1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/kcov.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Protected counters by write_lock_irq(&tasklist_lock)
93 */
94 unsigned long total_forks; /* Handle normal Linux uptimes. */
95 int nr_threads; /* The idle threads do not count.. */
96
97 int max_threads; /* tunable limit on nr_threads */
98
99 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
100
101 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
102
103 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)104 int lockdep_tasklist_lock_is_held(void)
105 {
106 return lockdep_is_held(&tasklist_lock);
107 }
108 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
109 #endif /* #ifdef CONFIG_PROVE_RCU */
110
nr_processes(void)111 int nr_processes(void)
112 {
113 int cpu;
114 int total = 0;
115
116 for_each_possible_cpu(cpu)
117 total += per_cpu(process_counts, cpu);
118
119 return total;
120 }
121
arch_release_task_struct(struct task_struct * tsk)122 void __weak arch_release_task_struct(struct task_struct *tsk)
123 {
124 }
125
126 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
127 static struct kmem_cache *task_struct_cachep;
128
alloc_task_struct_node(int node)129 static inline struct task_struct *alloc_task_struct_node(int node)
130 {
131 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
132 }
133
free_task_struct(struct task_struct * tsk)134 static inline void free_task_struct(struct task_struct *tsk)
135 {
136 kmem_cache_free(task_struct_cachep, tsk);
137 }
138 #endif
139
arch_release_thread_info(struct thread_info * ti)140 void __weak arch_release_thread_info(struct thread_info *ti)
141 {
142 }
143
144 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145
146 /*
147 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
148 * kmemcache based allocator.
149 */
150 # if THREAD_SIZE >= PAGE_SIZE
alloc_thread_info_node(struct task_struct * tsk,int node)151 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
152 int node)
153 {
154 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
155 THREAD_SIZE_ORDER);
156
157 return page ? page_address(page) : NULL;
158 }
159
free_thread_info(struct thread_info * ti)160 static inline void free_thread_info(struct thread_info *ti)
161 {
162 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
163 }
164 # else
165 static struct kmem_cache *thread_info_cache;
166
alloc_thread_info_node(struct task_struct * tsk,int node)167 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
168 int node)
169 {
170 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
171 }
172
free_thread_info(struct thread_info * ti)173 static void free_thread_info(struct thread_info *ti)
174 {
175 kmem_cache_free(thread_info_cache, ti);
176 }
177
thread_info_cache_init(void)178 void thread_info_cache_init(void)
179 {
180 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
181 THREAD_SIZE, 0, NULL);
182 BUG_ON(thread_info_cache == NULL);
183 }
184 # endif
185 #endif
186
187 /* SLAB cache for signal_struct structures (tsk->signal) */
188 static struct kmem_cache *signal_cachep;
189
190 /* SLAB cache for sighand_struct structures (tsk->sighand) */
191 struct kmem_cache *sighand_cachep;
192
193 /* SLAB cache for files_struct structures (tsk->files) */
194 struct kmem_cache *files_cachep;
195
196 /* SLAB cache for fs_struct structures (tsk->fs) */
197 struct kmem_cache *fs_cachep;
198
199 /* SLAB cache for vm_area_struct structures */
200 struct kmem_cache *vm_area_cachep;
201
202 /* SLAB cache for mm_struct structures (tsk->mm) */
203 static struct kmem_cache *mm_cachep;
204
205 /* Notifier list called when a task struct is freed */
206 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
207
account_kernel_stack(struct thread_info * ti,int account)208 static void account_kernel_stack(struct thread_info *ti, int account)
209 {
210 struct zone *zone = page_zone(virt_to_page(ti));
211
212 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
213 }
214
free_task(struct task_struct * tsk)215 void free_task(struct task_struct *tsk)
216 {
217 account_kernel_stack(tsk->stack, -1);
218 arch_release_thread_info(tsk->stack);
219 free_thread_info(tsk->stack);
220 rt_mutex_debug_task_free(tsk);
221 ftrace_graph_exit_task(tsk);
222 put_seccomp_filter(tsk);
223 arch_release_task_struct(tsk);
224 free_task_struct(tsk);
225 }
226 EXPORT_SYMBOL(free_task);
227
free_signal_struct(struct signal_struct * sig)228 static inline void free_signal_struct(struct signal_struct *sig)
229 {
230 taskstats_tgid_free(sig);
231 sched_autogroup_exit(sig);
232 kmem_cache_free(signal_cachep, sig);
233 }
234
put_signal_struct(struct signal_struct * sig)235 static inline void put_signal_struct(struct signal_struct *sig)
236 {
237 if (atomic_dec_and_test(&sig->sigcnt))
238 free_signal_struct(sig);
239 }
240
task_free_register(struct notifier_block * n)241 int task_free_register(struct notifier_block *n)
242 {
243 return atomic_notifier_chain_register(&task_free_notifier, n);
244 }
245 EXPORT_SYMBOL(task_free_register);
246
task_free_unregister(struct notifier_block * n)247 int task_free_unregister(struct notifier_block *n)
248 {
249 return atomic_notifier_chain_unregister(&task_free_notifier, n);
250 }
251 EXPORT_SYMBOL(task_free_unregister);
252
__put_task_struct(struct task_struct * tsk)253 void __put_task_struct(struct task_struct *tsk)
254 {
255 WARN_ON(!tsk->exit_state);
256 WARN_ON(atomic_read(&tsk->usage));
257 WARN_ON(tsk == current);
258
259 task_numa_free(tsk);
260 security_task_free(tsk);
261 exit_creds(tsk);
262 delayacct_tsk_free(tsk);
263 put_signal_struct(tsk->signal);
264
265 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
266 if (!profile_handoff_task(tsk))
267 free_task(tsk);
268 }
269 EXPORT_SYMBOL_GPL(__put_task_struct);
270
arch_task_cache_init(void)271 void __init __weak arch_task_cache_init(void) { }
272
fork_init(unsigned long mempages)273 void __init fork_init(unsigned long mempages)
274 {
275 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
276 #ifndef ARCH_MIN_TASKALIGN
277 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
278 #endif
279 /* create a slab on which task_structs can be allocated */
280 task_struct_cachep =
281 kmem_cache_create("task_struct", sizeof(struct task_struct),
282 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
283 #endif
284
285 /* do the arch specific task caches init */
286 arch_task_cache_init();
287
288 /*
289 * The default maximum number of threads is set to a safe
290 * value: the thread structures can take up at most half
291 * of memory.
292 */
293 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
294
295 /*
296 * we need to allow at least 20 threads to boot a system
297 */
298 if (max_threads < 20)
299 max_threads = 20;
300
301 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
302 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
303 init_task.signal->rlim[RLIMIT_SIGPENDING] =
304 init_task.signal->rlim[RLIMIT_NPROC];
305 }
306
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)307 int __weak arch_dup_task_struct(struct task_struct *dst,
308 struct task_struct *src)
309 {
310 *dst = *src;
311 return 0;
312 }
313
set_task_stack_end_magic(struct task_struct * tsk)314 void set_task_stack_end_magic(struct task_struct *tsk)
315 {
316 unsigned long *stackend;
317
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320 }
321
dup_task_struct(struct task_struct * orig)322 static struct task_struct *dup_task_struct(struct task_struct *orig)
323 {
324 struct task_struct *tsk;
325 struct thread_info *ti;
326 int node = tsk_fork_get_node(orig);
327 int err;
328
329 tsk = alloc_task_struct_node(node);
330 if (!tsk)
331 return NULL;
332
333 ti = alloc_thread_info_node(tsk, node);
334 if (!ti)
335 goto free_tsk;
336
337 err = arch_dup_task_struct(tsk, orig);
338 if (err)
339 goto free_ti;
340
341 tsk->stack = ti;
342 #ifdef CONFIG_SECCOMP
343 /*
344 * We must handle setting up seccomp filters once we're under
345 * the sighand lock in case orig has changed between now and
346 * then. Until then, filter must be NULL to avoid messing up
347 * the usage counts on the error path calling free_task.
348 */
349 tsk->seccomp.filter = NULL;
350 #endif
351
352 setup_thread_stack(tsk, orig);
353 clear_user_return_notifier(tsk);
354 clear_tsk_need_resched(tsk);
355 set_task_stack_end_magic(tsk);
356
357 #ifdef CONFIG_CC_STACKPROTECTOR
358 tsk->stack_canary = get_random_long();
359 #endif
360
361 /*
362 * One for us, one for whoever does the "release_task()" (usually
363 * parent)
364 */
365 atomic_set(&tsk->usage, 2);
366 #ifdef CONFIG_BLK_DEV_IO_TRACE
367 tsk->btrace_seq = 0;
368 #endif
369 tsk->splice_pipe = NULL;
370 tsk->task_frag.page = NULL;
371
372 account_kernel_stack(ti, 1);
373
374 kcov_task_init(tsk);
375
376 return tsk;
377
378 free_ti:
379 free_thread_info(ti);
380 free_tsk:
381 free_task_struct(tsk);
382 return NULL;
383 }
384
385 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)386 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
387 {
388 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
389 struct rb_node **rb_link, *rb_parent;
390 int retval;
391 unsigned long charge;
392
393 uprobe_start_dup_mmap();
394 down_write(&oldmm->mmap_sem);
395 flush_cache_dup_mm(oldmm);
396 uprobe_dup_mmap(oldmm, mm);
397 /*
398 * Not linked in yet - no deadlock potential:
399 */
400 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
401
402 mm->total_vm = oldmm->total_vm;
403 mm->shared_vm = oldmm->shared_vm;
404 mm->exec_vm = oldmm->exec_vm;
405 mm->stack_vm = oldmm->stack_vm;
406
407 rb_link = &mm->mm_rb.rb_node;
408 rb_parent = NULL;
409 pprev = &mm->mmap;
410 retval = ksm_fork(mm, oldmm);
411 if (retval)
412 goto out;
413 retval = khugepaged_fork(mm, oldmm);
414 if (retval)
415 goto out;
416
417 prev = NULL;
418 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
419 struct file *file;
420
421 if (mpnt->vm_flags & VM_DONTCOPY) {
422 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
423 -vma_pages(mpnt));
424 continue;
425 }
426 charge = 0;
427 if (mpnt->vm_flags & VM_ACCOUNT) {
428 unsigned long len = vma_pages(mpnt);
429
430 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
431 goto fail_nomem;
432 charge = len;
433 }
434 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
435 if (!tmp)
436 goto fail_nomem;
437 *tmp = *mpnt;
438 INIT_LIST_HEAD(&tmp->anon_vma_chain);
439 retval = vma_dup_policy(mpnt, tmp);
440 if (retval)
441 goto fail_nomem_policy;
442 tmp->vm_mm = mm;
443 if (anon_vma_fork(tmp, mpnt))
444 goto fail_nomem_anon_vma_fork;
445 tmp->vm_flags &= ~VM_LOCKED;
446 tmp->vm_next = tmp->vm_prev = NULL;
447 file = tmp->vm_file;
448 if (file) {
449 struct inode *inode = file_inode(file);
450 struct address_space *mapping = file->f_mapping;
451
452 get_file(file);
453 if (tmp->vm_flags & VM_DENYWRITE)
454 atomic_dec(&inode->i_writecount);
455 mutex_lock(&mapping->i_mmap_mutex);
456 if (tmp->vm_flags & VM_SHARED)
457 atomic_inc(&mapping->i_mmap_writable);
458 flush_dcache_mmap_lock(mapping);
459 /* insert tmp into the share list, just after mpnt */
460 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
461 vma_nonlinear_insert(tmp,
462 &mapping->i_mmap_nonlinear);
463 else
464 vma_interval_tree_insert_after(tmp, mpnt,
465 &mapping->i_mmap);
466 flush_dcache_mmap_unlock(mapping);
467 mutex_unlock(&mapping->i_mmap_mutex);
468 }
469
470 /*
471 * Clear hugetlb-related page reserves for children. This only
472 * affects MAP_PRIVATE mappings. Faults generated by the child
473 * are not guaranteed to succeed, even if read-only
474 */
475 if (is_vm_hugetlb_page(tmp))
476 reset_vma_resv_huge_pages(tmp);
477
478 /*
479 * Link in the new vma and copy the page table entries.
480 */
481 *pprev = tmp;
482 pprev = &tmp->vm_next;
483 tmp->vm_prev = prev;
484 prev = tmp;
485
486 __vma_link_rb(mm, tmp, rb_link, rb_parent);
487 rb_link = &tmp->vm_rb.rb_right;
488 rb_parent = &tmp->vm_rb;
489
490 mm->map_count++;
491 retval = copy_page_range(mm, oldmm, mpnt);
492
493 if (tmp->vm_ops && tmp->vm_ops->open)
494 tmp->vm_ops->open(tmp);
495
496 if (retval)
497 goto out;
498 }
499 /* a new mm has just been created */
500 arch_dup_mmap(oldmm, mm);
501 retval = 0;
502 out:
503 up_write(&mm->mmap_sem);
504 flush_tlb_mm(oldmm);
505 up_write(&oldmm->mmap_sem);
506 uprobe_end_dup_mmap();
507 return retval;
508 fail_nomem_anon_vma_fork:
509 mpol_put(vma_policy(tmp));
510 fail_nomem_policy:
511 kmem_cache_free(vm_area_cachep, tmp);
512 fail_nomem:
513 retval = -ENOMEM;
514 vm_unacct_memory(charge);
515 goto out;
516 }
517
mm_alloc_pgd(struct mm_struct * mm)518 static inline int mm_alloc_pgd(struct mm_struct *mm)
519 {
520 mm->pgd = pgd_alloc(mm);
521 if (unlikely(!mm->pgd))
522 return -ENOMEM;
523 return 0;
524 }
525
mm_free_pgd(struct mm_struct * mm)526 static inline void mm_free_pgd(struct mm_struct *mm)
527 {
528 pgd_free(mm, mm->pgd);
529 }
530 #else
531 #define dup_mmap(mm, oldmm) (0)
532 #define mm_alloc_pgd(mm) (0)
533 #define mm_free_pgd(mm)
534 #endif /* CONFIG_MMU */
535
536 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
537
538 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
539 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
540
541 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
542
coredump_filter_setup(char * s)543 static int __init coredump_filter_setup(char *s)
544 {
545 default_dump_filter =
546 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
547 MMF_DUMP_FILTER_MASK;
548 return 1;
549 }
550
551 __setup("coredump_filter=", coredump_filter_setup);
552
553 #include <linux/init_task.h>
554
mm_init_aio(struct mm_struct * mm)555 static void mm_init_aio(struct mm_struct *mm)
556 {
557 #ifdef CONFIG_AIO
558 spin_lock_init(&mm->ioctx_lock);
559 mm->ioctx_table = NULL;
560 #endif
561 }
562
mm_init_owner(struct mm_struct * mm,struct task_struct * p)563 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
564 {
565 #ifdef CONFIG_MEMCG
566 mm->owner = p;
567 #endif
568 }
569
mm_init(struct mm_struct * mm,struct task_struct * p)570 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
571 {
572 mm->mmap = NULL;
573 mm->mm_rb = RB_ROOT;
574 mm->vmacache_seqnum = 0;
575 atomic_set(&mm->mm_users, 1);
576 atomic_set(&mm->mm_count, 1);
577 init_rwsem(&mm->mmap_sem);
578 INIT_LIST_HEAD(&mm->mmlist);
579 mm->core_state = NULL;
580 atomic_long_set(&mm->nr_ptes, 0);
581 mm->map_count = 0;
582 mm->locked_vm = 0;
583 mm->pinned_vm = 0;
584 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
585 spin_lock_init(&mm->page_table_lock);
586 mm_init_cpumask(mm);
587 mm_init_aio(mm);
588 mm_init_owner(mm, p);
589 mmu_notifier_mm_init(mm);
590 clear_tlb_flush_pending(mm);
591 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
592 mm->pmd_huge_pte = NULL;
593 #endif
594
595 if (current->mm) {
596 mm->flags = current->mm->flags & MMF_INIT_MASK;
597 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
598 } else {
599 mm->flags = default_dump_filter;
600 mm->def_flags = 0;
601 }
602
603 if (mm_alloc_pgd(mm))
604 goto fail_nopgd;
605
606 if (init_new_context(p, mm))
607 goto fail_nocontext;
608
609 return mm;
610
611 fail_nocontext:
612 mm_free_pgd(mm);
613 fail_nopgd:
614 free_mm(mm);
615 return NULL;
616 }
617
check_mm(struct mm_struct * mm)618 static void check_mm(struct mm_struct *mm)
619 {
620 int i;
621
622 for (i = 0; i < NR_MM_COUNTERS; i++) {
623 long x = atomic_long_read(&mm->rss_stat.count[i]);
624
625 if (unlikely(x))
626 printk(KERN_ALERT "BUG: Bad rss-counter state "
627 "mm:%p idx:%d val:%ld\n", mm, i, x);
628 }
629 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
630 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
631 #endif
632 }
633
634 /*
635 * Allocate and initialize an mm_struct.
636 */
mm_alloc(void)637 struct mm_struct *mm_alloc(void)
638 {
639 struct mm_struct *mm;
640
641 mm = allocate_mm();
642 if (!mm)
643 return NULL;
644
645 memset(mm, 0, sizeof(*mm));
646 return mm_init(mm, current);
647 }
648
649 /*
650 * Called when the last reference to the mm
651 * is dropped: either by a lazy thread or by
652 * mmput. Free the page directory and the mm.
653 */
__mmdrop(struct mm_struct * mm)654 void __mmdrop(struct mm_struct *mm)
655 {
656 BUG_ON(mm == &init_mm);
657 mm_free_pgd(mm);
658 destroy_context(mm);
659 mmu_notifier_mm_destroy(mm);
660 check_mm(mm);
661 free_mm(mm);
662 }
663 EXPORT_SYMBOL_GPL(__mmdrop);
664
__mmput(struct mm_struct * mm)665 static inline void __mmput(struct mm_struct *mm)
666 {
667 VM_BUG_ON(atomic_read(&mm->mm_users));
668
669 uprobe_clear_state(mm);
670 exit_aio(mm);
671 ksm_exit(mm);
672 khugepaged_exit(mm); /* must run before exit_mmap */
673 exit_mmap(mm);
674 set_mm_exe_file(mm, NULL);
675 if (!list_empty(&mm->mmlist)) {
676 spin_lock(&mmlist_lock);
677 list_del(&mm->mmlist);
678 spin_unlock(&mmlist_lock);
679 }
680 if (mm->binfmt)
681 module_put(mm->binfmt->module);
682 mmdrop(mm);
683 }
684
685 /*
686 * Decrement the use count and release all resources for an mm.
687 */
mmput(struct mm_struct * mm)688 void mmput(struct mm_struct *mm)
689 {
690 might_sleep();
691
692 if (atomic_dec_and_test(&mm->mm_users))
693 __mmput(mm);
694 }
695 EXPORT_SYMBOL_GPL(mmput);
696
mmput_async_fn(struct work_struct * work)697 static void mmput_async_fn(struct work_struct *work)
698 {
699 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
700 __mmput(mm);
701 }
702
mmput_async(struct mm_struct * mm)703 void mmput_async(struct mm_struct *mm)
704 {
705 if (atomic_dec_and_test(&mm->mm_users)) {
706 INIT_WORK(&mm->async_put_work, mmput_async_fn);
707 schedule_work(&mm->async_put_work);
708 }
709 }
710
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)711 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
712 {
713 if (new_exe_file)
714 get_file(new_exe_file);
715 if (mm->exe_file)
716 fput(mm->exe_file);
717 mm->exe_file = new_exe_file;
718 }
719
get_mm_exe_file(struct mm_struct * mm)720 struct file *get_mm_exe_file(struct mm_struct *mm)
721 {
722 struct file *exe_file;
723
724 /* We need mmap_sem to protect against races with removal of exe_file */
725 down_read(&mm->mmap_sem);
726 exe_file = mm->exe_file;
727 if (exe_file)
728 get_file(exe_file);
729 up_read(&mm->mmap_sem);
730 return exe_file;
731 }
732
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)733 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
734 {
735 /* It's safe to write the exe_file pointer without exe_file_lock because
736 * this is called during fork when the task is not yet in /proc */
737 newmm->exe_file = get_mm_exe_file(oldmm);
738 }
739
740 /**
741 * get_task_mm - acquire a reference to the task's mm
742 *
743 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
744 * this kernel workthread has transiently adopted a user mm with use_mm,
745 * to do its AIO) is not set and if so returns a reference to it, after
746 * bumping up the use count. User must release the mm via mmput()
747 * after use. Typically used by /proc and ptrace.
748 */
get_task_mm(struct task_struct * task)749 struct mm_struct *get_task_mm(struct task_struct *task)
750 {
751 struct mm_struct *mm;
752
753 task_lock(task);
754 mm = task->mm;
755 if (mm) {
756 if (task->flags & PF_KTHREAD)
757 mm = NULL;
758 else
759 atomic_inc(&mm->mm_users);
760 }
761 task_unlock(task);
762 return mm;
763 }
764 EXPORT_SYMBOL_GPL(get_task_mm);
765
mm_access(struct task_struct * task,unsigned int mode)766 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
767 {
768 struct mm_struct *mm;
769 int err;
770
771 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
772 if (err)
773 return ERR_PTR(err);
774
775 mm = get_task_mm(task);
776 if (mm && mm != current->mm &&
777 !ptrace_may_access(task, mode)) {
778 mmput(mm);
779 mm = ERR_PTR(-EACCES);
780 }
781 mutex_unlock(&task->signal->cred_guard_mutex);
782
783 return mm;
784 }
785
complete_vfork_done(struct task_struct * tsk)786 static void complete_vfork_done(struct task_struct *tsk)
787 {
788 struct completion *vfork;
789
790 task_lock(tsk);
791 vfork = tsk->vfork_done;
792 if (likely(vfork)) {
793 tsk->vfork_done = NULL;
794 complete(vfork);
795 }
796 task_unlock(tsk);
797 }
798
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)799 static int wait_for_vfork_done(struct task_struct *child,
800 struct completion *vfork)
801 {
802 int killed;
803
804 freezer_do_not_count();
805 killed = wait_for_completion_killable(vfork);
806 freezer_count();
807
808 if (killed) {
809 task_lock(child);
810 child->vfork_done = NULL;
811 task_unlock(child);
812 }
813
814 put_task_struct(child);
815 return killed;
816 }
817
818 /* Please note the differences between mmput and mm_release.
819 * mmput is called whenever we stop holding onto a mm_struct,
820 * error success whatever.
821 *
822 * mm_release is called after a mm_struct has been removed
823 * from the current process.
824 *
825 * This difference is important for error handling, when we
826 * only half set up a mm_struct for a new process and need to restore
827 * the old one. Because we mmput the new mm_struct before
828 * restoring the old one. . .
829 * Eric Biederman 10 January 1998
830 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)831 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
832 {
833 /* Get rid of any futexes when releasing the mm */
834 #ifdef CONFIG_FUTEX
835 if (unlikely(tsk->robust_list)) {
836 exit_robust_list(tsk);
837 tsk->robust_list = NULL;
838 }
839 #ifdef CONFIG_COMPAT
840 if (unlikely(tsk->compat_robust_list)) {
841 compat_exit_robust_list(tsk);
842 tsk->compat_robust_list = NULL;
843 }
844 #endif
845 if (unlikely(!list_empty(&tsk->pi_state_list)))
846 exit_pi_state_list(tsk);
847 #endif
848
849 uprobe_free_utask(tsk);
850
851 /* Get rid of any cached register state */
852 deactivate_mm(tsk, mm);
853
854 /*
855 * If we're exiting normally, clear a user-space tid field if
856 * requested. We leave this alone when dying by signal, to leave
857 * the value intact in a core dump, and to save the unnecessary
858 * trouble, say, a killed vfork parent shouldn't touch this mm.
859 * Userland only wants this done for a sys_exit.
860 */
861 if (tsk->clear_child_tid) {
862 if (!(tsk->flags & PF_SIGNALED) &&
863 atomic_read(&mm->mm_users) > 1) {
864 /*
865 * We don't check the error code - if userspace has
866 * not set up a proper pointer then tough luck.
867 */
868 put_user(0, tsk->clear_child_tid);
869 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
870 1, NULL, NULL, 0);
871 }
872 tsk->clear_child_tid = NULL;
873 }
874
875 /*
876 * All done, finally we can wake up parent and return this mm to him.
877 * Also kthread_stop() uses this completion for synchronization.
878 */
879 if (tsk->vfork_done)
880 complete_vfork_done(tsk);
881 }
882
883 /*
884 * Allocate a new mm structure and copy contents from the
885 * mm structure of the passed in task structure.
886 */
dup_mm(struct task_struct * tsk)887 static struct mm_struct *dup_mm(struct task_struct *tsk)
888 {
889 struct mm_struct *mm, *oldmm = current->mm;
890 int err;
891
892 mm = allocate_mm();
893 if (!mm)
894 goto fail_nomem;
895
896 memcpy(mm, oldmm, sizeof(*mm));
897
898 if (!mm_init(mm, tsk))
899 goto fail_nomem;
900
901 dup_mm_exe_file(oldmm, mm);
902
903 err = dup_mmap(mm, oldmm);
904 if (err)
905 goto free_pt;
906
907 mm->hiwater_rss = get_mm_rss(mm);
908 mm->hiwater_vm = mm->total_vm;
909
910 if (mm->binfmt && !try_module_get(mm->binfmt->module))
911 goto free_pt;
912
913 return mm;
914
915 free_pt:
916 /* don't put binfmt in mmput, we haven't got module yet */
917 mm->binfmt = NULL;
918 mmput(mm);
919
920 fail_nomem:
921 return NULL;
922 }
923
copy_mm(unsigned long clone_flags,struct task_struct * tsk)924 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
925 {
926 struct mm_struct *mm, *oldmm;
927 int retval;
928
929 tsk->min_flt = tsk->maj_flt = 0;
930 tsk->nvcsw = tsk->nivcsw = 0;
931 #ifdef CONFIG_DETECT_HUNG_TASK
932 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
933 #endif
934
935 tsk->mm = NULL;
936 tsk->active_mm = NULL;
937
938 /*
939 * Are we cloning a kernel thread?
940 *
941 * We need to steal a active VM for that..
942 */
943 oldmm = current->mm;
944 if (!oldmm)
945 return 0;
946
947 /* initialize the new vmacache entries */
948 vmacache_flush(tsk);
949
950 if (clone_flags & CLONE_VM) {
951 atomic_inc(&oldmm->mm_users);
952 mm = oldmm;
953 goto good_mm;
954 }
955
956 retval = -ENOMEM;
957 mm = dup_mm(tsk);
958 if (!mm)
959 goto fail_nomem;
960
961 good_mm:
962 tsk->mm = mm;
963 tsk->active_mm = mm;
964 return 0;
965
966 fail_nomem:
967 return retval;
968 }
969
copy_fs(unsigned long clone_flags,struct task_struct * tsk)970 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
971 {
972 struct fs_struct *fs = current->fs;
973 if (clone_flags & CLONE_FS) {
974 /* tsk->fs is already what we want */
975 spin_lock(&fs->lock);
976 if (fs->in_exec) {
977 spin_unlock(&fs->lock);
978 return -EAGAIN;
979 }
980 fs->users++;
981 spin_unlock(&fs->lock);
982 return 0;
983 }
984 tsk->fs = copy_fs_struct(fs);
985 if (!tsk->fs)
986 return -ENOMEM;
987 return 0;
988 }
989
copy_files(unsigned long clone_flags,struct task_struct * tsk)990 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
991 {
992 struct files_struct *oldf, *newf;
993 int error = 0;
994
995 /*
996 * A background process may not have any files ...
997 */
998 oldf = current->files;
999 if (!oldf)
1000 goto out;
1001
1002 if (clone_flags & CLONE_FILES) {
1003 atomic_inc(&oldf->count);
1004 goto out;
1005 }
1006
1007 newf = dup_fd(oldf, &error);
1008 if (!newf)
1009 goto out;
1010
1011 tsk->files = newf;
1012 error = 0;
1013 out:
1014 return error;
1015 }
1016
copy_io(unsigned long clone_flags,struct task_struct * tsk)1017 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1018 {
1019 #ifdef CONFIG_BLOCK
1020 struct io_context *ioc = current->io_context;
1021 struct io_context *new_ioc;
1022
1023 if (!ioc)
1024 return 0;
1025 /*
1026 * Share io context with parent, if CLONE_IO is set
1027 */
1028 if (clone_flags & CLONE_IO) {
1029 ioc_task_link(ioc);
1030 tsk->io_context = ioc;
1031 } else if (ioprio_valid(ioc->ioprio)) {
1032 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1033 if (unlikely(!new_ioc))
1034 return -ENOMEM;
1035
1036 new_ioc->ioprio = ioc->ioprio;
1037 put_io_context(new_ioc);
1038 }
1039 #endif
1040 return 0;
1041 }
1042
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1043 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1044 {
1045 struct sighand_struct *sig;
1046
1047 if (clone_flags & CLONE_SIGHAND) {
1048 atomic_inc(¤t->sighand->count);
1049 return 0;
1050 }
1051 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1052 rcu_assign_pointer(tsk->sighand, sig);
1053 if (!sig)
1054 return -ENOMEM;
1055 atomic_set(&sig->count, 1);
1056 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1057 return 0;
1058 }
1059
__cleanup_sighand(struct sighand_struct * sighand)1060 void __cleanup_sighand(struct sighand_struct *sighand)
1061 {
1062 if (atomic_dec_and_test(&sighand->count)) {
1063 signalfd_cleanup(sighand);
1064 kmem_cache_free(sighand_cachep, sighand);
1065 }
1066 }
1067
1068
1069 /*
1070 * Initialize POSIX timer handling for a thread group.
1071 */
posix_cpu_timers_init_group(struct signal_struct * sig)1072 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1073 {
1074 unsigned long cpu_limit;
1075
1076 /* Thread group counters. */
1077 thread_group_cputime_init(sig);
1078
1079 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1080 if (cpu_limit != RLIM_INFINITY) {
1081 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1082 sig->cputimer.running = 1;
1083 }
1084
1085 /* The timer lists. */
1086 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1087 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1088 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1089 }
1090
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1091 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1092 {
1093 struct signal_struct *sig;
1094
1095 if (clone_flags & CLONE_THREAD)
1096 return 0;
1097
1098 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1099 tsk->signal = sig;
1100 if (!sig)
1101 return -ENOMEM;
1102
1103 sig->nr_threads = 1;
1104 atomic_set(&sig->live, 1);
1105 atomic_set(&sig->sigcnt, 1);
1106
1107 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1108 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1109 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1110
1111 init_waitqueue_head(&sig->wait_chldexit);
1112 sig->curr_target = tsk;
1113 init_sigpending(&sig->shared_pending);
1114 INIT_LIST_HEAD(&sig->posix_timers);
1115 seqlock_init(&sig->stats_lock);
1116
1117 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1118 sig->real_timer.function = it_real_fn;
1119
1120 task_lock(current->group_leader);
1121 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1122 task_unlock(current->group_leader);
1123
1124 posix_cpu_timers_init_group(sig);
1125
1126 tty_audit_fork(sig);
1127 sched_autogroup_fork(sig);
1128
1129 #ifdef CONFIG_CGROUPS
1130 init_rwsem(&sig->group_rwsem);
1131 #endif
1132
1133 sig->oom_score_adj = current->signal->oom_score_adj;
1134 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1135
1136 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1137 current->signal->is_child_subreaper;
1138
1139 mutex_init(&sig->cred_guard_mutex);
1140
1141 return 0;
1142 }
1143
copy_seccomp(struct task_struct * p)1144 static void copy_seccomp(struct task_struct *p)
1145 {
1146 #ifdef CONFIG_SECCOMP
1147 /*
1148 * Must be called with sighand->lock held, which is common to
1149 * all threads in the group. Holding cred_guard_mutex is not
1150 * needed because this new task is not yet running and cannot
1151 * be racing exec.
1152 */
1153 assert_spin_locked(¤t->sighand->siglock);
1154
1155 /* Ref-count the new filter user, and assign it. */
1156 get_seccomp_filter(current);
1157 p->seccomp = current->seccomp;
1158
1159 /*
1160 * Explicitly enable no_new_privs here in case it got set
1161 * between the task_struct being duplicated and holding the
1162 * sighand lock. The seccomp state and nnp must be in sync.
1163 */
1164 if (task_no_new_privs(current))
1165 task_set_no_new_privs(p);
1166
1167 /*
1168 * If the parent gained a seccomp mode after copying thread
1169 * flags and between before we held the sighand lock, we have
1170 * to manually enable the seccomp thread flag here.
1171 */
1172 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1173 set_tsk_thread_flag(p, TIF_SECCOMP);
1174 #endif
1175 }
1176
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1177 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1178 {
1179 current->clear_child_tid = tidptr;
1180
1181 return task_pid_vnr(current);
1182 }
1183
rt_mutex_init_task(struct task_struct * p)1184 static void rt_mutex_init_task(struct task_struct *p)
1185 {
1186 raw_spin_lock_init(&p->pi_lock);
1187 #ifdef CONFIG_RT_MUTEXES
1188 p->pi_waiters = RB_ROOT;
1189 p->pi_waiters_leftmost = NULL;
1190 p->pi_blocked_on = NULL;
1191 #endif
1192 }
1193
1194 /*
1195 * Initialize POSIX timer handling for a single task.
1196 */
posix_cpu_timers_init(struct task_struct * tsk)1197 static void posix_cpu_timers_init(struct task_struct *tsk)
1198 {
1199 tsk->cputime_expires.prof_exp = 0;
1200 tsk->cputime_expires.virt_exp = 0;
1201 tsk->cputime_expires.sched_exp = 0;
1202 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1203 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1204 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1205 }
1206
1207 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1208 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1209 {
1210 task->pids[type].pid = pid;
1211 }
1212
1213 /*
1214 * This creates a new process as a copy of the old one,
1215 * but does not actually start it yet.
1216 *
1217 * It copies the registers, and all the appropriate
1218 * parts of the process environment (as per the clone
1219 * flags). The actual kick-off is left to the caller.
1220 */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)1221 static struct task_struct *copy_process(unsigned long clone_flags,
1222 unsigned long stack_start,
1223 unsigned long stack_size,
1224 int __user *child_tidptr,
1225 struct pid *pid,
1226 int trace)
1227 {
1228 int retval;
1229 struct task_struct *p;
1230
1231 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1232 return ERR_PTR(-EINVAL);
1233
1234 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1235 return ERR_PTR(-EINVAL);
1236
1237 /*
1238 * Thread groups must share signals as well, and detached threads
1239 * can only be started up within the thread group.
1240 */
1241 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1242 return ERR_PTR(-EINVAL);
1243
1244 /*
1245 * Shared signal handlers imply shared VM. By way of the above,
1246 * thread groups also imply shared VM. Blocking this case allows
1247 * for various simplifications in other code.
1248 */
1249 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1250 return ERR_PTR(-EINVAL);
1251
1252 /*
1253 * Siblings of global init remain as zombies on exit since they are
1254 * not reaped by their parent (swapper). To solve this and to avoid
1255 * multi-rooted process trees, prevent global and container-inits
1256 * from creating siblings.
1257 */
1258 if ((clone_flags & CLONE_PARENT) &&
1259 current->signal->flags & SIGNAL_UNKILLABLE)
1260 return ERR_PTR(-EINVAL);
1261
1262 /*
1263 * If the new process will be in a different pid or user namespace
1264 * do not allow it to share a thread group or signal handlers or
1265 * parent with the forking task.
1266 */
1267 if (clone_flags & CLONE_SIGHAND) {
1268 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1269 (task_active_pid_ns(current) !=
1270 current->nsproxy->pid_ns_for_children))
1271 return ERR_PTR(-EINVAL);
1272 }
1273
1274 retval = security_task_create(clone_flags);
1275 if (retval)
1276 goto fork_out;
1277
1278 retval = -ENOMEM;
1279 p = dup_task_struct(current);
1280 if (!p)
1281 goto fork_out;
1282
1283 ftrace_graph_init_task(p);
1284
1285 rt_mutex_init_task(p);
1286
1287 #ifdef CONFIG_PROVE_LOCKING
1288 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1289 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1290 #endif
1291 retval = -EAGAIN;
1292 if (atomic_read(&p->real_cred->user->processes) >=
1293 task_rlimit(p, RLIMIT_NPROC)) {
1294 if (p->real_cred->user != INIT_USER &&
1295 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1296 goto bad_fork_free;
1297 }
1298 current->flags &= ~PF_NPROC_EXCEEDED;
1299
1300 retval = copy_creds(p, clone_flags);
1301 if (retval < 0)
1302 goto bad_fork_free;
1303
1304 /*
1305 * If multiple threads are within copy_process(), then this check
1306 * triggers too late. This doesn't hurt, the check is only there
1307 * to stop root fork bombs.
1308 */
1309 retval = -EAGAIN;
1310 if (nr_threads >= max_threads)
1311 goto bad_fork_cleanup_count;
1312
1313 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1314 goto bad_fork_cleanup_count;
1315
1316 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1317 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1318 p->flags |= PF_FORKNOEXEC;
1319 INIT_LIST_HEAD(&p->children);
1320 INIT_LIST_HEAD(&p->sibling);
1321 rcu_copy_process(p);
1322 p->vfork_done = NULL;
1323 spin_lock_init(&p->alloc_lock);
1324
1325 init_sigpending(&p->pending);
1326
1327 p->utime = p->stime = p->gtime = 0;
1328 p->utimescaled = p->stimescaled = 0;
1329 p->cpu_power = 0;
1330 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1331 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1332 #endif
1333 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1334 seqlock_init(&p->vtime_seqlock);
1335 p->vtime_snap = 0;
1336 p->vtime_snap_whence = VTIME_SLEEPING;
1337 #endif
1338
1339 #if defined(SPLIT_RSS_COUNTING)
1340 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1341 #endif
1342
1343 p->default_timer_slack_ns = current->timer_slack_ns;
1344
1345 task_io_accounting_init(&p->ioac);
1346 acct_clear_integrals(p);
1347
1348 posix_cpu_timers_init(p);
1349
1350 p->start_time = ktime_get_ns();
1351 p->real_start_time = ktime_get_boot_ns();
1352 p->io_context = NULL;
1353 p->audit_context = NULL;
1354 if (clone_flags & CLONE_THREAD)
1355 threadgroup_change_begin(current);
1356 cgroup_fork(p);
1357 #ifdef CONFIG_NUMA
1358 p->mempolicy = mpol_dup(p->mempolicy);
1359 if (IS_ERR(p->mempolicy)) {
1360 retval = PTR_ERR(p->mempolicy);
1361 p->mempolicy = NULL;
1362 goto bad_fork_cleanup_threadgroup_lock;
1363 }
1364 #endif
1365 #ifdef CONFIG_CPUSETS
1366 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1367 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1368 seqcount_init(&p->mems_allowed_seq);
1369 #endif
1370 #ifdef CONFIG_TRACE_IRQFLAGS
1371 p->irq_events = 0;
1372 p->hardirqs_enabled = 0;
1373 p->hardirq_enable_ip = 0;
1374 p->hardirq_enable_event = 0;
1375 p->hardirq_disable_ip = _THIS_IP_;
1376 p->hardirq_disable_event = 0;
1377 p->softirqs_enabled = 1;
1378 p->softirq_enable_ip = _THIS_IP_;
1379 p->softirq_enable_event = 0;
1380 p->softirq_disable_ip = 0;
1381 p->softirq_disable_event = 0;
1382 p->hardirq_context = 0;
1383 p->softirq_context = 0;
1384 #endif
1385 #ifdef CONFIG_LOCKDEP
1386 p->lockdep_depth = 0; /* no locks held yet */
1387 p->curr_chain_key = 0;
1388 p->lockdep_recursion = 0;
1389 #endif
1390
1391 #ifdef CONFIG_DEBUG_MUTEXES
1392 p->blocked_on = NULL; /* not blocked yet */
1393 #endif
1394 #ifdef CONFIG_BCACHE
1395 p->sequential_io = 0;
1396 p->sequential_io_avg = 0;
1397 #endif
1398
1399 /* Perform scheduler related setup. Assign this task to a CPU. */
1400 retval = sched_fork(clone_flags, p);
1401 if (retval)
1402 goto bad_fork_cleanup_policy;
1403
1404 retval = perf_event_init_task(p);
1405 if (retval)
1406 goto bad_fork_cleanup_policy;
1407 retval = audit_alloc(p);
1408 if (retval)
1409 goto bad_fork_cleanup_perf;
1410 /* copy all the process information */
1411 shm_init_task(p);
1412 retval = copy_semundo(clone_flags, p);
1413 if (retval)
1414 goto bad_fork_cleanup_audit;
1415 retval = copy_files(clone_flags, p);
1416 if (retval)
1417 goto bad_fork_cleanup_semundo;
1418 retval = copy_fs(clone_flags, p);
1419 if (retval)
1420 goto bad_fork_cleanup_files;
1421 retval = copy_sighand(clone_flags, p);
1422 if (retval)
1423 goto bad_fork_cleanup_fs;
1424 retval = copy_signal(clone_flags, p);
1425 if (retval)
1426 goto bad_fork_cleanup_sighand;
1427 retval = copy_mm(clone_flags, p);
1428 if (retval)
1429 goto bad_fork_cleanup_signal;
1430 retval = copy_namespaces(clone_flags, p);
1431 if (retval)
1432 goto bad_fork_cleanup_mm;
1433 retval = copy_io(clone_flags, p);
1434 if (retval)
1435 goto bad_fork_cleanup_namespaces;
1436 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1437 if (retval)
1438 goto bad_fork_cleanup_io;
1439
1440 if (pid != &init_struct_pid) {
1441 retval = -ENOMEM;
1442 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1443 if (!pid)
1444 goto bad_fork_cleanup_io;
1445 }
1446
1447 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1448 /*
1449 * Clear TID on mm_release()?
1450 */
1451 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1452 #ifdef CONFIG_BLOCK
1453 p->plug = NULL;
1454 #endif
1455 #ifdef CONFIG_FUTEX
1456 p->robust_list = NULL;
1457 #ifdef CONFIG_COMPAT
1458 p->compat_robust_list = NULL;
1459 #endif
1460 INIT_LIST_HEAD(&p->pi_state_list);
1461 p->pi_state_cache = NULL;
1462 #endif
1463 /*
1464 * sigaltstack should be cleared when sharing the same VM
1465 */
1466 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1467 p->sas_ss_sp = p->sas_ss_size = 0;
1468
1469 /*
1470 * Syscall tracing and stepping should be turned off in the
1471 * child regardless of CLONE_PTRACE.
1472 */
1473 user_disable_single_step(p);
1474 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1475 #ifdef TIF_SYSCALL_EMU
1476 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1477 #endif
1478 clear_all_latency_tracing(p);
1479
1480 /* ok, now we should be set up.. */
1481 p->pid = pid_nr(pid);
1482 if (clone_flags & CLONE_THREAD) {
1483 p->exit_signal = -1;
1484 p->group_leader = current->group_leader;
1485 p->tgid = current->tgid;
1486 } else {
1487 if (clone_flags & CLONE_PARENT)
1488 p->exit_signal = current->group_leader->exit_signal;
1489 else
1490 p->exit_signal = (clone_flags & CSIGNAL);
1491 p->group_leader = p;
1492 p->tgid = p->pid;
1493 }
1494
1495 p->nr_dirtied = 0;
1496 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1497 p->dirty_paused_when = 0;
1498
1499 p->pdeath_signal = 0;
1500 INIT_LIST_HEAD(&p->thread_group);
1501 p->task_works = NULL;
1502
1503 /*
1504 * Make it visible to the rest of the system, but dont wake it up yet.
1505 * Need tasklist lock for parent etc handling!
1506 */
1507 write_lock_irq(&tasklist_lock);
1508
1509 /* CLONE_PARENT re-uses the old parent */
1510 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1511 p->real_parent = current->real_parent;
1512 p->parent_exec_id = current->parent_exec_id;
1513 } else {
1514 p->real_parent = current;
1515 p->parent_exec_id = current->self_exec_id;
1516 }
1517
1518 spin_lock(¤t->sighand->siglock);
1519
1520 /*
1521 * Copy seccomp details explicitly here, in case they were changed
1522 * before holding sighand lock.
1523 */
1524 copy_seccomp(p);
1525
1526 /*
1527 * Process group and session signals need to be delivered to just the
1528 * parent before the fork or both the parent and the child after the
1529 * fork. Restart if a signal comes in before we add the new process to
1530 * it's process group.
1531 * A fatal signal pending means that current will exit, so the new
1532 * thread can't slip out of an OOM kill (or normal SIGKILL).
1533 */
1534 recalc_sigpending();
1535 if (signal_pending(current)) {
1536 spin_unlock(¤t->sighand->siglock);
1537 write_unlock_irq(&tasklist_lock);
1538 retval = -ERESTARTNOINTR;
1539 goto bad_fork_free_pid;
1540 }
1541
1542 if (likely(p->pid)) {
1543 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1544
1545 init_task_pid(p, PIDTYPE_PID, pid);
1546 if (thread_group_leader(p)) {
1547 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1548 init_task_pid(p, PIDTYPE_SID, task_session(current));
1549
1550 if (is_child_reaper(pid)) {
1551 ns_of_pid(pid)->child_reaper = p;
1552 p->signal->flags |= SIGNAL_UNKILLABLE;
1553 }
1554
1555 p->signal->leader_pid = pid;
1556 p->signal->tty = tty_kref_get(current->signal->tty);
1557 list_add_tail(&p->sibling, &p->real_parent->children);
1558 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1559 attach_pid(p, PIDTYPE_PGID);
1560 attach_pid(p, PIDTYPE_SID);
1561 __this_cpu_inc(process_counts);
1562 } else {
1563 current->signal->nr_threads++;
1564 atomic_inc(¤t->signal->live);
1565 atomic_inc(¤t->signal->sigcnt);
1566 list_add_tail_rcu(&p->thread_group,
1567 &p->group_leader->thread_group);
1568 list_add_tail_rcu(&p->thread_node,
1569 &p->signal->thread_head);
1570 }
1571 attach_pid(p, PIDTYPE_PID);
1572 nr_threads++;
1573 }
1574
1575 total_forks++;
1576 spin_unlock(¤t->sighand->siglock);
1577 syscall_tracepoint_update(p);
1578 write_unlock_irq(&tasklist_lock);
1579
1580 proc_fork_connector(p);
1581 cgroup_post_fork(p);
1582 if (clone_flags & CLONE_THREAD)
1583 threadgroup_change_end(current);
1584 perf_event_fork(p);
1585
1586 trace_task_newtask(p, clone_flags);
1587 uprobe_copy_process(p, clone_flags);
1588
1589 return p;
1590
1591 bad_fork_free_pid:
1592 if (pid != &init_struct_pid)
1593 free_pid(pid);
1594 bad_fork_cleanup_io:
1595 if (p->io_context)
1596 exit_io_context(p);
1597 bad_fork_cleanup_namespaces:
1598 exit_task_namespaces(p);
1599 bad_fork_cleanup_mm:
1600 if (p->mm)
1601 mmput(p->mm);
1602 bad_fork_cleanup_signal:
1603 if (!(clone_flags & CLONE_THREAD))
1604 free_signal_struct(p->signal);
1605 bad_fork_cleanup_sighand:
1606 __cleanup_sighand(p->sighand);
1607 bad_fork_cleanup_fs:
1608 exit_fs(p); /* blocking */
1609 bad_fork_cleanup_files:
1610 exit_files(p); /* blocking */
1611 bad_fork_cleanup_semundo:
1612 exit_sem(p);
1613 bad_fork_cleanup_audit:
1614 audit_free(p);
1615 bad_fork_cleanup_perf:
1616 perf_event_free_task(p);
1617 bad_fork_cleanup_policy:
1618 #ifdef CONFIG_NUMA
1619 mpol_put(p->mempolicy);
1620 bad_fork_cleanup_threadgroup_lock:
1621 #endif
1622 if (clone_flags & CLONE_THREAD)
1623 threadgroup_change_end(current);
1624 delayacct_tsk_free(p);
1625 module_put(task_thread_info(p)->exec_domain->module);
1626 bad_fork_cleanup_count:
1627 atomic_dec(&p->cred->user->processes);
1628 exit_creds(p);
1629 bad_fork_free:
1630 free_task(p);
1631 fork_out:
1632 return ERR_PTR(retval);
1633 }
1634
init_idle_pids(struct pid_link * links)1635 static inline void init_idle_pids(struct pid_link *links)
1636 {
1637 enum pid_type type;
1638
1639 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1640 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1641 links[type].pid = &init_struct_pid;
1642 }
1643 }
1644
fork_idle(int cpu)1645 struct task_struct *fork_idle(int cpu)
1646 {
1647 struct task_struct *task;
1648 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1649 if (!IS_ERR(task)) {
1650 init_idle_pids(task->pids);
1651 init_idle(task, cpu);
1652 }
1653
1654 return task;
1655 }
1656
1657 /*
1658 * Ok, this is the main fork-routine.
1659 *
1660 * It copies the process, and if successful kick-starts
1661 * it and waits for it to finish using the VM if required.
1662 */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1663 long do_fork(unsigned long clone_flags,
1664 unsigned long stack_start,
1665 unsigned long stack_size,
1666 int __user *parent_tidptr,
1667 int __user *child_tidptr)
1668 {
1669 struct task_struct *p;
1670 int trace = 0;
1671 long nr;
1672
1673 /*
1674 * Determine whether and which event to report to ptracer. When
1675 * called from kernel_thread or CLONE_UNTRACED is explicitly
1676 * requested, no event is reported; otherwise, report if the event
1677 * for the type of forking is enabled.
1678 */
1679 if (!(clone_flags & CLONE_UNTRACED)) {
1680 if (clone_flags & CLONE_VFORK)
1681 trace = PTRACE_EVENT_VFORK;
1682 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1683 trace = PTRACE_EVENT_CLONE;
1684 else
1685 trace = PTRACE_EVENT_FORK;
1686
1687 if (likely(!ptrace_event_enabled(current, trace)))
1688 trace = 0;
1689 }
1690
1691 p = copy_process(clone_flags, stack_start, stack_size,
1692 child_tidptr, NULL, trace);
1693 /*
1694 * Do this prior waking up the new thread - the thread pointer
1695 * might get invalid after that point, if the thread exits quickly.
1696 */
1697 if (!IS_ERR(p)) {
1698 struct completion vfork;
1699 struct pid *pid;
1700
1701 trace_sched_process_fork(current, p);
1702
1703 pid = get_task_pid(p, PIDTYPE_PID);
1704 nr = pid_vnr(pid);
1705
1706 if (clone_flags & CLONE_PARENT_SETTID)
1707 put_user(nr, parent_tidptr);
1708
1709 if (clone_flags & CLONE_VFORK) {
1710 p->vfork_done = &vfork;
1711 init_completion(&vfork);
1712 get_task_struct(p);
1713 }
1714
1715 wake_up_new_task(p);
1716
1717 /* forking complete and child started to run, tell ptracer */
1718 if (unlikely(trace))
1719 ptrace_event_pid(trace, pid);
1720
1721 if (clone_flags & CLONE_VFORK) {
1722 if (!wait_for_vfork_done(p, &vfork))
1723 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1724 }
1725
1726 put_pid(pid);
1727 } else {
1728 nr = PTR_ERR(p);
1729 }
1730 return nr;
1731 }
1732
1733 /*
1734 * Create a kernel thread.
1735 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)1736 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1737 {
1738 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1739 (unsigned long)arg, NULL, NULL);
1740 }
1741
1742 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)1743 SYSCALL_DEFINE0(fork)
1744 {
1745 #ifdef CONFIG_MMU
1746 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1747 #else
1748 /* can not support in nommu mode */
1749 return -EINVAL;
1750 #endif
1751 }
1752 #endif
1753
1754 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)1755 SYSCALL_DEFINE0(vfork)
1756 {
1757 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1758 0, NULL, NULL);
1759 }
1760 #endif
1761
1762 #ifdef __ARCH_WANT_SYS_CLONE
1763 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,int,tls_val,int __user *,child_tidptr)1764 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1765 int __user *, parent_tidptr,
1766 int, tls_val,
1767 int __user *, child_tidptr)
1768 #elif defined(CONFIG_CLONE_BACKWARDS2)
1769 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1770 int __user *, parent_tidptr,
1771 int __user *, child_tidptr,
1772 int, tls_val)
1773 #elif defined(CONFIG_CLONE_BACKWARDS3)
1774 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1775 int, stack_size,
1776 int __user *, parent_tidptr,
1777 int __user *, child_tidptr,
1778 int, tls_val)
1779 #else
1780 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1781 int __user *, parent_tidptr,
1782 int __user *, child_tidptr,
1783 int, tls_val)
1784 #endif
1785 {
1786 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1787 }
1788 #endif
1789
1790 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1791 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1792 #endif
1793
sighand_ctor(void * data)1794 static void sighand_ctor(void *data)
1795 {
1796 struct sighand_struct *sighand = data;
1797
1798 spin_lock_init(&sighand->siglock);
1799 init_waitqueue_head(&sighand->signalfd_wqh);
1800 }
1801
proc_caches_init(void)1802 void __init proc_caches_init(void)
1803 {
1804 sighand_cachep = kmem_cache_create("sighand_cache",
1805 sizeof(struct sighand_struct), 0,
1806 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1807 SLAB_NOTRACK, sighand_ctor);
1808 signal_cachep = kmem_cache_create("signal_cache",
1809 sizeof(struct signal_struct), 0,
1810 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1811 files_cachep = kmem_cache_create("files_cache",
1812 sizeof(struct files_struct), 0,
1813 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1814 fs_cachep = kmem_cache_create("fs_cache",
1815 sizeof(struct fs_struct), 0,
1816 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1817 /*
1818 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1819 * whole struct cpumask for the OFFSTACK case. We could change
1820 * this to *only* allocate as much of it as required by the
1821 * maximum number of CPU's we can ever have. The cpumask_allocation
1822 * is at the end of the structure, exactly for that reason.
1823 */
1824 mm_cachep = kmem_cache_create("mm_struct",
1825 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1826 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1827 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1828 mmap_init();
1829 nsproxy_cache_init();
1830 }
1831
1832 /*
1833 * Check constraints on flags passed to the unshare system call.
1834 */
check_unshare_flags(unsigned long unshare_flags)1835 static int check_unshare_flags(unsigned long unshare_flags)
1836 {
1837 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1838 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1839 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1840 CLONE_NEWUSER|CLONE_NEWPID))
1841 return -EINVAL;
1842 /*
1843 * Not implemented, but pretend it works if there is nothing
1844 * to unshare. Note that unsharing the address space or the
1845 * signal handlers also need to unshare the signal queues (aka
1846 * CLONE_THREAD).
1847 */
1848 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1849 if (!thread_group_empty(current))
1850 return -EINVAL;
1851 }
1852 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1853 if (atomic_read(¤t->sighand->count) > 1)
1854 return -EINVAL;
1855 }
1856 if (unshare_flags & CLONE_VM) {
1857 if (!current_is_single_threaded())
1858 return -EINVAL;
1859 }
1860
1861 return 0;
1862 }
1863
1864 /*
1865 * Unshare the filesystem structure if it is being shared
1866 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1867 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1868 {
1869 struct fs_struct *fs = current->fs;
1870
1871 if (!(unshare_flags & CLONE_FS) || !fs)
1872 return 0;
1873
1874 /* don't need lock here; in the worst case we'll do useless copy */
1875 if (fs->users == 1)
1876 return 0;
1877
1878 *new_fsp = copy_fs_struct(fs);
1879 if (!*new_fsp)
1880 return -ENOMEM;
1881
1882 return 0;
1883 }
1884
1885 /*
1886 * Unshare file descriptor table if it is being shared
1887 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1888 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1889 {
1890 struct files_struct *fd = current->files;
1891 int error = 0;
1892
1893 if ((unshare_flags & CLONE_FILES) &&
1894 (fd && atomic_read(&fd->count) > 1)) {
1895 *new_fdp = dup_fd(fd, &error);
1896 if (!*new_fdp)
1897 return error;
1898 }
1899
1900 return 0;
1901 }
1902
1903 /*
1904 * unshare allows a process to 'unshare' part of the process
1905 * context which was originally shared using clone. copy_*
1906 * functions used by do_fork() cannot be used here directly
1907 * because they modify an inactive task_struct that is being
1908 * constructed. Here we are modifying the current, active,
1909 * task_struct.
1910 */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1911 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1912 {
1913 struct fs_struct *fs, *new_fs = NULL;
1914 struct files_struct *fd, *new_fd = NULL;
1915 struct cred *new_cred = NULL;
1916 struct nsproxy *new_nsproxy = NULL;
1917 int do_sysvsem = 0;
1918 int err;
1919
1920 /*
1921 * If unsharing a user namespace must also unshare the thread.
1922 */
1923 if (unshare_flags & CLONE_NEWUSER)
1924 unshare_flags |= CLONE_THREAD | CLONE_FS;
1925 /*
1926 * If unsharing vm, must also unshare signal handlers.
1927 */
1928 if (unshare_flags & CLONE_VM)
1929 unshare_flags |= CLONE_SIGHAND;
1930 /*
1931 * If unsharing a signal handlers, must also unshare the signal queues.
1932 */
1933 if (unshare_flags & CLONE_SIGHAND)
1934 unshare_flags |= CLONE_THREAD;
1935 /*
1936 * If unsharing namespace, must also unshare filesystem information.
1937 */
1938 if (unshare_flags & CLONE_NEWNS)
1939 unshare_flags |= CLONE_FS;
1940
1941 err = check_unshare_flags(unshare_flags);
1942 if (err)
1943 goto bad_unshare_out;
1944 /*
1945 * CLONE_NEWIPC must also detach from the undolist: after switching
1946 * to a new ipc namespace, the semaphore arrays from the old
1947 * namespace are unreachable.
1948 */
1949 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1950 do_sysvsem = 1;
1951 err = unshare_fs(unshare_flags, &new_fs);
1952 if (err)
1953 goto bad_unshare_out;
1954 err = unshare_fd(unshare_flags, &new_fd);
1955 if (err)
1956 goto bad_unshare_cleanup_fs;
1957 err = unshare_userns(unshare_flags, &new_cred);
1958 if (err)
1959 goto bad_unshare_cleanup_fd;
1960 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1961 new_cred, new_fs);
1962 if (err)
1963 goto bad_unshare_cleanup_cred;
1964
1965 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1966 if (do_sysvsem) {
1967 /*
1968 * CLONE_SYSVSEM is equivalent to sys_exit().
1969 */
1970 exit_sem(current);
1971 }
1972 if (unshare_flags & CLONE_NEWIPC) {
1973 /* Orphan segments in old ns (see sem above). */
1974 exit_shm(current);
1975 shm_init_task(current);
1976 }
1977
1978 if (new_nsproxy)
1979 switch_task_namespaces(current, new_nsproxy);
1980
1981 task_lock(current);
1982
1983 if (new_fs) {
1984 fs = current->fs;
1985 spin_lock(&fs->lock);
1986 current->fs = new_fs;
1987 if (--fs->users)
1988 new_fs = NULL;
1989 else
1990 new_fs = fs;
1991 spin_unlock(&fs->lock);
1992 }
1993
1994 if (new_fd) {
1995 fd = current->files;
1996 current->files = new_fd;
1997 new_fd = fd;
1998 }
1999
2000 task_unlock(current);
2001
2002 if (new_cred) {
2003 /* Install the new user namespace */
2004 commit_creds(new_cred);
2005 new_cred = NULL;
2006 }
2007 }
2008
2009 bad_unshare_cleanup_cred:
2010 if (new_cred)
2011 put_cred(new_cred);
2012 bad_unshare_cleanup_fd:
2013 if (new_fd)
2014 put_files_struct(new_fd);
2015
2016 bad_unshare_cleanup_fs:
2017 if (new_fs)
2018 free_fs_struct(new_fs);
2019
2020 bad_unshare_out:
2021 return err;
2022 }
2023
2024 /*
2025 * Helper to unshare the files of the current task.
2026 * We don't want to expose copy_files internals to
2027 * the exec layer of the kernel.
2028 */
2029
unshare_files(struct files_struct ** displaced)2030 int unshare_files(struct files_struct **displaced)
2031 {
2032 struct task_struct *task = current;
2033 struct files_struct *copy = NULL;
2034 int error;
2035
2036 error = unshare_fd(CLONE_FILES, ©);
2037 if (error || !copy) {
2038 *displaced = NULL;
2039 return error;
2040 }
2041 *displaced = task->files;
2042 task_lock(task);
2043 task->files = copy;
2044 task_unlock(task);
2045 return 0;
2046 }
2047