1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 #include "xfs_sysfs.h"
46
47
48 #ifdef HAVE_PERCPU_SB
49 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54 #else
55
56 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
58 #endif
59
60 static DEFINE_MUTEX(xfs_uuid_table_mutex);
61 static int xfs_uuid_table_size;
62 static uuid_t *xfs_uuid_table;
63
64 /*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)69 xfs_uuid_mount(
70 struct xfs_mount *mp)
71 {
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 return -EINVAL;
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
97 KM_SLEEP);
98 hole = xfs_uuid_table_size++;
99 }
100 xfs_uuid_table[hole] = *uuid;
101 mutex_unlock(&xfs_uuid_table_mutex);
102
103 return 0;
104
105 out_duplicate:
106 mutex_unlock(&xfs_uuid_table_mutex);
107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108 return -EINVAL;
109 }
110
111 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)112 xfs_uuid_unmount(
113 struct xfs_mount *mp)
114 {
115 uuid_t *uuid = &mp->m_sb.sb_uuid;
116 int i;
117
118 if (mp->m_flags & XFS_MOUNT_NOUUID)
119 return;
120
121 mutex_lock(&xfs_uuid_table_mutex);
122 for (i = 0; i < xfs_uuid_table_size; i++) {
123 if (uuid_is_nil(&xfs_uuid_table[i]))
124 continue;
125 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 continue;
127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 break;
129 }
130 ASSERT(i < xfs_uuid_table_size);
131 mutex_unlock(&xfs_uuid_table_mutex);
132 }
133
134
135 STATIC void
__xfs_free_perag(struct rcu_head * head)136 __xfs_free_perag(
137 struct rcu_head *head)
138 {
139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140
141 ASSERT(atomic_read(&pag->pag_ref) == 0);
142 kmem_free(pag);
143 }
144
145 /*
146 * Free up the per-ag resources associated with the mount structure.
147 */
148 STATIC void
xfs_free_perag(xfs_mount_t * mp)149 xfs_free_perag(
150 xfs_mount_t *mp)
151 {
152 xfs_agnumber_t agno;
153 struct xfs_perag *pag;
154
155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 spin_lock(&mp->m_perag_lock);
157 pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 spin_unlock(&mp->m_perag_lock);
159 ASSERT(pag);
160 ASSERT(atomic_read(&pag->pag_ref) == 0);
161 call_rcu(&pag->rcu_head, __xfs_free_perag);
162 }
163 }
164
165 /*
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
168 */
169 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)170 xfs_sb_validate_fsb_count(
171 xfs_sb_t *sbp,
172 __uint64_t nblocks)
173 {
174 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175 ASSERT(sbp->sb_blocklog >= BBSHIFT);
176
177 /* Limited by ULONG_MAX of page cache index */
178 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
179 return -EFBIG;
180 return 0;
181 }
182
183 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)184 xfs_initialize_perag(
185 xfs_mount_t *mp,
186 xfs_agnumber_t agcount,
187 xfs_agnumber_t *maxagi)
188 {
189 xfs_agnumber_t index;
190 xfs_agnumber_t first_initialised = 0;
191 xfs_perag_t *pag;
192 xfs_agino_t agino;
193 xfs_ino_t ino;
194 xfs_sb_t *sbp = &mp->m_sb;
195 int error = -ENOMEM;
196
197 /*
198 * Walk the current per-ag tree so we don't try to initialise AGs
199 * that already exist (growfs case). Allocate and insert all the
200 * AGs we don't find ready for initialisation.
201 */
202 for (index = 0; index < agcount; index++) {
203 pag = xfs_perag_get(mp, index);
204 if (pag) {
205 xfs_perag_put(pag);
206 continue;
207 }
208 if (!first_initialised)
209 first_initialised = index;
210
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
213 goto out_unwind;
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
216 spin_lock_init(&pag->pag_ici_lock);
217 mutex_init(&pag->pag_ici_reclaim_lock);
218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 spin_lock_init(&pag->pag_buf_lock);
220 pag->pag_buf_tree = RB_ROOT;
221
222 if (radix_tree_preload(GFP_NOFS))
223 goto out_unwind;
224
225 spin_lock(&mp->m_perag_lock);
226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227 BUG();
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 error = -EEXIST;
231 goto out_unwind;
232 }
233 spin_unlock(&mp->m_perag_lock);
234 radix_tree_preload_end();
235 }
236
237 /*
238 * If we mount with the inode64 option, or no inode overflows
239 * the legacy 32-bit address space clear the inode32 option.
240 */
241 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
242 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
243
244 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
245 mp->m_flags |= XFS_MOUNT_32BITINODES;
246 else
247 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
248
249 if (mp->m_flags & XFS_MOUNT_32BITINODES)
250 index = xfs_set_inode32(mp, agcount);
251 else
252 index = xfs_set_inode64(mp, agcount);
253
254 if (maxagi)
255 *maxagi = index;
256 return 0;
257
258 out_unwind:
259 kmem_free(pag);
260 for (; index > first_initialised; index--) {
261 pag = radix_tree_delete(&mp->m_perag_tree, index);
262 kmem_free(pag);
263 }
264 return error;
265 }
266
267 /*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272 int
xfs_readsb(struct xfs_mount * mp,int flags)273 xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
276 {
277 unsigned int sector_size;
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
280 int error;
281 int loud = !(flags & XFS_MFSI_QUIET);
282 const struct xfs_buf_ops *buf_ops;
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
297 /*
298 * Allocate a (locked) buffer to hold the superblock.
299 * This will be kept around at all times to optimize
300 * access to the superblock.
301 */
302 reread:
303 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 BTOBB(sector_size), 0, &bp, buf_ops);
305 if (error) {
306 if (loud)
307 xfs_warn(mp, "SB validate failed with error %d.", error);
308 /* bad CRC means corrupted metadata */
309 if (error == -EFSBADCRC)
310 error = -EFSCORRUPTED;
311 return error;
312 }
313
314 /*
315 * Initialize the mount structure from the superblock.
316 */
317 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
318
319 /*
320 * If we haven't validated the superblock, do so now before we try
321 * to check the sector size and reread the superblock appropriately.
322 */
323 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324 if (loud)
325 xfs_warn(mp, "Invalid superblock magic number");
326 error = -EINVAL;
327 goto release_buf;
328 }
329
330 /*
331 * We must be able to do sector-sized and sector-aligned IO.
332 */
333 if (sector_size > sbp->sb_sectsize) {
334 if (loud)
335 xfs_warn(mp, "device supports %u byte sectors (not %u)",
336 sector_size, sbp->sb_sectsize);
337 error = -ENOSYS;
338 goto release_buf;
339 }
340
341 if (buf_ops == NULL) {
342 /*
343 * Re-read the superblock so the buffer is correctly sized,
344 * and properly verified.
345 */
346 xfs_buf_relse(bp);
347 sector_size = sbp->sb_sectsize;
348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
349 goto reread;
350 }
351
352 /* Initialize per-cpu counters */
353 xfs_icsb_reinit_counters(mp);
354
355 /* no need to be quiet anymore, so reset the buf ops */
356 bp->b_ops = &xfs_sb_buf_ops;
357
358 mp->m_sb_bp = bp;
359 xfs_buf_unlock(bp);
360 return 0;
361
362 release_buf:
363 xfs_buf_relse(bp);
364 return error;
365 }
366
367 /*
368 * Update alignment values based on mount options and sb values
369 */
370 STATIC int
xfs_update_alignment(xfs_mount_t * mp)371 xfs_update_alignment(xfs_mount_t *mp)
372 {
373 xfs_sb_t *sbp = &(mp->m_sb);
374
375 if (mp->m_dalign) {
376 /*
377 * If stripe unit and stripe width are not multiples
378 * of the fs blocksize turn off alignment.
379 */
380 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
381 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
382 xfs_warn(mp,
383 "alignment check failed: sunit/swidth vs. blocksize(%d)",
384 sbp->sb_blocksize);
385 return -EINVAL;
386 } else {
387 /*
388 * Convert the stripe unit and width to FSBs.
389 */
390 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
391 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
392 xfs_warn(mp,
393 "alignment check failed: sunit/swidth vs. agsize(%d)",
394 sbp->sb_agblocks);
395 return -EINVAL;
396 } else if (mp->m_dalign) {
397 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
398 } else {
399 xfs_warn(mp,
400 "alignment check failed: sunit(%d) less than bsize(%d)",
401 mp->m_dalign, sbp->sb_blocksize);
402 return -EINVAL;
403 }
404 }
405
406 /*
407 * Update superblock with new values
408 * and log changes
409 */
410 if (xfs_sb_version_hasdalign(sbp)) {
411 if (sbp->sb_unit != mp->m_dalign) {
412 sbp->sb_unit = mp->m_dalign;
413 mp->m_update_flags |= XFS_SB_UNIT;
414 }
415 if (sbp->sb_width != mp->m_swidth) {
416 sbp->sb_width = mp->m_swidth;
417 mp->m_update_flags |= XFS_SB_WIDTH;
418 }
419 } else {
420 xfs_warn(mp,
421 "cannot change alignment: superblock does not support data alignment");
422 return -EINVAL;
423 }
424 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
425 xfs_sb_version_hasdalign(&mp->m_sb)) {
426 mp->m_dalign = sbp->sb_unit;
427 mp->m_swidth = sbp->sb_width;
428 }
429
430 return 0;
431 }
432
433 /*
434 * Set the maximum inode count for this filesystem
435 */
436 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)437 xfs_set_maxicount(xfs_mount_t *mp)
438 {
439 xfs_sb_t *sbp = &(mp->m_sb);
440 __uint64_t icount;
441
442 if (sbp->sb_imax_pct) {
443 /*
444 * Make sure the maximum inode count is a multiple
445 * of the units we allocate inodes in.
446 */
447 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
448 do_div(icount, 100);
449 do_div(icount, mp->m_ialloc_blks);
450 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
451 sbp->sb_inopblog;
452 } else {
453 mp->m_maxicount = 0;
454 }
455 }
456
457 /*
458 * Set the default minimum read and write sizes unless
459 * already specified in a mount option.
460 * We use smaller I/O sizes when the file system
461 * is being used for NFS service (wsync mount option).
462 */
463 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)464 xfs_set_rw_sizes(xfs_mount_t *mp)
465 {
466 xfs_sb_t *sbp = &(mp->m_sb);
467 int readio_log, writeio_log;
468
469 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
470 if (mp->m_flags & XFS_MOUNT_WSYNC) {
471 readio_log = XFS_WSYNC_READIO_LOG;
472 writeio_log = XFS_WSYNC_WRITEIO_LOG;
473 } else {
474 readio_log = XFS_READIO_LOG_LARGE;
475 writeio_log = XFS_WRITEIO_LOG_LARGE;
476 }
477 } else {
478 readio_log = mp->m_readio_log;
479 writeio_log = mp->m_writeio_log;
480 }
481
482 if (sbp->sb_blocklog > readio_log) {
483 mp->m_readio_log = sbp->sb_blocklog;
484 } else {
485 mp->m_readio_log = readio_log;
486 }
487 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
488 if (sbp->sb_blocklog > writeio_log) {
489 mp->m_writeio_log = sbp->sb_blocklog;
490 } else {
491 mp->m_writeio_log = writeio_log;
492 }
493 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
494 }
495
496 /*
497 * precalculate the low space thresholds for dynamic speculative preallocation.
498 */
499 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)500 xfs_set_low_space_thresholds(
501 struct xfs_mount *mp)
502 {
503 int i;
504
505 for (i = 0; i < XFS_LOWSP_MAX; i++) {
506 __uint64_t space = mp->m_sb.sb_dblocks;
507
508 do_div(space, 100);
509 mp->m_low_space[i] = space * (i + 1);
510 }
511 }
512
513
514 /*
515 * Set whether we're using inode alignment.
516 */
517 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)518 xfs_set_inoalignment(xfs_mount_t *mp)
519 {
520 if (xfs_sb_version_hasalign(&mp->m_sb) &&
521 mp->m_sb.sb_inoalignmt >=
522 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
535 }
536
537 /*
538 * Check that the data (and log if separate) is an ok size.
539 */
540 STATIC int
xfs_check_sizes(struct xfs_mount * mp)541 xfs_check_sizes(
542 struct xfs_mount *mp)
543 {
544 struct xfs_buf *bp;
545 xfs_daddr_t d;
546 int error;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 xfs_warn(mp, "filesystem size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 d - XFS_FSS_TO_BB(mp, 1),
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "last sector read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 d - XFS_FSB_TO_BB(mp, 1),
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
576 }
577 xfs_buf_relse(bp);
578 return 0;
579 }
580
581 /*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)585 xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587 {
588 int error;
589 struct xfs_trans *tp;
590
591 mp->m_qflags = 0;
592
593 /*
594 * It is OK to look at sb_qflags here in mount path,
595 * without m_sb_lock.
596 */
597 if (mp->m_sb.sb_qflags == 0)
598 return 0;
599 spin_lock(&mp->m_sb_lock);
600 mp->m_sb.sb_qflags = 0;
601 spin_unlock(&mp->m_sb_lock);
602
603 /*
604 * If the fs is readonly, let the incore superblock run
605 * with quotas off but don't flush the update out to disk
606 */
607 if (mp->m_flags & XFS_MOUNT_RDONLY)
608 return 0;
609
610 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
611 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
612 if (error) {
613 xfs_trans_cancel(tp, 0);
614 xfs_alert(mp, "%s: Superblock update failed!", __func__);
615 return error;
616 }
617
618 xfs_mod_sb(tp, XFS_SB_QFLAGS);
619 return xfs_trans_commit(tp, 0);
620 }
621
622 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)623 xfs_default_resblks(xfs_mount_t *mp)
624 {
625 __uint64_t resblks;
626
627 /*
628 * We default to 5% or 8192 fsbs of space reserved, whichever is
629 * smaller. This is intended to cover concurrent allocation
630 * transactions when we initially hit enospc. These each require a 4
631 * block reservation. Hence by default we cover roughly 2000 concurrent
632 * allocation reservations.
633 */
634 resblks = mp->m_sb.sb_dblocks;
635 do_div(resblks, 20);
636 resblks = min_t(__uint64_t, resblks, 8192);
637 return resblks;
638 }
639
640 /*
641 * This function does the following on an initial mount of a file system:
642 * - reads the superblock from disk and init the mount struct
643 * - if we're a 32-bit kernel, do a size check on the superblock
644 * so we don't mount terabyte filesystems
645 * - init mount struct realtime fields
646 * - allocate inode hash table for fs
647 * - init directory manager
648 * - perform recovery and init the log manager
649 */
650 int
xfs_mountfs(xfs_mount_t * mp)651 xfs_mountfs(
652 xfs_mount_t *mp)
653 {
654 xfs_sb_t *sbp = &(mp->m_sb);
655 xfs_inode_t *rip;
656 __uint64_t resblks;
657 uint quotamount = 0;
658 uint quotaflags = 0;
659 int error = 0;
660
661 xfs_sb_mount_common(mp, sbp);
662
663 /*
664 * Check for a mismatched features2 values. Older kernels
665 * read & wrote into the wrong sb offset for sb_features2
666 * on some platforms due to xfs_sb_t not being 64bit size aligned
667 * when sb_features2 was added, which made older superblock
668 * reading/writing routines swap it as a 64-bit value.
669 *
670 * For backwards compatibility, we make both slots equal.
671 *
672 * If we detect a mismatched field, we OR the set bits into the
673 * existing features2 field in case it has already been modified; we
674 * don't want to lose any features. We then update the bad location
675 * with the ORed value so that older kernels will see any features2
676 * flags, and mark the two fields as needing updates once the
677 * transaction subsystem is online.
678 */
679 if (xfs_sb_has_mismatched_features2(sbp)) {
680 xfs_warn(mp, "correcting sb_features alignment problem");
681 sbp->sb_features2 |= sbp->sb_bad_features2;
682 sbp->sb_bad_features2 = sbp->sb_features2;
683 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
684
685 /*
686 * Re-check for ATTR2 in case it was found in bad_features2
687 * slot.
688 */
689 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
690 !(mp->m_flags & XFS_MOUNT_NOATTR2))
691 mp->m_flags |= XFS_MOUNT_ATTR2;
692 }
693
694 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
695 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
696 xfs_sb_version_removeattr2(&mp->m_sb);
697 mp->m_update_flags |= XFS_SB_FEATURES2;
698
699 /* update sb_versionnum for the clearing of the morebits */
700 if (!sbp->sb_features2)
701 mp->m_update_flags |= XFS_SB_VERSIONNUM;
702 }
703
704 /* always use v2 inodes by default now */
705 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
706 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
707 mp->m_update_flags |= XFS_SB_VERSIONNUM;
708 }
709
710 /*
711 * Check if sb_agblocks is aligned at stripe boundary
712 * If sb_agblocks is NOT aligned turn off m_dalign since
713 * allocator alignment is within an ag, therefore ag has
714 * to be aligned at stripe boundary.
715 */
716 error = xfs_update_alignment(mp);
717 if (error)
718 goto out;
719
720 xfs_alloc_compute_maxlevels(mp);
721 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
722 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
723 xfs_ialloc_compute_maxlevels(mp);
724
725 xfs_set_maxicount(mp);
726
727 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
728 if (error)
729 goto out;
730
731 error = xfs_uuid_mount(mp);
732 if (error)
733 goto out_remove_sysfs;
734
735 /*
736 * Set the minimum read and write sizes
737 */
738 xfs_set_rw_sizes(mp);
739
740 /* set the low space thresholds for dynamic preallocation */
741 xfs_set_low_space_thresholds(mp);
742
743 /*
744 * Set the inode cluster size.
745 * This may still be overridden by the file system
746 * block size if it is larger than the chosen cluster size.
747 *
748 * For v5 filesystems, scale the cluster size with the inode size to
749 * keep a constant ratio of inode per cluster buffer, but only if mkfs
750 * has set the inode alignment value appropriately for larger cluster
751 * sizes.
752 */
753 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
754 if (xfs_sb_version_hascrc(&mp->m_sb)) {
755 int new_size = mp->m_inode_cluster_size;
756
757 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
758 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
759 mp->m_inode_cluster_size = new_size;
760 }
761
762 /*
763 * Set inode alignment fields
764 */
765 xfs_set_inoalignment(mp);
766
767 /*
768 * Check that the data (and log if separate) is an ok size.
769 */
770 error = xfs_check_sizes(mp);
771 if (error)
772 goto out_remove_uuid;
773
774 /*
775 * Initialize realtime fields in the mount structure
776 */
777 error = xfs_rtmount_init(mp);
778 if (error) {
779 xfs_warn(mp, "RT mount failed");
780 goto out_remove_uuid;
781 }
782
783 /*
784 * Copies the low order bits of the timestamp and the randomly
785 * set "sequence" number out of a UUID.
786 */
787 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
788
789 mp->m_dmevmask = 0; /* not persistent; set after each mount */
790
791 error = xfs_da_mount(mp);
792 if (error) {
793 xfs_warn(mp, "Failed dir/attr init: %d", error);
794 goto out_remove_uuid;
795 }
796
797 /*
798 * Initialize the precomputed transaction reservations values.
799 */
800 xfs_trans_init(mp);
801
802 /*
803 * Allocate and initialize the per-ag data.
804 */
805 spin_lock_init(&mp->m_perag_lock);
806 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
807 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
808 if (error) {
809 xfs_warn(mp, "Failed per-ag init: %d", error);
810 goto out_free_dir;
811 }
812
813 if (!sbp->sb_logblocks) {
814 xfs_warn(mp, "no log defined");
815 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
816 error = -EFSCORRUPTED;
817 goto out_free_perag;
818 }
819
820 /*
821 * log's mount-time initialization. Perform 1st part recovery if needed
822 */
823 error = xfs_log_mount(mp, mp->m_logdev_targp,
824 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
825 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
826 if (error) {
827 xfs_warn(mp, "log mount failed");
828 goto out_fail_wait;
829 }
830
831 /*
832 * Now the log is mounted, we know if it was an unclean shutdown or
833 * not. If it was, with the first phase of recovery has completed, we
834 * have consistent AG blocks on disk. We have not recovered EFIs yet,
835 * but they are recovered transactionally in the second recovery phase
836 * later.
837 *
838 * Hence we can safely re-initialise incore superblock counters from
839 * the per-ag data. These may not be correct if the filesystem was not
840 * cleanly unmounted, so we need to wait for recovery to finish before
841 * doing this.
842 *
843 * If the filesystem was cleanly unmounted, then we can trust the
844 * values in the superblock to be correct and we don't need to do
845 * anything here.
846 *
847 * If we are currently making the filesystem, the initialisation will
848 * fail as the perag data is in an undefined state.
849 */
850 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
851 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
852 !mp->m_sb.sb_inprogress) {
853 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
854 if (error)
855 goto out_log_dealloc;
856 }
857
858 /*
859 * Get and sanity-check the root inode.
860 * Save the pointer to it in the mount structure.
861 */
862 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
863 if (error) {
864 xfs_warn(mp, "failed to read root inode");
865 goto out_log_dealloc;
866 }
867
868 ASSERT(rip != NULL);
869
870 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
871 xfs_warn(mp, "corrupted root inode %llu: not a directory",
872 (unsigned long long)rip->i_ino);
873 xfs_iunlock(rip, XFS_ILOCK_EXCL);
874 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
875 mp);
876 error = -EFSCORRUPTED;
877 goto out_rele_rip;
878 }
879 mp->m_rootip = rip; /* save it */
880
881 xfs_iunlock(rip, XFS_ILOCK_EXCL);
882
883 /*
884 * Initialize realtime inode pointers in the mount structure
885 */
886 error = xfs_rtmount_inodes(mp);
887 if (error) {
888 /*
889 * Free up the root inode.
890 */
891 xfs_warn(mp, "failed to read RT inodes");
892 goto out_rele_rip;
893 }
894
895 /*
896 * If this is a read-only mount defer the superblock updates until
897 * the next remount into writeable mode. Otherwise we would never
898 * perform the update e.g. for the root filesystem.
899 */
900 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
901 error = xfs_mount_log_sb(mp, mp->m_update_flags);
902 if (error) {
903 xfs_warn(mp, "failed to write sb changes");
904 goto out_rtunmount;
905 }
906 }
907
908 /*
909 * Initialise the XFS quota management subsystem for this mount
910 */
911 if (XFS_IS_QUOTA_RUNNING(mp)) {
912 error = xfs_qm_newmount(mp, "amount, "aflags);
913 if (error)
914 goto out_rtunmount;
915 } else {
916 ASSERT(!XFS_IS_QUOTA_ON(mp));
917
918 /*
919 * If a file system had quotas running earlier, but decided to
920 * mount without -o uquota/pquota/gquota options, revoke the
921 * quotachecked license.
922 */
923 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
924 xfs_notice(mp, "resetting quota flags");
925 error = xfs_mount_reset_sbqflags(mp);
926 if (error)
927 goto out_rtunmount;
928 }
929 }
930
931 /*
932 * Finish recovering the file system. This part needed to be
933 * delayed until after the root and real-time bitmap inodes
934 * were consistently read in.
935 */
936 error = xfs_log_mount_finish(mp);
937 if (error) {
938 xfs_warn(mp, "log mount finish failed");
939 goto out_rtunmount;
940 }
941
942 /*
943 * Complete the quota initialisation, post-log-replay component.
944 */
945 if (quotamount) {
946 ASSERT(mp->m_qflags == 0);
947 mp->m_qflags = quotaflags;
948
949 xfs_qm_mount_quotas(mp);
950 }
951
952 /*
953 * Now we are mounted, reserve a small amount of unused space for
954 * privileged transactions. This is needed so that transaction
955 * space required for critical operations can dip into this pool
956 * when at ENOSPC. This is needed for operations like create with
957 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
958 * are not allowed to use this reserved space.
959 *
960 * This may drive us straight to ENOSPC on mount, but that implies
961 * we were already there on the last unmount. Warn if this occurs.
962 */
963 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
964 resblks = xfs_default_resblks(mp);
965 error = xfs_reserve_blocks(mp, &resblks, NULL);
966 if (error)
967 xfs_warn(mp,
968 "Unable to allocate reserve blocks. Continuing without reserve pool.");
969 }
970
971 return 0;
972
973 out_rtunmount:
974 xfs_rtunmount_inodes(mp);
975 out_rele_rip:
976 IRELE(rip);
977 out_log_dealloc:
978 xfs_log_unmount(mp);
979 out_fail_wait:
980 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981 xfs_wait_buftarg(mp->m_logdev_targp);
982 xfs_wait_buftarg(mp->m_ddev_targp);
983 out_free_perag:
984 xfs_free_perag(mp);
985 out_free_dir:
986 xfs_da_unmount(mp);
987 out_remove_uuid:
988 xfs_uuid_unmount(mp);
989 out_remove_sysfs:
990 xfs_sysfs_del(&mp->m_kobj);
991 out:
992 return error;
993 }
994
995 /*
996 * This flushes out the inodes,dquots and the superblock, unmounts the
997 * log and makes sure that incore structures are freed.
998 */
999 void
xfs_unmountfs(struct xfs_mount * mp)1000 xfs_unmountfs(
1001 struct xfs_mount *mp)
1002 {
1003 __uint64_t resblks;
1004 int error;
1005
1006 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1007
1008 xfs_qm_unmount_quotas(mp);
1009 xfs_rtunmount_inodes(mp);
1010 IRELE(mp->m_rootip);
1011
1012 /*
1013 * We can potentially deadlock here if we have an inode cluster
1014 * that has been freed has its buffer still pinned in memory because
1015 * the transaction is still sitting in a iclog. The stale inodes
1016 * on that buffer will have their flush locks held until the
1017 * transaction hits the disk and the callbacks run. the inode
1018 * flush takes the flush lock unconditionally and with nothing to
1019 * push out the iclog we will never get that unlocked. hence we
1020 * need to force the log first.
1021 */
1022 xfs_log_force(mp, XFS_LOG_SYNC);
1023
1024 /*
1025 * Flush all pending changes from the AIL.
1026 */
1027 xfs_ail_push_all_sync(mp->m_ail);
1028
1029 /*
1030 * And reclaim all inodes. At this point there should be no dirty
1031 * inodes and none should be pinned or locked, but use synchronous
1032 * reclaim just to be sure. We can stop background inode reclaim
1033 * here as well if it is still running.
1034 */
1035 cancel_delayed_work_sync(&mp->m_reclaim_work);
1036 xfs_reclaim_inodes(mp, SYNC_WAIT);
1037
1038 xfs_qm_unmount(mp);
1039
1040 /*
1041 * Unreserve any blocks we have so that when we unmount we don't account
1042 * the reserved free space as used. This is really only necessary for
1043 * lazy superblock counting because it trusts the incore superblock
1044 * counters to be absolutely correct on clean unmount.
1045 *
1046 * We don't bother correcting this elsewhere for lazy superblock
1047 * counting because on mount of an unclean filesystem we reconstruct the
1048 * correct counter value and this is irrelevant.
1049 *
1050 * For non-lazy counter filesystems, this doesn't matter at all because
1051 * we only every apply deltas to the superblock and hence the incore
1052 * value does not matter....
1053 */
1054 resblks = 0;
1055 error = xfs_reserve_blocks(mp, &resblks, NULL);
1056 if (error)
1057 xfs_warn(mp, "Unable to free reserved block pool. "
1058 "Freespace may not be correct on next mount.");
1059
1060 error = xfs_log_sbcount(mp);
1061 if (error)
1062 xfs_warn(mp, "Unable to update superblock counters. "
1063 "Freespace may not be correct on next mount.");
1064
1065 xfs_log_unmount(mp);
1066 xfs_da_unmount(mp);
1067 xfs_uuid_unmount(mp);
1068
1069 #if defined(DEBUG)
1070 xfs_errortag_clearall(mp, 0);
1071 #endif
1072 xfs_free_perag(mp);
1073
1074 xfs_sysfs_del(&mp->m_kobj);
1075 }
1076
1077 int
xfs_fs_writable(xfs_mount_t * mp)1078 xfs_fs_writable(xfs_mount_t *mp)
1079 {
1080 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1081 (mp->m_flags & XFS_MOUNT_RDONLY));
1082 }
1083
1084 /*
1085 * xfs_log_sbcount
1086 *
1087 * Sync the superblock counters to disk.
1088 *
1089 * Note this code can be called during the process of freezing, so
1090 * we may need to use the transaction allocator which does not
1091 * block when the transaction subsystem is in its frozen state.
1092 */
1093 int
xfs_log_sbcount(xfs_mount_t * mp)1094 xfs_log_sbcount(xfs_mount_t *mp)
1095 {
1096 xfs_trans_t *tp;
1097 int error;
1098
1099 if (!xfs_fs_writable(mp))
1100 return 0;
1101
1102 xfs_icsb_sync_counters(mp, 0);
1103
1104 /*
1105 * we don't need to do this if we are updating the superblock
1106 * counters on every modification.
1107 */
1108 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1109 return 0;
1110
1111 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1112 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1113 if (error) {
1114 xfs_trans_cancel(tp, 0);
1115 return error;
1116 }
1117
1118 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1119 xfs_trans_set_sync(tp);
1120 error = xfs_trans_commit(tp, 0);
1121 return error;
1122 }
1123
1124 /*
1125 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1126 * a delta to a specified field in the in-core superblock. Simply
1127 * switch on the field indicated and apply the delta to that field.
1128 * Fields are not allowed to dip below zero, so if the delta would
1129 * do this do not apply it and return EINVAL.
1130 *
1131 * The m_sb_lock must be held when this routine is called.
1132 */
1133 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1134 xfs_mod_incore_sb_unlocked(
1135 xfs_mount_t *mp,
1136 xfs_sb_field_t field,
1137 int64_t delta,
1138 int rsvd)
1139 {
1140 int scounter; /* short counter for 32 bit fields */
1141 long long lcounter; /* long counter for 64 bit fields */
1142 long long res_used, rem;
1143
1144 /*
1145 * With the in-core superblock spin lock held, switch
1146 * on the indicated field. Apply the delta to the
1147 * proper field. If the fields value would dip below
1148 * 0, then do not apply the delta and return EINVAL.
1149 */
1150 switch (field) {
1151 case XFS_SBS_ICOUNT:
1152 lcounter = (long long)mp->m_sb.sb_icount;
1153 lcounter += delta;
1154 if (lcounter < 0) {
1155 ASSERT(0);
1156 return -EINVAL;
1157 }
1158 mp->m_sb.sb_icount = lcounter;
1159 return 0;
1160 case XFS_SBS_IFREE:
1161 lcounter = (long long)mp->m_sb.sb_ifree;
1162 lcounter += delta;
1163 if (lcounter < 0) {
1164 ASSERT(0);
1165 return -EINVAL;
1166 }
1167 mp->m_sb.sb_ifree = lcounter;
1168 return 0;
1169 case XFS_SBS_FDBLOCKS:
1170 lcounter = (long long)
1171 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1172 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1173
1174 if (delta > 0) { /* Putting blocks back */
1175 if (res_used > delta) {
1176 mp->m_resblks_avail += delta;
1177 } else {
1178 rem = delta - res_used;
1179 mp->m_resblks_avail = mp->m_resblks;
1180 lcounter += rem;
1181 }
1182 } else { /* Taking blocks away */
1183 lcounter += delta;
1184 if (lcounter >= 0) {
1185 mp->m_sb.sb_fdblocks = lcounter +
1186 XFS_ALLOC_SET_ASIDE(mp);
1187 return 0;
1188 }
1189
1190 /*
1191 * We are out of blocks, use any available reserved
1192 * blocks if were allowed to.
1193 */
1194 if (!rsvd)
1195 return -ENOSPC;
1196
1197 lcounter = (long long)mp->m_resblks_avail + delta;
1198 if (lcounter >= 0) {
1199 mp->m_resblks_avail = lcounter;
1200 return 0;
1201 }
1202 printk_once(KERN_WARNING
1203 "Filesystem \"%s\": reserve blocks depleted! "
1204 "Consider increasing reserve pool size.",
1205 mp->m_fsname);
1206 return -ENOSPC;
1207 }
1208
1209 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1210 return 0;
1211 case XFS_SBS_FREXTENTS:
1212 lcounter = (long long)mp->m_sb.sb_frextents;
1213 lcounter += delta;
1214 if (lcounter < 0) {
1215 return -ENOSPC;
1216 }
1217 mp->m_sb.sb_frextents = lcounter;
1218 return 0;
1219 case XFS_SBS_DBLOCKS:
1220 lcounter = (long long)mp->m_sb.sb_dblocks;
1221 lcounter += delta;
1222 if (lcounter < 0) {
1223 ASSERT(0);
1224 return -EINVAL;
1225 }
1226 mp->m_sb.sb_dblocks = lcounter;
1227 return 0;
1228 case XFS_SBS_AGCOUNT:
1229 scounter = mp->m_sb.sb_agcount;
1230 scounter += delta;
1231 if (scounter < 0) {
1232 ASSERT(0);
1233 return -EINVAL;
1234 }
1235 mp->m_sb.sb_agcount = scounter;
1236 return 0;
1237 case XFS_SBS_IMAX_PCT:
1238 scounter = mp->m_sb.sb_imax_pct;
1239 scounter += delta;
1240 if (scounter < 0) {
1241 ASSERT(0);
1242 return -EINVAL;
1243 }
1244 mp->m_sb.sb_imax_pct = scounter;
1245 return 0;
1246 case XFS_SBS_REXTSIZE:
1247 scounter = mp->m_sb.sb_rextsize;
1248 scounter += delta;
1249 if (scounter < 0) {
1250 ASSERT(0);
1251 return -EINVAL;
1252 }
1253 mp->m_sb.sb_rextsize = scounter;
1254 return 0;
1255 case XFS_SBS_RBMBLOCKS:
1256 scounter = mp->m_sb.sb_rbmblocks;
1257 scounter += delta;
1258 if (scounter < 0) {
1259 ASSERT(0);
1260 return -EINVAL;
1261 }
1262 mp->m_sb.sb_rbmblocks = scounter;
1263 return 0;
1264 case XFS_SBS_RBLOCKS:
1265 lcounter = (long long)mp->m_sb.sb_rblocks;
1266 lcounter += delta;
1267 if (lcounter < 0) {
1268 ASSERT(0);
1269 return -EINVAL;
1270 }
1271 mp->m_sb.sb_rblocks = lcounter;
1272 return 0;
1273 case XFS_SBS_REXTENTS:
1274 lcounter = (long long)mp->m_sb.sb_rextents;
1275 lcounter += delta;
1276 if (lcounter < 0) {
1277 ASSERT(0);
1278 return -EINVAL;
1279 }
1280 mp->m_sb.sb_rextents = lcounter;
1281 return 0;
1282 case XFS_SBS_REXTSLOG:
1283 scounter = mp->m_sb.sb_rextslog;
1284 scounter += delta;
1285 if (scounter < 0) {
1286 ASSERT(0);
1287 return -EINVAL;
1288 }
1289 mp->m_sb.sb_rextslog = scounter;
1290 return 0;
1291 default:
1292 ASSERT(0);
1293 return -EINVAL;
1294 }
1295 }
1296
1297 /*
1298 * xfs_mod_incore_sb() is used to change a field in the in-core
1299 * superblock structure by the specified delta. This modification
1300 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1301 * routine to do the work.
1302 */
1303 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1304 xfs_mod_incore_sb(
1305 struct xfs_mount *mp,
1306 xfs_sb_field_t field,
1307 int64_t delta,
1308 int rsvd)
1309 {
1310 int status;
1311
1312 #ifdef HAVE_PERCPU_SB
1313 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1314 #endif
1315 spin_lock(&mp->m_sb_lock);
1316 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1317 spin_unlock(&mp->m_sb_lock);
1318
1319 return status;
1320 }
1321
1322 /*
1323 * Change more than one field in the in-core superblock structure at a time.
1324 *
1325 * The fields and changes to those fields are specified in the array of
1326 * xfs_mod_sb structures passed in. Either all of the specified deltas
1327 * will be applied or none of them will. If any modified field dips below 0,
1328 * then all modifications will be backed out and EINVAL will be returned.
1329 *
1330 * Note that this function may not be used for the superblock values that
1331 * are tracked with the in-memory per-cpu counters - a direct call to
1332 * xfs_icsb_modify_counters is required for these.
1333 */
1334 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1335 xfs_mod_incore_sb_batch(
1336 struct xfs_mount *mp,
1337 xfs_mod_sb_t *msb,
1338 uint nmsb,
1339 int rsvd)
1340 {
1341 xfs_mod_sb_t *msbp;
1342 int error = 0;
1343
1344 /*
1345 * Loop through the array of mod structures and apply each individually.
1346 * If any fail, then back out all those which have already been applied.
1347 * Do all of this within the scope of the m_sb_lock so that all of the
1348 * changes will be atomic.
1349 */
1350 spin_lock(&mp->m_sb_lock);
1351 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1352 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1353 msbp->msb_field > XFS_SBS_FDBLOCKS);
1354
1355 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1356 msbp->msb_delta, rsvd);
1357 if (error)
1358 goto unwind;
1359 }
1360 spin_unlock(&mp->m_sb_lock);
1361 return 0;
1362
1363 unwind:
1364 while (--msbp >= msb) {
1365 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1366 -msbp->msb_delta, rsvd);
1367 ASSERT(error == 0);
1368 }
1369 spin_unlock(&mp->m_sb_lock);
1370 return error;
1371 }
1372
1373 /*
1374 * xfs_getsb() is called to obtain the buffer for the superblock.
1375 * The buffer is returned locked and read in from disk.
1376 * The buffer should be released with a call to xfs_brelse().
1377 *
1378 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1379 * the superblock buffer if it can be locked without sleeping.
1380 * If it can't then we'll return NULL.
1381 */
1382 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1383 xfs_getsb(
1384 struct xfs_mount *mp,
1385 int flags)
1386 {
1387 struct xfs_buf *bp = mp->m_sb_bp;
1388
1389 if (!xfs_buf_trylock(bp)) {
1390 if (flags & XBF_TRYLOCK)
1391 return NULL;
1392 xfs_buf_lock(bp);
1393 }
1394
1395 xfs_buf_hold(bp);
1396 ASSERT(XFS_BUF_ISDONE(bp));
1397 return bp;
1398 }
1399
1400 /*
1401 * Used to free the superblock along various error paths.
1402 */
1403 void
xfs_freesb(struct xfs_mount * mp)1404 xfs_freesb(
1405 struct xfs_mount *mp)
1406 {
1407 struct xfs_buf *bp = mp->m_sb_bp;
1408
1409 xfs_buf_lock(bp);
1410 mp->m_sb_bp = NULL;
1411 xfs_buf_relse(bp);
1412 }
1413
1414 /*
1415 * Used to log changes to the superblock unit and width fields which could
1416 * be altered by the mount options, as well as any potential sb_features2
1417 * fixup. Only the first superblock is updated.
1418 */
1419 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)1420 xfs_mount_log_sb(
1421 xfs_mount_t *mp,
1422 __int64_t fields)
1423 {
1424 xfs_trans_t *tp;
1425 int error;
1426
1427 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1428 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1429 XFS_SB_VERSIONNUM));
1430
1431 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1432 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1433 if (error) {
1434 xfs_trans_cancel(tp, 0);
1435 return error;
1436 }
1437 xfs_mod_sb(tp, fields);
1438 error = xfs_trans_commit(tp, 0);
1439 return error;
1440 }
1441
1442 /*
1443 * If the underlying (data/log/rt) device is readonly, there are some
1444 * operations that cannot proceed.
1445 */
1446 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1447 xfs_dev_is_read_only(
1448 struct xfs_mount *mp,
1449 char *message)
1450 {
1451 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1452 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1453 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1454 xfs_notice(mp, "%s required on read-only device.", message);
1455 xfs_notice(mp, "write access unavailable, cannot proceed.");
1456 return -EROFS;
1457 }
1458 return 0;
1459 }
1460
1461 #ifdef HAVE_PERCPU_SB
1462 /*
1463 * Per-cpu incore superblock counters
1464 *
1465 * Simple concept, difficult implementation
1466 *
1467 * Basically, replace the incore superblock counters with a distributed per cpu
1468 * counter for contended fields (e.g. free block count).
1469 *
1470 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1471 * hence needs to be accurately read when we are running low on space. Hence
1472 * there is a method to enable and disable the per-cpu counters based on how
1473 * much "stuff" is available in them.
1474 *
1475 * Basically, a counter is enabled if there is enough free resource to justify
1476 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1477 * ENOSPC), then we disable the counters to synchronise all callers and
1478 * re-distribute the available resources.
1479 *
1480 * If, once we redistributed the available resources, we still get a failure,
1481 * we disable the per-cpu counter and go through the slow path.
1482 *
1483 * The slow path is the current xfs_mod_incore_sb() function. This means that
1484 * when we disable a per-cpu counter, we need to drain its resources back to
1485 * the global superblock. We do this after disabling the counter to prevent
1486 * more threads from queueing up on the counter.
1487 *
1488 * Essentially, this means that we still need a lock in the fast path to enable
1489 * synchronisation between the global counters and the per-cpu counters. This
1490 * is not a problem because the lock will be local to a CPU almost all the time
1491 * and have little contention except when we get to ENOSPC conditions.
1492 *
1493 * Basically, this lock becomes a barrier that enables us to lock out the fast
1494 * path while we do things like enabling and disabling counters and
1495 * synchronising the counters.
1496 *
1497 * Locking rules:
1498 *
1499 * 1. m_sb_lock before picking up per-cpu locks
1500 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1501 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1502 * 4. modifying per-cpu counters requires holding per-cpu lock
1503 * 5. modifying global counters requires holding m_sb_lock
1504 * 6. enabling or disabling a counter requires holding the m_sb_lock
1505 * and _none_ of the per-cpu locks.
1506 *
1507 * Disabled counters are only ever re-enabled by a balance operation
1508 * that results in more free resources per CPU than a given threshold.
1509 * To ensure counters don't remain disabled, they are rebalanced when
1510 * the global resource goes above a higher threshold (i.e. some hysteresis
1511 * is present to prevent thrashing).
1512 */
1513
1514 #ifdef CONFIG_HOTPLUG_CPU
1515 /*
1516 * hot-plug CPU notifier support.
1517 *
1518 * We need a notifier per filesystem as we need to be able to identify
1519 * the filesystem to balance the counters out. This is achieved by
1520 * having a notifier block embedded in the xfs_mount_t and doing pointer
1521 * magic to get the mount pointer from the notifier block address.
1522 */
1523 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)1524 xfs_icsb_cpu_notify(
1525 struct notifier_block *nfb,
1526 unsigned long action,
1527 void *hcpu)
1528 {
1529 xfs_icsb_cnts_t *cntp;
1530 xfs_mount_t *mp;
1531
1532 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1533 cntp = (xfs_icsb_cnts_t *)
1534 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1535 switch (action) {
1536 case CPU_UP_PREPARE:
1537 case CPU_UP_PREPARE_FROZEN:
1538 /* Easy Case - initialize the area and locks, and
1539 * then rebalance when online does everything else for us. */
1540 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1541 break;
1542 case CPU_ONLINE:
1543 case CPU_ONLINE_FROZEN:
1544 xfs_icsb_lock(mp);
1545 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1546 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1547 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1548 xfs_icsb_unlock(mp);
1549 break;
1550 case CPU_DEAD:
1551 case CPU_DEAD_FROZEN:
1552 /* Disable all the counters, then fold the dead cpu's
1553 * count into the total on the global superblock and
1554 * re-enable the counters. */
1555 xfs_icsb_lock(mp);
1556 spin_lock(&mp->m_sb_lock);
1557 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1558 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1559 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1560
1561 mp->m_sb.sb_icount += cntp->icsb_icount;
1562 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1563 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1564
1565 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1566
1567 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1568 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1569 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1570 spin_unlock(&mp->m_sb_lock);
1571 xfs_icsb_unlock(mp);
1572 break;
1573 }
1574
1575 return NOTIFY_OK;
1576 }
1577 #endif /* CONFIG_HOTPLUG_CPU */
1578
1579 int
xfs_icsb_init_counters(xfs_mount_t * mp)1580 xfs_icsb_init_counters(
1581 xfs_mount_t *mp)
1582 {
1583 xfs_icsb_cnts_t *cntp;
1584 int i;
1585
1586 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1587 if (mp->m_sb_cnts == NULL)
1588 return -ENOMEM;
1589
1590 for_each_online_cpu(i) {
1591 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1592 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1593 }
1594
1595 mutex_init(&mp->m_icsb_mutex);
1596
1597 /*
1598 * start with all counters disabled so that the
1599 * initial balance kicks us off correctly
1600 */
1601 mp->m_icsb_counters = -1;
1602
1603 #ifdef CONFIG_HOTPLUG_CPU
1604 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1605 mp->m_icsb_notifier.priority = 0;
1606 register_hotcpu_notifier(&mp->m_icsb_notifier);
1607 #endif /* CONFIG_HOTPLUG_CPU */
1608
1609 return 0;
1610 }
1611
1612 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)1613 xfs_icsb_reinit_counters(
1614 xfs_mount_t *mp)
1615 {
1616 xfs_icsb_lock(mp);
1617 /*
1618 * start with all counters disabled so that the
1619 * initial balance kicks us off correctly
1620 */
1621 mp->m_icsb_counters = -1;
1622 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1623 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1624 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1625 xfs_icsb_unlock(mp);
1626 }
1627
1628 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)1629 xfs_icsb_destroy_counters(
1630 xfs_mount_t *mp)
1631 {
1632 if (mp->m_sb_cnts) {
1633 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1634 free_percpu(mp->m_sb_cnts);
1635 }
1636 mutex_destroy(&mp->m_icsb_mutex);
1637 }
1638
1639 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)1640 xfs_icsb_lock_cntr(
1641 xfs_icsb_cnts_t *icsbp)
1642 {
1643 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1644 ndelay(1000);
1645 }
1646 }
1647
1648 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)1649 xfs_icsb_unlock_cntr(
1650 xfs_icsb_cnts_t *icsbp)
1651 {
1652 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1653 }
1654
1655
1656 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)1657 xfs_icsb_lock_all_counters(
1658 xfs_mount_t *mp)
1659 {
1660 xfs_icsb_cnts_t *cntp;
1661 int i;
1662
1663 for_each_online_cpu(i) {
1664 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1665 xfs_icsb_lock_cntr(cntp);
1666 }
1667 }
1668
1669 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)1670 xfs_icsb_unlock_all_counters(
1671 xfs_mount_t *mp)
1672 {
1673 xfs_icsb_cnts_t *cntp;
1674 int i;
1675
1676 for_each_online_cpu(i) {
1677 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678 xfs_icsb_unlock_cntr(cntp);
1679 }
1680 }
1681
1682 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)1683 xfs_icsb_count(
1684 xfs_mount_t *mp,
1685 xfs_icsb_cnts_t *cnt,
1686 int flags)
1687 {
1688 xfs_icsb_cnts_t *cntp;
1689 int i;
1690
1691 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1692
1693 if (!(flags & XFS_ICSB_LAZY_COUNT))
1694 xfs_icsb_lock_all_counters(mp);
1695
1696 for_each_online_cpu(i) {
1697 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1698 cnt->icsb_icount += cntp->icsb_icount;
1699 cnt->icsb_ifree += cntp->icsb_ifree;
1700 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1701 }
1702
1703 if (!(flags & XFS_ICSB_LAZY_COUNT))
1704 xfs_icsb_unlock_all_counters(mp);
1705 }
1706
1707 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)1708 xfs_icsb_counter_disabled(
1709 xfs_mount_t *mp,
1710 xfs_sb_field_t field)
1711 {
1712 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1713 return test_bit(field, &mp->m_icsb_counters);
1714 }
1715
1716 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)1717 xfs_icsb_disable_counter(
1718 xfs_mount_t *mp,
1719 xfs_sb_field_t field)
1720 {
1721 xfs_icsb_cnts_t cnt;
1722
1723 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724
1725 /*
1726 * If we are already disabled, then there is nothing to do
1727 * here. We check before locking all the counters to avoid
1728 * the expensive lock operation when being called in the
1729 * slow path and the counter is already disabled. This is
1730 * safe because the only time we set or clear this state is under
1731 * the m_icsb_mutex.
1732 */
1733 if (xfs_icsb_counter_disabled(mp, field))
1734 return;
1735
1736 xfs_icsb_lock_all_counters(mp);
1737 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1738 /* drain back to superblock */
1739
1740 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1741 switch(field) {
1742 case XFS_SBS_ICOUNT:
1743 mp->m_sb.sb_icount = cnt.icsb_icount;
1744 break;
1745 case XFS_SBS_IFREE:
1746 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1747 break;
1748 case XFS_SBS_FDBLOCKS:
1749 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1750 break;
1751 default:
1752 BUG();
1753 }
1754 }
1755
1756 xfs_icsb_unlock_all_counters(mp);
1757 }
1758
1759 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)1760 xfs_icsb_enable_counter(
1761 xfs_mount_t *mp,
1762 xfs_sb_field_t field,
1763 uint64_t count,
1764 uint64_t resid)
1765 {
1766 xfs_icsb_cnts_t *cntp;
1767 int i;
1768
1769 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1770
1771 xfs_icsb_lock_all_counters(mp);
1772 for_each_online_cpu(i) {
1773 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1774 switch (field) {
1775 case XFS_SBS_ICOUNT:
1776 cntp->icsb_icount = count + resid;
1777 break;
1778 case XFS_SBS_IFREE:
1779 cntp->icsb_ifree = count + resid;
1780 break;
1781 case XFS_SBS_FDBLOCKS:
1782 cntp->icsb_fdblocks = count + resid;
1783 break;
1784 default:
1785 BUG();
1786 break;
1787 }
1788 resid = 0;
1789 }
1790 clear_bit(field, &mp->m_icsb_counters);
1791 xfs_icsb_unlock_all_counters(mp);
1792 }
1793
1794 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)1795 xfs_icsb_sync_counters_locked(
1796 xfs_mount_t *mp,
1797 int flags)
1798 {
1799 xfs_icsb_cnts_t cnt;
1800
1801 xfs_icsb_count(mp, &cnt, flags);
1802
1803 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1804 mp->m_sb.sb_icount = cnt.icsb_icount;
1805 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1806 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1807 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1808 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1809 }
1810
1811 /*
1812 * Accurate update of per-cpu counters to incore superblock
1813 */
1814 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)1815 xfs_icsb_sync_counters(
1816 xfs_mount_t *mp,
1817 int flags)
1818 {
1819 spin_lock(&mp->m_sb_lock);
1820 xfs_icsb_sync_counters_locked(mp, flags);
1821 spin_unlock(&mp->m_sb_lock);
1822 }
1823
1824 /*
1825 * Balance and enable/disable counters as necessary.
1826 *
1827 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1828 * chosen to be the same number as single on disk allocation chunk per CPU, and
1829 * free blocks is something far enough zero that we aren't going thrash when we
1830 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1831 * prevent looping endlessly when xfs_alloc_space asks for more than will
1832 * be distributed to a single CPU but each CPU has enough blocks to be
1833 * reenabled.
1834 *
1835 * Note that we can be called when counters are already disabled.
1836 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1837 * prevent locking every per-cpu counter needlessly.
1838 */
1839
1840 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1841 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1842 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1843 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)1844 xfs_icsb_balance_counter_locked(
1845 xfs_mount_t *mp,
1846 xfs_sb_field_t field,
1847 int min_per_cpu)
1848 {
1849 uint64_t count, resid;
1850 int weight = num_online_cpus();
1851 uint64_t min = (uint64_t)min_per_cpu;
1852
1853 /* disable counter and sync counter */
1854 xfs_icsb_disable_counter(mp, field);
1855
1856 /* update counters - first CPU gets residual*/
1857 switch (field) {
1858 case XFS_SBS_ICOUNT:
1859 count = mp->m_sb.sb_icount;
1860 resid = do_div(count, weight);
1861 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1862 return;
1863 break;
1864 case XFS_SBS_IFREE:
1865 count = mp->m_sb.sb_ifree;
1866 resid = do_div(count, weight);
1867 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1868 return;
1869 break;
1870 case XFS_SBS_FDBLOCKS:
1871 count = mp->m_sb.sb_fdblocks;
1872 resid = do_div(count, weight);
1873 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1874 return;
1875 break;
1876 default:
1877 BUG();
1878 count = resid = 0; /* quiet, gcc */
1879 break;
1880 }
1881
1882 xfs_icsb_enable_counter(mp, field, count, resid);
1883 }
1884
1885 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)1886 xfs_icsb_balance_counter(
1887 xfs_mount_t *mp,
1888 xfs_sb_field_t fields,
1889 int min_per_cpu)
1890 {
1891 spin_lock(&mp->m_sb_lock);
1892 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1893 spin_unlock(&mp->m_sb_lock);
1894 }
1895
1896 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1897 xfs_icsb_modify_counters(
1898 xfs_mount_t *mp,
1899 xfs_sb_field_t field,
1900 int64_t delta,
1901 int rsvd)
1902 {
1903 xfs_icsb_cnts_t *icsbp;
1904 long long lcounter; /* long counter for 64 bit fields */
1905 int ret = 0;
1906
1907 might_sleep();
1908 again:
1909 preempt_disable();
1910 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1911
1912 /*
1913 * if the counter is disabled, go to slow path
1914 */
1915 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1916 goto slow_path;
1917 xfs_icsb_lock_cntr(icsbp);
1918 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1919 xfs_icsb_unlock_cntr(icsbp);
1920 goto slow_path;
1921 }
1922
1923 switch (field) {
1924 case XFS_SBS_ICOUNT:
1925 lcounter = icsbp->icsb_icount;
1926 lcounter += delta;
1927 if (unlikely(lcounter < 0))
1928 goto balance_counter;
1929 icsbp->icsb_icount = lcounter;
1930 break;
1931
1932 case XFS_SBS_IFREE:
1933 lcounter = icsbp->icsb_ifree;
1934 lcounter += delta;
1935 if (unlikely(lcounter < 0))
1936 goto balance_counter;
1937 icsbp->icsb_ifree = lcounter;
1938 break;
1939
1940 case XFS_SBS_FDBLOCKS:
1941 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1942
1943 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1944 lcounter += delta;
1945 if (unlikely(lcounter < 0))
1946 goto balance_counter;
1947 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1948 break;
1949 default:
1950 BUG();
1951 break;
1952 }
1953 xfs_icsb_unlock_cntr(icsbp);
1954 preempt_enable();
1955 return 0;
1956
1957 slow_path:
1958 preempt_enable();
1959
1960 /*
1961 * serialise with a mutex so we don't burn lots of cpu on
1962 * the superblock lock. We still need to hold the superblock
1963 * lock, however, when we modify the global structures.
1964 */
1965 xfs_icsb_lock(mp);
1966
1967 /*
1968 * Now running atomically.
1969 *
1970 * If the counter is enabled, someone has beaten us to rebalancing.
1971 * Drop the lock and try again in the fast path....
1972 */
1973 if (!(xfs_icsb_counter_disabled(mp, field))) {
1974 xfs_icsb_unlock(mp);
1975 goto again;
1976 }
1977
1978 /*
1979 * The counter is currently disabled. Because we are
1980 * running atomically here, we know a rebalance cannot
1981 * be in progress. Hence we can go straight to operating
1982 * on the global superblock. We do not call xfs_mod_incore_sb()
1983 * here even though we need to get the m_sb_lock. Doing so
1984 * will cause us to re-enter this function and deadlock.
1985 * Hence we get the m_sb_lock ourselves and then call
1986 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1987 * directly on the global counters.
1988 */
1989 spin_lock(&mp->m_sb_lock);
1990 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1991 spin_unlock(&mp->m_sb_lock);
1992
1993 /*
1994 * Now that we've modified the global superblock, we
1995 * may be able to re-enable the distributed counters
1996 * (e.g. lots of space just got freed). After that
1997 * we are done.
1998 */
1999 if (ret != -ENOSPC)
2000 xfs_icsb_balance_counter(mp, field, 0);
2001 xfs_icsb_unlock(mp);
2002 return ret;
2003
2004 balance_counter:
2005 xfs_icsb_unlock_cntr(icsbp);
2006 preempt_enable();
2007
2008 /*
2009 * We may have multiple threads here if multiple per-cpu
2010 * counters run dry at the same time. This will mean we can
2011 * do more balances than strictly necessary but it is not
2012 * the common slowpath case.
2013 */
2014 xfs_icsb_lock(mp);
2015
2016 /*
2017 * running atomically.
2018 *
2019 * This will leave the counter in the correct state for future
2020 * accesses. After the rebalance, we simply try again and our retry
2021 * will either succeed through the fast path or slow path without
2022 * another balance operation being required.
2023 */
2024 xfs_icsb_balance_counter(mp, field, delta);
2025 xfs_icsb_unlock(mp);
2026 goto again;
2027 }
2028
2029 #endif
2030