• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78 
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81 
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84 
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 	pgoff_t start;		/* start of range currently being fallocated */
93 	pgoff_t next;		/* the next page offset to be fallocated */
94 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96 };
97 
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 	SGP_READ,	/* don't exceed i_size, don't allocate page */
101 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105 };
106 
107 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
shmem_default_max_inodes(void)113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,int * fault_type)125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 	struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 			mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131 
SHMEM_SB(struct super_block * sb)132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
shmem_acct_size(unsigned long flags,loff_t size)143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
shmem_unacct_size(unsigned long flags,loff_t size)149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
shmem_acct_block(unsigned long flags)174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 	return (flags & VM_NORESERVE) ?
177 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179 
shmem_unacct_blocks(unsigned long flags,long pages)180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 	if (flags & VM_NORESERVE)
183 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193 
194 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
195 	.ra_pages	= 0,	/* No readahead */
196 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197 };
198 
199 static LIST_HEAD(shmem_swaplist);
200 static DEFINE_MUTEX(shmem_swaplist_mutex);
201 
shmem_reserve_inode(struct super_block * sb)202 static int shmem_reserve_inode(struct super_block *sb)
203 {
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205 	if (sbinfo->max_inodes) {
206 		spin_lock(&sbinfo->stat_lock);
207 		if (!sbinfo->free_inodes) {
208 			spin_unlock(&sbinfo->stat_lock);
209 			return -ENOSPC;
210 		}
211 		sbinfo->free_inodes--;
212 		spin_unlock(&sbinfo->stat_lock);
213 	}
214 	return 0;
215 }
216 
shmem_free_inode(struct super_block * sb)217 static void shmem_free_inode(struct super_block *sb)
218 {
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220 	if (sbinfo->max_inodes) {
221 		spin_lock(&sbinfo->stat_lock);
222 		sbinfo->free_inodes++;
223 		spin_unlock(&sbinfo->stat_lock);
224 	}
225 }
226 
227 /**
228  * shmem_recalc_inode - recalculate the block usage of an inode
229  * @inode: inode to recalc
230  *
231  * We have to calculate the free blocks since the mm can drop
232  * undirtied hole pages behind our back.
233  *
234  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
235  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236  *
237  * It has to be called with the spinlock held.
238  */
shmem_recalc_inode(struct inode * inode)239 static void shmem_recalc_inode(struct inode *inode)
240 {
241 	struct shmem_inode_info *info = SHMEM_I(inode);
242 	long freed;
243 
244 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245 	if (freed > 0) {
246 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 		if (sbinfo->max_blocks)
248 			percpu_counter_add(&sbinfo->used_blocks, -freed);
249 		info->alloced -= freed;
250 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251 		shmem_unacct_blocks(info->flags, freed);
252 	}
253 }
254 
255 /*
256  * Replace item expected in radix tree by a new item, while holding tree lock.
257  */
shmem_radix_tree_replace(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)258 static int shmem_radix_tree_replace(struct address_space *mapping,
259 			pgoff_t index, void *expected, void *replacement)
260 {
261 	void **pslot;
262 	void *item;
263 
264 	VM_BUG_ON(!expected);
265 	VM_BUG_ON(!replacement);
266 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267 	if (!pslot)
268 		return -ENOENT;
269 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270 	if (item != expected)
271 		return -ENOENT;
272 	radix_tree_replace_slot(pslot, replacement);
273 	return 0;
274 }
275 
276 /*
277  * Sometimes, before we decide whether to proceed or to fail, we must check
278  * that an entry was not already brought back from swap by a racing thread.
279  *
280  * Checking page is not enough: by the time a SwapCache page is locked, it
281  * might be reused, and again be SwapCache, using the same swap as before.
282  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)283 static bool shmem_confirm_swap(struct address_space *mapping,
284 			       pgoff_t index, swp_entry_t swap)
285 {
286 	void *item;
287 
288 	rcu_read_lock();
289 	item = radix_tree_lookup(&mapping->page_tree, index);
290 	rcu_read_unlock();
291 	return item == swp_to_radix_entry(swap);
292 }
293 
294 /*
295  * Like add_to_page_cache_locked, but error if expected item has gone.
296  */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected)297 static int shmem_add_to_page_cache(struct page *page,
298 				   struct address_space *mapping,
299 				   pgoff_t index, void *expected)
300 {
301 	int error;
302 
303 	VM_BUG_ON_PAGE(!PageLocked(page), page);
304 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305 
306 	page_cache_get(page);
307 	page->mapping = mapping;
308 	page->index = index;
309 
310 	spin_lock_irq(&mapping->tree_lock);
311 	if (!expected)
312 		error = radix_tree_insert(&mapping->page_tree, index, page);
313 	else
314 		error = shmem_radix_tree_replace(mapping, index, expected,
315 								 page);
316 	if (!error) {
317 		mapping->nrpages++;
318 		__inc_zone_page_state(page, NR_FILE_PAGES);
319 		__inc_zone_page_state(page, NR_SHMEM);
320 		spin_unlock_irq(&mapping->tree_lock);
321 	} else {
322 		page->mapping = NULL;
323 		spin_unlock_irq(&mapping->tree_lock);
324 		page_cache_release(page);
325 	}
326 	return error;
327 }
328 
329 /*
330  * Like delete_from_page_cache, but substitutes swap for page.
331  */
shmem_delete_from_page_cache(struct page * page,void * radswap)332 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333 {
334 	struct address_space *mapping = page->mapping;
335 	int error;
336 
337 	spin_lock_irq(&mapping->tree_lock);
338 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339 	page->mapping = NULL;
340 	mapping->nrpages--;
341 	__dec_zone_page_state(page, NR_FILE_PAGES);
342 	__dec_zone_page_state(page, NR_SHMEM);
343 	spin_unlock_irq(&mapping->tree_lock);
344 	page_cache_release(page);
345 	BUG_ON(error);
346 }
347 
348 /*
349  * Remove swap entry from radix tree, free the swap and its page cache.
350  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)351 static int shmem_free_swap(struct address_space *mapping,
352 			   pgoff_t index, void *radswap)
353 {
354 	void *old;
355 
356 	spin_lock_irq(&mapping->tree_lock);
357 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358 	spin_unlock_irq(&mapping->tree_lock);
359 	if (old != radswap)
360 		return -ENOENT;
361 	free_swap_and_cache(radix_to_swp_entry(radswap));
362 	return 0;
363 }
364 
365 /*
366  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367  */
shmem_unlock_mapping(struct address_space * mapping)368 void shmem_unlock_mapping(struct address_space *mapping)
369 {
370 	struct pagevec pvec;
371 	pgoff_t indices[PAGEVEC_SIZE];
372 	pgoff_t index = 0;
373 
374 	pagevec_init(&pvec, 0);
375 	/*
376 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377 	 */
378 	while (!mapping_unevictable(mapping)) {
379 		/*
380 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382 		 */
383 		pvec.nr = find_get_entries(mapping, index,
384 					   PAGEVEC_SIZE, pvec.pages, indices);
385 		if (!pvec.nr)
386 			break;
387 		index = indices[pvec.nr - 1] + 1;
388 		pagevec_remove_exceptionals(&pvec);
389 		check_move_unevictable_pages(pvec.pages, pvec.nr);
390 		pagevec_release(&pvec);
391 		cond_resched();
392 	}
393 }
394 
395 /*
396  * Remove range of pages and swap entries from radix tree, and free them.
397  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)399 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400 								 bool unfalloc)
401 {
402 	struct address_space *mapping = inode->i_mapping;
403 	struct shmem_inode_info *info = SHMEM_I(inode);
404 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408 	struct pagevec pvec;
409 	pgoff_t indices[PAGEVEC_SIZE];
410 	long nr_swaps_freed = 0;
411 	pgoff_t index;
412 	int i;
413 
414 	if (lend == -1)
415 		end = -1;	/* unsigned, so actually very big */
416 
417 	pagevec_init(&pvec, 0);
418 	index = start;
419 	while (index < end) {
420 		pvec.nr = find_get_entries(mapping, index,
421 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
422 			pvec.pages, indices);
423 		if (!pvec.nr)
424 			break;
425 		for (i = 0; i < pagevec_count(&pvec); i++) {
426 			struct page *page = pvec.pages[i];
427 
428 			index = indices[i];
429 			if (index >= end)
430 				break;
431 
432 			if (radix_tree_exceptional_entry(page)) {
433 				if (unfalloc)
434 					continue;
435 				nr_swaps_freed += !shmem_free_swap(mapping,
436 								index, page);
437 				continue;
438 			}
439 
440 			if (!trylock_page(page))
441 				continue;
442 			if (!unfalloc || !PageUptodate(page)) {
443 				if (page->mapping == mapping) {
444 					VM_BUG_ON_PAGE(PageWriteback(page), page);
445 					truncate_inode_page(mapping, page);
446 				}
447 			}
448 			unlock_page(page);
449 		}
450 		pagevec_remove_exceptionals(&pvec);
451 		pagevec_release(&pvec);
452 		cond_resched();
453 		index++;
454 	}
455 
456 	if (partial_start) {
457 		struct page *page = NULL;
458 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459 		if (page) {
460 			unsigned int top = PAGE_CACHE_SIZE;
461 			if (start > end) {
462 				top = partial_end;
463 				partial_end = 0;
464 			}
465 			zero_user_segment(page, partial_start, top);
466 			set_page_dirty(page);
467 			unlock_page(page);
468 			page_cache_release(page);
469 		}
470 	}
471 	if (partial_end) {
472 		struct page *page = NULL;
473 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
474 		if (page) {
475 			zero_user_segment(page, 0, partial_end);
476 			set_page_dirty(page);
477 			unlock_page(page);
478 			page_cache_release(page);
479 		}
480 	}
481 	if (start >= end)
482 		return;
483 
484 	index = start;
485 	while (index < end) {
486 		cond_resched();
487 
488 		pvec.nr = find_get_entries(mapping, index,
489 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
490 				pvec.pages, indices);
491 		if (!pvec.nr) {
492 			/* If all gone or hole-punch or unfalloc, we're done */
493 			if (index == start || end != -1)
494 				break;
495 			/* But if truncating, restart to make sure all gone */
496 			index = start;
497 			continue;
498 		}
499 		for (i = 0; i < pagevec_count(&pvec); i++) {
500 			struct page *page = pvec.pages[i];
501 
502 			index = indices[i];
503 			if (index >= end)
504 				break;
505 
506 			if (radix_tree_exceptional_entry(page)) {
507 				if (unfalloc)
508 					continue;
509 				if (shmem_free_swap(mapping, index, page)) {
510 					/* Swap was replaced by page: retry */
511 					index--;
512 					break;
513 				}
514 				nr_swaps_freed++;
515 				continue;
516 			}
517 
518 			lock_page(page);
519 			if (!unfalloc || !PageUptodate(page)) {
520 				if (page->mapping == mapping) {
521 					VM_BUG_ON_PAGE(PageWriteback(page), page);
522 					truncate_inode_page(mapping, page);
523 				} else {
524 					/* Page was replaced by swap: retry */
525 					unlock_page(page);
526 					index--;
527 					break;
528 				}
529 			}
530 			unlock_page(page);
531 		}
532 		pagevec_remove_exceptionals(&pvec);
533 		pagevec_release(&pvec);
534 		index++;
535 	}
536 
537 	spin_lock(&info->lock);
538 	info->swapped -= nr_swaps_freed;
539 	shmem_recalc_inode(inode);
540 	spin_unlock(&info->lock);
541 }
542 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)543 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544 {
545 	shmem_undo_range(inode, lstart, lend, false);
546 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 EXPORT_SYMBOL_GPL(shmem_truncate_range);
549 
shmem_setattr(struct dentry * dentry,struct iattr * attr)550 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551 {
552 	struct inode *inode = dentry->d_inode;
553 	struct shmem_inode_info *info = SHMEM_I(inode);
554 	int error;
555 
556 	error = inode_change_ok(inode, attr);
557 	if (error)
558 		return error;
559 
560 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 		loff_t oldsize = inode->i_size;
562 		loff_t newsize = attr->ia_size;
563 
564 		/* protected by i_mutex */
565 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567 			return -EPERM;
568 
569 		if (newsize != oldsize) {
570 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
571 					oldsize, newsize);
572 			if (error)
573 				return error;
574 			i_size_write(inode, newsize);
575 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576 		}
577 		if (newsize < oldsize) {
578 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
579 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580 			shmem_truncate_range(inode, newsize, (loff_t)-1);
581 			/* unmap again to remove racily COWed private pages */
582 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583 		}
584 	}
585 
586 	setattr_copy(inode, attr);
587 	if (attr->ia_valid & ATTR_MODE)
588 		error = posix_acl_chmod(inode, inode->i_mode);
589 	return error;
590 }
591 
shmem_evict_inode(struct inode * inode)592 static void shmem_evict_inode(struct inode *inode)
593 {
594 	struct shmem_inode_info *info = SHMEM_I(inode);
595 
596 	if (inode->i_mapping->a_ops == &shmem_aops) {
597 		shmem_unacct_size(info->flags, inode->i_size);
598 		inode->i_size = 0;
599 		shmem_truncate_range(inode, 0, (loff_t)-1);
600 		if (!list_empty(&info->swaplist)) {
601 			mutex_lock(&shmem_swaplist_mutex);
602 			list_del_init(&info->swaplist);
603 			mutex_unlock(&shmem_swaplist_mutex);
604 		}
605 	} else
606 		kfree(info->symlink);
607 
608 	simple_xattrs_free(&info->xattrs);
609 	WARN_ON(inode->i_blocks);
610 	shmem_free_inode(inode->i_sb);
611 	clear_inode(inode);
612 }
613 
614 /*
615  * If swap found in inode, free it and move page from swapcache to filecache.
616  */
shmem_unuse_inode(struct shmem_inode_info * info,swp_entry_t swap,struct page ** pagep)617 static int shmem_unuse_inode(struct shmem_inode_info *info,
618 			     swp_entry_t swap, struct page **pagep)
619 {
620 	struct address_space *mapping = info->vfs_inode.i_mapping;
621 	void *radswap;
622 	pgoff_t index;
623 	gfp_t gfp;
624 	int error = 0;
625 
626 	radswap = swp_to_radix_entry(swap);
627 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
628 	if (index == -1)
629 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
630 
631 	/*
632 	 * Move _head_ to start search for next from here.
633 	 * But be careful: shmem_evict_inode checks list_empty without taking
634 	 * mutex, and there's an instant in list_move_tail when info->swaplist
635 	 * would appear empty, if it were the only one on shmem_swaplist.
636 	 */
637 	if (shmem_swaplist.next != &info->swaplist)
638 		list_move_tail(&shmem_swaplist, &info->swaplist);
639 
640 	gfp = mapping_gfp_mask(mapping);
641 	if (shmem_should_replace_page(*pagep, gfp)) {
642 		mutex_unlock(&shmem_swaplist_mutex);
643 		error = shmem_replace_page(pagep, gfp, info, index);
644 		mutex_lock(&shmem_swaplist_mutex);
645 		/*
646 		 * We needed to drop mutex to make that restrictive page
647 		 * allocation, but the inode might have been freed while we
648 		 * dropped it: although a racing shmem_evict_inode() cannot
649 		 * complete without emptying the radix_tree, our page lock
650 		 * on this swapcache page is not enough to prevent that -
651 		 * free_swap_and_cache() of our swap entry will only
652 		 * trylock_page(), removing swap from radix_tree whatever.
653 		 *
654 		 * We must not proceed to shmem_add_to_page_cache() if the
655 		 * inode has been freed, but of course we cannot rely on
656 		 * inode or mapping or info to check that.  However, we can
657 		 * safely check if our swap entry is still in use (and here
658 		 * it can't have got reused for another page): if it's still
659 		 * in use, then the inode cannot have been freed yet, and we
660 		 * can safely proceed (if it's no longer in use, that tells
661 		 * nothing about the inode, but we don't need to unuse swap).
662 		 */
663 		if (!page_swapcount(*pagep))
664 			error = -ENOENT;
665 	}
666 
667 	/*
668 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670 	 * beneath us (pagelock doesn't help until the page is in pagecache).
671 	 */
672 	if (!error)
673 		error = shmem_add_to_page_cache(*pagep, mapping, index,
674 						radswap);
675 	if (error != -ENOMEM) {
676 		/*
677 		 * Truncation and eviction use free_swap_and_cache(), which
678 		 * only does trylock page: if we raced, best clean up here.
679 		 */
680 		delete_from_swap_cache(*pagep);
681 		set_page_dirty(*pagep);
682 		if (!error) {
683 			spin_lock(&info->lock);
684 			info->swapped--;
685 			spin_unlock(&info->lock);
686 			swap_free(swap);
687 		}
688 	}
689 	return error;
690 }
691 
692 /*
693  * Search through swapped inodes to find and replace swap by page.
694  */
shmem_unuse(swp_entry_t swap,struct page * page)695 int shmem_unuse(swp_entry_t swap, struct page *page)
696 {
697 	struct list_head *this, *next;
698 	struct shmem_inode_info *info;
699 	struct mem_cgroup *memcg;
700 	int error = 0;
701 
702 	/*
703 	 * There's a faint possibility that swap page was replaced before
704 	 * caller locked it: caller will come back later with the right page.
705 	 */
706 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707 		goto out;
708 
709 	/*
710 	 * Charge page using GFP_KERNEL while we can wait, before taking
711 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712 	 * Charged back to the user (not to caller) when swap account is used.
713 	 */
714 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715 	if (error)
716 		goto out;
717 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
718 	error = -EAGAIN;
719 
720 	mutex_lock(&shmem_swaplist_mutex);
721 	list_for_each_safe(this, next, &shmem_swaplist) {
722 		info = list_entry(this, struct shmem_inode_info, swaplist);
723 		if (info->swapped)
724 			error = shmem_unuse_inode(info, swap, &page);
725 		else
726 			list_del_init(&info->swaplist);
727 		cond_resched();
728 		if (error != -EAGAIN)
729 			break;
730 		/* found nothing in this: move on to search the next */
731 	}
732 	mutex_unlock(&shmem_swaplist_mutex);
733 
734 	if (error) {
735 		if (error != -ENOMEM)
736 			error = 0;
737 		mem_cgroup_cancel_charge(page, memcg);
738 	} else
739 		mem_cgroup_commit_charge(page, memcg, true);
740 out:
741 	unlock_page(page);
742 	page_cache_release(page);
743 	return error;
744 }
745 
746 /*
747  * Move the page from the page cache to the swap cache.
748  */
shmem_writepage(struct page * page,struct writeback_control * wbc)749 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750 {
751 	struct shmem_inode_info *info;
752 	struct address_space *mapping;
753 	struct inode *inode;
754 	swp_entry_t swap;
755 	pgoff_t index;
756 
757 	BUG_ON(!PageLocked(page));
758 	mapping = page->mapping;
759 	index = page->index;
760 	inode = mapping->host;
761 	info = SHMEM_I(inode);
762 	if (info->flags & VM_LOCKED)
763 		goto redirty;
764 	if (!total_swap_pages)
765 		goto redirty;
766 
767 	/*
768 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
769 	 * sync from ever calling shmem_writepage; but a stacking filesystem
770 	 * might use ->writepage of its underlying filesystem, in which case
771 	 * tmpfs should write out to swap only in response to memory pressure,
772 	 * and not for the writeback threads or sync.
773 	 */
774 	if (!wbc->for_reclaim) {
775 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
776 		goto redirty;
777 	}
778 
779 	/*
780 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781 	 * value into swapfile.c, the only way we can correctly account for a
782 	 * fallocated page arriving here is now to initialize it and write it.
783 	 *
784 	 * That's okay for a page already fallocated earlier, but if we have
785 	 * not yet completed the fallocation, then (a) we want to keep track
786 	 * of this page in case we have to undo it, and (b) it may not be a
787 	 * good idea to continue anyway, once we're pushing into swap.  So
788 	 * reactivate the page, and let shmem_fallocate() quit when too many.
789 	 */
790 	if (!PageUptodate(page)) {
791 		if (inode->i_private) {
792 			struct shmem_falloc *shmem_falloc;
793 			spin_lock(&inode->i_lock);
794 			shmem_falloc = inode->i_private;
795 			if (shmem_falloc &&
796 			    !shmem_falloc->waitq &&
797 			    index >= shmem_falloc->start &&
798 			    index < shmem_falloc->next)
799 				shmem_falloc->nr_unswapped++;
800 			else
801 				shmem_falloc = NULL;
802 			spin_unlock(&inode->i_lock);
803 			if (shmem_falloc)
804 				goto redirty;
805 		}
806 		clear_highpage(page);
807 		flush_dcache_page(page);
808 		SetPageUptodate(page);
809 	}
810 
811 	swap = get_swap_page();
812 	if (!swap.val)
813 		goto redirty;
814 
815 	/*
816 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817 	 * if it's not already there.  Do it now before the page is
818 	 * moved to swap cache, when its pagelock no longer protects
819 	 * the inode from eviction.  But don't unlock the mutex until
820 	 * we've incremented swapped, because shmem_unuse_inode() will
821 	 * prune a !swapped inode from the swaplist under this mutex.
822 	 */
823 	mutex_lock(&shmem_swaplist_mutex);
824 	if (list_empty(&info->swaplist))
825 		list_add_tail(&info->swaplist, &shmem_swaplist);
826 
827 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828 		swap_shmem_alloc(swap);
829 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830 
831 		spin_lock(&info->lock);
832 		info->swapped++;
833 		shmem_recalc_inode(inode);
834 		spin_unlock(&info->lock);
835 
836 		mutex_unlock(&shmem_swaplist_mutex);
837 		BUG_ON(page_mapped(page));
838 		swap_writepage(page, wbc);
839 		return 0;
840 	}
841 
842 	mutex_unlock(&shmem_swaplist_mutex);
843 	swapcache_free(swap);
844 redirty:
845 	set_page_dirty(page);
846 	if (wbc->for_reclaim)
847 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
848 	unlock_page(page);
849 	return 0;
850 }
851 
852 #ifdef CONFIG_NUMA
853 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)854 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855 {
856 	char buffer[64];
857 
858 	if (!mpol || mpol->mode == MPOL_DEFAULT)
859 		return;		/* show nothing */
860 
861 	mpol_to_str(buffer, sizeof(buffer), mpol);
862 
863 	seq_printf(seq, ",mpol=%s", buffer);
864 }
865 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)866 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867 {
868 	struct mempolicy *mpol = NULL;
869 	if (sbinfo->mpol) {
870 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
871 		mpol = sbinfo->mpol;
872 		mpol_get(mpol);
873 		spin_unlock(&sbinfo->stat_lock);
874 	}
875 	return mpol;
876 }
877 #endif /* CONFIG_TMPFS */
878 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)879 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880 			struct shmem_inode_info *info, pgoff_t index)
881 {
882 	struct vm_area_struct pvma;
883 	struct page *page;
884 
885 	/* Create a pseudo vma that just contains the policy */
886 	pvma.vm_start = 0;
887 	/* Bias interleave by inode number to distribute better across nodes */
888 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889 	pvma.vm_ops = NULL;
890 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891 
892 	page = swapin_readahead(swap, gfp, &pvma, 0);
893 
894 	/* Drop reference taken by mpol_shared_policy_lookup() */
895 	mpol_cond_put(pvma.vm_policy);
896 
897 	return page;
898 }
899 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)900 static struct page *shmem_alloc_page(gfp_t gfp,
901 			struct shmem_inode_info *info, pgoff_t index)
902 {
903 	struct vm_area_struct pvma;
904 	struct page *page;
905 
906 	/* Create a pseudo vma that just contains the policy */
907 	pvma.vm_start = 0;
908 	/* Bias interleave by inode number to distribute better across nodes */
909 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910 	pvma.vm_ops = NULL;
911 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912 
913 	page = alloc_page_vma(gfp, &pvma, 0);
914 
915 	/* Drop reference taken by mpol_shared_policy_lookup() */
916 	mpol_cond_put(pvma.vm_policy);
917 
918 	return page;
919 }
920 #else /* !CONFIG_NUMA */
921 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)922 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923 {
924 }
925 #endif /* CONFIG_TMPFS */
926 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)927 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928 			struct shmem_inode_info *info, pgoff_t index)
929 {
930 	return swapin_readahead(swap, gfp, NULL, 0);
931 }
932 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)933 static inline struct page *shmem_alloc_page(gfp_t gfp,
934 			struct shmem_inode_info *info, pgoff_t index)
935 {
936 	return alloc_page(gfp);
937 }
938 #endif /* CONFIG_NUMA */
939 
940 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)941 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942 {
943 	return NULL;
944 }
945 #endif
946 
947 /*
948  * When a page is moved from swapcache to shmem filecache (either by the
949  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950  * shmem_unuse_inode()), it may have been read in earlier from swap, in
951  * ignorance of the mapping it belongs to.  If that mapping has special
952  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953  * we may need to copy to a suitable page before moving to filecache.
954  *
955  * In a future release, this may well be extended to respect cpuset and
956  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957  * but for now it is a simple matter of zone.
958  */
shmem_should_replace_page(struct page * page,gfp_t gfp)959 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960 {
961 	return page_zonenum(page) > gfp_zone(gfp);
962 }
963 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)964 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965 				struct shmem_inode_info *info, pgoff_t index)
966 {
967 	struct page *oldpage, *newpage;
968 	struct address_space *swap_mapping;
969 	pgoff_t swap_index;
970 	int error;
971 
972 	oldpage = *pagep;
973 	swap_index = page_private(oldpage);
974 	swap_mapping = page_mapping(oldpage);
975 
976 	/*
977 	 * We have arrived here because our zones are constrained, so don't
978 	 * limit chance of success by further cpuset and node constraints.
979 	 */
980 	gfp &= ~GFP_CONSTRAINT_MASK;
981 	newpage = shmem_alloc_page(gfp, info, index);
982 	if (!newpage)
983 		return -ENOMEM;
984 
985 	page_cache_get(newpage);
986 	copy_highpage(newpage, oldpage);
987 	flush_dcache_page(newpage);
988 
989 	__set_page_locked(newpage);
990 	SetPageUptodate(newpage);
991 	SetPageSwapBacked(newpage);
992 	set_page_private(newpage, swap_index);
993 	SetPageSwapCache(newpage);
994 
995 	/*
996 	 * Our caller will very soon move newpage out of swapcache, but it's
997 	 * a nice clean interface for us to replace oldpage by newpage there.
998 	 */
999 	spin_lock_irq(&swap_mapping->tree_lock);
1000 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001 								   newpage);
1002 	if (!error) {
1003 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1004 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005 	}
1006 	spin_unlock_irq(&swap_mapping->tree_lock);
1007 
1008 	if (unlikely(error)) {
1009 		/*
1010 		 * Is this possible?  I think not, now that our callers check
1011 		 * both PageSwapCache and page_private after getting page lock;
1012 		 * but be defensive.  Reverse old to newpage for clear and free.
1013 		 */
1014 		oldpage = newpage;
1015 	} else {
1016 		mem_cgroup_migrate(oldpage, newpage, true);
1017 		lru_cache_add_anon(newpage);
1018 		*pagep = newpage;
1019 	}
1020 
1021 	ClearPageSwapCache(oldpage);
1022 	set_page_private(oldpage, 0);
1023 
1024 	unlock_page(oldpage);
1025 	page_cache_release(oldpage);
1026 	page_cache_release(oldpage);
1027 	return error;
1028 }
1029 
1030 /*
1031  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032  *
1033  * If we allocate a new one we do not mark it dirty. That's up to the
1034  * vm. If we swap it in we mark it dirty since we also free the swap
1035  * entry since a page cannot live in both the swap and page cache
1036  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,int * fault_type)1037 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039 {
1040 	struct address_space *mapping = inode->i_mapping;
1041 	struct shmem_inode_info *info;
1042 	struct shmem_sb_info *sbinfo;
1043 	struct mem_cgroup *memcg;
1044 	struct page *page;
1045 	swp_entry_t swap;
1046 	int error;
1047 	int once = 0;
1048 	int alloced = 0;
1049 
1050 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051 		return -EFBIG;
1052 repeat:
1053 	swap.val = 0;
1054 	page = find_lock_entry(mapping, index);
1055 	if (radix_tree_exceptional_entry(page)) {
1056 		swap = radix_to_swp_entry(page);
1057 		page = NULL;
1058 	}
1059 
1060 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062 		error = -EINVAL;
1063 		goto failed;
1064 	}
1065 
1066 	if (page && sgp == SGP_WRITE)
1067 		mark_page_accessed(page);
1068 
1069 	/* fallocated page? */
1070 	if (page && !PageUptodate(page)) {
1071 		if (sgp != SGP_READ)
1072 			goto clear;
1073 		unlock_page(page);
1074 		page_cache_release(page);
1075 		page = NULL;
1076 	}
1077 	if (page || (sgp == SGP_READ && !swap.val)) {
1078 		*pagep = page;
1079 		return 0;
1080 	}
1081 
1082 	/*
1083 	 * Fast cache lookup did not find it:
1084 	 * bring it back from swap or allocate.
1085 	 */
1086 	info = SHMEM_I(inode);
1087 	sbinfo = SHMEM_SB(inode->i_sb);
1088 
1089 	if (swap.val) {
1090 		/* Look it up and read it in.. */
1091 		page = lookup_swap_cache(swap);
1092 		if (!page) {
1093 			/* here we actually do the io */
1094 			if (fault_type)
1095 				*fault_type |= VM_FAULT_MAJOR;
1096 			page = shmem_swapin(swap, gfp, info, index);
1097 			if (!page) {
1098 				error = -ENOMEM;
1099 				goto failed;
1100 			}
1101 		}
1102 
1103 		/* We have to do this with page locked to prevent races */
1104 		lock_page(page);
1105 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106 		    !shmem_confirm_swap(mapping, index, swap)) {
1107 			error = -EEXIST;	/* try again */
1108 			goto unlock;
1109 		}
1110 		if (!PageUptodate(page)) {
1111 			error = -EIO;
1112 			goto failed;
1113 		}
1114 		wait_on_page_writeback(page);
1115 
1116 		if (shmem_should_replace_page(page, gfp)) {
1117 			error = shmem_replace_page(&page, gfp, info, index);
1118 			if (error)
1119 				goto failed;
1120 		}
1121 
1122 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123 		if (!error) {
1124 			error = shmem_add_to_page_cache(page, mapping, index,
1125 						swp_to_radix_entry(swap));
1126 			/*
1127 			 * We already confirmed swap under page lock, and make
1128 			 * no memory allocation here, so usually no possibility
1129 			 * of error; but free_swap_and_cache() only trylocks a
1130 			 * page, so it is just possible that the entry has been
1131 			 * truncated or holepunched since swap was confirmed.
1132 			 * shmem_undo_range() will have done some of the
1133 			 * unaccounting, now delete_from_swap_cache() will do
1134 			 * the rest (including mem_cgroup_uncharge_swapcache).
1135 			 * Reset swap.val? No, leave it so "failed" goes back to
1136 			 * "repeat": reading a hole and writing should succeed.
1137 			 */
1138 			if (error) {
1139 				mem_cgroup_cancel_charge(page, memcg);
1140 				delete_from_swap_cache(page);
1141 			}
1142 		}
1143 		if (error)
1144 			goto failed;
1145 
1146 		mem_cgroup_commit_charge(page, memcg, true);
1147 
1148 		spin_lock(&info->lock);
1149 		info->swapped--;
1150 		shmem_recalc_inode(inode);
1151 		spin_unlock(&info->lock);
1152 
1153 		if (sgp == SGP_WRITE)
1154 			mark_page_accessed(page);
1155 
1156 		delete_from_swap_cache(page);
1157 		set_page_dirty(page);
1158 		swap_free(swap);
1159 
1160 	} else {
1161 		if (shmem_acct_block(info->flags)) {
1162 			error = -ENOSPC;
1163 			goto failed;
1164 		}
1165 		if (sbinfo->max_blocks) {
1166 			if (percpu_counter_compare(&sbinfo->used_blocks,
1167 						sbinfo->max_blocks) >= 0) {
1168 				error = -ENOSPC;
1169 				goto unacct;
1170 			}
1171 			percpu_counter_inc(&sbinfo->used_blocks);
1172 		}
1173 
1174 		page = shmem_alloc_page(gfp, info, index);
1175 		if (!page) {
1176 			error = -ENOMEM;
1177 			goto decused;
1178 		}
1179 
1180 		__SetPageSwapBacked(page);
1181 		__set_page_locked(page);
1182 		if (sgp == SGP_WRITE)
1183 			__SetPageReferenced(page);
1184 
1185 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186 		if (error)
1187 			goto decused;
1188 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189 		if (!error) {
1190 			error = shmem_add_to_page_cache(page, mapping, index,
1191 							NULL);
1192 			radix_tree_preload_end();
1193 		}
1194 		if (error) {
1195 			mem_cgroup_cancel_charge(page, memcg);
1196 			goto decused;
1197 		}
1198 		mem_cgroup_commit_charge(page, memcg, false);
1199 		lru_cache_add_anon(page);
1200 
1201 		spin_lock(&info->lock);
1202 		info->alloced++;
1203 		inode->i_blocks += BLOCKS_PER_PAGE;
1204 		shmem_recalc_inode(inode);
1205 		spin_unlock(&info->lock);
1206 		alloced = true;
1207 
1208 		/*
1209 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 		 */
1211 		if (sgp == SGP_FALLOC)
1212 			sgp = SGP_WRITE;
1213 clear:
1214 		/*
1215 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 		 * it now, lest undo on failure cancel our earlier guarantee.
1218 		 */
1219 		if (sgp != SGP_WRITE) {
1220 			clear_highpage(page);
1221 			flush_dcache_page(page);
1222 			SetPageUptodate(page);
1223 		}
1224 		if (sgp == SGP_DIRTY)
1225 			set_page_dirty(page);
1226 	}
1227 
1228 	/* Perhaps the file has been truncated since we checked */
1229 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 		error = -EINVAL;
1232 		if (alloced)
1233 			goto trunc;
1234 		else
1235 			goto failed;
1236 	}
1237 	*pagep = page;
1238 	return 0;
1239 
1240 	/*
1241 	 * Error recovery.
1242 	 */
1243 trunc:
1244 	info = SHMEM_I(inode);
1245 	ClearPageDirty(page);
1246 	delete_from_page_cache(page);
1247 	spin_lock(&info->lock);
1248 	info->alloced--;
1249 	inode->i_blocks -= BLOCKS_PER_PAGE;
1250 	spin_unlock(&info->lock);
1251 decused:
1252 	sbinfo = SHMEM_SB(inode->i_sb);
1253 	if (sbinfo->max_blocks)
1254 		percpu_counter_add(&sbinfo->used_blocks, -1);
1255 unacct:
1256 	shmem_unacct_blocks(info->flags, 1);
1257 failed:
1258 	if (swap.val && error != -EINVAL &&
1259 	    !shmem_confirm_swap(mapping, index, swap))
1260 		error = -EEXIST;
1261 unlock:
1262 	if (page) {
1263 		unlock_page(page);
1264 		page_cache_release(page);
1265 	}
1266 	if (error == -ENOSPC && !once++) {
1267 		info = SHMEM_I(inode);
1268 		spin_lock(&info->lock);
1269 		shmem_recalc_inode(inode);
1270 		spin_unlock(&info->lock);
1271 		goto repeat;
1272 	}
1273 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1274 		goto repeat;
1275 	return error;
1276 }
1277 
shmem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279 {
1280 	struct inode *inode = file_inode(vma->vm_file);
1281 	int error;
1282 	int ret = VM_FAULT_LOCKED;
1283 
1284 	/*
1285 	 * Trinity finds that probing a hole which tmpfs is punching can
1286 	 * prevent the hole-punch from ever completing: which in turn
1287 	 * locks writers out with its hold on i_mutex.  So refrain from
1288 	 * faulting pages into the hole while it's being punched.  Although
1289 	 * shmem_undo_range() does remove the additions, it may be unable to
1290 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1291 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292 	 *
1293 	 * It does not matter if we sometimes reach this check just before the
1294 	 * hole-punch begins, so that one fault then races with the punch:
1295 	 * we just need to make racing faults a rare case.
1296 	 *
1297 	 * The implementation below would be much simpler if we just used a
1298 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1299 	 * and bloating every shmem inode for this unlikely case would be sad.
1300 	 */
1301 	if (unlikely(inode->i_private)) {
1302 		struct shmem_falloc *shmem_falloc;
1303 
1304 		spin_lock(&inode->i_lock);
1305 		shmem_falloc = inode->i_private;
1306 		if (shmem_falloc &&
1307 		    shmem_falloc->waitq &&
1308 		    vmf->pgoff >= shmem_falloc->start &&
1309 		    vmf->pgoff < shmem_falloc->next) {
1310 			wait_queue_head_t *shmem_falloc_waitq;
1311 			DEFINE_WAIT(shmem_fault_wait);
1312 
1313 			ret = VM_FAULT_NOPAGE;
1314 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316 				/* It's polite to up mmap_sem if we can */
1317 				up_read(&vma->vm_mm->mmap_sem);
1318 				ret = VM_FAULT_RETRY;
1319 			}
1320 
1321 			shmem_falloc_waitq = shmem_falloc->waitq;
1322 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323 					TASK_UNINTERRUPTIBLE);
1324 			spin_unlock(&inode->i_lock);
1325 			schedule();
1326 
1327 			/*
1328 			 * shmem_falloc_waitq points into the shmem_fallocate()
1329 			 * stack of the hole-punching task: shmem_falloc_waitq
1330 			 * is usually invalid by the time we reach here, but
1331 			 * finish_wait() does not dereference it in that case;
1332 			 * though i_lock needed lest racing with wake_up_all().
1333 			 */
1334 			spin_lock(&inode->i_lock);
1335 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336 			spin_unlock(&inode->i_lock);
1337 			return ret;
1338 		}
1339 		spin_unlock(&inode->i_lock);
1340 	}
1341 
1342 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343 	if (error)
1344 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345 
1346 	if (ret & VM_FAULT_MAJOR) {
1347 		count_vm_event(PGMAJFAULT);
1348 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349 	}
1350 	return ret;
1351 }
1352 
1353 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)1354 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355 {
1356 	struct inode *inode = file_inode(vma->vm_file);
1357 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358 }
1359 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)1360 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361 					  unsigned long addr)
1362 {
1363 	struct inode *inode = file_inode(vma->vm_file);
1364 	pgoff_t index;
1365 
1366 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368 }
1369 #endif
1370 
shmem_lock(struct file * file,int lock,struct user_struct * user)1371 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372 {
1373 	struct inode *inode = file_inode(file);
1374 	struct shmem_inode_info *info = SHMEM_I(inode);
1375 	int retval = -ENOMEM;
1376 
1377 	spin_lock(&info->lock);
1378 	if (lock && !(info->flags & VM_LOCKED)) {
1379 		if (!user_shm_lock(inode->i_size, user))
1380 			goto out_nomem;
1381 		info->flags |= VM_LOCKED;
1382 		mapping_set_unevictable(file->f_mapping);
1383 	}
1384 	if (!lock && (info->flags & VM_LOCKED) && user) {
1385 		user_shm_unlock(inode->i_size, user);
1386 		info->flags &= ~VM_LOCKED;
1387 		mapping_clear_unevictable(file->f_mapping);
1388 	}
1389 	retval = 0;
1390 
1391 out_nomem:
1392 	spin_unlock(&info->lock);
1393 	return retval;
1394 }
1395 
shmem_mmap(struct file * file,struct vm_area_struct * vma)1396 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397 {
1398 	file_accessed(file);
1399 	vma->vm_ops = &shmem_vm_ops;
1400 	return 0;
1401 }
1402 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)1403 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404 				     umode_t mode, dev_t dev, unsigned long flags)
1405 {
1406 	struct inode *inode;
1407 	struct shmem_inode_info *info;
1408 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409 
1410 	if (shmem_reserve_inode(sb))
1411 		return NULL;
1412 
1413 	inode = new_inode(sb);
1414 	if (inode) {
1415 		inode->i_ino = get_next_ino();
1416 		inode_init_owner(inode, dir, mode);
1417 		inode->i_blocks = 0;
1418 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 		inode->i_generation = get_seconds();
1421 		info = SHMEM_I(inode);
1422 		memset(info, 0, (char *)inode - (char *)info);
1423 		spin_lock_init(&info->lock);
1424 		info->seals = F_SEAL_SEAL;
1425 		info->flags = flags & VM_NORESERVE;
1426 		INIT_LIST_HEAD(&info->swaplist);
1427 		simple_xattrs_init(&info->xattrs);
1428 		cache_no_acl(inode);
1429 
1430 		switch (mode & S_IFMT) {
1431 		default:
1432 			inode->i_op = &shmem_special_inode_operations;
1433 			init_special_inode(inode, mode, dev);
1434 			break;
1435 		case S_IFREG:
1436 			inode->i_mapping->a_ops = &shmem_aops;
1437 			inode->i_op = &shmem_inode_operations;
1438 			inode->i_fop = &shmem_file_operations;
1439 			mpol_shared_policy_init(&info->policy,
1440 						 shmem_get_sbmpol(sbinfo));
1441 			break;
1442 		case S_IFDIR:
1443 			inc_nlink(inode);
1444 			/* Some things misbehave if size == 0 on a directory */
1445 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446 			inode->i_op = &shmem_dir_inode_operations;
1447 			inode->i_fop = &simple_dir_operations;
1448 			break;
1449 		case S_IFLNK:
1450 			/*
1451 			 * Must not load anything in the rbtree,
1452 			 * mpol_free_shared_policy will not be called.
1453 			 */
1454 			mpol_shared_policy_init(&info->policy, NULL);
1455 			break;
1456 		}
1457 	} else
1458 		shmem_free_inode(sb);
1459 	return inode;
1460 }
1461 
shmem_mapping(struct address_space * mapping)1462 bool shmem_mapping(struct address_space *mapping)
1463 {
1464 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1465 }
1466 
1467 #ifdef CONFIG_TMPFS
1468 static const struct inode_operations shmem_symlink_inode_operations;
1469 static const struct inode_operations shmem_short_symlink_operations;
1470 
1471 #ifdef CONFIG_TMPFS_XATTR
1472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473 #else
1474 #define shmem_initxattrs NULL
1475 #endif
1476 
1477 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1478 shmem_write_begin(struct file *file, struct address_space *mapping,
1479 			loff_t pos, unsigned len, unsigned flags,
1480 			struct page **pagep, void **fsdata)
1481 {
1482 	struct inode *inode = mapping->host;
1483 	struct shmem_inode_info *info = SHMEM_I(inode);
1484 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485 
1486 	/* i_mutex is held by caller */
1487 	if (unlikely(info->seals)) {
1488 		if (info->seals & F_SEAL_WRITE)
1489 			return -EPERM;
1490 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491 			return -EPERM;
1492 	}
1493 
1494 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495 }
1496 
1497 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1498 shmem_write_end(struct file *file, struct address_space *mapping,
1499 			loff_t pos, unsigned len, unsigned copied,
1500 			struct page *page, void *fsdata)
1501 {
1502 	struct inode *inode = mapping->host;
1503 
1504 	if (pos + copied > inode->i_size)
1505 		i_size_write(inode, pos + copied);
1506 
1507 	if (!PageUptodate(page)) {
1508 		if (copied < PAGE_CACHE_SIZE) {
1509 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510 			zero_user_segments(page, 0, from,
1511 					from + copied, PAGE_CACHE_SIZE);
1512 		}
1513 		SetPageUptodate(page);
1514 	}
1515 	set_page_dirty(page);
1516 	unlock_page(page);
1517 	page_cache_release(page);
1518 
1519 	return copied;
1520 }
1521 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523 {
1524 	struct file *file = iocb->ki_filp;
1525 	struct inode *inode = file_inode(file);
1526 	struct address_space *mapping = inode->i_mapping;
1527 	pgoff_t index;
1528 	unsigned long offset;
1529 	enum sgp_type sgp = SGP_READ;
1530 	int error = 0;
1531 	ssize_t retval = 0;
1532 	loff_t *ppos = &iocb->ki_pos;
1533 
1534 	/*
1535 	 * Might this read be for a stacking filesystem?  Then when reading
1536 	 * holes of a sparse file, we actually need to allocate those pages,
1537 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538 	 */
1539 	if (segment_eq(get_fs(), KERNEL_DS))
1540 		sgp = SGP_DIRTY;
1541 
1542 	index = *ppos >> PAGE_CACHE_SHIFT;
1543 	offset = *ppos & ~PAGE_CACHE_MASK;
1544 
1545 	for (;;) {
1546 		struct page *page = NULL;
1547 		pgoff_t end_index;
1548 		unsigned long nr, ret;
1549 		loff_t i_size = i_size_read(inode);
1550 
1551 		end_index = i_size >> PAGE_CACHE_SHIFT;
1552 		if (index > end_index)
1553 			break;
1554 		if (index == end_index) {
1555 			nr = i_size & ~PAGE_CACHE_MASK;
1556 			if (nr <= offset)
1557 				break;
1558 		}
1559 
1560 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1561 		if (error) {
1562 			if (error == -EINVAL)
1563 				error = 0;
1564 			break;
1565 		}
1566 		if (page)
1567 			unlock_page(page);
1568 
1569 		/*
1570 		 * We must evaluate after, since reads (unlike writes)
1571 		 * are called without i_mutex protection against truncate
1572 		 */
1573 		nr = PAGE_CACHE_SIZE;
1574 		i_size = i_size_read(inode);
1575 		end_index = i_size >> PAGE_CACHE_SHIFT;
1576 		if (index == end_index) {
1577 			nr = i_size & ~PAGE_CACHE_MASK;
1578 			if (nr <= offset) {
1579 				if (page)
1580 					page_cache_release(page);
1581 				break;
1582 			}
1583 		}
1584 		nr -= offset;
1585 
1586 		if (page) {
1587 			/*
1588 			 * If users can be writing to this page using arbitrary
1589 			 * virtual addresses, take care about potential aliasing
1590 			 * before reading the page on the kernel side.
1591 			 */
1592 			if (mapping_writably_mapped(mapping))
1593 				flush_dcache_page(page);
1594 			/*
1595 			 * Mark the page accessed if we read the beginning.
1596 			 */
1597 			if (!offset)
1598 				mark_page_accessed(page);
1599 		} else {
1600 			page = ZERO_PAGE(0);
1601 			page_cache_get(page);
1602 		}
1603 
1604 		/*
1605 		 * Ok, we have the page, and it's up-to-date, so
1606 		 * now we can copy it to user space...
1607 		 */
1608 		ret = copy_page_to_iter(page, offset, nr, to);
1609 		retval += ret;
1610 		offset += ret;
1611 		index += offset >> PAGE_CACHE_SHIFT;
1612 		offset &= ~PAGE_CACHE_MASK;
1613 
1614 		page_cache_release(page);
1615 		if (!iov_iter_count(to))
1616 			break;
1617 		if (ret < nr) {
1618 			error = -EFAULT;
1619 			break;
1620 		}
1621 		cond_resched();
1622 	}
1623 
1624 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625 	file_accessed(file);
1626 	return retval ? retval : error;
1627 }
1628 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1629 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630 				struct pipe_inode_info *pipe, size_t len,
1631 				unsigned int flags)
1632 {
1633 	struct address_space *mapping = in->f_mapping;
1634 	struct inode *inode = mapping->host;
1635 	unsigned int loff, nr_pages, req_pages;
1636 	struct page *pages[PIPE_DEF_BUFFERS];
1637 	struct partial_page partial[PIPE_DEF_BUFFERS];
1638 	struct page *page;
1639 	pgoff_t index, end_index;
1640 	loff_t isize, left;
1641 	int error, page_nr;
1642 	struct splice_pipe_desc spd = {
1643 		.pages = pages,
1644 		.partial = partial,
1645 		.nr_pages_max = PIPE_DEF_BUFFERS,
1646 		.flags = flags,
1647 		.ops = &page_cache_pipe_buf_ops,
1648 		.spd_release = spd_release_page,
1649 	};
1650 
1651 	isize = i_size_read(inode);
1652 	if (unlikely(*ppos >= isize))
1653 		return 0;
1654 
1655 	left = isize - *ppos;
1656 	if (unlikely(left < len))
1657 		len = left;
1658 
1659 	if (splice_grow_spd(pipe, &spd))
1660 		return -ENOMEM;
1661 
1662 	index = *ppos >> PAGE_CACHE_SHIFT;
1663 	loff = *ppos & ~PAGE_CACHE_MASK;
1664 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665 	nr_pages = min(req_pages, spd.nr_pages_max);
1666 
1667 	spd.nr_pages = find_get_pages_contig(mapping, index,
1668 						nr_pages, spd.pages);
1669 	index += spd.nr_pages;
1670 	error = 0;
1671 
1672 	while (spd.nr_pages < nr_pages) {
1673 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674 		if (error)
1675 			break;
1676 		unlock_page(page);
1677 		spd.pages[spd.nr_pages++] = page;
1678 		index++;
1679 	}
1680 
1681 	index = *ppos >> PAGE_CACHE_SHIFT;
1682 	nr_pages = spd.nr_pages;
1683 	spd.nr_pages = 0;
1684 
1685 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686 		unsigned int this_len;
1687 
1688 		if (!len)
1689 			break;
1690 
1691 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692 		page = spd.pages[page_nr];
1693 
1694 		if (!PageUptodate(page) || page->mapping != mapping) {
1695 			error = shmem_getpage(inode, index, &page,
1696 							SGP_CACHE, NULL);
1697 			if (error)
1698 				break;
1699 			unlock_page(page);
1700 			page_cache_release(spd.pages[page_nr]);
1701 			spd.pages[page_nr] = page;
1702 		}
1703 
1704 		isize = i_size_read(inode);
1705 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706 		if (unlikely(!isize || index > end_index))
1707 			break;
1708 
1709 		if (end_index == index) {
1710 			unsigned int plen;
1711 
1712 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713 			if (plen <= loff)
1714 				break;
1715 
1716 			this_len = min(this_len, plen - loff);
1717 			len = this_len;
1718 		}
1719 
1720 		spd.partial[page_nr].offset = loff;
1721 		spd.partial[page_nr].len = this_len;
1722 		len -= this_len;
1723 		loff = 0;
1724 		spd.nr_pages++;
1725 		index++;
1726 	}
1727 
1728 	while (page_nr < nr_pages)
1729 		page_cache_release(spd.pages[page_nr++]);
1730 
1731 	if (spd.nr_pages)
1732 		error = splice_to_pipe(pipe, &spd);
1733 
1734 	splice_shrink_spd(&spd);
1735 
1736 	if (error > 0) {
1737 		*ppos += error;
1738 		file_accessed(in);
1739 	}
1740 	return error;
1741 }
1742 
1743 /*
1744  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745  */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)1746 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747 				    pgoff_t index, pgoff_t end, int whence)
1748 {
1749 	struct page *page;
1750 	struct pagevec pvec;
1751 	pgoff_t indices[PAGEVEC_SIZE];
1752 	bool done = false;
1753 	int i;
1754 
1755 	pagevec_init(&pvec, 0);
1756 	pvec.nr = 1;		/* start small: we may be there already */
1757 	while (!done) {
1758 		pvec.nr = find_get_entries(mapping, index,
1759 					pvec.nr, pvec.pages, indices);
1760 		if (!pvec.nr) {
1761 			if (whence == SEEK_DATA)
1762 				index = end;
1763 			break;
1764 		}
1765 		for (i = 0; i < pvec.nr; i++, index++) {
1766 			if (index < indices[i]) {
1767 				if (whence == SEEK_HOLE) {
1768 					done = true;
1769 					break;
1770 				}
1771 				index = indices[i];
1772 			}
1773 			page = pvec.pages[i];
1774 			if (page && !radix_tree_exceptional_entry(page)) {
1775 				if (!PageUptodate(page))
1776 					page = NULL;
1777 			}
1778 			if (index >= end ||
1779 			    (page && whence == SEEK_DATA) ||
1780 			    (!page && whence == SEEK_HOLE)) {
1781 				done = true;
1782 				break;
1783 			}
1784 		}
1785 		pagevec_remove_exceptionals(&pvec);
1786 		pagevec_release(&pvec);
1787 		pvec.nr = PAGEVEC_SIZE;
1788 		cond_resched();
1789 	}
1790 	return index;
1791 }
1792 
shmem_file_llseek(struct file * file,loff_t offset,int whence)1793 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794 {
1795 	struct address_space *mapping = file->f_mapping;
1796 	struct inode *inode = mapping->host;
1797 	pgoff_t start, end;
1798 	loff_t new_offset;
1799 
1800 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801 		return generic_file_llseek_size(file, offset, whence,
1802 					MAX_LFS_FILESIZE, i_size_read(inode));
1803 	mutex_lock(&inode->i_mutex);
1804 	/* We're holding i_mutex so we can access i_size directly */
1805 
1806 	if (offset < 0)
1807 		offset = -EINVAL;
1808 	else if (offset >= inode->i_size)
1809 		offset = -ENXIO;
1810 	else {
1811 		start = offset >> PAGE_CACHE_SHIFT;
1812 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814 		new_offset <<= PAGE_CACHE_SHIFT;
1815 		if (new_offset > offset) {
1816 			if (new_offset < inode->i_size)
1817 				offset = new_offset;
1818 			else if (whence == SEEK_DATA)
1819 				offset = -ENXIO;
1820 			else
1821 				offset = inode->i_size;
1822 		}
1823 	}
1824 
1825 	if (offset >= 0)
1826 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827 	mutex_unlock(&inode->i_mutex);
1828 	return offset;
1829 }
1830 
1831 /*
1832  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834  */
1835 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1836 #define LAST_SCAN               4       /* about 150ms max */
1837 
shmem_tag_pins(struct address_space * mapping)1838 static void shmem_tag_pins(struct address_space *mapping)
1839 {
1840 	struct radix_tree_iter iter;
1841 	void **slot;
1842 	pgoff_t start;
1843 	struct page *page;
1844 
1845 	lru_add_drain();
1846 	start = 0;
1847 	rcu_read_lock();
1848 
1849 restart:
1850 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851 		page = radix_tree_deref_slot(slot);
1852 		if (!page || radix_tree_exception(page)) {
1853 			if (radix_tree_deref_retry(page))
1854 				goto restart;
1855 		} else if (page_count(page) - page_mapcount(page) > 1) {
1856 			spin_lock_irq(&mapping->tree_lock);
1857 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1858 					   SHMEM_TAG_PINNED);
1859 			spin_unlock_irq(&mapping->tree_lock);
1860 		}
1861 
1862 		if (need_resched()) {
1863 			cond_resched_rcu();
1864 			start = iter.index + 1;
1865 			goto restart;
1866 		}
1867 	}
1868 	rcu_read_unlock();
1869 }
1870 
1871 /*
1872  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873  * via get_user_pages(), drivers might have some pending I/O without any active
1874  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876  * them to be dropped.
1877  * The caller must guarantee that no new user will acquire writable references
1878  * to those pages to avoid races.
1879  */
shmem_wait_for_pins(struct address_space * mapping)1880 static int shmem_wait_for_pins(struct address_space *mapping)
1881 {
1882 	struct radix_tree_iter iter;
1883 	void **slot;
1884 	pgoff_t start;
1885 	struct page *page;
1886 	int error, scan;
1887 
1888 	shmem_tag_pins(mapping);
1889 
1890 	error = 0;
1891 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1892 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893 			break;
1894 
1895 		if (!scan)
1896 			lru_add_drain_all();
1897 		else if (schedule_timeout_killable((HZ << scan) / 200))
1898 			scan = LAST_SCAN;
1899 
1900 		start = 0;
1901 		rcu_read_lock();
1902 restart:
1903 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904 					   start, SHMEM_TAG_PINNED) {
1905 
1906 			page = radix_tree_deref_slot(slot);
1907 			if (radix_tree_exception(page)) {
1908 				if (radix_tree_deref_retry(page))
1909 					goto restart;
1910 
1911 				page = NULL;
1912 			}
1913 
1914 			if (page &&
1915 			    page_count(page) - page_mapcount(page) != 1) {
1916 				if (scan < LAST_SCAN)
1917 					goto continue_resched;
1918 
1919 				/*
1920 				 * On the last scan, we clean up all those tags
1921 				 * we inserted; but make a note that we still
1922 				 * found pages pinned.
1923 				 */
1924 				error = -EBUSY;
1925 			}
1926 
1927 			spin_lock_irq(&mapping->tree_lock);
1928 			radix_tree_tag_clear(&mapping->page_tree,
1929 					     iter.index, SHMEM_TAG_PINNED);
1930 			spin_unlock_irq(&mapping->tree_lock);
1931 continue_resched:
1932 			if (need_resched()) {
1933 				cond_resched_rcu();
1934 				start = iter.index + 1;
1935 				goto restart;
1936 			}
1937 		}
1938 		rcu_read_unlock();
1939 	}
1940 
1941 	return error;
1942 }
1943 
1944 #define F_ALL_SEALS (F_SEAL_SEAL | \
1945 		     F_SEAL_SHRINK | \
1946 		     F_SEAL_GROW | \
1947 		     F_SEAL_WRITE)
1948 
shmem_add_seals(struct file * file,unsigned int seals)1949 int shmem_add_seals(struct file *file, unsigned int seals)
1950 {
1951 	struct inode *inode = file_inode(file);
1952 	struct shmem_inode_info *info = SHMEM_I(inode);
1953 	int error;
1954 
1955 	/*
1956 	 * SEALING
1957 	 * Sealing allows multiple parties to share a shmem-file but restrict
1958 	 * access to a specific subset of file operations. Seals can only be
1959 	 * added, but never removed. This way, mutually untrusted parties can
1960 	 * share common memory regions with a well-defined policy. A malicious
1961 	 * peer can thus never perform unwanted operations on a shared object.
1962 	 *
1963 	 * Seals are only supported on special shmem-files and always affect
1964 	 * the whole underlying inode. Once a seal is set, it may prevent some
1965 	 * kinds of access to the file. Currently, the following seals are
1966 	 * defined:
1967 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1968 	 *   SEAL_SHRINK: Prevent the file from shrinking
1969 	 *   SEAL_GROW: Prevent the file from growing
1970 	 *   SEAL_WRITE: Prevent write access to the file
1971 	 *
1972 	 * As we don't require any trust relationship between two parties, we
1973 	 * must prevent seals from being removed. Therefore, sealing a file
1974 	 * only adds a given set of seals to the file, it never touches
1975 	 * existing seals. Furthermore, the "setting seals"-operation can be
1976 	 * sealed itself, which basically prevents any further seal from being
1977 	 * added.
1978 	 *
1979 	 * Semantics of sealing are only defined on volatile files. Only
1980 	 * anonymous shmem files support sealing. More importantly, seals are
1981 	 * never written to disk. Therefore, there's no plan to support it on
1982 	 * other file types.
1983 	 */
1984 
1985 	if (file->f_op != &shmem_file_operations)
1986 		return -EINVAL;
1987 	if (!(file->f_mode & FMODE_WRITE))
1988 		return -EPERM;
1989 	if (seals & ~(unsigned int)F_ALL_SEALS)
1990 		return -EINVAL;
1991 
1992 	mutex_lock(&inode->i_mutex);
1993 
1994 	if (info->seals & F_SEAL_SEAL) {
1995 		error = -EPERM;
1996 		goto unlock;
1997 	}
1998 
1999 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000 		error = mapping_deny_writable(file->f_mapping);
2001 		if (error)
2002 			goto unlock;
2003 
2004 		error = shmem_wait_for_pins(file->f_mapping);
2005 		if (error) {
2006 			mapping_allow_writable(file->f_mapping);
2007 			goto unlock;
2008 		}
2009 	}
2010 
2011 	info->seals |= seals;
2012 	error = 0;
2013 
2014 unlock:
2015 	mutex_unlock(&inode->i_mutex);
2016 	return error;
2017 }
2018 EXPORT_SYMBOL_GPL(shmem_add_seals);
2019 
shmem_get_seals(struct file * file)2020 int shmem_get_seals(struct file *file)
2021 {
2022 	if (file->f_op != &shmem_file_operations)
2023 		return -EINVAL;
2024 
2025 	return SHMEM_I(file_inode(file))->seals;
2026 }
2027 EXPORT_SYMBOL_GPL(shmem_get_seals);
2028 
shmem_fcntl(struct file * file,unsigned int cmd,unsigned long arg)2029 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030 {
2031 	long error;
2032 
2033 	switch (cmd) {
2034 	case F_ADD_SEALS:
2035 		/* disallow upper 32bit */
2036 		if (arg > UINT_MAX)
2037 			return -EINVAL;
2038 
2039 		error = shmem_add_seals(file, arg);
2040 		break;
2041 	case F_GET_SEALS:
2042 		error = shmem_get_seals(file);
2043 		break;
2044 	default:
2045 		error = -EINVAL;
2046 		break;
2047 	}
2048 
2049 	return error;
2050 }
2051 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2052 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053 							 loff_t len)
2054 {
2055 	struct inode *inode = file_inode(file);
2056 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2057 	struct shmem_inode_info *info = SHMEM_I(inode);
2058 	struct shmem_falloc shmem_falloc;
2059 	pgoff_t start, index, end;
2060 	int error;
2061 
2062 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063 		return -EOPNOTSUPP;
2064 
2065 	mutex_lock(&inode->i_mutex);
2066 
2067 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2068 		struct address_space *mapping = file->f_mapping;
2069 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2071 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2072 
2073 		/* protected by i_mutex */
2074 		if (info->seals & F_SEAL_WRITE) {
2075 			error = -EPERM;
2076 			goto out;
2077 		}
2078 
2079 		shmem_falloc.waitq = &shmem_falloc_waitq;
2080 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082 		spin_lock(&inode->i_lock);
2083 		inode->i_private = &shmem_falloc;
2084 		spin_unlock(&inode->i_lock);
2085 
2086 		if ((u64)unmap_end > (u64)unmap_start)
2087 			unmap_mapping_range(mapping, unmap_start,
2088 					    1 + unmap_end - unmap_start, 0);
2089 		shmem_truncate_range(inode, offset, offset + len - 1);
2090 		/* No need to unmap again: hole-punching leaves COWed pages */
2091 
2092 		spin_lock(&inode->i_lock);
2093 		inode->i_private = NULL;
2094 		wake_up_all(&shmem_falloc_waitq);
2095 		spin_unlock(&inode->i_lock);
2096 		error = 0;
2097 		goto out;
2098 	}
2099 
2100 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101 	error = inode_newsize_ok(inode, offset + len);
2102 	if (error)
2103 		goto out;
2104 
2105 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106 		error = -EPERM;
2107 		goto out;
2108 	}
2109 
2110 	start = offset >> PAGE_CACHE_SHIFT;
2111 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2113 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114 		error = -ENOSPC;
2115 		goto out;
2116 	}
2117 
2118 	shmem_falloc.waitq = NULL;
2119 	shmem_falloc.start = start;
2120 	shmem_falloc.next  = start;
2121 	shmem_falloc.nr_falloced = 0;
2122 	shmem_falloc.nr_unswapped = 0;
2123 	spin_lock(&inode->i_lock);
2124 	inode->i_private = &shmem_falloc;
2125 	spin_unlock(&inode->i_lock);
2126 
2127 	for (index = start; index < end; index++) {
2128 		struct page *page;
2129 
2130 		/*
2131 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2132 		 * been interrupted because we are using up too much memory.
2133 		 */
2134 		if (signal_pending(current))
2135 			error = -EINTR;
2136 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137 			error = -ENOMEM;
2138 		else
2139 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2140 									NULL);
2141 		if (error) {
2142 			/* Remove the !PageUptodate pages we added */
2143 			if (index > start) {
2144 				shmem_undo_range(inode,
2145 				    (loff_t)start << PAGE_CACHE_SHIFT,
2146 				    ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
2147 			}
2148 			goto undone;
2149 		}
2150 
2151 		/*
2152 		 * Inform shmem_writepage() how far we have reached.
2153 		 * No need for lock or barrier: we have the page lock.
2154 		 */
2155 		shmem_falloc.next++;
2156 		if (!PageUptodate(page))
2157 			shmem_falloc.nr_falloced++;
2158 
2159 		/*
2160 		 * If !PageUptodate, leave it that way so that freeable pages
2161 		 * can be recognized if we need to rollback on error later.
2162 		 * But set_page_dirty so that memory pressure will swap rather
2163 		 * than free the pages we are allocating (and SGP_CACHE pages
2164 		 * might still be clean: we now need to mark those dirty too).
2165 		 */
2166 		set_page_dirty(page);
2167 		unlock_page(page);
2168 		page_cache_release(page);
2169 		cond_resched();
2170 	}
2171 
2172 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2173 		i_size_write(inode, offset + len);
2174 	inode->i_ctime = CURRENT_TIME;
2175 undone:
2176 	spin_lock(&inode->i_lock);
2177 	inode->i_private = NULL;
2178 	spin_unlock(&inode->i_lock);
2179 out:
2180 	mutex_unlock(&inode->i_mutex);
2181 	return error;
2182 }
2183 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2184 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2185 {
2186 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2187 
2188 	buf->f_type = TMPFS_MAGIC;
2189 	buf->f_bsize = PAGE_CACHE_SIZE;
2190 	buf->f_namelen = NAME_MAX;
2191 	if (sbinfo->max_blocks) {
2192 		buf->f_blocks = sbinfo->max_blocks;
2193 		buf->f_bavail =
2194 		buf->f_bfree  = sbinfo->max_blocks -
2195 				percpu_counter_sum(&sbinfo->used_blocks);
2196 	}
2197 	if (sbinfo->max_inodes) {
2198 		buf->f_files = sbinfo->max_inodes;
2199 		buf->f_ffree = sbinfo->free_inodes;
2200 	}
2201 	/* else leave those fields 0 like simple_statfs */
2202 	return 0;
2203 }
2204 
2205 /*
2206  * File creation. Allocate an inode, and we're done..
2207  */
2208 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2209 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2210 {
2211 	struct inode *inode;
2212 	int error = -ENOSPC;
2213 
2214 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2215 	if (inode) {
2216 		error = simple_acl_create(dir, inode);
2217 		if (error)
2218 			goto out_iput;
2219 		error = security_inode_init_security(inode, dir,
2220 						     &dentry->d_name,
2221 						     shmem_initxattrs, NULL);
2222 		if (error && error != -EOPNOTSUPP)
2223 			goto out_iput;
2224 
2225 		error = 0;
2226 		dir->i_size += BOGO_DIRENT_SIZE;
2227 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2228 		d_instantiate(dentry, inode);
2229 		dget(dentry); /* Extra count - pin the dentry in core */
2230 	}
2231 	return error;
2232 out_iput:
2233 	iput(inode);
2234 	return error;
2235 }
2236 
2237 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2238 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2239 {
2240 	struct inode *inode;
2241 	int error = -ENOSPC;
2242 
2243 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2244 	if (inode) {
2245 		error = security_inode_init_security(inode, dir,
2246 						     NULL,
2247 						     shmem_initxattrs, NULL);
2248 		if (error && error != -EOPNOTSUPP)
2249 			goto out_iput;
2250 		error = simple_acl_create(dir, inode);
2251 		if (error)
2252 			goto out_iput;
2253 		d_tmpfile(dentry, inode);
2254 	}
2255 	return error;
2256 out_iput:
2257 	iput(inode);
2258 	return error;
2259 }
2260 
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2261 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2262 {
2263 	int error;
2264 
2265 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2266 		return error;
2267 	inc_nlink(dir);
2268 	return 0;
2269 }
2270 
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2271 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2272 		bool excl)
2273 {
2274 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2275 }
2276 
2277 /*
2278  * Link a file..
2279  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2280 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2281 {
2282 	struct inode *inode = old_dentry->d_inode;
2283 	int ret;
2284 
2285 	/*
2286 	 * No ordinary (disk based) filesystem counts links as inodes;
2287 	 * but each new link needs a new dentry, pinning lowmem, and
2288 	 * tmpfs dentries cannot be pruned until they are unlinked.
2289 	 */
2290 	ret = shmem_reserve_inode(inode->i_sb);
2291 	if (ret)
2292 		goto out;
2293 
2294 	dir->i_size += BOGO_DIRENT_SIZE;
2295 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2296 	inc_nlink(inode);
2297 	ihold(inode);	/* New dentry reference */
2298 	dget(dentry);		/* Extra pinning count for the created dentry */
2299 	d_instantiate(dentry, inode);
2300 out:
2301 	return ret;
2302 }
2303 
shmem_unlink(struct inode * dir,struct dentry * dentry)2304 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2305 {
2306 	struct inode *inode = dentry->d_inode;
2307 
2308 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2309 		shmem_free_inode(inode->i_sb);
2310 
2311 	dir->i_size -= BOGO_DIRENT_SIZE;
2312 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2313 	drop_nlink(inode);
2314 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2315 	return 0;
2316 }
2317 
shmem_rmdir(struct inode * dir,struct dentry * dentry)2318 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2319 {
2320 	if (!simple_empty(dentry))
2321 		return -ENOTEMPTY;
2322 
2323 	drop_nlink(dentry->d_inode);
2324 	drop_nlink(dir);
2325 	return shmem_unlink(dir, dentry);
2326 }
2327 
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2328 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2329 {
2330 	bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2331 	bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2332 
2333 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2334 		if (old_is_dir) {
2335 			drop_nlink(old_dir);
2336 			inc_nlink(new_dir);
2337 		} else {
2338 			drop_nlink(new_dir);
2339 			inc_nlink(old_dir);
2340 		}
2341 	}
2342 	old_dir->i_ctime = old_dir->i_mtime =
2343 	new_dir->i_ctime = new_dir->i_mtime =
2344 	old_dentry->d_inode->i_ctime =
2345 	new_dentry->d_inode->i_ctime = CURRENT_TIME;
2346 
2347 	return 0;
2348 }
2349 
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)2350 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2351 {
2352 	struct dentry *whiteout;
2353 	int error;
2354 
2355 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2356 	if (!whiteout)
2357 		return -ENOMEM;
2358 
2359 	error = shmem_mknod(old_dir, whiteout,
2360 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2361 	dput(whiteout);
2362 	if (error)
2363 		return error;
2364 
2365 	/*
2366 	 * Cheat and hash the whiteout while the old dentry is still in
2367 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2368 	 *
2369 	 * d_lookup() will consistently find one of them at this point,
2370 	 * not sure which one, but that isn't even important.
2371 	 */
2372 	d_rehash(whiteout);
2373 	return 0;
2374 }
2375 
2376 /*
2377  * The VFS layer already does all the dentry stuff for rename,
2378  * we just have to decrement the usage count for the target if
2379  * it exists so that the VFS layer correctly free's it when it
2380  * gets overwritten.
2381  */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2382 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2383 {
2384 	struct inode *inode = old_dentry->d_inode;
2385 	int they_are_dirs = S_ISDIR(inode->i_mode);
2386 
2387 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2388 		return -EINVAL;
2389 
2390 	if (flags & RENAME_EXCHANGE)
2391 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2392 
2393 	if (!simple_empty(new_dentry))
2394 		return -ENOTEMPTY;
2395 
2396 	if (flags & RENAME_WHITEOUT) {
2397 		int error;
2398 
2399 		error = shmem_whiteout(old_dir, old_dentry);
2400 		if (error)
2401 			return error;
2402 	}
2403 
2404 	if (new_dentry->d_inode) {
2405 		(void) shmem_unlink(new_dir, new_dentry);
2406 		if (they_are_dirs) {
2407 			drop_nlink(new_dentry->d_inode);
2408 			drop_nlink(old_dir);
2409 		}
2410 	} else if (they_are_dirs) {
2411 		drop_nlink(old_dir);
2412 		inc_nlink(new_dir);
2413 	}
2414 
2415 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2416 	new_dir->i_size += BOGO_DIRENT_SIZE;
2417 	old_dir->i_ctime = old_dir->i_mtime =
2418 	new_dir->i_ctime = new_dir->i_mtime =
2419 	inode->i_ctime = CURRENT_TIME;
2420 	return 0;
2421 }
2422 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)2423 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2424 {
2425 	int error;
2426 	int len;
2427 	struct inode *inode;
2428 	struct page *page;
2429 	char *kaddr;
2430 	struct shmem_inode_info *info;
2431 
2432 	len = strlen(symname) + 1;
2433 	if (len > PAGE_CACHE_SIZE)
2434 		return -ENAMETOOLONG;
2435 
2436 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2437 	if (!inode)
2438 		return -ENOSPC;
2439 
2440 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2441 					     shmem_initxattrs, NULL);
2442 	if (error) {
2443 		if (error != -EOPNOTSUPP) {
2444 			iput(inode);
2445 			return error;
2446 		}
2447 		error = 0;
2448 	}
2449 
2450 	info = SHMEM_I(inode);
2451 	inode->i_size = len-1;
2452 	if (len <= SHORT_SYMLINK_LEN) {
2453 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2454 		if (!info->symlink) {
2455 			iput(inode);
2456 			return -ENOMEM;
2457 		}
2458 		inode->i_op = &shmem_short_symlink_operations;
2459 	} else {
2460 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2461 		if (error) {
2462 			iput(inode);
2463 			return error;
2464 		}
2465 		inode->i_mapping->a_ops = &shmem_aops;
2466 		inode->i_op = &shmem_symlink_inode_operations;
2467 		kaddr = kmap_atomic(page);
2468 		memcpy(kaddr, symname, len);
2469 		kunmap_atomic(kaddr);
2470 		SetPageUptodate(page);
2471 		set_page_dirty(page);
2472 		unlock_page(page);
2473 		page_cache_release(page);
2474 	}
2475 	dir->i_size += BOGO_DIRENT_SIZE;
2476 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2477 	d_instantiate(dentry, inode);
2478 	dget(dentry);
2479 	return 0;
2480 }
2481 
shmem_follow_short_symlink(struct dentry * dentry,struct nameidata * nd)2482 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2483 {
2484 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2485 	return NULL;
2486 }
2487 
shmem_follow_link(struct dentry * dentry,struct nameidata * nd)2488 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2489 {
2490 	struct page *page = NULL;
2491 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2492 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2493 	if (page)
2494 		unlock_page(page);
2495 	return page;
2496 }
2497 
shmem_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)2498 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2499 {
2500 	if (!IS_ERR(nd_get_link(nd))) {
2501 		struct page *page = cookie;
2502 		kunmap(page);
2503 		mark_page_accessed(page);
2504 		page_cache_release(page);
2505 	}
2506 }
2507 
2508 #ifdef CONFIG_TMPFS_XATTR
2509 /*
2510  * Superblocks without xattr inode operations may get some security.* xattr
2511  * support from the LSM "for free". As soon as we have any other xattrs
2512  * like ACLs, we also need to implement the security.* handlers at
2513  * filesystem level, though.
2514  */
2515 
2516 /*
2517  * Callback for security_inode_init_security() for acquiring xattrs.
2518  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)2519 static int shmem_initxattrs(struct inode *inode,
2520 			    const struct xattr *xattr_array,
2521 			    void *fs_info)
2522 {
2523 	struct shmem_inode_info *info = SHMEM_I(inode);
2524 	const struct xattr *xattr;
2525 	struct simple_xattr *new_xattr;
2526 	size_t len;
2527 
2528 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2529 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2530 		if (!new_xattr)
2531 			return -ENOMEM;
2532 
2533 		len = strlen(xattr->name) + 1;
2534 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2535 					  GFP_KERNEL);
2536 		if (!new_xattr->name) {
2537 			kfree(new_xattr);
2538 			return -ENOMEM;
2539 		}
2540 
2541 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2542 		       XATTR_SECURITY_PREFIX_LEN);
2543 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2544 		       xattr->name, len);
2545 
2546 		simple_xattr_list_add(&info->xattrs, new_xattr);
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static const struct xattr_handler *shmem_xattr_handlers[] = {
2553 #ifdef CONFIG_TMPFS_POSIX_ACL
2554 	&posix_acl_access_xattr_handler,
2555 	&posix_acl_default_xattr_handler,
2556 #endif
2557 	NULL
2558 };
2559 
shmem_xattr_validate(const char * name)2560 static int shmem_xattr_validate(const char *name)
2561 {
2562 	struct { const char *prefix; size_t len; } arr[] = {
2563 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2564 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2565 	};
2566 	int i;
2567 
2568 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2569 		size_t preflen = arr[i].len;
2570 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2571 			if (!name[preflen])
2572 				return -EINVAL;
2573 			return 0;
2574 		}
2575 	}
2576 	return -EOPNOTSUPP;
2577 }
2578 
shmem_getxattr(struct dentry * dentry,const char * name,void * buffer,size_t size)2579 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2580 			      void *buffer, size_t size)
2581 {
2582 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2583 	int err;
2584 
2585 	/*
2586 	 * If this is a request for a synthetic attribute in the system.*
2587 	 * namespace use the generic infrastructure to resolve a handler
2588 	 * for it via sb->s_xattr.
2589 	 */
2590 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2591 		return generic_getxattr(dentry, name, buffer, size);
2592 
2593 	err = shmem_xattr_validate(name);
2594 	if (err)
2595 		return err;
2596 
2597 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2598 }
2599 
shmem_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2600 static int shmem_setxattr(struct dentry *dentry, const char *name,
2601 			  const void *value, size_t size, int flags)
2602 {
2603 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2604 	int err;
2605 
2606 	/*
2607 	 * If this is a request for a synthetic attribute in the system.*
2608 	 * namespace use the generic infrastructure to resolve a handler
2609 	 * for it via sb->s_xattr.
2610 	 */
2611 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2612 		return generic_setxattr(dentry, name, value, size, flags);
2613 
2614 	err = shmem_xattr_validate(name);
2615 	if (err)
2616 		return err;
2617 
2618 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2619 }
2620 
shmem_removexattr(struct dentry * dentry,const char * name)2621 static int shmem_removexattr(struct dentry *dentry, const char *name)
2622 {
2623 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2624 	int err;
2625 
2626 	/*
2627 	 * If this is a request for a synthetic attribute in the system.*
2628 	 * namespace use the generic infrastructure to resolve a handler
2629 	 * for it via sb->s_xattr.
2630 	 */
2631 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2632 		return generic_removexattr(dentry, name);
2633 
2634 	err = shmem_xattr_validate(name);
2635 	if (err)
2636 		return err;
2637 
2638 	return simple_xattr_remove(&info->xattrs, name);
2639 }
2640 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)2641 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2642 {
2643 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2644 	return simple_xattr_list(&info->xattrs, buffer, size);
2645 }
2646 #endif /* CONFIG_TMPFS_XATTR */
2647 
2648 static const struct inode_operations shmem_short_symlink_operations = {
2649 	.readlink	= generic_readlink,
2650 	.follow_link	= shmem_follow_short_symlink,
2651 #ifdef CONFIG_TMPFS_XATTR
2652 	.setxattr	= shmem_setxattr,
2653 	.getxattr	= shmem_getxattr,
2654 	.listxattr	= shmem_listxattr,
2655 	.removexattr	= shmem_removexattr,
2656 #endif
2657 };
2658 
2659 static const struct inode_operations shmem_symlink_inode_operations = {
2660 	.readlink	= generic_readlink,
2661 	.follow_link	= shmem_follow_link,
2662 	.put_link	= shmem_put_link,
2663 #ifdef CONFIG_TMPFS_XATTR
2664 	.setxattr	= shmem_setxattr,
2665 	.getxattr	= shmem_getxattr,
2666 	.listxattr	= shmem_listxattr,
2667 	.removexattr	= shmem_removexattr,
2668 #endif
2669 };
2670 
shmem_get_parent(struct dentry * child)2671 static struct dentry *shmem_get_parent(struct dentry *child)
2672 {
2673 	return ERR_PTR(-ESTALE);
2674 }
2675 
shmem_match(struct inode * ino,void * vfh)2676 static int shmem_match(struct inode *ino, void *vfh)
2677 {
2678 	__u32 *fh = vfh;
2679 	__u64 inum = fh[2];
2680 	inum = (inum << 32) | fh[1];
2681 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2682 }
2683 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2684 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2685 		struct fid *fid, int fh_len, int fh_type)
2686 {
2687 	struct inode *inode;
2688 	struct dentry *dentry = NULL;
2689 	u64 inum;
2690 
2691 	if (fh_len < 3)
2692 		return NULL;
2693 
2694 	inum = fid->raw[2];
2695 	inum = (inum << 32) | fid->raw[1];
2696 
2697 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2698 			shmem_match, fid->raw);
2699 	if (inode) {
2700 		dentry = d_find_alias(inode);
2701 		iput(inode);
2702 	}
2703 
2704 	return dentry;
2705 }
2706 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)2707 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2708 				struct inode *parent)
2709 {
2710 	if (*len < 3) {
2711 		*len = 3;
2712 		return FILEID_INVALID;
2713 	}
2714 
2715 	if (inode_unhashed(inode)) {
2716 		/* Unfortunately insert_inode_hash is not idempotent,
2717 		 * so as we hash inodes here rather than at creation
2718 		 * time, we need a lock to ensure we only try
2719 		 * to do it once
2720 		 */
2721 		static DEFINE_SPINLOCK(lock);
2722 		spin_lock(&lock);
2723 		if (inode_unhashed(inode))
2724 			__insert_inode_hash(inode,
2725 					    inode->i_ino + inode->i_generation);
2726 		spin_unlock(&lock);
2727 	}
2728 
2729 	fh[0] = inode->i_generation;
2730 	fh[1] = inode->i_ino;
2731 	fh[2] = ((__u64)inode->i_ino) >> 32;
2732 
2733 	*len = 3;
2734 	return 1;
2735 }
2736 
2737 static const struct export_operations shmem_export_ops = {
2738 	.get_parent     = shmem_get_parent,
2739 	.encode_fh      = shmem_encode_fh,
2740 	.fh_to_dentry	= shmem_fh_to_dentry,
2741 };
2742 
shmem_parse_options(char * options,struct shmem_sb_info * sbinfo,bool remount)2743 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2744 			       bool remount)
2745 {
2746 	char *this_char, *value, *rest;
2747 	struct mempolicy *mpol = NULL;
2748 	uid_t uid;
2749 	gid_t gid;
2750 
2751 	while (options != NULL) {
2752 		this_char = options;
2753 		for (;;) {
2754 			/*
2755 			 * NUL-terminate this option: unfortunately,
2756 			 * mount options form a comma-separated list,
2757 			 * but mpol's nodelist may also contain commas.
2758 			 */
2759 			options = strchr(options, ',');
2760 			if (options == NULL)
2761 				break;
2762 			options++;
2763 			if (!isdigit(*options)) {
2764 				options[-1] = '\0';
2765 				break;
2766 			}
2767 		}
2768 		if (!*this_char)
2769 			continue;
2770 		if ((value = strchr(this_char,'=')) != NULL) {
2771 			*value++ = 0;
2772 		} else {
2773 			printk(KERN_ERR
2774 			    "tmpfs: No value for mount option '%s'\n",
2775 			    this_char);
2776 			goto error;
2777 		}
2778 
2779 		if (!strcmp(this_char,"size")) {
2780 			unsigned long long size;
2781 			size = memparse(value,&rest);
2782 			if (*rest == '%') {
2783 				size <<= PAGE_SHIFT;
2784 				size *= totalram_pages;
2785 				do_div(size, 100);
2786 				rest++;
2787 			}
2788 			if (*rest)
2789 				goto bad_val;
2790 			sbinfo->max_blocks =
2791 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2792 		} else if (!strcmp(this_char,"nr_blocks")) {
2793 			sbinfo->max_blocks = memparse(value, &rest);
2794 			if (*rest)
2795 				goto bad_val;
2796 		} else if (!strcmp(this_char,"nr_inodes")) {
2797 			sbinfo->max_inodes = memparse(value, &rest);
2798 			if (*rest)
2799 				goto bad_val;
2800 		} else if (!strcmp(this_char,"mode")) {
2801 			if (remount)
2802 				continue;
2803 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2804 			if (*rest)
2805 				goto bad_val;
2806 		} else if (!strcmp(this_char,"uid")) {
2807 			if (remount)
2808 				continue;
2809 			uid = simple_strtoul(value, &rest, 0);
2810 			if (*rest)
2811 				goto bad_val;
2812 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2813 			if (!uid_valid(sbinfo->uid))
2814 				goto bad_val;
2815 		} else if (!strcmp(this_char,"gid")) {
2816 			if (remount)
2817 				continue;
2818 			gid = simple_strtoul(value, &rest, 0);
2819 			if (*rest)
2820 				goto bad_val;
2821 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2822 			if (!gid_valid(sbinfo->gid))
2823 				goto bad_val;
2824 		} else if (!strcmp(this_char,"mpol")) {
2825 			mpol_put(mpol);
2826 			mpol = NULL;
2827 			if (mpol_parse_str(value, &mpol))
2828 				goto bad_val;
2829 		} else {
2830 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2831 			       this_char);
2832 			goto error;
2833 		}
2834 	}
2835 	sbinfo->mpol = mpol;
2836 	return 0;
2837 
2838 bad_val:
2839 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2840 	       value, this_char);
2841 error:
2842 	mpol_put(mpol);
2843 	return 1;
2844 
2845 }
2846 
shmem_remount_fs(struct super_block * sb,int * flags,char * data)2847 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2848 {
2849 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2850 	struct shmem_sb_info config = *sbinfo;
2851 	unsigned long inodes;
2852 	int error = -EINVAL;
2853 
2854 	config.mpol = NULL;
2855 	if (shmem_parse_options(data, &config, true))
2856 		return error;
2857 
2858 	spin_lock(&sbinfo->stat_lock);
2859 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2860 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2861 		goto out;
2862 	if (config.max_inodes < inodes)
2863 		goto out;
2864 	/*
2865 	 * Those tests disallow limited->unlimited while any are in use;
2866 	 * but we must separately disallow unlimited->limited, because
2867 	 * in that case we have no record of how much is already in use.
2868 	 */
2869 	if (config.max_blocks && !sbinfo->max_blocks)
2870 		goto out;
2871 	if (config.max_inodes && !sbinfo->max_inodes)
2872 		goto out;
2873 
2874 	error = 0;
2875 	sbinfo->max_blocks  = config.max_blocks;
2876 	sbinfo->max_inodes  = config.max_inodes;
2877 	sbinfo->free_inodes = config.max_inodes - inodes;
2878 
2879 	/*
2880 	 * Preserve previous mempolicy unless mpol remount option was specified.
2881 	 */
2882 	if (config.mpol) {
2883 		mpol_put(sbinfo->mpol);
2884 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2885 	}
2886 out:
2887 	spin_unlock(&sbinfo->stat_lock);
2888 	return error;
2889 }
2890 
shmem_show_options(struct seq_file * seq,struct dentry * root)2891 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2892 {
2893 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2894 
2895 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2896 		seq_printf(seq, ",size=%luk",
2897 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2898 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2899 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2900 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2901 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2902 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2903 		seq_printf(seq, ",uid=%u",
2904 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2905 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2906 		seq_printf(seq, ",gid=%u",
2907 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2908 	shmem_show_mpol(seq, sbinfo->mpol);
2909 	return 0;
2910 }
2911 
2912 #define MFD_NAME_PREFIX "memfd:"
2913 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2914 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2915 
2916 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2917 
SYSCALL_DEFINE2(memfd_create,const char __user *,uname,unsigned int,flags)2918 SYSCALL_DEFINE2(memfd_create,
2919 		const char __user *, uname,
2920 		unsigned int, flags)
2921 {
2922 	struct shmem_inode_info *info;
2923 	struct file *file;
2924 	int fd, error;
2925 	char *name;
2926 	long len;
2927 
2928 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2929 		return -EINVAL;
2930 
2931 	/* length includes terminating zero */
2932 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2933 	if (len <= 0)
2934 		return -EFAULT;
2935 	if (len > MFD_NAME_MAX_LEN + 1)
2936 		return -EINVAL;
2937 
2938 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2939 	if (!name)
2940 		return -ENOMEM;
2941 
2942 	strcpy(name, MFD_NAME_PREFIX);
2943 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2944 		error = -EFAULT;
2945 		goto err_name;
2946 	}
2947 
2948 	/* terminating-zero may have changed after strnlen_user() returned */
2949 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2950 		error = -EFAULT;
2951 		goto err_name;
2952 	}
2953 
2954 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2955 	if (fd < 0) {
2956 		error = fd;
2957 		goto err_name;
2958 	}
2959 
2960 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2961 	if (IS_ERR(file)) {
2962 		error = PTR_ERR(file);
2963 		goto err_fd;
2964 	}
2965 	info = SHMEM_I(file_inode(file));
2966 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2967 	file->f_flags |= O_RDWR | O_LARGEFILE;
2968 	if (flags & MFD_ALLOW_SEALING)
2969 		info->seals &= ~F_SEAL_SEAL;
2970 
2971 	fd_install(fd, file);
2972 	kfree(name);
2973 	return fd;
2974 
2975 err_fd:
2976 	put_unused_fd(fd);
2977 err_name:
2978 	kfree(name);
2979 	return error;
2980 }
2981 
2982 #endif /* CONFIG_TMPFS */
2983 
shmem_put_super(struct super_block * sb)2984 static void shmem_put_super(struct super_block *sb)
2985 {
2986 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2987 
2988 	percpu_counter_destroy(&sbinfo->used_blocks);
2989 	mpol_put(sbinfo->mpol);
2990 	kfree(sbinfo);
2991 	sb->s_fs_info = NULL;
2992 }
2993 
shmem_fill_super(struct super_block * sb,void * data,int silent)2994 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2995 {
2996 	struct inode *inode;
2997 	struct shmem_sb_info *sbinfo;
2998 	int err = -ENOMEM;
2999 
3000 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3001 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3002 				L1_CACHE_BYTES), GFP_KERNEL);
3003 	if (!sbinfo)
3004 		return -ENOMEM;
3005 
3006 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3007 	sbinfo->uid = current_fsuid();
3008 	sbinfo->gid = current_fsgid();
3009 	sb->s_fs_info = sbinfo;
3010 
3011 #ifdef CONFIG_TMPFS
3012 	/*
3013 	 * Per default we only allow half of the physical ram per
3014 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3015 	 * but the internal instance is left unlimited.
3016 	 */
3017 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3018 		sbinfo->max_blocks = shmem_default_max_blocks();
3019 		sbinfo->max_inodes = shmem_default_max_inodes();
3020 		if (shmem_parse_options(data, sbinfo, false)) {
3021 			err = -EINVAL;
3022 			goto failed;
3023 		}
3024 	} else {
3025 		sb->s_flags |= MS_NOUSER;
3026 	}
3027 	sb->s_export_op = &shmem_export_ops;
3028 	sb->s_flags |= MS_NOSEC;
3029 #else
3030 	sb->s_flags |= MS_NOUSER;
3031 #endif
3032 
3033 	spin_lock_init(&sbinfo->stat_lock);
3034 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3035 		goto failed;
3036 	sbinfo->free_inodes = sbinfo->max_inodes;
3037 
3038 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3039 	sb->s_blocksize = PAGE_CACHE_SIZE;
3040 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3041 	sb->s_magic = TMPFS_MAGIC;
3042 	sb->s_op = &shmem_ops;
3043 	sb->s_time_gran = 1;
3044 #ifdef CONFIG_TMPFS_XATTR
3045 	sb->s_xattr = shmem_xattr_handlers;
3046 #endif
3047 #ifdef CONFIG_TMPFS_POSIX_ACL
3048 	sb->s_flags |= MS_POSIXACL;
3049 #endif
3050 
3051 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3052 	if (!inode)
3053 		goto failed;
3054 	inode->i_uid = sbinfo->uid;
3055 	inode->i_gid = sbinfo->gid;
3056 	sb->s_root = d_make_root(inode);
3057 	if (!sb->s_root)
3058 		goto failed;
3059 	return 0;
3060 
3061 failed:
3062 	shmem_put_super(sb);
3063 	return err;
3064 }
3065 
3066 static struct kmem_cache *shmem_inode_cachep;
3067 
shmem_alloc_inode(struct super_block * sb)3068 static struct inode *shmem_alloc_inode(struct super_block *sb)
3069 {
3070 	struct shmem_inode_info *info;
3071 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3072 	if (!info)
3073 		return NULL;
3074 	return &info->vfs_inode;
3075 }
3076 
shmem_destroy_callback(struct rcu_head * head)3077 static void shmem_destroy_callback(struct rcu_head *head)
3078 {
3079 	struct inode *inode = container_of(head, struct inode, i_rcu);
3080 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3081 }
3082 
shmem_destroy_inode(struct inode * inode)3083 static void shmem_destroy_inode(struct inode *inode)
3084 {
3085 	if (S_ISREG(inode->i_mode))
3086 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3087 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3088 }
3089 
shmem_init_inode(void * foo)3090 static void shmem_init_inode(void *foo)
3091 {
3092 	struct shmem_inode_info *info = foo;
3093 	inode_init_once(&info->vfs_inode);
3094 }
3095 
shmem_init_inodecache(void)3096 static int shmem_init_inodecache(void)
3097 {
3098 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3099 				sizeof(struct shmem_inode_info),
3100 				0, SLAB_PANIC, shmem_init_inode);
3101 	return 0;
3102 }
3103 
shmem_destroy_inodecache(void)3104 static void shmem_destroy_inodecache(void)
3105 {
3106 	kmem_cache_destroy(shmem_inode_cachep);
3107 }
3108 
3109 static const struct address_space_operations shmem_aops = {
3110 	.writepage	= shmem_writepage,
3111 	.set_page_dirty	= __set_page_dirty_no_writeback,
3112 #ifdef CONFIG_TMPFS
3113 	.write_begin	= shmem_write_begin,
3114 	.write_end	= shmem_write_end,
3115 #endif
3116 #ifdef CONFIG_MIGRATION
3117 	.migratepage	= migrate_page,
3118 #endif
3119 	.error_remove_page = generic_error_remove_page,
3120 };
3121 
3122 static const struct file_operations shmem_file_operations = {
3123 	.mmap		= shmem_mmap,
3124 #ifdef CONFIG_TMPFS
3125 	.llseek		= shmem_file_llseek,
3126 	.read		= new_sync_read,
3127 	.write		= new_sync_write,
3128 	.read_iter	= shmem_file_read_iter,
3129 	.write_iter	= generic_file_write_iter,
3130 	.fsync		= noop_fsync,
3131 	.splice_read	= shmem_file_splice_read,
3132 	.splice_write	= iter_file_splice_write,
3133 	.fallocate	= shmem_fallocate,
3134 #endif
3135 };
3136 
3137 static const struct inode_operations shmem_inode_operations = {
3138 	.setattr	= shmem_setattr,
3139 #ifdef CONFIG_TMPFS_XATTR
3140 	.setxattr	= shmem_setxattr,
3141 	.getxattr	= shmem_getxattr,
3142 	.listxattr	= shmem_listxattr,
3143 	.removexattr	= shmem_removexattr,
3144 	.set_acl	= simple_set_acl,
3145 #endif
3146 };
3147 
3148 static const struct inode_operations shmem_dir_inode_operations = {
3149 #ifdef CONFIG_TMPFS
3150 	.create		= shmem_create,
3151 	.lookup		= simple_lookup,
3152 	.link		= shmem_link,
3153 	.unlink		= shmem_unlink,
3154 	.symlink	= shmem_symlink,
3155 	.mkdir		= shmem_mkdir,
3156 	.rmdir		= shmem_rmdir,
3157 	.mknod		= shmem_mknod,
3158 	.rename2	= shmem_rename2,
3159 	.tmpfile	= shmem_tmpfile,
3160 #endif
3161 #ifdef CONFIG_TMPFS_XATTR
3162 	.setxattr	= shmem_setxattr,
3163 	.getxattr	= shmem_getxattr,
3164 	.listxattr	= shmem_listxattr,
3165 	.removexattr	= shmem_removexattr,
3166 #endif
3167 #ifdef CONFIG_TMPFS_POSIX_ACL
3168 	.setattr	= shmem_setattr,
3169 	.set_acl	= simple_set_acl,
3170 #endif
3171 };
3172 
3173 static const struct inode_operations shmem_special_inode_operations = {
3174 #ifdef CONFIG_TMPFS_XATTR
3175 	.setxattr	= shmem_setxattr,
3176 	.getxattr	= shmem_getxattr,
3177 	.listxattr	= shmem_listxattr,
3178 	.removexattr	= shmem_removexattr,
3179 #endif
3180 #ifdef CONFIG_TMPFS_POSIX_ACL
3181 	.setattr	= shmem_setattr,
3182 	.set_acl	= simple_set_acl,
3183 #endif
3184 };
3185 
3186 static const struct super_operations shmem_ops = {
3187 	.alloc_inode	= shmem_alloc_inode,
3188 	.destroy_inode	= shmem_destroy_inode,
3189 #ifdef CONFIG_TMPFS
3190 	.statfs		= shmem_statfs,
3191 	.remount_fs	= shmem_remount_fs,
3192 	.show_options	= shmem_show_options,
3193 #endif
3194 	.evict_inode	= shmem_evict_inode,
3195 	.drop_inode	= generic_delete_inode,
3196 	.put_super	= shmem_put_super,
3197 };
3198 
3199 static const struct vm_operations_struct shmem_vm_ops = {
3200 	.fault		= shmem_fault,
3201 	.map_pages	= filemap_map_pages,
3202 #ifdef CONFIG_NUMA
3203 	.set_policy     = shmem_set_policy,
3204 	.get_policy     = shmem_get_policy,
3205 #endif
3206 	.remap_pages	= generic_file_remap_pages,
3207 };
3208 
shmem_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3209 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3210 	int flags, const char *dev_name, void *data)
3211 {
3212 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3213 }
3214 
3215 static struct file_system_type shmem_fs_type = {
3216 	.owner		= THIS_MODULE,
3217 	.name		= "tmpfs",
3218 	.mount		= shmem_mount,
3219 	.kill_sb	= kill_litter_super,
3220 	.fs_flags	= FS_USERNS_MOUNT,
3221 };
3222 
shmem_init(void)3223 int __init shmem_init(void)
3224 {
3225 	int error;
3226 
3227 	/* If rootfs called this, don't re-init */
3228 	if (shmem_inode_cachep)
3229 		return 0;
3230 
3231 	error = bdi_init(&shmem_backing_dev_info);
3232 	if (error)
3233 		goto out4;
3234 
3235 	error = shmem_init_inodecache();
3236 	if (error)
3237 		goto out3;
3238 
3239 	error = register_filesystem(&shmem_fs_type);
3240 	if (error) {
3241 		printk(KERN_ERR "Could not register tmpfs\n");
3242 		goto out2;
3243 	}
3244 
3245 	shm_mnt = kern_mount(&shmem_fs_type);
3246 	if (IS_ERR(shm_mnt)) {
3247 		error = PTR_ERR(shm_mnt);
3248 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3249 		goto out1;
3250 	}
3251 	return 0;
3252 
3253 out1:
3254 	unregister_filesystem(&shmem_fs_type);
3255 out2:
3256 	shmem_destroy_inodecache();
3257 out3:
3258 	bdi_destroy(&shmem_backing_dev_info);
3259 out4:
3260 	shm_mnt = ERR_PTR(error);
3261 	return error;
3262 }
3263 
3264 #else /* !CONFIG_SHMEM */
3265 
3266 /*
3267  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3268  *
3269  * This is intended for small system where the benefits of the full
3270  * shmem code (swap-backed and resource-limited) are outweighed by
3271  * their complexity. On systems without swap this code should be
3272  * effectively equivalent, but much lighter weight.
3273  */
3274 
3275 static struct file_system_type shmem_fs_type = {
3276 	.name		= "tmpfs",
3277 	.mount		= ramfs_mount,
3278 	.kill_sb	= kill_litter_super,
3279 	.fs_flags	= FS_USERNS_MOUNT,
3280 };
3281 
shmem_init(void)3282 int __init shmem_init(void)
3283 {
3284 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3285 
3286 	shm_mnt = kern_mount(&shmem_fs_type);
3287 	BUG_ON(IS_ERR(shm_mnt));
3288 
3289 	return 0;
3290 }
3291 
shmem_unuse(swp_entry_t swap,struct page * page)3292 int shmem_unuse(swp_entry_t swap, struct page *page)
3293 {
3294 	return 0;
3295 }
3296 
shmem_lock(struct file * file,int lock,struct user_struct * user)3297 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3298 {
3299 	return 0;
3300 }
3301 
shmem_unlock_mapping(struct address_space * mapping)3302 void shmem_unlock_mapping(struct address_space *mapping)
3303 {
3304 }
3305 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)3306 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3307 {
3308 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3309 }
3310 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3311 
3312 #define shmem_vm_ops				generic_file_vm_ops
3313 #define shmem_file_operations			ramfs_file_operations
3314 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3315 #define shmem_acct_size(flags, size)		0
3316 #define shmem_unacct_size(flags, size)		do {} while (0)
3317 
3318 #endif /* CONFIG_SHMEM */
3319 
3320 /* common code */
3321 
3322 static struct dentry_operations anon_ops = {
3323 	.d_dname = simple_dname
3324 };
3325 
__shmem_file_setup(const char * name,loff_t size,unsigned long flags,unsigned int i_flags)3326 static struct file *__shmem_file_setup(const char *name, loff_t size,
3327 				       unsigned long flags, unsigned int i_flags)
3328 {
3329 	struct file *res;
3330 	struct inode *inode;
3331 	struct path path;
3332 	struct super_block *sb;
3333 	struct qstr this;
3334 
3335 	if (IS_ERR(shm_mnt))
3336 		return ERR_CAST(shm_mnt);
3337 
3338 	if (size < 0 || size > MAX_LFS_FILESIZE)
3339 		return ERR_PTR(-EINVAL);
3340 
3341 	if (shmem_acct_size(flags, size))
3342 		return ERR_PTR(-ENOMEM);
3343 
3344 	res = ERR_PTR(-ENOMEM);
3345 	this.name = name;
3346 	this.len = strlen(name);
3347 	this.hash = 0; /* will go */
3348 	sb = shm_mnt->mnt_sb;
3349 	path.mnt = mntget(shm_mnt);
3350 	path.dentry = d_alloc_pseudo(sb, &this);
3351 	if (!path.dentry)
3352 		goto put_memory;
3353 	d_set_d_op(path.dentry, &anon_ops);
3354 
3355 	res = ERR_PTR(-ENOSPC);
3356 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3357 	if (!inode)
3358 		goto put_memory;
3359 
3360 	inode->i_flags |= i_flags;
3361 	d_instantiate(path.dentry, inode);
3362 	inode->i_size = size;
3363 	clear_nlink(inode);	/* It is unlinked */
3364 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3365 	if (IS_ERR(res))
3366 		goto put_path;
3367 
3368 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3369 		  &shmem_file_operations);
3370 	if (IS_ERR(res))
3371 		goto put_path;
3372 
3373 	return res;
3374 
3375 put_memory:
3376 	shmem_unacct_size(flags, size);
3377 put_path:
3378 	path_put(&path);
3379 	return res;
3380 }
3381 
3382 /**
3383  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3384  * 	kernel internal.  There will be NO LSM permission checks against the
3385  * 	underlying inode.  So users of this interface must do LSM checks at a
3386  * 	higher layer.  The one user is the big_key implementation.  LSM checks
3387  * 	are provided at the key level rather than the inode level.
3388  * @name: name for dentry (to be seen in /proc/<pid>/maps
3389  * @size: size to be set for the file
3390  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3391  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)3392 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3393 {
3394 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3395 }
3396 
3397 /**
3398  * shmem_file_setup - get an unlinked file living in tmpfs
3399  * @name: name for dentry (to be seen in /proc/<pid>/maps
3400  * @size: size to be set for the file
3401  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3402  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)3403 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3404 {
3405 	return __shmem_file_setup(name, size, flags, 0);
3406 }
3407 EXPORT_SYMBOL_GPL(shmem_file_setup);
3408 
shmem_set_file(struct vm_area_struct * vma,struct file * file)3409 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3410 {
3411 	if (vma->vm_file)
3412 		fput(vma->vm_file);
3413 	vma->vm_file = file;
3414 	vma->vm_ops = &shmem_vm_ops;
3415 }
3416 
3417 /**
3418  * shmem_zero_setup - setup a shared anonymous mapping
3419  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3420  */
shmem_zero_setup(struct vm_area_struct * vma)3421 int shmem_zero_setup(struct vm_area_struct *vma)
3422 {
3423 	struct file *file;
3424 	loff_t size = vma->vm_end - vma->vm_start;
3425 
3426 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3427 	if (IS_ERR(file))
3428 		return PTR_ERR(file);
3429 
3430 	shmem_set_file(vma, file);
3431 	return 0;
3432 }
3433 
3434 /**
3435  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3436  * @mapping:	the page's address_space
3437  * @index:	the page index
3438  * @gfp:	the page allocator flags to use if allocating
3439  *
3440  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3441  * with any new page allocations done using the specified allocation flags.
3442  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3443  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3444  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3445  *
3446  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3447  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3448  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3449 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3450 					 pgoff_t index, gfp_t gfp)
3451 {
3452 #ifdef CONFIG_SHMEM
3453 	struct inode *inode = mapping->host;
3454 	struct page *page;
3455 	int error;
3456 
3457 	BUG_ON(mapping->a_ops != &shmem_aops);
3458 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3459 	if (error)
3460 		page = ERR_PTR(error);
3461 	else
3462 		unlock_page(page);
3463 	return page;
3464 #else
3465 	/*
3466 	 * The tiny !SHMEM case uses ramfs without swap
3467 	 */
3468 	return read_cache_page_gfp(mapping, index, gfp);
3469 #endif
3470 }
3471 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3472