• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
key_user_lookup(kuid_t uid)54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
key_user_put(struct key_user * user)123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
key_alloc_serial(struct key * key)137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  *
205  * Allocate a key of the specified type with the attributes given.  The key is
206  * returned in an uninstantiated state and the caller needs to instantiate the
207  * key before returning.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags)224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags)
227 {
228 	struct key_user *user = NULL;
229 	struct key *key;
230 	size_t desclen, quotalen;
231 	int ret;
232 
233 	key = ERR_PTR(-EINVAL);
234 	if (!desc || !*desc)
235 		goto error;
236 
237 	if (type->vet_description) {
238 		ret = type->vet_description(desc);
239 		if (ret < 0) {
240 			key = ERR_PTR(ret);
241 			goto error;
242 		}
243 	}
244 
245 	desclen = strlen(desc);
246 	quotalen = desclen + 1 + type->def_datalen;
247 
248 	/* get hold of the key tracking for this user */
249 	user = key_user_lookup(uid);
250 	if (!user)
251 		goto no_memory_1;
252 
253 	/* check that the user's quota permits allocation of another key and
254 	 * its description */
255 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 			key_quota_root_maxkeys : key_quota_maxkeys;
258 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxbytes : key_quota_maxbytes;
260 
261 		spin_lock(&user->lock);
262 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 			if (user->qnkeys + 1 >= maxkeys ||
264 			    user->qnbytes + quotalen >= maxbytes ||
265 			    user->qnbytes + quotalen < user->qnbytes)
266 				goto no_quota;
267 		}
268 
269 		user->qnkeys++;
270 		user->qnbytes += quotalen;
271 		spin_unlock(&user->lock);
272 	}
273 
274 	/* allocate and initialise the key and its description */
275 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 	if (!key)
277 		goto no_memory_2;
278 
279 	if (desc) {
280 		key->index_key.desc_len = desclen;
281 		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 		if (!key->description)
283 			goto no_memory_3;
284 	}
285 
286 	atomic_set(&key->usage, 1);
287 	init_rwsem(&key->sem);
288 	lockdep_set_class(&key->sem, &type->lock_class);
289 	key->index_key.type = type;
290 	key->user = user;
291 	key->quotalen = quotalen;
292 	key->datalen = type->def_datalen;
293 	key->uid = uid;
294 	key->gid = gid;
295 	key->perm = perm;
296 
297 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
298 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
299 	if (flags & KEY_ALLOC_TRUSTED)
300 		key->flags |= 1 << KEY_FLAG_TRUSTED;
301 	if (flags & KEY_ALLOC_UID_KEYRING)
302 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
303 
304 #ifdef KEY_DEBUGGING
305 	key->magic = KEY_DEBUG_MAGIC;
306 #endif
307 
308 	/* let the security module know about the key */
309 	ret = security_key_alloc(key, cred, flags);
310 	if (ret < 0)
311 		goto security_error;
312 
313 	/* publish the key by giving it a serial number */
314 	atomic_inc(&user->nkeys);
315 	key_alloc_serial(key);
316 
317 error:
318 	return key;
319 
320 security_error:
321 	kfree(key->description);
322 	kmem_cache_free(key_jar, key);
323 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
324 		spin_lock(&user->lock);
325 		user->qnkeys--;
326 		user->qnbytes -= quotalen;
327 		spin_unlock(&user->lock);
328 	}
329 	key_user_put(user);
330 	key = ERR_PTR(ret);
331 	goto error;
332 
333 no_memory_3:
334 	kmem_cache_free(key_jar, key);
335 no_memory_2:
336 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
337 		spin_lock(&user->lock);
338 		user->qnkeys--;
339 		user->qnbytes -= quotalen;
340 		spin_unlock(&user->lock);
341 	}
342 	key_user_put(user);
343 no_memory_1:
344 	key = ERR_PTR(-ENOMEM);
345 	goto error;
346 
347 no_quota:
348 	spin_unlock(&user->lock);
349 	key_user_put(user);
350 	key = ERR_PTR(-EDQUOT);
351 	goto error;
352 }
353 EXPORT_SYMBOL(key_alloc);
354 
355 /**
356  * key_payload_reserve - Adjust data quota reservation for the key's payload
357  * @key: The key to make the reservation for.
358  * @datalen: The amount of data payload the caller now wants.
359  *
360  * Adjust the amount of the owning user's key data quota that a key reserves.
361  * If the amount is increased, then -EDQUOT may be returned if there isn't
362  * enough free quota available.
363  *
364  * If successful, 0 is returned.
365  */
key_payload_reserve(struct key * key,size_t datalen)366 int key_payload_reserve(struct key *key, size_t datalen)
367 {
368 	int delta = (int)datalen - key->datalen;
369 	int ret = 0;
370 
371 	key_check(key);
372 
373 	/* contemplate the quota adjustment */
374 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
375 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
376 			key_quota_root_maxbytes : key_quota_maxbytes;
377 
378 		spin_lock(&key->user->lock);
379 
380 		if (delta > 0 &&
381 		    (key->user->qnbytes + delta >= maxbytes ||
382 		     key->user->qnbytes + delta < key->user->qnbytes)) {
383 			ret = -EDQUOT;
384 		}
385 		else {
386 			key->user->qnbytes += delta;
387 			key->quotalen += delta;
388 		}
389 		spin_unlock(&key->user->lock);
390 	}
391 
392 	/* change the recorded data length if that didn't generate an error */
393 	if (ret == 0)
394 		key->datalen = datalen;
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL(key_payload_reserve);
399 
400 /*
401  * Instantiate a key and link it into the target keyring atomically.  Must be
402  * called with the target keyring's semaphore writelocked.  The target key's
403  * semaphore need not be locked as instantiation is serialised by
404  * key_construction_mutex.
405  */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)406 static int __key_instantiate_and_link(struct key *key,
407 				      struct key_preparsed_payload *prep,
408 				      struct key *keyring,
409 				      struct key *authkey,
410 				      struct assoc_array_edit **_edit)
411 {
412 	int ret, awaken;
413 
414 	key_check(key);
415 	key_check(keyring);
416 
417 	awaken = 0;
418 	ret = -EBUSY;
419 
420 	mutex_lock(&key_construction_mutex);
421 
422 	/* can't instantiate twice */
423 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
424 		/* instantiate the key */
425 		ret = key->type->instantiate(key, prep);
426 
427 		if (ret == 0) {
428 			/* mark the key as being instantiated */
429 			atomic_inc(&key->user->nikeys);
430 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
431 
432 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
433 				awaken = 1;
434 
435 			/* and link it into the destination keyring */
436 			if (keyring)
437 				__key_link(key, _edit);
438 
439 			/* disable the authorisation key */
440 			if (authkey)
441 				key_revoke(authkey);
442 
443 			if (prep->expiry != TIME_T_MAX) {
444 				key->expiry = prep->expiry;
445 				key_schedule_gc(prep->expiry + key_gc_delay);
446 			}
447 		}
448 	}
449 
450 	mutex_unlock(&key_construction_mutex);
451 
452 	/* wake up anyone waiting for a key to be constructed */
453 	if (awaken)
454 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
455 
456 	return ret;
457 }
458 
459 /**
460  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
461  * @key: The key to instantiate.
462  * @data: The data to use to instantiate the keyring.
463  * @datalen: The length of @data.
464  * @keyring: Keyring to create a link in on success (or NULL).
465  * @authkey: The authorisation token permitting instantiation.
466  *
467  * Instantiate a key that's in the uninstantiated state using the provided data
468  * and, if successful, link it in to the destination keyring if one is
469  * supplied.
470  *
471  * If successful, 0 is returned, the authorisation token is revoked and anyone
472  * waiting for the key is woken up.  If the key was already instantiated,
473  * -EBUSY will be returned.
474  */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)475 int key_instantiate_and_link(struct key *key,
476 			     const void *data,
477 			     size_t datalen,
478 			     struct key *keyring,
479 			     struct key *authkey)
480 {
481 	struct key_preparsed_payload prep;
482 	struct assoc_array_edit *edit;
483 	int ret;
484 
485 	memset(&prep, 0, sizeof(prep));
486 	prep.data = data;
487 	prep.datalen = datalen;
488 	prep.quotalen = key->type->def_datalen;
489 	prep.expiry = TIME_T_MAX;
490 	if (key->type->preparse) {
491 		ret = key->type->preparse(&prep);
492 		if (ret < 0)
493 			goto error;
494 	}
495 
496 	if (keyring) {
497 		ret = __key_link_begin(keyring, &key->index_key, &edit);
498 		if (ret < 0)
499 			goto error;
500 	}
501 
502 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
503 
504 	if (keyring)
505 		__key_link_end(keyring, &key->index_key, edit);
506 
507 error:
508 	if (key->type->preparse)
509 		key->type->free_preparse(&prep);
510 	return ret;
511 }
512 
513 EXPORT_SYMBOL(key_instantiate_and_link);
514 
515 /**
516  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
517  * @key: The key to instantiate.
518  * @timeout: The timeout on the negative key.
519  * @error: The error to return when the key is hit.
520  * @keyring: Keyring to create a link in on success (or NULL).
521  * @authkey: The authorisation token permitting instantiation.
522  *
523  * Negatively instantiate a key that's in the uninstantiated state and, if
524  * successful, set its timeout and stored error and link it in to the
525  * destination keyring if one is supplied.  The key and any links to the key
526  * will be automatically garbage collected after the timeout expires.
527  *
528  * Negative keys are used to rate limit repeated request_key() calls by causing
529  * them to return the stored error code (typically ENOKEY) until the negative
530  * key expires.
531  *
532  * If successful, 0 is returned, the authorisation token is revoked and anyone
533  * waiting for the key is woken up.  If the key was already instantiated,
534  * -EBUSY will be returned.
535  */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)536 int key_reject_and_link(struct key *key,
537 			unsigned timeout,
538 			unsigned error,
539 			struct key *keyring,
540 			struct key *authkey)
541 {
542 	struct assoc_array_edit *edit;
543 	struct timespec now;
544 	int ret, awaken, link_ret = 0;
545 
546 	key_check(key);
547 	key_check(keyring);
548 
549 	awaken = 0;
550 	ret = -EBUSY;
551 
552 	if (keyring)
553 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
554 
555 	mutex_lock(&key_construction_mutex);
556 
557 	/* can't instantiate twice */
558 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
559 		/* mark the key as being negatively instantiated */
560 		atomic_inc(&key->user->nikeys);
561 		key->type_data.reject_error = -error;
562 		smp_wmb();
563 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
564 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
565 		now = current_kernel_time();
566 		key->expiry = now.tv_sec + timeout;
567 		key_schedule_gc(key->expiry + key_gc_delay);
568 
569 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
570 			awaken = 1;
571 
572 		ret = 0;
573 
574 		/* and link it into the destination keyring */
575 		if (keyring && link_ret == 0)
576 			__key_link(key, &edit);
577 
578 		/* disable the authorisation key */
579 		if (authkey)
580 			key_revoke(authkey);
581 	}
582 
583 	mutex_unlock(&key_construction_mutex);
584 
585 	if (keyring && link_ret == 0)
586 		__key_link_end(keyring, &key->index_key, edit);
587 
588 	/* wake up anyone waiting for a key to be constructed */
589 	if (awaken)
590 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
591 
592 	return ret == 0 ? link_ret : ret;
593 }
594 EXPORT_SYMBOL(key_reject_and_link);
595 
596 /**
597  * key_put - Discard a reference to a key.
598  * @key: The key to discard a reference from.
599  *
600  * Discard a reference to a key, and when all the references are gone, we
601  * schedule the cleanup task to come and pull it out of the tree in process
602  * context at some later time.
603  */
key_put(struct key * key)604 void key_put(struct key *key)
605 {
606 	if (key) {
607 		key_check(key);
608 
609 		if (atomic_dec_and_test(&key->usage))
610 			schedule_work(&key_gc_work);
611 	}
612 }
613 EXPORT_SYMBOL(key_put);
614 
615 /*
616  * Find a key by its serial number.
617  */
key_lookup(key_serial_t id)618 struct key *key_lookup(key_serial_t id)
619 {
620 	struct rb_node *n;
621 	struct key *key;
622 
623 	spin_lock(&key_serial_lock);
624 
625 	/* search the tree for the specified key */
626 	n = key_serial_tree.rb_node;
627 	while (n) {
628 		key = rb_entry(n, struct key, serial_node);
629 
630 		if (id < key->serial)
631 			n = n->rb_left;
632 		else if (id > key->serial)
633 			n = n->rb_right;
634 		else
635 			goto found;
636 	}
637 
638 not_found:
639 	key = ERR_PTR(-ENOKEY);
640 	goto error;
641 
642 found:
643 	/* pretend it doesn't exist if it is awaiting deletion */
644 	if (atomic_read(&key->usage) == 0)
645 		goto not_found;
646 
647 	/* this races with key_put(), but that doesn't matter since key_put()
648 	 * doesn't actually change the key
649 	 */
650 	__key_get(key);
651 
652 error:
653 	spin_unlock(&key_serial_lock);
654 	return key;
655 }
656 
657 /*
658  * Find and lock the specified key type against removal.
659  *
660  * We return with the sem read-locked if successful.  If the type wasn't
661  * available -ENOKEY is returned instead.
662  */
key_type_lookup(const char * type)663 struct key_type *key_type_lookup(const char *type)
664 {
665 	struct key_type *ktype;
666 
667 	down_read(&key_types_sem);
668 
669 	/* look up the key type to see if it's one of the registered kernel
670 	 * types */
671 	list_for_each_entry(ktype, &key_types_list, link) {
672 		if (strcmp(ktype->name, type) == 0)
673 			goto found_kernel_type;
674 	}
675 
676 	up_read(&key_types_sem);
677 	ktype = ERR_PTR(-ENOKEY);
678 
679 found_kernel_type:
680 	return ktype;
681 }
682 
key_set_timeout(struct key * key,unsigned timeout)683 void key_set_timeout(struct key *key, unsigned timeout)
684 {
685 	struct timespec now;
686 	time_t expiry = 0;
687 
688 	/* make the changes with the locks held to prevent races */
689 	down_write(&key->sem);
690 
691 	if (timeout > 0) {
692 		now = current_kernel_time();
693 		expiry = now.tv_sec + timeout;
694 	}
695 
696 	key->expiry = expiry;
697 	key_schedule_gc(key->expiry + key_gc_delay);
698 
699 	up_write(&key->sem);
700 }
701 EXPORT_SYMBOL_GPL(key_set_timeout);
702 
703 /*
704  * Unlock a key type locked by key_type_lookup().
705  */
key_type_put(struct key_type * ktype)706 void key_type_put(struct key_type *ktype)
707 {
708 	up_read(&key_types_sem);
709 }
710 
711 /*
712  * Attempt to update an existing key.
713  *
714  * The key is given to us with an incremented refcount that we need to discard
715  * if we get an error.
716  */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)717 static inline key_ref_t __key_update(key_ref_t key_ref,
718 				     struct key_preparsed_payload *prep)
719 {
720 	struct key *key = key_ref_to_ptr(key_ref);
721 	int ret;
722 
723 	/* need write permission on the key to update it */
724 	ret = key_permission(key_ref, KEY_NEED_WRITE);
725 	if (ret < 0)
726 		goto error;
727 
728 	ret = -EEXIST;
729 	if (!key->type->update)
730 		goto error;
731 
732 	down_write(&key->sem);
733 
734 	ret = key->type->update(key, prep);
735 	if (ret == 0)
736 		/* updating a negative key instantiates it */
737 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
738 
739 	up_write(&key->sem);
740 
741 	if (ret < 0)
742 		goto error;
743 out:
744 	return key_ref;
745 
746 error:
747 	key_put(key);
748 	key_ref = ERR_PTR(ret);
749 	goto out;
750 }
751 
752 /**
753  * key_create_or_update - Update or create and instantiate a key.
754  * @keyring_ref: A pointer to the destination keyring with possession flag.
755  * @type: The type of key.
756  * @description: The searchable description for the key.
757  * @payload: The data to use to instantiate or update the key.
758  * @plen: The length of @payload.
759  * @perm: The permissions mask for a new key.
760  * @flags: The quota flags for a new key.
761  *
762  * Search the destination keyring for a key of the same description and if one
763  * is found, update it, otherwise create and instantiate a new one and create a
764  * link to it from that keyring.
765  *
766  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
767  * concocted.
768  *
769  * Returns a pointer to the new key if successful, -ENODEV if the key type
770  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
771  * caller isn't permitted to modify the keyring or the LSM did not permit
772  * creation of the key.
773  *
774  * On success, the possession flag from the keyring ref will be tacked on to
775  * the key ref before it is returned.
776  */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)777 key_ref_t key_create_or_update(key_ref_t keyring_ref,
778 			       const char *type,
779 			       const char *description,
780 			       const void *payload,
781 			       size_t plen,
782 			       key_perm_t perm,
783 			       unsigned long flags)
784 {
785 	struct keyring_index_key index_key = {
786 		.description	= description,
787 	};
788 	struct key_preparsed_payload prep;
789 	struct assoc_array_edit *edit;
790 	const struct cred *cred = current_cred();
791 	struct key *keyring, *key = NULL;
792 	key_ref_t key_ref;
793 	int ret;
794 
795 	/* look up the key type to see if it's one of the registered kernel
796 	 * types */
797 	index_key.type = key_type_lookup(type);
798 	if (IS_ERR(index_key.type)) {
799 		key_ref = ERR_PTR(-ENODEV);
800 		goto error;
801 	}
802 
803 	key_ref = ERR_PTR(-EINVAL);
804 	if (!index_key.type->instantiate ||
805 	    (!index_key.description && !index_key.type->preparse))
806 		goto error_put_type;
807 
808 	keyring = key_ref_to_ptr(keyring_ref);
809 
810 	key_check(keyring);
811 
812 	key_ref = ERR_PTR(-ENOTDIR);
813 	if (keyring->type != &key_type_keyring)
814 		goto error_put_type;
815 
816 	memset(&prep, 0, sizeof(prep));
817 	prep.data = payload;
818 	prep.datalen = plen;
819 	prep.quotalen = index_key.type->def_datalen;
820 	prep.trusted = flags & KEY_ALLOC_TRUSTED;
821 	prep.expiry = TIME_T_MAX;
822 	if (index_key.type->preparse) {
823 		ret = index_key.type->preparse(&prep);
824 		if (ret < 0) {
825 			key_ref = ERR_PTR(ret);
826 			goto error_free_prep;
827 		}
828 		if (!index_key.description)
829 			index_key.description = prep.description;
830 		key_ref = ERR_PTR(-EINVAL);
831 		if (!index_key.description)
832 			goto error_free_prep;
833 	}
834 	index_key.desc_len = strlen(index_key.description);
835 
836 	key_ref = ERR_PTR(-EPERM);
837 	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
838 		goto error_free_prep;
839 	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
840 
841 	ret = __key_link_begin(keyring, &index_key, &edit);
842 	if (ret < 0) {
843 		key_ref = ERR_PTR(ret);
844 		goto error_free_prep;
845 	}
846 
847 	/* if we're going to allocate a new key, we're going to have
848 	 * to modify the keyring */
849 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
850 	if (ret < 0) {
851 		key_ref = ERR_PTR(ret);
852 		goto error_link_end;
853 	}
854 
855 	/* if it's possible to update this type of key, search for an existing
856 	 * key of the same type and description in the destination keyring and
857 	 * update that instead if possible
858 	 */
859 	if (index_key.type->update) {
860 		key_ref = find_key_to_update(keyring_ref, &index_key);
861 		if (key_ref)
862 			goto found_matching_key;
863 	}
864 
865 	/* if the client doesn't provide, decide on the permissions we want */
866 	if (perm == KEY_PERM_UNDEF) {
867 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
868 		perm |= KEY_USR_VIEW;
869 
870 		if (index_key.type->read)
871 			perm |= KEY_POS_READ;
872 
873 		if (index_key.type == &key_type_keyring ||
874 		    index_key.type->update)
875 			perm |= KEY_POS_WRITE;
876 	}
877 
878 	/* allocate a new key */
879 	key = key_alloc(index_key.type, index_key.description,
880 			cred->fsuid, cred->fsgid, cred, perm, flags);
881 	if (IS_ERR(key)) {
882 		key_ref = ERR_CAST(key);
883 		goto error_link_end;
884 	}
885 
886 	/* instantiate it and link it into the target keyring */
887 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
888 	if (ret < 0) {
889 		key_put(key);
890 		key_ref = ERR_PTR(ret);
891 		goto error_link_end;
892 	}
893 
894 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
895 
896 error_link_end:
897 	__key_link_end(keyring, &index_key, edit);
898 error_free_prep:
899 	if (index_key.type->preparse)
900 		index_key.type->free_preparse(&prep);
901 error_put_type:
902 	key_type_put(index_key.type);
903 error:
904 	return key_ref;
905 
906  found_matching_key:
907 	/* we found a matching key, so we're going to try to update it
908 	 * - we can drop the locks first as we have the key pinned
909 	 */
910 	__key_link_end(keyring, &index_key, edit);
911 
912 	key = key_ref_to_ptr(key_ref);
913 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
914 		ret = wait_for_key_construction(key, true);
915 		if (ret < 0) {
916 			key_ref_put(key_ref);
917 			key_ref = ERR_PTR(ret);
918 			goto error_free_prep;
919 		}
920 	}
921 
922 	key_ref = __key_update(key_ref, &prep);
923 	goto error_free_prep;
924 }
925 EXPORT_SYMBOL(key_create_or_update);
926 
927 /**
928  * key_update - Update a key's contents.
929  * @key_ref: The pointer (plus possession flag) to the key.
930  * @payload: The data to be used to update the key.
931  * @plen: The length of @payload.
932  *
933  * Attempt to update the contents of a key with the given payload data.  The
934  * caller must be granted Write permission on the key.  Negative keys can be
935  * instantiated by this method.
936  *
937  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
938  * type does not support updating.  The key type may return other errors.
939  */
key_update(key_ref_t key_ref,const void * payload,size_t plen)940 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
941 {
942 	struct key_preparsed_payload prep;
943 	struct key *key = key_ref_to_ptr(key_ref);
944 	int ret;
945 
946 	key_check(key);
947 
948 	/* the key must be writable */
949 	ret = key_permission(key_ref, KEY_NEED_WRITE);
950 	if (ret < 0)
951 		return ret;
952 
953 	/* attempt to update it if supported */
954 	if (!key->type->update)
955 		return -EOPNOTSUPP;
956 
957 	memset(&prep, 0, sizeof(prep));
958 	prep.data = payload;
959 	prep.datalen = plen;
960 	prep.quotalen = key->type->def_datalen;
961 	prep.expiry = TIME_T_MAX;
962 	if (key->type->preparse) {
963 		ret = key->type->preparse(&prep);
964 		if (ret < 0)
965 			goto error;
966 	}
967 
968 	down_write(&key->sem);
969 
970 	ret = key->type->update(key, &prep);
971 	if (ret == 0)
972 		/* updating a negative key instantiates it */
973 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
974 
975 	up_write(&key->sem);
976 
977 error:
978 	if (key->type->preparse)
979 		key->type->free_preparse(&prep);
980 	return ret;
981 }
982 EXPORT_SYMBOL(key_update);
983 
984 /**
985  * key_revoke - Revoke a key.
986  * @key: The key to be revoked.
987  *
988  * Mark a key as being revoked and ask the type to free up its resources.  The
989  * revocation timeout is set and the key and all its links will be
990  * automatically garbage collected after key_gc_delay amount of time if they
991  * are not manually dealt with first.
992  */
key_revoke(struct key * key)993 void key_revoke(struct key *key)
994 {
995 	struct timespec now;
996 	time_t time;
997 
998 	key_check(key);
999 
1000 	/* make sure no one's trying to change or use the key when we mark it
1001 	 * - we tell lockdep that we might nest because we might be revoking an
1002 	 *   authorisation key whilst holding the sem on a key we've just
1003 	 *   instantiated
1004 	 */
1005 	down_write_nested(&key->sem, 1);
1006 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1007 	    key->type->revoke)
1008 		key->type->revoke(key);
1009 
1010 	/* set the death time to no more than the expiry time */
1011 	now = current_kernel_time();
1012 	time = now.tv_sec;
1013 	if (key->revoked_at == 0 || key->revoked_at > time) {
1014 		key->revoked_at = time;
1015 		key_schedule_gc(key->revoked_at + key_gc_delay);
1016 	}
1017 
1018 	up_write(&key->sem);
1019 }
1020 EXPORT_SYMBOL(key_revoke);
1021 
1022 /**
1023  * key_invalidate - Invalidate a key.
1024  * @key: The key to be invalidated.
1025  *
1026  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1027  * is ignored by all searches and other operations from this point.
1028  */
key_invalidate(struct key * key)1029 void key_invalidate(struct key *key)
1030 {
1031 	kenter("%d", key_serial(key));
1032 
1033 	key_check(key);
1034 
1035 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1036 		down_write_nested(&key->sem, 1);
1037 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1038 			key_schedule_gc_links();
1039 		up_write(&key->sem);
1040 	}
1041 }
1042 EXPORT_SYMBOL(key_invalidate);
1043 
1044 /**
1045  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1046  * @key: The key to be instantiated
1047  * @prep: The preparsed data to load.
1048  *
1049  * Instantiate a key from preparsed data.  We assume we can just copy the data
1050  * in directly and clear the old pointers.
1051  *
1052  * This can be pointed to directly by the key type instantiate op pointer.
1053  */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1054 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1055 {
1056 	int ret;
1057 
1058 	pr_devel("==>%s()\n", __func__);
1059 
1060 	ret = key_payload_reserve(key, prep->quotalen);
1061 	if (ret == 0) {
1062 		key->type_data.p[0] = prep->type_data[0];
1063 		key->type_data.p[1] = prep->type_data[1];
1064 		rcu_assign_keypointer(key, prep->payload[0]);
1065 		key->payload.data2[1] = prep->payload[1];
1066 		prep->type_data[0] = NULL;
1067 		prep->type_data[1] = NULL;
1068 		prep->payload[0] = NULL;
1069 		prep->payload[1] = NULL;
1070 	}
1071 	pr_devel("<==%s() = %d\n", __func__, ret);
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL(generic_key_instantiate);
1075 
1076 /**
1077  * register_key_type - Register a type of key.
1078  * @ktype: The new key type.
1079  *
1080  * Register a new key type.
1081  *
1082  * Returns 0 on success or -EEXIST if a type of this name already exists.
1083  */
register_key_type(struct key_type * ktype)1084 int register_key_type(struct key_type *ktype)
1085 {
1086 	struct key_type *p;
1087 	int ret;
1088 
1089 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1090 
1091 	ret = -EEXIST;
1092 	down_write(&key_types_sem);
1093 
1094 	/* disallow key types with the same name */
1095 	list_for_each_entry(p, &key_types_list, link) {
1096 		if (strcmp(p->name, ktype->name) == 0)
1097 			goto out;
1098 	}
1099 
1100 	/* store the type */
1101 	list_add(&ktype->link, &key_types_list);
1102 
1103 	pr_notice("Key type %s registered\n", ktype->name);
1104 	ret = 0;
1105 
1106 out:
1107 	up_write(&key_types_sem);
1108 	return ret;
1109 }
1110 EXPORT_SYMBOL(register_key_type);
1111 
1112 /**
1113  * unregister_key_type - Unregister a type of key.
1114  * @ktype: The key type.
1115  *
1116  * Unregister a key type and mark all the extant keys of this type as dead.
1117  * Those keys of this type are then destroyed to get rid of their payloads and
1118  * they and their links will be garbage collected as soon as possible.
1119  */
unregister_key_type(struct key_type * ktype)1120 void unregister_key_type(struct key_type *ktype)
1121 {
1122 	down_write(&key_types_sem);
1123 	list_del_init(&ktype->link);
1124 	downgrade_write(&key_types_sem);
1125 	key_gc_keytype(ktype);
1126 	pr_notice("Key type %s unregistered\n", ktype->name);
1127 	up_read(&key_types_sem);
1128 }
1129 EXPORT_SYMBOL(unregister_key_type);
1130 
1131 /*
1132  * Initialise the key management state.
1133  */
key_init(void)1134 void __init key_init(void)
1135 {
1136 	/* allocate a slab in which we can store keys */
1137 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1138 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1139 
1140 	/* add the special key types */
1141 	list_add_tail(&key_type_keyring.link, &key_types_list);
1142 	list_add_tail(&key_type_dead.link, &key_types_list);
1143 	list_add_tail(&key_type_user.link, &key_types_list);
1144 	list_add_tail(&key_type_logon.link, &key_types_list);
1145 
1146 	/* record the root user tracking */
1147 	rb_link_node(&root_key_user.node,
1148 		     NULL,
1149 		     &key_user_tree.rb_node);
1150 
1151 	rb_insert_color(&root_key_user.node,
1152 			&key_user_tree);
1153 }
1154