1 /*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
5 *
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy.
10 *
11 * This driver also supports the LM89 and LM99, two other sensor chips
12 * made by National Semiconductor. Both have an increased remote
13 * temperature measurement accuracy (1 degree), and the LM99
14 * additionally shifts remote temperatures (measured and limits) by 16
15 * degrees, which allows for higher temperatures measurement.
16 * Note that there is no way to differentiate between both chips.
17 * When device is auto-detected, the driver will assume an LM99.
18 *
19 * This driver also supports the LM86, another sensor chip made by
20 * National Semiconductor. It is exactly similar to the LM90 except it
21 * has a higher accuracy.
22 *
23 * This driver also supports the ADM1032, a sensor chip made by Analog
24 * Devices. That chip is similar to the LM90, with a few differences
25 * that are not handled by this driver. Among others, it has a higher
26 * accuracy than the LM90, much like the LM86 does.
27 *
28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29 * chips made by Maxim. These chips are similar to the LM86.
30 * Note that there is no easy way to differentiate between the three
31 * variants. We use the device address to detect MAX6659, which will result
32 * in a detection as max6657 if it is on address 0x4c. The extra address
33 * and features of the MAX6659 are only supported if the chip is configured
34 * explicitly as max6659, or if its address is not 0x4c.
35 * These chips lack the remote temperature offset feature.
36 *
37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38 * MAX6692 chips made by Maxim. These are again similar to the LM86,
39 * but they use unsigned temperature values and can report temperatures
40 * from 0 to 145 degrees.
41 *
42 * This driver also supports the MAX6680 and MAX6681, two other sensor
43 * chips made by Maxim. These are quite similar to the other Maxim
44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45 * be treated identically.
46 *
47 * This driver also supports the MAX6695 and MAX6696, two other sensor
48 * chips made by Maxim. These are also quite similar to other Maxim
49 * chips, but support three temperature sensors instead of two. MAX6695
50 * and MAX6696 only differ in the pinout so they can be treated identically.
51 *
52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54 * and extended mode. They are mostly compatible with LM90 except for a data
55 * format difference for the temperature value registers.
56 *
57 * This driver also supports the SA56004 from Philips. This device is
58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59 *
60 * This driver also supports the G781 from GMT. This device is compatible
61 * with the ADM1032.
62 *
63 * This driver also supports TMP451 from Texas Instruments. This device is
64 * supported in both compatibility and extended mode. It's mostly compatible
65 * with ADT7461 except for local temperature low byte register and max
66 * conversion rate.
67 *
68 * Since the LM90 was the first chipset supported by this driver, most
69 * comments will refer to this chipset, but are actually general and
70 * concern all supported chipsets, unless mentioned otherwise.
71 *
72 * This program is free software; you can redistribute it and/or modify
73 * it under the terms of the GNU General Public License as published by
74 * the Free Software Foundation; either version 2 of the License, or
75 * (at your option) any later version.
76 *
77 * This program is distributed in the hope that it will be useful,
78 * but WITHOUT ANY WARRANTY; without even the implied warranty of
79 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
80 * GNU General Public License for more details.
81 *
82 * You should have received a copy of the GNU General Public License
83 * along with this program; if not, write to the Free Software
84 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
85 */
86
87 #include <linux/module.h>
88 #include <linux/init.h>
89 #include <linux/slab.h>
90 #include <linux/jiffies.h>
91 #include <linux/i2c.h>
92 #include <linux/hwmon-sysfs.h>
93 #include <linux/hwmon.h>
94 #include <linux/err.h>
95 #include <linux/mutex.h>
96 #include <linux/sysfs.h>
97 #include <linux/interrupt.h>
98 #include <linux/regulator/consumer.h>
99
100 /*
101 * Addresses to scan
102 * Address is fully defined internally and cannot be changed except for
103 * MAX6659, MAX6680 and MAX6681.
104 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
105 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
106 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
107 * have address 0x4d.
108 * MAX6647 has address 0x4e.
109 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
110 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
111 * 0x4c, 0x4d or 0x4e.
112 * SA56004 can have address 0x48 through 0x4F.
113 */
114
115 static const unsigned short normal_i2c[] = {
116 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
117 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
118
119 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
120 max6646, w83l771, max6696, sa56004, g781, tmp451 };
121
122 /*
123 * The LM90 registers
124 */
125
126 #define LM90_REG_R_MAN_ID 0xFE
127 #define LM90_REG_R_CHIP_ID 0xFF
128 #define LM90_REG_R_CONFIG1 0x03
129 #define LM90_REG_W_CONFIG1 0x09
130 #define LM90_REG_R_CONFIG2 0xBF
131 #define LM90_REG_W_CONFIG2 0xBF
132 #define LM90_REG_R_CONVRATE 0x04
133 #define LM90_REG_W_CONVRATE 0x0A
134 #define LM90_REG_R_STATUS 0x02
135 #define LM90_REG_R_LOCAL_TEMP 0x00
136 #define LM90_REG_R_LOCAL_HIGH 0x05
137 #define LM90_REG_W_LOCAL_HIGH 0x0B
138 #define LM90_REG_R_LOCAL_LOW 0x06
139 #define LM90_REG_W_LOCAL_LOW 0x0C
140 #define LM90_REG_R_LOCAL_CRIT 0x20
141 #define LM90_REG_W_LOCAL_CRIT 0x20
142 #define LM90_REG_R_REMOTE_TEMPH 0x01
143 #define LM90_REG_R_REMOTE_TEMPL 0x10
144 #define LM90_REG_R_REMOTE_OFFSH 0x11
145 #define LM90_REG_W_REMOTE_OFFSH 0x11
146 #define LM90_REG_R_REMOTE_OFFSL 0x12
147 #define LM90_REG_W_REMOTE_OFFSL 0x12
148 #define LM90_REG_R_REMOTE_HIGHH 0x07
149 #define LM90_REG_W_REMOTE_HIGHH 0x0D
150 #define LM90_REG_R_REMOTE_HIGHL 0x13
151 #define LM90_REG_W_REMOTE_HIGHL 0x13
152 #define LM90_REG_R_REMOTE_LOWH 0x08
153 #define LM90_REG_W_REMOTE_LOWH 0x0E
154 #define LM90_REG_R_REMOTE_LOWL 0x14
155 #define LM90_REG_W_REMOTE_LOWL 0x14
156 #define LM90_REG_R_REMOTE_CRIT 0x19
157 #define LM90_REG_W_REMOTE_CRIT 0x19
158 #define LM90_REG_R_TCRIT_HYST 0x21
159 #define LM90_REG_W_TCRIT_HYST 0x21
160
161 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
162
163 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
164 #define MAX6696_REG_R_STATUS2 0x12
165 #define MAX6659_REG_R_REMOTE_EMERG 0x16
166 #define MAX6659_REG_W_REMOTE_EMERG 0x16
167 #define MAX6659_REG_R_LOCAL_EMERG 0x17
168 #define MAX6659_REG_W_LOCAL_EMERG 0x17
169
170 /* SA56004 registers */
171
172 #define SA56004_REG_R_LOCAL_TEMPL 0x22
173
174 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
175 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
176
177 /* TMP451 registers */
178 #define TMP451_REG_R_LOCAL_TEMPL 0x15
179
180 /*
181 * Device flags
182 */
183 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
184 /* Device features */
185 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
186 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
187 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
188 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
189 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
190 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
191
192 /* LM90 status */
193 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */
194 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */
195 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */
196 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */
197 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */
198 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */
199 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */
200
201 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */
202 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */
203 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */
204 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */
205 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */
206 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */
207 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */
208
209 /*
210 * Driver data (common to all clients)
211 */
212
213 static const struct i2c_device_id lm90_id[] = {
214 { "adm1032", adm1032 },
215 { "adt7461", adt7461 },
216 { "adt7461a", adt7461 },
217 { "g781", g781 },
218 { "lm90", lm90 },
219 { "lm86", lm86 },
220 { "lm89", lm86 },
221 { "lm99", lm99 },
222 { "max6646", max6646 },
223 { "max6647", max6646 },
224 { "max6649", max6646 },
225 { "max6657", max6657 },
226 { "max6658", max6657 },
227 { "max6659", max6659 },
228 { "max6680", max6680 },
229 { "max6681", max6680 },
230 { "max6695", max6696 },
231 { "max6696", max6696 },
232 { "nct1008", adt7461 },
233 { "w83l771", w83l771 },
234 { "sa56004", sa56004 },
235 { "tmp451", tmp451 },
236 { }
237 };
238 MODULE_DEVICE_TABLE(i2c, lm90_id);
239
240 /*
241 * chip type specific parameters
242 */
243 struct lm90_params {
244 u32 flags; /* Capabilities */
245 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
246 /* Upper 8 bits for max6695/96 */
247 u8 max_convrate; /* Maximum conversion rate register value */
248 u8 reg_local_ext; /* Extended local temp register (optional) */
249 };
250
251 static const struct lm90_params lm90_params[] = {
252 [adm1032] = {
253 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
254 | LM90_HAVE_BROKEN_ALERT,
255 .alert_alarms = 0x7c,
256 .max_convrate = 10,
257 },
258 [adt7461] = {
259 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
260 | LM90_HAVE_BROKEN_ALERT,
261 .alert_alarms = 0x7c,
262 .max_convrate = 10,
263 },
264 [g781] = {
265 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
266 | LM90_HAVE_BROKEN_ALERT,
267 .alert_alarms = 0x7c,
268 .max_convrate = 8,
269 },
270 [lm86] = {
271 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
272 .alert_alarms = 0x7b,
273 .max_convrate = 9,
274 },
275 [lm90] = {
276 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
277 .alert_alarms = 0x7b,
278 .max_convrate = 9,
279 },
280 [lm99] = {
281 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
282 .alert_alarms = 0x7b,
283 .max_convrate = 9,
284 },
285 [max6646] = {
286 .alert_alarms = 0x7c,
287 .max_convrate = 6,
288 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
289 },
290 [max6657] = {
291 .alert_alarms = 0x7c,
292 .max_convrate = 8,
293 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
294 },
295 [max6659] = {
296 .flags = LM90_HAVE_EMERGENCY,
297 .alert_alarms = 0x7c,
298 .max_convrate = 8,
299 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
300 },
301 [max6680] = {
302 .flags = LM90_HAVE_OFFSET,
303 .alert_alarms = 0x7c,
304 .max_convrate = 7,
305 },
306 [max6696] = {
307 .flags = LM90_HAVE_EMERGENCY
308 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
309 .alert_alarms = 0x1c7c,
310 .max_convrate = 6,
311 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
312 },
313 [w83l771] = {
314 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
315 .alert_alarms = 0x7c,
316 .max_convrate = 8,
317 },
318 [sa56004] = {
319 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
320 .alert_alarms = 0x7b,
321 .max_convrate = 9,
322 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
323 },
324 [tmp451] = {
325 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
326 | LM90_HAVE_BROKEN_ALERT,
327 .alert_alarms = 0x7c,
328 .max_convrate = 9,
329 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
330 }
331 };
332
333 /*
334 * TEMP8 register index
335 */
336 enum lm90_temp8_reg_index {
337 LOCAL_LOW = 0,
338 LOCAL_HIGH,
339 LOCAL_CRIT,
340 REMOTE_CRIT,
341 LOCAL_EMERG, /* max6659 and max6695/96 */
342 REMOTE_EMERG, /* max6659 and max6695/96 */
343 REMOTE2_CRIT, /* max6695/96 only */
344 REMOTE2_EMERG, /* max6695/96 only */
345 TEMP8_REG_NUM
346 };
347
348 /*
349 * TEMP11 register index
350 */
351 enum lm90_temp11_reg_index {
352 REMOTE_TEMP = 0,
353 REMOTE_LOW,
354 REMOTE_HIGH,
355 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
356 LOCAL_TEMP,
357 REMOTE2_TEMP, /* max6695/96 only */
358 REMOTE2_LOW, /* max6695/96 only */
359 REMOTE2_HIGH, /* max6695/96 only */
360 TEMP11_REG_NUM
361 };
362
363 /*
364 * Client data (each client gets its own)
365 */
366
367 struct lm90_data {
368 struct i2c_client *client;
369 struct device *hwmon_dev;
370 const struct attribute_group *groups[6];
371 struct mutex update_lock;
372 struct regulator *regulator;
373 char valid; /* zero until following fields are valid */
374 unsigned long last_updated; /* in jiffies */
375 int kind;
376 u32 flags;
377
378 int update_interval; /* in milliseconds */
379
380 u8 config_orig; /* Original configuration register value */
381 u8 convrate_orig; /* Original conversion rate register value */
382 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
383 /* Upper 8 bits for max6695/96 */
384 u8 max_convrate; /* Maximum conversion rate */
385 u8 reg_local_ext; /* local extension register offset */
386
387 /* registers values */
388 s8 temp8[TEMP8_REG_NUM];
389 s16 temp11[TEMP11_REG_NUM];
390 u8 temp_hyst;
391 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
392 };
393
394 /*
395 * Support functions
396 */
397
398 /*
399 * The ADM1032 supports PEC but not on write byte transactions, so we need
400 * to explicitly ask for a transaction without PEC.
401 */
adm1032_write_byte(struct i2c_client * client,u8 value)402 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
403 {
404 return i2c_smbus_xfer(client->adapter, client->addr,
405 client->flags & ~I2C_CLIENT_PEC,
406 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
407 }
408
409 /*
410 * It is assumed that client->update_lock is held (unless we are in
411 * detection or initialization steps). This matters when PEC is enabled,
412 * because we don't want the address pointer to change between the write
413 * byte and the read byte transactions.
414 */
lm90_read_reg(struct i2c_client * client,u8 reg,u8 * value)415 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
416 {
417 int err;
418
419 if (client->flags & I2C_CLIENT_PEC) {
420 err = adm1032_write_byte(client, reg);
421 if (err >= 0)
422 err = i2c_smbus_read_byte(client);
423 } else
424 err = i2c_smbus_read_byte_data(client, reg);
425
426 if (err < 0) {
427 dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
428 reg, err);
429 return err;
430 }
431 *value = err;
432
433 return 0;
434 }
435
lm90_read16(struct i2c_client * client,u8 regh,u8 regl,u16 * value)436 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
437 {
438 int err;
439 u8 oldh, newh, l;
440
441 /*
442 * There is a trick here. We have to read two registers to have the
443 * sensor temperature, but we have to beware a conversion could occur
444 * between the readings. The datasheet says we should either use
445 * the one-shot conversion register, which we don't want to do
446 * (disables hardware monitoring) or monitor the busy bit, which is
447 * impossible (we can't read the values and monitor that bit at the
448 * exact same time). So the solution used here is to read the high
449 * byte once, then the low byte, then the high byte again. If the new
450 * high byte matches the old one, then we have a valid reading. Else
451 * we have to read the low byte again, and now we believe we have a
452 * correct reading.
453 */
454 if ((err = lm90_read_reg(client, regh, &oldh))
455 || (err = lm90_read_reg(client, regl, &l))
456 || (err = lm90_read_reg(client, regh, &newh)))
457 return err;
458 if (oldh != newh) {
459 err = lm90_read_reg(client, regl, &l);
460 if (err)
461 return err;
462 }
463 *value = (newh << 8) | l;
464
465 return 0;
466 }
467
468 /*
469 * client->update_lock must be held when calling this function (unless we are
470 * in detection or initialization steps), and while a remote channel other
471 * than channel 0 is selected. Also, calling code must make sure to re-select
472 * external channel 0 before releasing the lock. This is necessary because
473 * various registers have different meanings as a result of selecting a
474 * non-default remote channel.
475 */
lm90_select_remote_channel(struct i2c_client * client,struct lm90_data * data,int channel)476 static inline void lm90_select_remote_channel(struct i2c_client *client,
477 struct lm90_data *data,
478 int channel)
479 {
480 u8 config;
481
482 if (data->kind == max6696) {
483 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
484 config &= ~0x08;
485 if (channel)
486 config |= 0x08;
487 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
488 config);
489 }
490 }
491
492 /*
493 * Set conversion rate.
494 * client->update_lock must be held when calling this function (unless we are
495 * in detection or initialization steps).
496 */
lm90_set_convrate(struct i2c_client * client,struct lm90_data * data,unsigned int interval)497 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
498 unsigned int interval)
499 {
500 int i;
501 unsigned int update_interval;
502
503 /* Shift calculations to avoid rounding errors */
504 interval <<= 6;
505
506 /* find the nearest update rate */
507 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
508 i < data->max_convrate; i++, update_interval >>= 1)
509 if (interval >= update_interval * 3 / 4)
510 break;
511
512 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
513 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
514 }
515
lm90_update_device(struct device * dev)516 static struct lm90_data *lm90_update_device(struct device *dev)
517 {
518 struct lm90_data *data = dev_get_drvdata(dev);
519 struct i2c_client *client = data->client;
520 unsigned long next_update;
521
522 mutex_lock(&data->update_lock);
523
524 next_update = data->last_updated +
525 msecs_to_jiffies(data->update_interval);
526 if (time_after(jiffies, next_update) || !data->valid) {
527 u8 h, l;
528 u8 alarms;
529
530 dev_dbg(&client->dev, "Updating lm90 data.\n");
531 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW,
532 &data->temp8[LOCAL_LOW]);
533 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH,
534 &data->temp8[LOCAL_HIGH]);
535 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT,
536 &data->temp8[LOCAL_CRIT]);
537 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
538 &data->temp8[REMOTE_CRIT]);
539 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
540
541 if (data->reg_local_ext) {
542 lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
543 data->reg_local_ext,
544 &data->temp11[LOCAL_TEMP]);
545 } else {
546 if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
547 &h) == 0)
548 data->temp11[LOCAL_TEMP] = h << 8;
549 }
550 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
551 LM90_REG_R_REMOTE_TEMPL,
552 &data->temp11[REMOTE_TEMP]);
553
554 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
555 data->temp11[REMOTE_LOW] = h << 8;
556 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
557 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
558 &l) == 0)
559 data->temp11[REMOTE_LOW] |= l;
560 }
561 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
562 data->temp11[REMOTE_HIGH] = h << 8;
563 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
564 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
565 &l) == 0)
566 data->temp11[REMOTE_HIGH] |= l;
567 }
568
569 if (data->flags & LM90_HAVE_OFFSET) {
570 if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
571 &h) == 0
572 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
573 &l) == 0)
574 data->temp11[REMOTE_OFFSET] = (h << 8) | l;
575 }
576 if (data->flags & LM90_HAVE_EMERGENCY) {
577 lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
578 &data->temp8[LOCAL_EMERG]);
579 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
580 &data->temp8[REMOTE_EMERG]);
581 }
582 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
583 data->alarms = alarms; /* save as 16 bit value */
584
585 if (data->kind == max6696) {
586 lm90_select_remote_channel(client, data, 1);
587 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
588 &data->temp8[REMOTE2_CRIT]);
589 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
590 &data->temp8[REMOTE2_EMERG]);
591 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
592 LM90_REG_R_REMOTE_TEMPL,
593 &data->temp11[REMOTE2_TEMP]);
594 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
595 data->temp11[REMOTE2_LOW] = h << 8;
596 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
597 data->temp11[REMOTE2_HIGH] = h << 8;
598 lm90_select_remote_channel(client, data, 0);
599
600 if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
601 &alarms))
602 data->alarms |= alarms << 8;
603 }
604
605 /*
606 * Re-enable ALERT# output if it was originally enabled and
607 * relevant alarms are all clear
608 */
609 if ((data->config_orig & 0x80) == 0
610 && (data->alarms & data->alert_alarms) == 0) {
611 u8 config;
612
613 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
614 if (config & 0x80) {
615 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
616 i2c_smbus_write_byte_data(client,
617 LM90_REG_W_CONFIG1,
618 config & ~0x80);
619 }
620 }
621
622 data->last_updated = jiffies;
623 data->valid = 1;
624 }
625
626 mutex_unlock(&data->update_lock);
627
628 return data;
629 }
630
631 /*
632 * Conversions
633 * For local temperatures and limits, critical limits and the hysteresis
634 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
635 * For remote temperatures and limits, it uses signed 11-bit values with
636 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
637 * Maxim chips use unsigned values.
638 */
639
temp_from_s8(s8 val)640 static inline int temp_from_s8(s8 val)
641 {
642 return val * 1000;
643 }
644
temp_from_u8(u8 val)645 static inline int temp_from_u8(u8 val)
646 {
647 return val * 1000;
648 }
649
temp_from_s16(s16 val)650 static inline int temp_from_s16(s16 val)
651 {
652 return val / 32 * 125;
653 }
654
temp_from_u16(u16 val)655 static inline int temp_from_u16(u16 val)
656 {
657 return val / 32 * 125;
658 }
659
temp_to_s8(long val)660 static s8 temp_to_s8(long val)
661 {
662 if (val <= -128000)
663 return -128;
664 if (val >= 127000)
665 return 127;
666 if (val < 0)
667 return (val - 500) / 1000;
668 return (val + 500) / 1000;
669 }
670
temp_to_u8(long val)671 static u8 temp_to_u8(long val)
672 {
673 if (val <= 0)
674 return 0;
675 if (val >= 255000)
676 return 255;
677 return (val + 500) / 1000;
678 }
679
temp_to_s16(long val)680 static s16 temp_to_s16(long val)
681 {
682 if (val <= -128000)
683 return 0x8000;
684 if (val >= 127875)
685 return 0x7FE0;
686 if (val < 0)
687 return (val - 62) / 125 * 32;
688 return (val + 62) / 125 * 32;
689 }
690
hyst_to_reg(long val)691 static u8 hyst_to_reg(long val)
692 {
693 if (val <= 0)
694 return 0;
695 if (val >= 30500)
696 return 31;
697 return (val + 500) / 1000;
698 }
699
700 /*
701 * ADT7461 in compatibility mode is almost identical to LM90 except that
702 * attempts to write values that are outside the range 0 < temp < 127 are
703 * treated as the boundary value.
704 *
705 * ADT7461 in "extended mode" operation uses unsigned integers offset by
706 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
707 */
temp_from_u8_adt7461(struct lm90_data * data,u8 val)708 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
709 {
710 if (data->flags & LM90_FLAG_ADT7461_EXT)
711 return (val - 64) * 1000;
712 else
713 return temp_from_s8(val);
714 }
715
temp_from_u16_adt7461(struct lm90_data * data,u16 val)716 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
717 {
718 if (data->flags & LM90_FLAG_ADT7461_EXT)
719 return (val - 0x4000) / 64 * 250;
720 else
721 return temp_from_s16(val);
722 }
723
temp_to_u8_adt7461(struct lm90_data * data,long val)724 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
725 {
726 if (data->flags & LM90_FLAG_ADT7461_EXT) {
727 if (val <= -64000)
728 return 0;
729 if (val >= 191000)
730 return 0xFF;
731 return (val + 500 + 64000) / 1000;
732 } else {
733 if (val <= 0)
734 return 0;
735 if (val >= 127000)
736 return 127;
737 return (val + 500) / 1000;
738 }
739 }
740
temp_to_u16_adt7461(struct lm90_data * data,long val)741 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
742 {
743 if (data->flags & LM90_FLAG_ADT7461_EXT) {
744 if (val <= -64000)
745 return 0;
746 if (val >= 191750)
747 return 0xFFC0;
748 return (val + 64000 + 125) / 250 * 64;
749 } else {
750 if (val <= 0)
751 return 0;
752 if (val >= 127750)
753 return 0x7FC0;
754 return (val + 125) / 250 * 64;
755 }
756 }
757
758 /*
759 * Sysfs stuff
760 */
761
show_temp8(struct device * dev,struct device_attribute * devattr,char * buf)762 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
763 char *buf)
764 {
765 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
766 struct lm90_data *data = lm90_update_device(dev);
767 int temp;
768
769 if (data->kind == adt7461 || data->kind == tmp451)
770 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
771 else if (data->kind == max6646)
772 temp = temp_from_u8(data->temp8[attr->index]);
773 else
774 temp = temp_from_s8(data->temp8[attr->index]);
775
776 /* +16 degrees offset for temp2 for the LM99 */
777 if (data->kind == lm99 && attr->index == 3)
778 temp += 16000;
779
780 return sprintf(buf, "%d\n", temp);
781 }
782
set_temp8(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)783 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
784 const char *buf, size_t count)
785 {
786 static const u8 reg[TEMP8_REG_NUM] = {
787 LM90_REG_W_LOCAL_LOW,
788 LM90_REG_W_LOCAL_HIGH,
789 LM90_REG_W_LOCAL_CRIT,
790 LM90_REG_W_REMOTE_CRIT,
791 MAX6659_REG_W_LOCAL_EMERG,
792 MAX6659_REG_W_REMOTE_EMERG,
793 LM90_REG_W_REMOTE_CRIT,
794 MAX6659_REG_W_REMOTE_EMERG,
795 };
796
797 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
798 struct lm90_data *data = dev_get_drvdata(dev);
799 struct i2c_client *client = data->client;
800 int nr = attr->index;
801 long val;
802 int err;
803
804 err = kstrtol(buf, 10, &val);
805 if (err < 0)
806 return err;
807
808 /* +16 degrees offset for temp2 for the LM99 */
809 if (data->kind == lm99 && attr->index == 3)
810 val -= 16000;
811
812 mutex_lock(&data->update_lock);
813 if (data->kind == adt7461 || data->kind == tmp451)
814 data->temp8[nr] = temp_to_u8_adt7461(data, val);
815 else if (data->kind == max6646)
816 data->temp8[nr] = temp_to_u8(val);
817 else
818 data->temp8[nr] = temp_to_s8(val);
819
820 lm90_select_remote_channel(client, data, nr >= 6);
821 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
822 lm90_select_remote_channel(client, data, 0);
823
824 mutex_unlock(&data->update_lock);
825 return count;
826 }
827
show_temp11(struct device * dev,struct device_attribute * devattr,char * buf)828 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
829 char *buf)
830 {
831 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
832 struct lm90_data *data = lm90_update_device(dev);
833 int temp;
834
835 if (data->kind == adt7461 || data->kind == tmp451)
836 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
837 else if (data->kind == max6646)
838 temp = temp_from_u16(data->temp11[attr->index]);
839 else
840 temp = temp_from_s16(data->temp11[attr->index]);
841
842 /* +16 degrees offset for temp2 for the LM99 */
843 if (data->kind == lm99 && attr->index <= 2)
844 temp += 16000;
845
846 return sprintf(buf, "%d\n", temp);
847 }
848
set_temp11(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)849 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
850 const char *buf, size_t count)
851 {
852 struct {
853 u8 high;
854 u8 low;
855 int channel;
856 } reg[5] = {
857 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
858 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
859 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
860 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
861 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
862 };
863
864 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
865 struct lm90_data *data = dev_get_drvdata(dev);
866 struct i2c_client *client = data->client;
867 int nr = attr->nr;
868 int index = attr->index;
869 long val;
870 int err;
871
872 err = kstrtol(buf, 10, &val);
873 if (err < 0)
874 return err;
875
876 /* +16 degrees offset for temp2 for the LM99 */
877 if (data->kind == lm99 && index <= 2)
878 val -= 16000;
879
880 mutex_lock(&data->update_lock);
881 if (data->kind == adt7461 || data->kind == tmp451)
882 data->temp11[index] = temp_to_u16_adt7461(data, val);
883 else if (data->kind == max6646)
884 data->temp11[index] = temp_to_u8(val) << 8;
885 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
886 data->temp11[index] = temp_to_s16(val);
887 else
888 data->temp11[index] = temp_to_s8(val) << 8;
889
890 lm90_select_remote_channel(client, data, reg[nr].channel);
891 i2c_smbus_write_byte_data(client, reg[nr].high,
892 data->temp11[index] >> 8);
893 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
894 i2c_smbus_write_byte_data(client, reg[nr].low,
895 data->temp11[index] & 0xff);
896 lm90_select_remote_channel(client, data, 0);
897
898 mutex_unlock(&data->update_lock);
899 return count;
900 }
901
show_temphyst(struct device * dev,struct device_attribute * devattr,char * buf)902 static ssize_t show_temphyst(struct device *dev,
903 struct device_attribute *devattr,
904 char *buf)
905 {
906 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
907 struct lm90_data *data = lm90_update_device(dev);
908 int temp;
909
910 if (data->kind == adt7461 || data->kind == tmp451)
911 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
912 else if (data->kind == max6646)
913 temp = temp_from_u8(data->temp8[attr->index]);
914 else
915 temp = temp_from_s8(data->temp8[attr->index]);
916
917 /* +16 degrees offset for temp2 for the LM99 */
918 if (data->kind == lm99 && attr->index == 3)
919 temp += 16000;
920
921 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
922 }
923
set_temphyst(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)924 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
925 const char *buf, size_t count)
926 {
927 struct lm90_data *data = dev_get_drvdata(dev);
928 struct i2c_client *client = data->client;
929 long val;
930 int err;
931 int temp;
932
933 err = kstrtol(buf, 10, &val);
934 if (err < 0)
935 return err;
936
937 mutex_lock(&data->update_lock);
938 if (data->kind == adt7461 || data->kind == tmp451)
939 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
940 else if (data->kind == max6646)
941 temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
942 else
943 temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
944
945 data->temp_hyst = hyst_to_reg(temp - val);
946 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
947 data->temp_hyst);
948 mutex_unlock(&data->update_lock);
949 return count;
950 }
951
show_alarms(struct device * dev,struct device_attribute * dummy,char * buf)952 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
953 char *buf)
954 {
955 struct lm90_data *data = lm90_update_device(dev);
956 return sprintf(buf, "%d\n", data->alarms);
957 }
958
show_alarm(struct device * dev,struct device_attribute * devattr,char * buf)959 static ssize_t show_alarm(struct device *dev, struct device_attribute
960 *devattr, char *buf)
961 {
962 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
963 struct lm90_data *data = lm90_update_device(dev);
964 int bitnr = attr->index;
965
966 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
967 }
968
show_update_interval(struct device * dev,struct device_attribute * attr,char * buf)969 static ssize_t show_update_interval(struct device *dev,
970 struct device_attribute *attr, char *buf)
971 {
972 struct lm90_data *data = dev_get_drvdata(dev);
973
974 return sprintf(buf, "%u\n", data->update_interval);
975 }
976
set_update_interval(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)977 static ssize_t set_update_interval(struct device *dev,
978 struct device_attribute *attr,
979 const char *buf, size_t count)
980 {
981 struct lm90_data *data = dev_get_drvdata(dev);
982 struct i2c_client *client = data->client;
983 unsigned long val;
984 int err;
985
986 err = kstrtoul(buf, 10, &val);
987 if (err)
988 return err;
989
990 mutex_lock(&data->update_lock);
991 lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
992 mutex_unlock(&data->update_lock);
993
994 return count;
995 }
996
997 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
998 0, LOCAL_TEMP);
999 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
1000 0, REMOTE_TEMP);
1001 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
1002 set_temp8, LOCAL_LOW);
1003 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
1004 set_temp11, 0, REMOTE_LOW);
1005 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
1006 set_temp8, LOCAL_HIGH);
1007 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
1008 set_temp11, 1, REMOTE_HIGH);
1009 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
1010 set_temp8, LOCAL_CRIT);
1011 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
1012 set_temp8, REMOTE_CRIT);
1013 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
1014 set_temphyst, LOCAL_CRIT);
1015 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
1016 REMOTE_CRIT);
1017 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
1018 set_temp11, 2, REMOTE_OFFSET);
1019
1020 /* Individual alarm files */
1021 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
1022 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
1023 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
1024 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
1025 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
1026 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
1027 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
1028 /* Raw alarm file for compatibility */
1029 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
1030
1031 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
1032 set_update_interval);
1033
1034 static struct attribute *lm90_attributes[] = {
1035 &sensor_dev_attr_temp1_input.dev_attr.attr,
1036 &sensor_dev_attr_temp2_input.dev_attr.attr,
1037 &sensor_dev_attr_temp1_min.dev_attr.attr,
1038 &sensor_dev_attr_temp2_min.dev_attr.attr,
1039 &sensor_dev_attr_temp1_max.dev_attr.attr,
1040 &sensor_dev_attr_temp2_max.dev_attr.attr,
1041 &sensor_dev_attr_temp1_crit.dev_attr.attr,
1042 &sensor_dev_attr_temp2_crit.dev_attr.attr,
1043 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1044 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1045
1046 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
1047 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
1048 &sensor_dev_attr_temp2_fault.dev_attr.attr,
1049 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
1050 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
1051 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
1052 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
1053 &dev_attr_alarms.attr,
1054 &dev_attr_update_interval.attr,
1055 NULL
1056 };
1057
1058 static const struct attribute_group lm90_group = {
1059 .attrs = lm90_attributes,
1060 };
1061
1062 static struct attribute *lm90_temp2_offset_attributes[] = {
1063 &sensor_dev_attr_temp2_offset.dev_attr.attr,
1064 NULL
1065 };
1066
1067 static const struct attribute_group lm90_temp2_offset_group = {
1068 .attrs = lm90_temp2_offset_attributes,
1069 };
1070
1071 /*
1072 * Additional attributes for devices with emergency sensors
1073 */
1074 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1075 set_temp8, LOCAL_EMERG);
1076 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1077 set_temp8, REMOTE_EMERG);
1078 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1079 NULL, LOCAL_EMERG);
1080 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1081 NULL, REMOTE_EMERG);
1082
1083 static struct attribute *lm90_emergency_attributes[] = {
1084 &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1085 &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1086 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1087 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1088 NULL
1089 };
1090
1091 static const struct attribute_group lm90_emergency_group = {
1092 .attrs = lm90_emergency_attributes,
1093 };
1094
1095 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1096 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1097
1098 static struct attribute *lm90_emergency_alarm_attributes[] = {
1099 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1100 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1101 NULL
1102 };
1103
1104 static const struct attribute_group lm90_emergency_alarm_group = {
1105 .attrs = lm90_emergency_alarm_attributes,
1106 };
1107
1108 /*
1109 * Additional attributes for devices with 3 temperature sensors
1110 */
1111 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
1112 0, REMOTE2_TEMP);
1113 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1114 set_temp11, 3, REMOTE2_LOW);
1115 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1116 set_temp11, 4, REMOTE2_HIGH);
1117 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1118 set_temp8, REMOTE2_CRIT);
1119 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
1120 REMOTE2_CRIT);
1121 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1122 set_temp8, REMOTE2_EMERG);
1123 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1124 NULL, REMOTE2_EMERG);
1125
1126 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1127 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1128 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1129 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1130 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1131
1132 static struct attribute *lm90_temp3_attributes[] = {
1133 &sensor_dev_attr_temp3_input.dev_attr.attr,
1134 &sensor_dev_attr_temp3_min.dev_attr.attr,
1135 &sensor_dev_attr_temp3_max.dev_attr.attr,
1136 &sensor_dev_attr_temp3_crit.dev_attr.attr,
1137 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1138 &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1139 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1140
1141 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1142 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1143 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1144 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1145 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1146 NULL
1147 };
1148
1149 static const struct attribute_group lm90_temp3_group = {
1150 .attrs = lm90_temp3_attributes,
1151 };
1152
1153 /* pec used for ADM1032 only */
show_pec(struct device * dev,struct device_attribute * dummy,char * buf)1154 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1155 char *buf)
1156 {
1157 struct i2c_client *client = to_i2c_client(dev);
1158 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1159 }
1160
set_pec(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)1161 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1162 const char *buf, size_t count)
1163 {
1164 struct i2c_client *client = to_i2c_client(dev);
1165 long val;
1166 int err;
1167
1168 err = kstrtol(buf, 10, &val);
1169 if (err < 0)
1170 return err;
1171
1172 switch (val) {
1173 case 0:
1174 client->flags &= ~I2C_CLIENT_PEC;
1175 break;
1176 case 1:
1177 client->flags |= I2C_CLIENT_PEC;
1178 break;
1179 default:
1180 return -EINVAL;
1181 }
1182
1183 return count;
1184 }
1185
1186 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1187
1188 /*
1189 * Real code
1190 */
1191
1192 /* Return 0 if detection is successful, -ENODEV otherwise */
lm90_detect(struct i2c_client * client,struct i2c_board_info * info)1193 static int lm90_detect(struct i2c_client *client,
1194 struct i2c_board_info *info)
1195 {
1196 struct i2c_adapter *adapter = client->adapter;
1197 int address = client->addr;
1198 const char *name = NULL;
1199 int man_id, chip_id, config1, config2, convrate;
1200
1201 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1202 return -ENODEV;
1203
1204 /* detection and identification */
1205 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1206 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1207 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1208 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1209 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1210 return -ENODEV;
1211
1212 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1213 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1214 if (config2 < 0)
1215 return -ENODEV;
1216 } else
1217 config2 = 0; /* Make compiler happy */
1218
1219 if ((address == 0x4C || address == 0x4D)
1220 && man_id == 0x01) { /* National Semiconductor */
1221 if ((config1 & 0x2A) == 0x00
1222 && (config2 & 0xF8) == 0x00
1223 && convrate <= 0x09) {
1224 if (address == 0x4C
1225 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1226 name = "lm90";
1227 } else
1228 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1229 name = "lm99";
1230 dev_info(&adapter->dev,
1231 "Assuming LM99 chip at 0x%02x\n",
1232 address);
1233 dev_info(&adapter->dev,
1234 "If it is an LM89, instantiate it "
1235 "with the new_device sysfs "
1236 "interface\n");
1237 } else
1238 if (address == 0x4C
1239 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1240 name = "lm86";
1241 }
1242 }
1243 } else
1244 if ((address == 0x4C || address == 0x4D)
1245 && man_id == 0x41) { /* Analog Devices */
1246 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1247 && (config1 & 0x3F) == 0x00
1248 && convrate <= 0x0A) {
1249 name = "adm1032";
1250 /*
1251 * The ADM1032 supports PEC, but only if combined
1252 * transactions are not used.
1253 */
1254 if (i2c_check_functionality(adapter,
1255 I2C_FUNC_SMBUS_BYTE))
1256 info->flags |= I2C_CLIENT_PEC;
1257 } else
1258 if (chip_id == 0x51 /* ADT7461 */
1259 && (config1 & 0x1B) == 0x00
1260 && convrate <= 0x0A) {
1261 name = "adt7461";
1262 } else
1263 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1264 && (config1 & 0x1B) == 0x00
1265 && convrate <= 0x0A) {
1266 name = "adt7461a";
1267 }
1268 } else
1269 if (man_id == 0x4D) { /* Maxim */
1270 int emerg, emerg2, status2;
1271
1272 /*
1273 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1274 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1275 * exists, both readings will reflect the same value. Otherwise,
1276 * the readings will be different.
1277 */
1278 emerg = i2c_smbus_read_byte_data(client,
1279 MAX6659_REG_R_REMOTE_EMERG);
1280 man_id = i2c_smbus_read_byte_data(client,
1281 LM90_REG_R_MAN_ID);
1282 emerg2 = i2c_smbus_read_byte_data(client,
1283 MAX6659_REG_R_REMOTE_EMERG);
1284 status2 = i2c_smbus_read_byte_data(client,
1285 MAX6696_REG_R_STATUS2);
1286 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1287 return -ENODEV;
1288
1289 /*
1290 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1291 * register. Reading from that address will return the last
1292 * read value, which in our case is those of the man_id
1293 * register. Likewise, the config1 register seems to lack a
1294 * low nibble, so the value will be those of the previous
1295 * read, so in our case those of the man_id register.
1296 * MAX6659 has a third set of upper temperature limit registers.
1297 * Those registers also return values on MAX6657 and MAX6658,
1298 * thus the only way to detect MAX6659 is by its address.
1299 * For this reason it will be mis-detected as MAX6657 if its
1300 * address is 0x4C.
1301 */
1302 if (chip_id == man_id
1303 && (address == 0x4C || address == 0x4D || address == 0x4E)
1304 && (config1 & 0x1F) == (man_id & 0x0F)
1305 && convrate <= 0x09) {
1306 if (address == 0x4C)
1307 name = "max6657";
1308 else
1309 name = "max6659";
1310 } else
1311 /*
1312 * Even though MAX6695 and MAX6696 do not have a chip ID
1313 * register, reading it returns 0x01. Bit 4 of the config1
1314 * register is unused and should return zero when read. Bit 0 of
1315 * the status2 register is unused and should return zero when
1316 * read.
1317 *
1318 * MAX6695 and MAX6696 have an additional set of temperature
1319 * limit registers. We can detect those chips by checking if
1320 * one of those registers exists.
1321 */
1322 if (chip_id == 0x01
1323 && (config1 & 0x10) == 0x00
1324 && (status2 & 0x01) == 0x00
1325 && emerg == emerg2
1326 && convrate <= 0x07) {
1327 name = "max6696";
1328 } else
1329 /*
1330 * The chip_id register of the MAX6680 and MAX6681 holds the
1331 * revision of the chip. The lowest bit of the config1 register
1332 * is unused and should return zero when read, so should the
1333 * second to last bit of config1 (software reset).
1334 */
1335 if (chip_id == 0x01
1336 && (config1 & 0x03) == 0x00
1337 && convrate <= 0x07) {
1338 name = "max6680";
1339 } else
1340 /*
1341 * The chip_id register of the MAX6646/6647/6649 holds the
1342 * revision of the chip. The lowest 6 bits of the config1
1343 * register are unused and should return zero when read.
1344 */
1345 if (chip_id == 0x59
1346 && (config1 & 0x3f) == 0x00
1347 && convrate <= 0x07) {
1348 name = "max6646";
1349 }
1350 } else
1351 if (address == 0x4C
1352 && man_id == 0x5C) { /* Winbond/Nuvoton */
1353 if ((config1 & 0x2A) == 0x00
1354 && (config2 & 0xF8) == 0x00) {
1355 if (chip_id == 0x01 /* W83L771W/G */
1356 && convrate <= 0x09) {
1357 name = "w83l771";
1358 } else
1359 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1360 && convrate <= 0x08) {
1361 name = "w83l771";
1362 }
1363 }
1364 } else
1365 if (address >= 0x48 && address <= 0x4F
1366 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1367 if (chip_id == 0x00
1368 && (config1 & 0x2A) == 0x00
1369 && (config2 & 0xFE) == 0x00
1370 && convrate <= 0x09) {
1371 name = "sa56004";
1372 }
1373 } else
1374 if ((address == 0x4C || address == 0x4D)
1375 && man_id == 0x47) { /* GMT */
1376 if (chip_id == 0x01 /* G781 */
1377 && (config1 & 0x3F) == 0x00
1378 && convrate <= 0x08)
1379 name = "g781";
1380 } else
1381 if (address == 0x4C
1382 && man_id == 0x55) { /* Texas Instruments */
1383 int local_ext;
1384
1385 local_ext = i2c_smbus_read_byte_data(client,
1386 TMP451_REG_R_LOCAL_TEMPL);
1387
1388 if (chip_id == 0x00 /* TMP451 */
1389 && (config1 & 0x1B) == 0x00
1390 && convrate <= 0x09
1391 && (local_ext & 0x0F) == 0x00)
1392 name = "tmp451";
1393 }
1394
1395 if (!name) { /* identification failed */
1396 dev_dbg(&adapter->dev,
1397 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1398 "chip_id=0x%02X)\n", address, man_id, chip_id);
1399 return -ENODEV;
1400 }
1401
1402 strlcpy(info->type, name, I2C_NAME_SIZE);
1403
1404 return 0;
1405 }
1406
lm90_restore_conf(struct i2c_client * client,struct lm90_data * data)1407 static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1408 {
1409 /* Restore initial configuration */
1410 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1411 data->convrate_orig);
1412 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1413 data->config_orig);
1414 }
1415
lm90_init_client(struct i2c_client * client,struct lm90_data * data)1416 static void lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1417 {
1418 u8 config, convrate;
1419
1420 if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1421 dev_warn(&client->dev, "Failed to read convrate register!\n");
1422 convrate = LM90_DEF_CONVRATE_RVAL;
1423 }
1424 data->convrate_orig = convrate;
1425
1426 /*
1427 * Start the conversions.
1428 */
1429 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1430 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1431 dev_warn(&client->dev, "Initialization failed!\n");
1432 return;
1433 }
1434 data->config_orig = config;
1435
1436 /* Check Temperature Range Select */
1437 if (data->kind == adt7461 || data->kind == tmp451) {
1438 if (config & 0x04)
1439 data->flags |= LM90_FLAG_ADT7461_EXT;
1440 }
1441
1442 /*
1443 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1444 * 0.125 degree resolution) and range (0x08, extend range
1445 * to -64 degree) mode for the remote temperature sensor.
1446 */
1447 if (data->kind == max6680)
1448 config |= 0x18;
1449
1450 /*
1451 * Select external channel 0 for max6695/96
1452 */
1453 if (data->kind == max6696)
1454 config &= ~0x08;
1455
1456 config &= 0xBF; /* run */
1457 if (config != data->config_orig) /* Only write if changed */
1458 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1459 }
1460
lm90_is_tripped(struct i2c_client * client,u16 * status)1461 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1462 {
1463 struct lm90_data *data = i2c_get_clientdata(client);
1464 u8 st, st2 = 0;
1465
1466 lm90_read_reg(client, LM90_REG_R_STATUS, &st);
1467
1468 if (data->kind == max6696)
1469 lm90_read_reg(client, MAX6696_REG_R_STATUS2, &st2);
1470
1471 *status = st | (st2 << 8);
1472
1473 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1474 return false;
1475
1476 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1477 (st2 & MAX6696_STATUS2_LOT2))
1478 dev_warn(&client->dev,
1479 "temp%d out of range, please check!\n", 1);
1480 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1481 (st2 & MAX6696_STATUS2_ROT2))
1482 dev_warn(&client->dev,
1483 "temp%d out of range, please check!\n", 2);
1484 if (st & LM90_STATUS_ROPEN)
1485 dev_warn(&client->dev,
1486 "temp%d diode open, please check!\n", 2);
1487 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1488 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1489 dev_warn(&client->dev,
1490 "temp%d out of range, please check!\n", 3);
1491 if (st2 & MAX6696_STATUS2_R2OPEN)
1492 dev_warn(&client->dev,
1493 "temp%d diode open, please check!\n", 3);
1494
1495 return true;
1496 }
1497
lm90_irq_thread(int irq,void * dev_id)1498 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1499 {
1500 struct i2c_client *client = dev_id;
1501 u16 status;
1502
1503 if (lm90_is_tripped(client, &status))
1504 return IRQ_HANDLED;
1505 else
1506 return IRQ_NONE;
1507 }
1508
lm90_probe(struct i2c_client * client,const struct i2c_device_id * id)1509 static int lm90_probe(struct i2c_client *client,
1510 const struct i2c_device_id *id)
1511 {
1512 struct device *dev = &client->dev;
1513 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1514 struct lm90_data *data;
1515 struct regulator *regulator;
1516 int groups = 0;
1517 int err;
1518
1519 regulator = devm_regulator_get(dev, "vcc");
1520 if (IS_ERR(regulator))
1521 return PTR_ERR(regulator);
1522
1523 err = regulator_enable(regulator);
1524 if (err < 0) {
1525 dev_err(dev, "Failed to enable regulator: %d\n", err);
1526 return err;
1527 }
1528
1529 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1530 if (!data)
1531 return -ENOMEM;
1532
1533 data->client = client;
1534 i2c_set_clientdata(client, data);
1535 mutex_init(&data->update_lock);
1536
1537 data->regulator = regulator;
1538
1539 /* Set the device type */
1540 data->kind = id->driver_data;
1541 if (data->kind == adm1032) {
1542 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1543 client->flags &= ~I2C_CLIENT_PEC;
1544 }
1545
1546 /*
1547 * Different devices have different alarm bits triggering the
1548 * ALERT# output
1549 */
1550 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1551
1552 /* Set chip capabilities */
1553 data->flags = lm90_params[data->kind].flags;
1554 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1555
1556 /* Set maximum conversion rate */
1557 data->max_convrate = lm90_params[data->kind].max_convrate;
1558
1559 /* Initialize the LM90 chip */
1560 lm90_init_client(client, data);
1561
1562 /* Register sysfs hooks */
1563 data->groups[groups++] = &lm90_group;
1564
1565 if (data->flags & LM90_HAVE_OFFSET)
1566 data->groups[groups++] = &lm90_temp2_offset_group;
1567
1568 if (data->flags & LM90_HAVE_EMERGENCY)
1569 data->groups[groups++] = &lm90_emergency_group;
1570
1571 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1572 data->groups[groups++] = &lm90_emergency_alarm_group;
1573
1574 if (data->flags & LM90_HAVE_TEMP3)
1575 data->groups[groups++] = &lm90_temp3_group;
1576
1577 if (client->flags & I2C_CLIENT_PEC) {
1578 err = device_create_file(dev, &dev_attr_pec);
1579 if (err)
1580 goto exit_restore;
1581 }
1582
1583 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1584 data, data->groups);
1585 if (IS_ERR(data->hwmon_dev)) {
1586 err = PTR_ERR(data->hwmon_dev);
1587 goto exit_remove_pec;
1588 }
1589
1590 if (client->irq) {
1591 dev_dbg(dev, "IRQ: %d\n", client->irq);
1592 err = devm_request_threaded_irq(dev, client->irq,
1593 NULL, lm90_irq_thread,
1594 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1595 "lm90", client);
1596 if (err < 0) {
1597 dev_err(dev, "cannot request IRQ %d\n", client->irq);
1598 goto exit_unregister;
1599 }
1600 }
1601
1602 return 0;
1603
1604 exit_unregister:
1605 hwmon_device_unregister(data->hwmon_dev);
1606 exit_remove_pec:
1607 device_remove_file(dev, &dev_attr_pec);
1608 exit_restore:
1609 lm90_restore_conf(client, data);
1610 regulator_disable(data->regulator);
1611
1612 return err;
1613 }
1614
lm90_remove(struct i2c_client * client)1615 static int lm90_remove(struct i2c_client *client)
1616 {
1617 struct lm90_data *data = i2c_get_clientdata(client);
1618
1619 hwmon_device_unregister(data->hwmon_dev);
1620 device_remove_file(&client->dev, &dev_attr_pec);
1621 lm90_restore_conf(client, data);
1622 regulator_disable(data->regulator);
1623
1624 return 0;
1625 }
1626
lm90_alert(struct i2c_client * client,unsigned int flag)1627 static void lm90_alert(struct i2c_client *client, unsigned int flag)
1628 {
1629 u16 alarms;
1630
1631 if (lm90_is_tripped(client, &alarms)) {
1632 /*
1633 * Disable ALERT# output, because these chips don't implement
1634 * SMBus alert correctly; they should only hold the alert line
1635 * low briefly.
1636 */
1637 struct lm90_data *data = i2c_get_clientdata(client);
1638
1639 if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1640 && (alarms & data->alert_alarms)) {
1641 u8 config;
1642 dev_dbg(&client->dev, "Disabling ALERT#\n");
1643 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1644 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1645 config | 0x80);
1646 }
1647 } else {
1648 dev_info(&client->dev, "Everything OK\n");
1649 }
1650 }
1651
1652 static struct i2c_driver lm90_driver = {
1653 .class = I2C_CLASS_HWMON,
1654 .driver = {
1655 .name = "lm90",
1656 },
1657 .probe = lm90_probe,
1658 .remove = lm90_remove,
1659 .alert = lm90_alert,
1660 .id_table = lm90_id,
1661 .detect = lm90_detect,
1662 .address_list = normal_i2c,
1663 };
1664
1665 module_i2c_driver(lm90_driver);
1666
1667 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1668 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1669 MODULE_LICENSE("GPL");
1670