfn);
1528 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1529 BUG();
1530 }
1531
1532 /* Early in boot, while setting up the initial pagetable, assume
1533 everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1534 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1535 {
1536 #ifdef CONFIG_FLATMEM
1537 BUG_ON(mem_map); /* should only be used early */
1538 #endif
1539 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1540 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1541 }
1542
1543 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1544 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1545 {
1546 #ifdef CONFIG_FLATMEM
1547 BUG_ON(mem_map); /* should only be used early */
1548 #endif
1549 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1550 }
1551
1552 /* Early release_pte assumes that all pts are pinned, since there's
1553 only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1554 static void __init xen_release_pte_init(unsigned long pfn)
1555 {
1556 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1557 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1558 }
1559
xen_release_pmd_init(unsigned long pfn)1560 static void __init xen_release_pmd_init(unsigned long pfn)
1561 {
1562 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1563 }
1564
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1565 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1566 {
1567 struct multicall_space mcs;
1568 struct mmuext_op *op;
1569
1570 mcs = __xen_mc_entry(sizeof(*op));
1571 op = mcs.args;
1572 op->cmd = cmd;
1573 op->arg1.mfn = pfn_to_mfn(pfn);
1574
1575 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1576 }
1577
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1578 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1579 {
1580 struct multicall_space mcs;
1581 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1582
1583 mcs = __xen_mc_entry(0);
1584 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1585 pfn_pte(pfn, prot), 0);
1586 }
1587
1588 /* This needs to make sure the new pte page is pinned iff its being
1589 attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1590 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1591 unsigned level)
1592 {
1593 bool pinned = PagePinned(virt_to_page(mm->pgd));
1594
1595 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1596
1597 if (pinned) {
1598 struct page *page = pfn_to_page(pfn);
1599
1600 SetPagePinned(page);
1601
1602 if (!PageHighMem(page)) {
1603 xen_mc_batch();
1604
1605 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1606
1607 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1608 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1609
1610 xen_mc_issue(PARAVIRT_LAZY_MMU);
1611 } else {
1612 /* make sure there are no stray mappings of
1613 this page */
1614 kmap_flush_unused();
1615 }
1616 }
1617 }
1618
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1619 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1620 {
1621 xen_alloc_ptpage(mm, pfn, PT_PTE);
1622 }
1623
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1624 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1625 {
1626 xen_alloc_ptpage(mm, pfn, PT_PMD);
1627 }
1628
1629 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1630 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1631 {
1632 struct page *page = pfn_to_page(pfn);
1633 bool pinned = PagePinned(page);
1634
1635 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1636
1637 if (pinned) {
1638 if (!PageHighMem(page)) {
1639 xen_mc_batch();
1640
1641 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1642 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1643
1644 __set_pfn_prot(pfn, PAGE_KERNEL);
1645
1646 xen_mc_issue(PARAVIRT_LAZY_MMU);
1647 }
1648 ClearPagePinned(page);
1649 }
1650 }
1651
xen_release_pte(unsigned long pfn)1652 static void xen_release_pte(unsigned long pfn)
1653 {
1654 xen_release_ptpage(pfn, PT_PTE);
1655 }
1656
xen_release_pmd(unsigned long pfn)1657 static void xen_release_pmd(unsigned long pfn)
1658 {
1659 xen_release_ptpage(pfn, PT_PMD);
1660 }
1661
1662 #if PAGETABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1663 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1664 {
1665 xen_alloc_ptpage(mm, pfn, PT_PUD);
1666 }
1667
xen_release_pud(unsigned long pfn)1668 static void xen_release_pud(unsigned long pfn)
1669 {
1670 xen_release_ptpage(pfn, PT_PUD);
1671 }
1672 #endif
1673
xen_reserve_top(void)1674 void __init xen_reserve_top(void)
1675 {
1676 #ifdef CONFIG_X86_32
1677 unsigned long top = HYPERVISOR_VIRT_START;
1678 struct xen_platform_parameters pp;
1679
1680 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1681 top = pp.virt_start;
1682
1683 reserve_top_address(-top);
1684 #endif /* CONFIG_X86_32 */
1685 }
1686
1687 /*
1688 * Like __va(), but returns address in the kernel mapping (which is
1689 * all we have until the physical memory mapping has been set up.
1690 */
__ka(phys_addr_t paddr)1691 static void *__ka(phys_addr_t paddr)
1692 {
1693 #ifdef CONFIG_X86_64
1694 return (void *)(paddr + __START_KERNEL_map);
1695 #else
1696 return __va(paddr);
1697 #endif
1698 }
1699
1700 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1701 static unsigned long m2p(phys_addr_t maddr)
1702 {
1703 phys_addr_t paddr;
1704
1705 maddr &= PTE_PFN_MASK;
1706 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1707
1708 return paddr;
1709 }
1710
1711 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1712 static void *m2v(phys_addr_t maddr)
1713 {
1714 return __ka(m2p(maddr));
1715 }
1716
1717 /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1718 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1719 {
1720 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1721 pte_t pte = pfn_pte(pfn, prot);
1722
1723 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1724 if (xen_feature(XENFEAT_auto_translated_physmap))
1725 return;
1726
1727 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1728 BUG();
1729 }
set_page_prot(void * addr,pgprot_t prot)1730 static void set_page_prot(void *addr, pgprot_t prot)
1731 {
1732 return set_page_prot_flags(addr, prot, UVMF_NONE);
1733 }
1734 #ifdef CONFIG_X86_32
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1735 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1736 {
1737 unsigned pmdidx, pteidx;
1738 unsigned ident_pte;
1739 unsigned long pfn;
1740
1741 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1742 PAGE_SIZE);
1743
1744 ident_pte = 0;
1745 pfn = 0;
1746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1747 pte_t *pte_page;
1748
1749 /* Reuse or allocate a page of ptes */
1750 if (pmd_present(pmd[pmdidx]))
1751 pte_page = m2v(pmd[pmdidx].pmd);
1752 else {
1753 /* Check for free pte pages */
1754 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1755 break;
1756
1757 pte_page = &level1_ident_pgt[ident_pte];
1758 ident_pte += PTRS_PER_PTE;
1759
1760 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1761 }
1762
1763 /* Install mappings */
1764 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1765 pte_t pte;
1766
1767 #ifdef CONFIG_X86_32
1768 if (pfn > max_pfn_mapped)
1769 max_pfn_mapped = pfn;
1770 #endif
1771
1772 if (!pte_none(pte_page[pteidx]))
1773 continue;
1774
1775 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1776 pte_page[pteidx] = pte;
1777 }
1778 }
1779
1780 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1781 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1782
1783 set_page_prot(pmd, PAGE_KERNEL_RO);
1784 }
1785 #endif
xen_setup_machphys_mapping(void)1786 void __init xen_setup_machphys_mapping(void)
1787 {
1788 struct xen_machphys_mapping mapping;
1789
1790 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1791 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1792 machine_to_phys_nr = mapping.max_mfn + 1;
1793 } else {
1794 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1795 }
1796 #ifdef CONFIG_X86_32
1797 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1798 < machine_to_phys_mapping);
1799 #endif
1800 }
1801
1802 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1803 static void convert_pfn_mfn(void *v)
1804 {
1805 pte_t *pte = v;
1806 int i;
1807
1808 /* All levels are converted the same way, so just treat them
1809 as ptes. */
1810 for (i = 0; i < PTRS_PER_PTE; i++)
1811 pte[i] = xen_make_pte(pte[i].pte);
1812 }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1813 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1814 unsigned long addr)
1815 {
1816 if (*pt_base == PFN_DOWN(__pa(addr))) {
1817 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1818 clear_page((void *)addr);
1819 (*pt_base)++;
1820 }
1821 if (*pt_end == PFN_DOWN(__pa(addr))) {
1822 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1823 clear_page((void *)addr);
1824 (*pt_end)--;
1825 }
1826 }
1827 /*
1828 * Set up the initial kernel pagetable.
1829 *
1830 * We can construct this by grafting the Xen provided pagetable into
1831 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1832 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1833 * kernel has a physical mapping to start with - but that's enough to
1834 * get __va working. We need to fill in the rest of the physical
1835 * mapping once some sort of allocator has been set up. NOTE: for
1836 * PVH, the page tables are native.
1837 */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1838 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1839 {
1840 pud_t *l3;
1841 pmd_t *l2;
1842 unsigned long addr[3];
1843 unsigned long pt_base, pt_end;
1844 unsigned i;
1845
1846 /* max_pfn_mapped is the last pfn mapped in the initial memory
1847 * mappings. Considering that on Xen after the kernel mappings we
1848 * have the mappings of some pages that don't exist in pfn space, we
1849 * set max_pfn_mapped to the last real pfn mapped. */
1850 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1851
1852 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1853 pt_end = pt_base + xen_start_info->nr_pt_frames;
1854
1855 /* Zap identity mapping */
1856 init_level4_pgt[0] = __pgd(0);
1857
1858 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1859 /* Pre-constructed entries are in pfn, so convert to mfn */
1860 /* L4[272] -> level3_ident_pgt
1861 * L4[511] -> level3_kernel_pgt */
1862 convert_pfn_mfn(init_level4_pgt);
1863
1864 /* L3_i[0] -> level2_ident_pgt */
1865 convert_pfn_mfn(level3_ident_pgt);
1866 /* L3_k[510] -> level2_kernel_pgt
1867 * L3_k[511] -> level2_fixmap_pgt */
1868 convert_pfn_mfn(level3_kernel_pgt);
1869
1870 /* L3_k[511][506] -> level1_fixmap_pgt */
1871 convert_pfn_mfn(level2_fixmap_pgt);
1872 }
1873 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1874 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1875 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1876
1877 addr[0] = (unsigned long)pgd;
1878 addr[1] = (unsigned long)l3;
1879 addr[2] = (unsigned long)l2;
1880 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1881 * Both L4[272][0] and L4[511][510] have entries that point to the same
1882 * L2 (PMD) tables. Meaning that if you modify it in __va space
1883 * it will be also modified in the __ka space! (But if you just
1884 * modify the PMD table to point to other PTE's or none, then you
1885 * are OK - which is what cleanup_highmap does) */
1886 copy_page(level2_ident_pgt, l2);
1887 /* Graft it onto L4[511][510] */
1888 copy_page(level2_kernel_pgt, l2);
1889
1890 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1891 /* Make pagetable pieces RO */
1892 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1893 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1894 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1895 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1896 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1897 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1898 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1899 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1900
1901 /* Pin down new L4 */
1902 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1903 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1904
1905 /* Unpin Xen-provided one */
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1907
1908 /*
1909 * At this stage there can be no user pgd, and no page
1910 * structure to attach it to, so make sure we just set kernel
1911 * pgd.
1912 */
1913 xen_mc_batch();
1914 __xen_write_cr3(true, __pa(init_level4_pgt));
1915 xen_mc_issue(PARAVIRT_LAZY_CPU);
1916 } else
1917 native_write_cr3(__pa(init_level4_pgt));
1918
1919 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1920 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1921 * the initial domain. For guests using the toolstack, they are in:
1922 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1923 * rip out the [L4] (pgd), but for guests we shave off three pages.
1924 */
1925 for (i = 0; i < ARRAY_SIZE(addr); i++)
1926 check_pt_base(&pt_base, &pt_end, addr[i]);
1927
1928 /* Our (by three pages) smaller Xen pagetable that we are using */
1929 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1930 /* Revector the xen_start_info */
1931 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1932 }
1933 #else /* !CONFIG_X86_64 */
1934 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1935 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1936
xen_write_cr3_init(unsigned long cr3)1937 static void __init xen_write_cr3_init(unsigned long cr3)
1938 {
1939 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1940
1941 BUG_ON(read_cr3() != __pa(initial_page_table));
1942 BUG_ON(cr3 != __pa(swapper_pg_dir));
1943
1944 /*
1945 * We are switching to swapper_pg_dir for the first time (from
1946 * initial_page_table) and therefore need to mark that page
1947 * read-only and then pin it.
1948 *
1949 * Xen disallows sharing of kernel PMDs for PAE
1950 * guests. Therefore we must copy the kernel PMD from
1951 * initial_page_table into a new kernel PMD to be used in
1952 * swapper_pg_dir.
1953 */
1954 swapper_kernel_pmd =
1955 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1956 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1957 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1958 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1959 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1960
1961 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1962 xen_write_cr3(cr3);
1963 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1964
1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1966 PFN_DOWN(__pa(initial_page_table)));
1967 set_page_prot(initial_page_table, PAGE_KERNEL);
1968 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1969
1970 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1971 }
1972
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1973 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1974 {
1975 pmd_t *kernel_pmd;
1976
1977 initial_kernel_pmd =
1978 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1979
1980 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1981 xen_start_info->nr_pt_frames * PAGE_SIZE +
1982 512*1024);
1983
1984 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1985 copy_page(initial_kernel_pmd, kernel_pmd);
1986
1987 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1988
1989 copy_page(initial_page_table, pgd);
1990 initial_page_table[KERNEL_PGD_BOUNDARY] =
1991 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1992
1993 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1994 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1995 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1996
1997 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1998
1999 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2000 PFN_DOWN(__pa(initial_page_table)));
2001 xen_write_cr3(__pa(initial_page_table));
2002
2003 memblock_reserve(__pa(xen_start_info->pt_base),
2004 xen_start_info->nr_pt_frames * PAGE_SIZE);
2005 }
2006 #endif /* CONFIG_X86_64 */
2007
2008 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2009
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2010 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2011 {
2012 pte_t pte;
2013
2014 phys >>= PAGE_SHIFT;
2015
2016 switch (idx) {
2017 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2018 case FIX_RO_IDT:
2019 #ifdef CONFIG_X86_32
2020 case FIX_WP_TEST:
2021 # ifdef CONFIG_HIGHMEM
2022 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2023 # endif
2024 #else
2025 case VSYSCALL_PAGE:
2026 #endif
2027 case FIX_TEXT_POKE0:
2028 case FIX_TEXT_POKE1:
2029 /* All local page mappings */
2030 pte = pfn_pte(phys, prot);
2031 break;
2032
2033 #ifdef CONFIG_X86_LOCAL_APIC
2034 case FIX_APIC_BASE: /* maps dummy local APIC */
2035 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2036 break;
2037 #endif
2038
2039 #ifdef CONFIG_X86_IO_APIC
2040 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2041 /*
2042 * We just don't map the IO APIC - all access is via
2043 * hypercalls. Keep the address in the pte for reference.
2044 */
2045 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2046 break;
2047 #endif
2048
2049 case FIX_PARAVIRT_BOOTMAP:
2050 /* This is an MFN, but it isn't an IO mapping from the
2051 IO domain */
2052 pte = mfn_pte(phys, prot);
2053 break;
2054
2055 default:
2056 /* By default, set_fixmap is used for hardware mappings */
2057 pte = mfn_pte(phys, prot);
2058 break;
2059 }
2060
2061 __native_set_fixmap(idx, pte);
2062
2063 #ifdef CONFIG_X86_64
2064 /* Replicate changes to map the vsyscall page into the user
2065 pagetable vsyscall mapping. */
2066 if (idx == VSYSCALL_PAGE) {
2067 unsigned long vaddr = __fix_to_virt(idx);
2068 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2069 }
2070 #endif
2071 }
2072
xen_post_allocator_init(void)2073 static void __init xen_post_allocator_init(void)
2074 {
2075 if (xen_feature(XENFEAT_auto_translated_physmap))
2076 return;
2077
2078 pv_mmu_ops.set_pte = xen_set_pte;
2079 pv_mmu_ops.set_pmd = xen_set_pmd;
2080 pv_mmu_ops.set_pud = xen_set_pud;
2081 #if PAGETABLE_LEVELS == 4
2082 pv_mmu_ops.set_pgd = xen_set_pgd;
2083 #endif
2084
2085 /* This will work as long as patching hasn't happened yet
2086 (which it hasn't) */
2087 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2088 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2089 pv_mmu_ops.release_pte = xen_release_pte;
2090 pv_mmu_ops.release_pmd = xen_release_pmd;
2091 #if PAGETABLE_LEVELS == 4
2092 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2093 pv_mmu_ops.release_pud = xen_release_pud;
2094 #endif
2095
2096 #ifdef CONFIG_X86_64
2097 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2098 SetPagePinned(virt_to_page(level3_user_vsyscall));
2099 #endif
2100 xen_mark_init_mm_pinned();
2101 }
2102
xen_leave_lazy_mmu(void)2103 static void xen_leave_lazy_mmu(void)
2104 {
2105 preempt_disable();
2106 xen_mc_flush();
2107 paravirt_leave_lazy_mmu();
2108 preempt_enable();
2109 }
2110
2111 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2112 .read_cr2 = xen_read_cr2,
2113 .write_cr2 = xen_write_cr2,
2114
2115 .read_cr3 = xen_read_cr3,
2116 .write_cr3 = xen_write_cr3_init,
2117
2118 .flush_tlb_user = xen_flush_tlb,
2119 .flush_tlb_kernel = xen_flush_tlb,
2120 .flush_tlb_single = xen_flush_tlb_single,
2121 .flush_tlb_others = xen_flush_tlb_others,
2122
2123 .pte_update = paravirt_nop,
2124 .pte_update_defer = paravirt_nop,
2125
2126 .pgd_alloc = xen_pgd_alloc,
2127 .pgd_free = xen_pgd_free,
2128
2129 .alloc_pte = xen_alloc_pte_init,
2130 .release_pte = xen_release_pte_init,
2131 .alloc_pmd = xen_alloc_pmd_init,
2132 .release_pmd = xen_release_pmd_init,
2133
2134 .set_pte = xen_set_pte_init,
2135 .set_pte_at = xen_set_pte_at,
2136 .set_pmd = xen_set_pmd_hyper,
2137
2138 .ptep_modify_prot_start = __ptep_modify_prot_start,
2139 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2140
2141 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2142 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2143
2144 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2145 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2146
2147 #ifdef CONFIG_X86_PAE
2148 .set_pte_atomic = xen_set_pte_atomic,
2149 .pte_clear = xen_pte_clear,
2150 .pmd_clear = xen_pmd_clear,
2151 #endif /* CONFIG_X86_PAE */
2152 .set_pud = xen_set_pud_hyper,
2153
2154 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2155 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2156
2157 #if PAGETABLE_LEVELS == 4
2158 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2159 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2160 .set_pgd = xen_set_pgd_hyper,
2161
2162 .alloc_pud = xen_alloc_pmd_init,
2163 .release_pud = xen_release_pmd_init,
2164 #endif /* PAGETABLE_LEVELS == 4 */
2165
2166 .activate_mm = xen_activate_mm,
2167 .dup_mmap = xen_dup_mmap,
2168 .exit_mmap = xen_exit_mmap,
2169
2170 .lazy_mode = {
2171 .enter = paravirt_enter_lazy_mmu,
2172 .leave = xen_leave_lazy_mmu,
2173 .flush = paravirt_flush_lazy_mmu,
2174 },
2175
2176 .set_fixmap = xen_set_fixmap,
2177 };
2178
xen_init_mmu_ops(void)2179 void __init xen_init_mmu_ops(void)
2180 {
2181 x86_init.paging.pagetable_init = xen_pagetable_init;
2182
2183 /* Optimization - we can use the HVM one but it has no idea which
2184 * VCPUs are descheduled - which means that it will needlessly IPI
2185 * them. Xen knows so let it do the job.
2186 */
2187 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2188 pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2189 return;
2190 }
2191 pv_mmu_ops = xen_mmu_ops;
2192
2193 memset(dummy_mapping, 0xff, PAGE_SIZE);
2194 }
2195
2196 /* Protected by xen_reservation_lock. */
2197 #define MAX_CONTIG_ORDER 9 /* 2MB */
2198 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2199
2200 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2201 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2202 unsigned long *in_frames,
2203 unsigned long *out_frames)
2204 {
2205 int i;
2206 struct multicall_space mcs;
2207
2208 xen_mc_batch();
2209 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2210 mcs = __xen_mc_entry(0);
2211
2212 if (in_frames)
2213 in_frames[i] = virt_to_mfn(vaddr);
2214
2215 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2216 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2217
2218 if (out_frames)
2219 out_frames[i] = virt_to_pfn(vaddr);
2220 }
2221 xen_mc_issue(0);
2222 }
2223
2224 /*
2225 * Update the pfn-to-mfn mappings for a virtual address range, either to
2226 * point to an array of mfns, or contiguously from a single starting
2227 * mfn.
2228 */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2229 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2230 unsigned long *mfns,
2231 unsigned long first_mfn)
2232 {
2233 unsigned i, limit;
2234 unsigned long mfn;
2235
2236 xen_mc_batch();
2237
2238 limit = 1u << order;
2239 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2240 struct multicall_space mcs;
2241 unsigned flags;
2242
2243 mcs = __xen_mc_entry(0);
2244 if (mfns)
2245 mfn = mfns[i];
2246 else
2247 mfn = first_mfn + i;
2248
2249 if (i < (limit - 1))
2250 flags = 0;
2251 else {
2252 if (order == 0)
2253 flags = UVMF_INVLPG | UVMF_ALL;
2254 else
2255 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2256 }
2257
2258 MULTI_update_va_mapping(mcs.mc, vaddr,
2259 mfn_pte(mfn, PAGE_KERNEL), flags);
2260
2261 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2262 }
2263
2264 xen_mc_issue(0);
2265 }
2266
2267 /*
2268 * Perform the hypercall to exchange a region of our pfns to point to
2269 * memory with the required contiguous alignment. Takes the pfns as
2270 * input, and populates mfns as output.
2271 *
2272 * Returns a success code indicating whether the hypervisor was able to
2273 * satisfy the request or not.
2274 */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2275 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2276 unsigned long *pfns_in,
2277 unsigned long extents_out,
2278 unsigned int order_out,
2279 unsigned long *mfns_out,
2280 unsigned int address_bits)
2281 {
2282 long rc;
2283 int success;
2284
2285 struct xen_memory_exchange exchange = {
2286 .in = {
2287 .nr_extents = extents_in,
2288 .extent_order = order_in,
2289 .extent_start = pfns_in,
2290 .domid = DOMID_SELF
2291 },
2292 .out = {
2293 .nr_extents = extents_out,
2294 .extent_order = order_out,
2295 .extent_start = mfns_out,
2296 .address_bits = address_bits,
2297 .domid = DOMID_SELF
2298 }
2299 };
2300
2301 BUG_ON(extents_in << order_in != extents_out << order_out);
2302
2303 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2304 success = (exchange.nr_exchanged == extents_in);
2305
2306 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2307 BUG_ON(success && (rc != 0));
2308
2309 return success;
2310 }
2311
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2312 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2313 unsigned int address_bits,
2314 dma_addr_t *dma_handle)
2315 {
2316 unsigned long *in_frames = discontig_frames, out_frame;
2317 unsigned long flags;
2318 int success;
2319 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2320
2321 /*
2322 * Currently an auto-translated guest will not perform I/O, nor will
2323 * it require PAE page directories below 4GB. Therefore any calls to
2324 * this function are redundant and can be ignored.
2325 */
2326
2327 if (xen_feature(XENFEAT_auto_translated_physmap))
2328 return 0;
2329
2330 if (unlikely(order > MAX_CONTIG_ORDER))
2331 return -ENOMEM;
2332
2333 memset((void *) vstart, 0, PAGE_SIZE << order);
2334
2335 spin_lock_irqsave(&xen_reservation_lock, flags);
2336
2337 /* 1. Zap current PTEs, remembering MFNs. */
2338 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2339
2340 /* 2. Get a new contiguous memory extent. */
2341 out_frame = virt_to_pfn(vstart);
2342 success = xen_exchange_memory(1UL << order, 0, in_frames,
2343 1, order, &out_frame,
2344 address_bits);
2345
2346 /* 3. Map the new extent in place of old pages. */
2347 if (success)
2348 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2349 else
2350 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2351
2352 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2353
2354 *dma_handle = virt_to_machine(vstart).maddr;
2355 return success ? 0 : -ENOMEM;
2356 }
2357 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2358
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2359 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2360 {
2361 unsigned long *out_frames = discontig_frames, in_frame;
2362 unsigned long flags;
2363 int success;
2364 unsigned long vstart;
2365
2366 if (xen_feature(XENFEAT_auto_translated_physmap))
2367 return;
2368
2369 if (unlikely(order > MAX_CONTIG_ORDER))
2370 return;
2371
2372 vstart = (unsigned long)phys_to_virt(pstart);
2373 memset((void *) vstart, 0, PAGE_SIZE << order);
2374
2375 spin_lock_irqsave(&xen_reservation_lock, flags);
2376
2377 /* 1. Find start MFN of contiguous extent. */
2378 in_frame = virt_to_mfn(vstart);
2379
2380 /* 2. Zap current PTEs. */
2381 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2382
2383 /* 3. Do the exchange for non-contiguous MFNs. */
2384 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2385 0, out_frames, 0);
2386
2387 /* 4. Map new pages in place of old pages. */
2388 if (success)
2389 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2390 else
2391 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2392
2393 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2394 }
2395 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2396
2397 #ifdef CONFIG_XEN_PVHVM
2398 #ifdef CONFIG_PROC_VMCORE
2399 /*
2400 * This function is used in two contexts:
2401 * - the kdump kernel has to check whether a pfn of the crashed kernel
2402 * was a ballooned page. vmcore is using this function to decide
2403 * whether to access a pfn of the crashed kernel.
2404 * - the kexec kernel has to check whether a pfn was ballooned by the
2405 * previous kernel. If the pfn is ballooned, handle it properly.
2406 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2407 * handle the pfn special in this case.
2408 */
xen_oldmem_pfn_is_ram(unsigned long pfn)2409 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2410 {
2411 struct xen_hvm_get_mem_type a = {
2412 .domid = DOMID_SELF,
2413 .pfn = pfn,
2414 };
2415 int ram;
2416
2417 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2418 return -ENXIO;
2419
2420 switch (a.mem_type) {
2421 case HVMMEM_mmio_dm:
2422 ram = 0;
2423 break;
2424 case HVMMEM_ram_rw:
2425 case HVMMEM_ram_ro:
2426 default:
2427 ram = 1;
2428 break;
2429 }
2430
2431 return ram;
2432 }
2433 #endif
2434
xen_hvm_exit_mmap(struct mm_struct * mm)2435 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2436 {
2437 struct xen_hvm_pagetable_dying a;
2438 int rc;
2439
2440 a.domid = DOMID_SELF;
2441 a.gpa = __pa(mm->pgd);
2442 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2443 WARN_ON_ONCE(rc < 0);
2444 }
2445
is_pagetable_dying_supported(void)2446 static int is_pagetable_dying_supported(void)
2447 {
2448 struct xen_hvm_pagetable_dying a;
2449 int rc = 0;
2450
2451 a.domid = DOMID_SELF;
2452 a.gpa = 0x00;
2453 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2454 if (rc < 0) {
2455 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2456 return 0;
2457 }
2458 return 1;
2459 }
2460
xen_hvm_init_mmu_ops(void)2461 void __init xen_hvm_init_mmu_ops(void)
2462 {
2463 if (is_pagetable_dying_supported())
2464 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2465 #ifdef CONFIG_PROC_VMCORE
2466 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2467 #endif
2468 }
2469 #endif
2470
2471 #ifdef CONFIG_XEN_PVH
2472 /*
2473 * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2474 * space creating new guest on pvh dom0 and needing to map domU pages.
2475 */
xlate_add_to_p2m(unsigned long lpfn,unsigned long fgfn,unsigned int domid)2476 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2477 unsigned int domid)
2478 {
2479 int rc, err = 0;
2480 xen_pfn_t gpfn = lpfn;
2481 xen_ulong_t idx = fgfn;
2482
2483 struct xen_add_to_physmap_range xatp = {
2484 .domid = DOMID_SELF,
2485 .foreign_domid = domid,
2486 .size = 1,
2487 .space = XENMAPSPACE_gmfn_foreign,
2488 };
2489 set_xen_guest_handle(xatp.idxs, &idx);
2490 set_xen_guest_handle(xatp.gpfns, &gpfn);
2491 set_xen_guest_handle(xatp.errs, &err);
2492
2493 rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2494 if (rc < 0)
2495 return rc;
2496 return err;
2497 }
2498
xlate_remove_from_p2m(unsigned long spfn,int count)2499 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2500 {
2501 struct xen_remove_from_physmap xrp;
2502 int i, rc;
2503
2504 for (i = 0; i < count; i++) {
2505 xrp.domid = DOMID_SELF;
2506 xrp.gpfn = spfn+i;
2507 rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2508 if (rc)
2509 break;
2510 }
2511 return rc;
2512 }
2513
2514 struct xlate_remap_data {
2515 unsigned long fgfn; /* foreign domain's gfn */
2516 pgprot_t prot;
2517 domid_t domid;
2518 int index;
2519 struct page **pages;
2520 };
2521
xlate_map_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2522 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2523 void *data)
2524 {
2525 int rc;
2526 struct xlate_remap_data *remap = data;
2527 unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2528 pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2529
2530 rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2531 if (rc)
2532 return rc;
2533 native_set_pte(ptep, pteval);
2534
2535 return 0;
2536 }
2537
xlate_remap_gfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long mfn,int nr,pgprot_t prot,unsigned domid,struct page ** pages)2538 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2539 unsigned long addr, unsigned long mfn,
2540 int nr, pgprot_t prot, unsigned domid,
2541 struct page **pages)
2542 {
2543 int err;
2544 struct xlate_remap_data pvhdata;
2545
2546 BUG_ON(!pages);
2547
2548 pvhdata.fgfn = mfn;
2549 pvhdata.prot = prot;
2550 pvhdata.domid = domid;
2551 pvhdata.index = 0;
2552 pvhdata.pages = pages;
2553 err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2554 xlate_map_pte_fn, &pvhdata);
2555 flush_tlb_all();
2556 return err;
2557 }
2558 #endif
2559
2560 #define REMAP_BATCH_SIZE 16
2561
2562 struct remap_data {
2563 unsigned long mfn;
2564 pgprot_t prot;
2565 struct mmu_update *mmu_update;
2566 };
2567
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2568 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2569 unsigned long addr, void *data)
2570 {
2571 struct remap_data *rmd = data;
2572 pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2573
2574 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2575 rmd->mmu_update->val = pte_val_ma(pte);
2576 rmd->mmu_update++;
2577
2578 return 0;
2579 }
2580
xen_remap_domain_mfn_range(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t mfn,int nr,pgprot_t prot,unsigned domid,struct page ** pages)2581 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2582 unsigned long addr,
2583 xen_pfn_t mfn, int nr,
2584 pgprot_t prot, unsigned domid,
2585 struct page **pages)
2586
2587 {
2588 struct remap_data rmd;
2589 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2590 int batch;
2591 unsigned long range;
2592 int err = 0;
2593
2594 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2595
2596 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2597 #ifdef CONFIG_XEN_PVH
2598 /* We need to update the local page tables and the xen HAP */
2599 return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2600 domid, pages);
2601 #else
2602 return -EINVAL;
2603 #endif
2604 }
2605
2606 rmd.mfn = mfn;
2607 rmd.prot = prot;
2608
2609 while (nr) {
2610 batch = min(REMAP_BATCH_SIZE, nr);
2611 range = (unsigned long)batch << PAGE_SHIFT;
2612
2613 rmd.mmu_update = mmu_update;
2614 err = apply_to_page_range(vma->vm_mm, addr, range,
2615 remap_area_mfn_pte_fn, &rmd);
2616 if (err)
2617 goto out;
2618
2619 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2620 if (err < 0)
2621 goto out;
2622
2623 nr -= batch;
2624 addr += range;
2625 }
2626
2627 err = 0;
2628 out:
2629
2630 xen_flush_tlb_all();
2631
2632 return err;
2633 }
2634 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2635
2636 /* Returns: 0 success */
xen_unmap_domain_mfn_range(struct vm_area_struct * vma,int numpgs,struct page ** pages)2637 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2638 int numpgs, struct page **pages)
2639 {
2640 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2641 return 0;
2642
2643 #ifdef CONFIG_XEN_PVH
2644 while (numpgs--) {
2645 /*
2646 * The mmu has already cleaned up the process mmu
2647 * resources at this point (lookup_address will return
2648 * NULL).
2649 */
2650 unsigned long pfn = page_to_pfn(pages[numpgs]);
2651
2652 xlate_remove_from_p2m(pfn, 1);
2653 }
2654 /*
2655 * We don't need to flush tlbs because as part of
2656 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2657 * after removing the p2m entries from the EPT/NPT
2658 */
2659 return 0;
2660 #else
2661 return -EINVAL;
2662 #endif
2663 }
2664 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2665