1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41 /** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91 #ifndef _LUSTRE_IDL_H_
92 #define _LUSTRE_IDL_H_
93
94 #include "../../../include/linux/libcfs/libcfs.h"
95
96 /* Defn's shared with user-space. */
97 #include "lustre_user.h"
98 #include "lustre_errno.h"
99
100 /*
101 * GENERAL STUFF
102 */
103 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
104 * FOO_REPLY_PORTAL is for incoming replies on the FOO
105 * FOO_BULK_PORTAL is for incoming bulk on the FOO
106 */
107
108 #define CONNMGR_REQUEST_PORTAL 1
109 #define CONNMGR_REPLY_PORTAL 2
110 //#define OSC_REQUEST_PORTAL 3
111 #define OSC_REPLY_PORTAL 4
112 //#define OSC_BULK_PORTAL 5
113 #define OST_IO_PORTAL 6
114 #define OST_CREATE_PORTAL 7
115 #define OST_BULK_PORTAL 8
116 //#define MDC_REQUEST_PORTAL 9
117 #define MDC_REPLY_PORTAL 10
118 //#define MDC_BULK_PORTAL 11
119 #define MDS_REQUEST_PORTAL 12
120 //#define MDS_REPLY_PORTAL 13
121 #define MDS_BULK_PORTAL 14
122 #define LDLM_CB_REQUEST_PORTAL 15
123 #define LDLM_CB_REPLY_PORTAL 16
124 #define LDLM_CANCEL_REQUEST_PORTAL 17
125 #define LDLM_CANCEL_REPLY_PORTAL 18
126 //#define PTLBD_REQUEST_PORTAL 19
127 //#define PTLBD_REPLY_PORTAL 20
128 //#define PTLBD_BULK_PORTAL 21
129 #define MDS_SETATTR_PORTAL 22
130 #define MDS_READPAGE_PORTAL 23
131 #define OUT_PORTAL 24
132
133 #define MGC_REPLY_PORTAL 25
134 #define MGS_REQUEST_PORTAL 26
135 #define MGS_REPLY_PORTAL 27
136 #define OST_REQUEST_PORTAL 28
137 #define FLD_REQUEST_PORTAL 29
138 #define SEQ_METADATA_PORTAL 30
139 #define SEQ_DATA_PORTAL 31
140 #define SEQ_CONTROLLER_PORTAL 32
141 #define MGS_BULK_PORTAL 33
142
143 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
144
145 /* packet types */
146 #define PTL_RPC_MSG_REQUEST 4711
147 #define PTL_RPC_MSG_ERR 4712
148 #define PTL_RPC_MSG_REPLY 4713
149
150 /* DON'T use swabbed values of MAGIC as magic! */
151 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
152 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
153
154 #define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
155 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
156
157 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
158
159 #define PTLRPC_MSG_VERSION 0x00000003
160 #define LUSTRE_VERSION_MASK 0xffff0000
161 #define LUSTRE_OBD_VERSION 0x00010000
162 #define LUSTRE_MDS_VERSION 0x00020000
163 #define LUSTRE_OST_VERSION 0x00030000
164 #define LUSTRE_DLM_VERSION 0x00040000
165 #define LUSTRE_LOG_VERSION 0x00050000
166 #define LUSTRE_MGS_VERSION 0x00060000
167
168 /**
169 * Describes a range of sequence, lsr_start is included but lsr_end is
170 * not in the range.
171 * Same structure is used in fld module where lsr_index field holds mdt id
172 * of the home mdt.
173 */
174 struct lu_seq_range {
175 __u64 lsr_start;
176 __u64 lsr_end;
177 __u32 lsr_index;
178 __u32 lsr_flags;
179 };
180
181 #define LU_SEQ_RANGE_MDT 0x0
182 #define LU_SEQ_RANGE_OST 0x1
183 #define LU_SEQ_RANGE_ANY 0x3
184
185 #define LU_SEQ_RANGE_MASK 0x3
186
fld_range_type(const struct lu_seq_range * range)187 static inline unsigned fld_range_type(const struct lu_seq_range *range)
188 {
189 return range->lsr_flags & LU_SEQ_RANGE_MASK;
190 }
191
fld_range_is_ost(const struct lu_seq_range * range)192 static inline int fld_range_is_ost(const struct lu_seq_range *range)
193 {
194 return fld_range_type(range) == LU_SEQ_RANGE_OST;
195 }
196
fld_range_is_mdt(const struct lu_seq_range * range)197 static inline int fld_range_is_mdt(const struct lu_seq_range *range)
198 {
199 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
200 }
201
202 /**
203 * This all range is only being used when fld client sends fld query request,
204 * but it does not know whether the seq is MDT or OST, so it will send req
205 * with ALL type, which means either seq type gotten from lookup can be
206 * expected.
207 */
fld_range_is_any(const struct lu_seq_range * range)208 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
209 {
210 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
211 }
212
fld_range_set_type(struct lu_seq_range * range,unsigned flags)213 static inline void fld_range_set_type(struct lu_seq_range *range,
214 unsigned flags)
215 {
216 range->lsr_flags |= flags;
217 }
218
fld_range_set_mdt(struct lu_seq_range * range)219 static inline void fld_range_set_mdt(struct lu_seq_range *range)
220 {
221 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
222 }
223
fld_range_set_ost(struct lu_seq_range * range)224 static inline void fld_range_set_ost(struct lu_seq_range *range)
225 {
226 fld_range_set_type(range, LU_SEQ_RANGE_OST);
227 }
228
fld_range_set_any(struct lu_seq_range * range)229 static inline void fld_range_set_any(struct lu_seq_range *range)
230 {
231 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
232 }
233
234 /**
235 * returns width of given range \a r
236 */
237
range_space(const struct lu_seq_range * range)238 static inline __u64 range_space(const struct lu_seq_range *range)
239 {
240 return range->lsr_end - range->lsr_start;
241 }
242
243 /**
244 * initialize range to zero
245 */
246
range_init(struct lu_seq_range * range)247 static inline void range_init(struct lu_seq_range *range)
248 {
249 memset(range, 0, sizeof(*range));
250 }
251
252 /**
253 * check if given seq id \a s is within given range \a r
254 */
255
range_within(const struct lu_seq_range * range,__u64 s)256 static inline int range_within(const struct lu_seq_range *range,
257 __u64 s)
258 {
259 return s >= range->lsr_start && s < range->lsr_end;
260 }
261
range_is_sane(const struct lu_seq_range * range)262 static inline int range_is_sane(const struct lu_seq_range *range)
263 {
264 return (range->lsr_end >= range->lsr_start);
265 }
266
range_is_zero(const struct lu_seq_range * range)267 static inline int range_is_zero(const struct lu_seq_range *range)
268 {
269 return (range->lsr_start == 0 && range->lsr_end == 0);
270 }
271
range_is_exhausted(const struct lu_seq_range * range)272 static inline int range_is_exhausted(const struct lu_seq_range *range)
273
274 {
275 return range_space(range) == 0;
276 }
277
278 /* return 0 if two range have the same location */
range_compare_loc(const struct lu_seq_range * r1,const struct lu_seq_range * r2)279 static inline int range_compare_loc(const struct lu_seq_range *r1,
280 const struct lu_seq_range *r2)
281 {
282 return r1->lsr_index != r2->lsr_index ||
283 r1->lsr_flags != r2->lsr_flags;
284 }
285
286 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
287
288 #define PRANGE(range) \
289 (range)->lsr_start, \
290 (range)->lsr_end, \
291 (range)->lsr_index, \
292 fld_range_is_mdt(range) ? "mdt" : "ost"
293
294
295 /** \defgroup lu_fid lu_fid
296 * @{ */
297
298 /**
299 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
300 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
301 * xattr.
302 */
303 enum lma_compat {
304 LMAC_HSM = 0x00000001,
305 LMAC_SOM = 0x00000002,
306 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
307 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
308 * under /O/<seq>/d<x>. */
309 };
310
311 /**
312 * Masks for all features that should be supported by a Lustre version to
313 * access a specific file.
314 * This information is stored in lustre_mdt_attrs::lma_incompat.
315 */
316 enum lma_incompat {
317 LMAI_RELEASED = 0x00000001, /* file is released */
318 LMAI_AGENT = 0x00000002, /* agent inode */
319 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
320 is on the remote MDT */
321 };
322 #define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
323
324 /**
325 * fid constants
326 */
327 enum {
328 /** LASTID file has zero OID */
329 LUSTRE_FID_LASTID_OID = 0UL,
330 /** initial fid id value */
331 LUSTRE_FID_INIT_OID = 1UL
332 };
333
334 /** returns fid object sequence */
fid_seq(const struct lu_fid * fid)335 static inline __u64 fid_seq(const struct lu_fid *fid)
336 {
337 return fid->f_seq;
338 }
339
340 /** returns fid object id */
fid_oid(const struct lu_fid * fid)341 static inline __u32 fid_oid(const struct lu_fid *fid)
342 {
343 return fid->f_oid;
344 }
345
346 /** returns fid object version */
fid_ver(const struct lu_fid * fid)347 static inline __u32 fid_ver(const struct lu_fid *fid)
348 {
349 return fid->f_ver;
350 }
351
fid_zero(struct lu_fid * fid)352 static inline void fid_zero(struct lu_fid *fid)
353 {
354 memset(fid, 0, sizeof(*fid));
355 }
356
fid_ver_oid(const struct lu_fid * fid)357 static inline __u64 fid_ver_oid(const struct lu_fid *fid)
358 {
359 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
360 }
361
362 /**
363 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
364 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
365 * used for other purposes and not risk collisions with existing inodes.
366 *
367 * Different FID Format
368 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
369 */
370 enum fid_seq {
371 FID_SEQ_OST_MDT0 = 0,
372 FID_SEQ_LLOG = 1, /* unnamed llogs */
373 FID_SEQ_ECHO = 2,
374 FID_SEQ_OST_MDT1 = 3,
375 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
376 FID_SEQ_LLOG_NAME = 10, /* named llogs */
377 FID_SEQ_RSVD = 11,
378 FID_SEQ_IGIF = 12,
379 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
380 FID_SEQ_IDIF = 0x100000000ULL,
381 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
382 /* Normal FID sequence starts from this value, i.e. 1<<33 */
383 FID_SEQ_START = 0x200000000ULL,
384 /* sequence for local pre-defined FIDs listed in local_oid */
385 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
386 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
387 /* sequence is used for local named objects FIDs generated
388 * by local_object_storage library */
389 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
390 /* Because current FLD will only cache the fid sequence, instead
391 * of oid on the client side, if the FID needs to be exposed to
392 * clients sides, it needs to make sure all of fids under one
393 * sequence will be located in one MDT. */
394 FID_SEQ_SPECIAL = 0x200000004ULL,
395 FID_SEQ_QUOTA = 0x200000005ULL,
396 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
397 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
398 FID_SEQ_NORMAL = 0x200000400ULL,
399 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
400 };
401
402 #define OBIF_OID_MAX_BITS 32
403 #define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
404 #define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
405 #define IDIF_OID_MAX_BITS 48
406 #define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
407 #define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
408
409 /** OID for FID_SEQ_SPECIAL */
410 enum special_oid {
411 /* Big Filesystem Lock to serialize rename operations */
412 FID_OID_SPECIAL_BFL = 1UL,
413 };
414
415 /** OID for FID_SEQ_DOT_LUSTRE */
416 enum dot_lustre_oid {
417 FID_OID_DOT_LUSTRE = 1UL,
418 FID_OID_DOT_LUSTRE_OBF = 2UL,
419 };
420
fid_seq_is_mdt0(__u64 seq)421 static inline int fid_seq_is_mdt0(__u64 seq)
422 {
423 return (seq == FID_SEQ_OST_MDT0);
424 }
425
fid_seq_is_mdt(const __u64 seq)426 static inline int fid_seq_is_mdt(const __u64 seq)
427 {
428 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
429 };
430
fid_seq_is_echo(__u64 seq)431 static inline int fid_seq_is_echo(__u64 seq)
432 {
433 return (seq == FID_SEQ_ECHO);
434 }
435
fid_is_echo(const struct lu_fid * fid)436 static inline int fid_is_echo(const struct lu_fid *fid)
437 {
438 return fid_seq_is_echo(fid_seq(fid));
439 }
440
fid_seq_is_llog(__u64 seq)441 static inline int fid_seq_is_llog(__u64 seq)
442 {
443 return (seq == FID_SEQ_LLOG);
444 }
445
fid_is_llog(const struct lu_fid * fid)446 static inline int fid_is_llog(const struct lu_fid *fid)
447 {
448 /* file with OID == 0 is not llog but contains last oid */
449 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
450 }
451
fid_seq_is_rsvd(const __u64 seq)452 static inline int fid_seq_is_rsvd(const __u64 seq)
453 {
454 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
455 };
456
fid_seq_is_special(const __u64 seq)457 static inline int fid_seq_is_special(const __u64 seq)
458 {
459 return seq == FID_SEQ_SPECIAL;
460 };
461
fid_seq_is_local_file(const __u64 seq)462 static inline int fid_seq_is_local_file(const __u64 seq)
463 {
464 return seq == FID_SEQ_LOCAL_FILE ||
465 seq == FID_SEQ_LOCAL_NAME;
466 };
467
fid_seq_is_root(const __u64 seq)468 static inline int fid_seq_is_root(const __u64 seq)
469 {
470 return seq == FID_SEQ_ROOT;
471 }
472
fid_seq_is_dot(const __u64 seq)473 static inline int fid_seq_is_dot(const __u64 seq)
474 {
475 return seq == FID_SEQ_DOT_LUSTRE;
476 }
477
fid_seq_is_default(const __u64 seq)478 static inline int fid_seq_is_default(const __u64 seq)
479 {
480 return seq == FID_SEQ_LOV_DEFAULT;
481 }
482
fid_is_mdt0(const struct lu_fid * fid)483 static inline int fid_is_mdt0(const struct lu_fid *fid)
484 {
485 return fid_seq_is_mdt0(fid_seq(fid));
486 }
487
lu_root_fid(struct lu_fid * fid)488 static inline void lu_root_fid(struct lu_fid *fid)
489 {
490 fid->f_seq = FID_SEQ_ROOT;
491 fid->f_oid = 1;
492 fid->f_ver = 0;
493 }
494
495 /**
496 * Check if a fid is igif or not.
497 * \param fid the fid to be tested.
498 * \return true if the fid is a igif; otherwise false.
499 */
fid_seq_is_igif(const __u64 seq)500 static inline int fid_seq_is_igif(const __u64 seq)
501 {
502 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
503 }
504
fid_is_igif(const struct lu_fid * fid)505 static inline int fid_is_igif(const struct lu_fid *fid)
506 {
507 return fid_seq_is_igif(fid_seq(fid));
508 }
509
510 /**
511 * Check if a fid is idif or not.
512 * \param fid the fid to be tested.
513 * \return true if the fid is a idif; otherwise false.
514 */
fid_seq_is_idif(const __u64 seq)515 static inline int fid_seq_is_idif(const __u64 seq)
516 {
517 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
518 }
519
fid_is_idif(const struct lu_fid * fid)520 static inline int fid_is_idif(const struct lu_fid *fid)
521 {
522 return fid_seq_is_idif(fid_seq(fid));
523 }
524
fid_is_local_file(const struct lu_fid * fid)525 static inline int fid_is_local_file(const struct lu_fid *fid)
526 {
527 return fid_seq_is_local_file(fid_seq(fid));
528 }
529
fid_seq_is_norm(const __u64 seq)530 static inline int fid_seq_is_norm(const __u64 seq)
531 {
532 return (seq >= FID_SEQ_NORMAL);
533 }
534
fid_is_norm(const struct lu_fid * fid)535 static inline int fid_is_norm(const struct lu_fid *fid)
536 {
537 return fid_seq_is_norm(fid_seq(fid));
538 }
539
540 /* convert an OST objid into an IDIF FID SEQ number */
fid_idif_seq(__u64 id,__u32 ost_idx)541 static inline __u64 fid_idif_seq(__u64 id, __u32 ost_idx)
542 {
543 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
544 }
545
546 /* convert a packed IDIF FID into an OST objid */
fid_idif_id(__u64 seq,__u32 oid,__u32 ver)547 static inline __u64 fid_idif_id(__u64 seq, __u32 oid, __u32 ver)
548 {
549 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
550 }
551
552 /* extract ost index from IDIF FID */
fid_idif_ost_idx(const struct lu_fid * fid)553 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
554 {
555 return (fid_seq(fid) >> 16) & 0xffff;
556 }
557
558 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
ostid_seq(const struct ost_id * ostid)559 static inline __u64 ostid_seq(const struct ost_id *ostid)
560 {
561 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
562 return FID_SEQ_OST_MDT0;
563
564 if (fid_seq_is_default(ostid->oi.oi_seq))
565 return FID_SEQ_LOV_DEFAULT;
566
567 if (fid_is_idif(&ostid->oi_fid))
568 return FID_SEQ_OST_MDT0;
569
570 return fid_seq(&ostid->oi_fid);
571 }
572
573 /* extract OST objid from a wire ost_id (id/seq) pair */
ostid_id(const struct ost_id * ostid)574 static inline __u64 ostid_id(const struct ost_id *ostid)
575 {
576 if (fid_seq_is_mdt0(ostid_seq(ostid)))
577 return ostid->oi.oi_id & IDIF_OID_MASK;
578
579 if (fid_is_idif(&ostid->oi_fid))
580 return fid_idif_id(fid_seq(&ostid->oi_fid),
581 fid_oid(&ostid->oi_fid), 0);
582
583 return fid_oid(&ostid->oi_fid);
584 }
585
ostid_set_seq(struct ost_id * oi,__u64 seq)586 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
587 {
588 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
589 oi->oi.oi_seq = seq;
590 } else {
591 oi->oi_fid.f_seq = seq;
592 /* Note: if f_oid + f_ver is zero, we need init it
593 * to be 1, otherwise, ostid_seq will treat this
594 * as old ostid (oi_seq == 0) */
595 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
596 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
597 }
598 }
599
ostid_set_seq_mdt0(struct ost_id * oi)600 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
601 {
602 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
603 }
604
ostid_set_seq_echo(struct ost_id * oi)605 static inline void ostid_set_seq_echo(struct ost_id *oi)
606 {
607 ostid_set_seq(oi, FID_SEQ_ECHO);
608 }
609
ostid_set_seq_llog(struct ost_id * oi)610 static inline void ostid_set_seq_llog(struct ost_id *oi)
611 {
612 ostid_set_seq(oi, FID_SEQ_LLOG);
613 }
614
615 /**
616 * Note: we need check oi_seq to decide where to set oi_id,
617 * so oi_seq should always be set ahead of oi_id.
618 */
ostid_set_id(struct ost_id * oi,__u64 oid)619 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
620 {
621 if (fid_seq_is_mdt0(ostid_seq(oi))) {
622 if (oid >= IDIF_MAX_OID) {
623 CERROR("Bad %llu to set "DOSTID"\n",
624 oid, POSTID(oi));
625 return;
626 }
627 oi->oi.oi_id = oid;
628 } else {
629 if (oid > OBIF_MAX_OID) {
630 CERROR("Bad %llu to set "DOSTID"\n",
631 oid, POSTID(oi));
632 return;
633 }
634 oi->oi_fid.f_oid = oid;
635 }
636 }
637
ostid_inc_id(struct ost_id * oi)638 static inline void ostid_inc_id(struct ost_id *oi)
639 {
640 if (fid_seq_is_mdt0(ostid_seq(oi))) {
641 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
642 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
643 return;
644 }
645 oi->oi.oi_id++;
646 } else {
647 oi->oi_fid.f_oid++;
648 }
649 }
650
ostid_dec_id(struct ost_id * oi)651 static inline void ostid_dec_id(struct ost_id *oi)
652 {
653 if (fid_seq_is_mdt0(ostid_seq(oi)))
654 oi->oi.oi_id--;
655 else
656 oi->oi_fid.f_oid--;
657 }
658
659 /**
660 * Unpack an OST object id/seq (group) into a FID. This is needed for
661 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
662 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
663 * be passed through unchanged. Only legacy OST objects in "group 0"
664 * will be mapped into the IDIF namespace so that they can fit into the
665 * struct lu_fid fields without loss. For reference see:
666 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
667 */
ostid_to_fid(struct lu_fid * fid,struct ost_id * ostid,__u32 ost_idx)668 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
669 __u32 ost_idx)
670 {
671 if (ost_idx > 0xffff) {
672 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
673 ost_idx);
674 return -EBADF;
675 }
676
677 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
678 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
679 * that we map into the IDIF namespace. It allows up to 2^48
680 * objects per OST, as this is the object namespace that has
681 * been in production for years. This can handle create rates
682 * of 1M objects/s/OST for 9 years, or combinations thereof. */
683 if (ostid_id(ostid) >= IDIF_MAX_OID) {
684 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
685 POSTID(ostid), ost_idx);
686 return -EBADF;
687 }
688 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
689 /* truncate to 32 bits by assignment */
690 fid->f_oid = ostid_id(ostid);
691 /* in theory, not currently used */
692 fid->f_ver = ostid_id(ostid) >> 48;
693 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
694 /* This is either an IDIF object, which identifies objects across
695 * all OSTs, or a regular FID. The IDIF namespace maps legacy
696 * OST objects into the FID namespace. In both cases, we just
697 * pass the FID through, no conversion needed. */
698 if (ostid->oi_fid.f_ver != 0) {
699 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
700 POSTID(ostid), ost_idx);
701 return -EBADF;
702 }
703 *fid = ostid->oi_fid;
704 }
705
706 return 0;
707 }
708
709 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
fid_to_ostid(const struct lu_fid * fid,struct ost_id * ostid)710 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
711 {
712 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
713 CERROR("bad IGIF, "DFID"\n", PFID(fid));
714 return -EBADF;
715 }
716
717 if (fid_is_idif(fid)) {
718 ostid_set_seq_mdt0(ostid);
719 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
720 fid_ver(fid)));
721 } else {
722 ostid->oi_fid = *fid;
723 }
724
725 return 0;
726 }
727
728 /* Check whether the fid is for LAST_ID */
fid_is_last_id(const struct lu_fid * fid)729 static inline int fid_is_last_id(const struct lu_fid *fid)
730 {
731 return (fid_oid(fid) == 0);
732 }
733
734 /**
735 * Get inode number from a igif.
736 * \param fid a igif to get inode number from.
737 * \return inode number for the igif.
738 */
lu_igif_ino(const struct lu_fid * fid)739 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
740 {
741 return fid_seq(fid);
742 }
743
744 extern void lustre_swab_ost_id(struct ost_id *oid);
745
746 /**
747 * Get inode generation from a igif.
748 * \param fid a igif to get inode generation from.
749 * \return inode generation for the igif.
750 */
lu_igif_gen(const struct lu_fid * fid)751 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
752 {
753 return fid_oid(fid);
754 }
755
756 /**
757 * Build igif from the inode number/generation.
758 */
lu_igif_build(struct lu_fid * fid,__u32 ino,__u32 gen)759 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
760 {
761 fid->f_seq = ino;
762 fid->f_oid = gen;
763 fid->f_ver = 0;
764 }
765
766 /*
767 * Fids are transmitted across network (in the sender byte-ordering),
768 * and stored on disk in big-endian order.
769 */
fid_cpu_to_le(struct lu_fid * dst,const struct lu_fid * src)770 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
771 {
772 dst->f_seq = cpu_to_le64(fid_seq(src));
773 dst->f_oid = cpu_to_le32(fid_oid(src));
774 dst->f_ver = cpu_to_le32(fid_ver(src));
775 }
776
fid_le_to_cpu(struct lu_fid * dst,const struct lu_fid * src)777 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
778 {
779 dst->f_seq = le64_to_cpu(fid_seq(src));
780 dst->f_oid = le32_to_cpu(fid_oid(src));
781 dst->f_ver = le32_to_cpu(fid_ver(src));
782 }
783
fid_cpu_to_be(struct lu_fid * dst,const struct lu_fid * src)784 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
785 {
786 dst->f_seq = cpu_to_be64(fid_seq(src));
787 dst->f_oid = cpu_to_be32(fid_oid(src));
788 dst->f_ver = cpu_to_be32(fid_ver(src));
789 }
790
fid_be_to_cpu(struct lu_fid * dst,const struct lu_fid * src)791 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
792 {
793 dst->f_seq = be64_to_cpu(fid_seq(src));
794 dst->f_oid = be32_to_cpu(fid_oid(src));
795 dst->f_ver = be32_to_cpu(fid_ver(src));
796 }
797
fid_is_sane(const struct lu_fid * fid)798 static inline int fid_is_sane(const struct lu_fid *fid)
799 {
800 return fid != NULL &&
801 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
802 fid_is_igif(fid) || fid_is_idif(fid) ||
803 fid_seq_is_rsvd(fid_seq(fid)));
804 }
805
fid_is_zero(const struct lu_fid * fid)806 static inline int fid_is_zero(const struct lu_fid *fid)
807 {
808 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
809 }
810
811 extern void lustre_swab_lu_fid(struct lu_fid *fid);
812 extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
813
lu_fid_eq(const struct lu_fid * f0,const struct lu_fid * f1)814 static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
815 {
816 return memcmp(f0, f1, sizeof(*f0)) == 0;
817 }
818
819 #define __diff_normalize(val0, val1) \
820 ({ \
821 typeof(val0) __val0 = (val0); \
822 typeof(val1) __val1 = (val1); \
823 \
824 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
825 })
826
lu_fid_cmp(const struct lu_fid * f0,const struct lu_fid * f1)827 static inline int lu_fid_cmp(const struct lu_fid *f0,
828 const struct lu_fid *f1)
829 {
830 return
831 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
832 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
833 __diff_normalize(fid_ver(f0), fid_ver(f1));
834 }
835
ostid_cpu_to_le(const struct ost_id * src_oi,struct ost_id * dst_oi)836 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
837 struct ost_id *dst_oi)
838 {
839 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
840 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
841 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
842 } else {
843 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
844 }
845 }
846
ostid_le_to_cpu(const struct ost_id * src_oi,struct ost_id * dst_oi)847 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
848 struct ost_id *dst_oi)
849 {
850 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
851 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
852 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
853 } else {
854 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
855 }
856 }
857
858 /** @} lu_fid */
859
860 /** \defgroup lu_dir lu_dir
861 * @{ */
862
863 /**
864 * Enumeration of possible directory entry attributes.
865 *
866 * Attributes follow directory entry header in the order they appear in this
867 * enumeration.
868 */
869 enum lu_dirent_attrs {
870 LUDA_FID = 0x0001,
871 LUDA_TYPE = 0x0002,
872 LUDA_64BITHASH = 0x0004,
873
874 /* The following attrs are used for MDT internal only,
875 * not visible to client */
876
877 /* Verify the dirent consistency */
878 LUDA_VERIFY = 0x8000,
879 /* Only check but not repair the dirent inconsistency */
880 LUDA_VERIFY_DRYRUN = 0x4000,
881 /* The dirent has been repaired, or to be repaired (dryrun). */
882 LUDA_REPAIR = 0x2000,
883 /* The system is upgraded, has beed or to be repaired (dryrun). */
884 LUDA_UPGRADE = 0x1000,
885 /* Ignore this record, go to next directly. */
886 LUDA_IGNORE = 0x0800,
887 };
888
889 #define LU_DIRENT_ATTRS_MASK 0xf800
890
891 /**
892 * Layout of readdir pages, as transmitted on wire.
893 */
894 struct lu_dirent {
895 /** valid if LUDA_FID is set. */
896 struct lu_fid lde_fid;
897 /** a unique entry identifier: a hash or an offset. */
898 __u64 lde_hash;
899 /** total record length, including all attributes. */
900 __u16 lde_reclen;
901 /** name length */
902 __u16 lde_namelen;
903 /** optional variable size attributes following this entry.
904 * taken from enum lu_dirent_attrs.
905 */
906 __u32 lde_attrs;
907 /** name is followed by the attributes indicated in ->ldp_attrs, in
908 * their natural order. After the last attribute, padding bytes are
909 * added to make ->lde_reclen a multiple of 8.
910 */
911 char lde_name[0];
912 };
913
914 /*
915 * Definitions of optional directory entry attributes formats.
916 *
917 * Individual attributes do not have their length encoded in a generic way. It
918 * is assumed that consumer of an attribute knows its format. This means that
919 * it is impossible to skip over an unknown attribute, except by skipping over all
920 * remaining attributes (by using ->lde_reclen), which is not too
921 * constraining, because new server versions will append new attributes at
922 * the end of an entry.
923 */
924
925 /**
926 * Fid directory attribute: a fid of an object referenced by the entry. This
927 * will be almost always requested by the client and supplied by the server.
928 *
929 * Aligned to 8 bytes.
930 */
931 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
932
933 /**
934 * File type.
935 *
936 * Aligned to 2 bytes.
937 */
938 struct luda_type {
939 __u16 lt_type;
940 };
941
942 #ifndef IFSHIFT
943 #define IFSHIFT 12
944 #endif
945
946 #ifndef IFTODT
947 #define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
948 #endif
949 #ifndef DTTOIF
950 #define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
951 #endif
952
953
954 struct lu_dirpage {
955 __u64 ldp_hash_start;
956 __u64 ldp_hash_end;
957 __u32 ldp_flags;
958 __u32 ldp_pad0;
959 struct lu_dirent ldp_entries[0];
960 };
961
962 enum lu_dirpage_flags {
963 /**
964 * dirpage contains no entry.
965 */
966 LDF_EMPTY = 1 << 0,
967 /**
968 * last entry's lde_hash equals ldp_hash_end.
969 */
970 LDF_COLLIDE = 1 << 1
971 };
972
lu_dirent_start(struct lu_dirpage * dp)973 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
974 {
975 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
976 return NULL;
977 else
978 return dp->ldp_entries;
979 }
980
lu_dirent_next(struct lu_dirent * ent)981 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
982 {
983 struct lu_dirent *next;
984
985 if (le16_to_cpu(ent->lde_reclen) != 0)
986 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
987 else
988 next = NULL;
989
990 return next;
991 }
992
lu_dirent_calc_size(int namelen,__u16 attr)993 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
994 {
995 int size;
996
997 if (attr & LUDA_TYPE) {
998 const unsigned align = sizeof(struct luda_type) - 1;
999 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1000 size += sizeof(struct luda_type);
1001 } else
1002 size = sizeof(struct lu_dirent) + namelen;
1003
1004 return (size + 7) & ~7;
1005 }
1006
lu_dirent_size(struct lu_dirent * ent)1007 static inline int lu_dirent_size(struct lu_dirent *ent)
1008 {
1009 if (le16_to_cpu(ent->lde_reclen) == 0) {
1010 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1011 le32_to_cpu(ent->lde_attrs));
1012 }
1013 return le16_to_cpu(ent->lde_reclen);
1014 }
1015
1016 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1017
1018 /**
1019 * MDS_READPAGE page size
1020 *
1021 * This is the directory page size packed in MDS_READPAGE RPC.
1022 * It's different than PAGE_CACHE_SIZE because the client needs to
1023 * access the struct lu_dirpage header packed at the beginning of
1024 * the "page" and without this there isn't any way to know find the
1025 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1026 */
1027 #define LU_PAGE_SHIFT 12
1028 #define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1029 #define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1030
1031 #define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1032
1033 /** @} lu_dir */
1034
1035 struct lustre_handle {
1036 __u64 cookie;
1037 };
1038 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1039
lustre_handle_is_used(struct lustre_handle * lh)1040 static inline int lustre_handle_is_used(struct lustre_handle *lh)
1041 {
1042 return lh->cookie != 0ull;
1043 }
1044
lustre_handle_equal(const struct lustre_handle * lh1,const struct lustre_handle * lh2)1045 static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1046 const struct lustre_handle *lh2)
1047 {
1048 return lh1->cookie == lh2->cookie;
1049 }
1050
lustre_handle_copy(struct lustre_handle * tgt,struct lustre_handle * src)1051 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1052 struct lustre_handle *src)
1053 {
1054 tgt->cookie = src->cookie;
1055 }
1056
1057 /* flags for lm_flags */
1058 #define MSGHDR_AT_SUPPORT 0x1
1059 #define MSGHDR_CKSUM_INCOMPAT18 0x2
1060
1061 #define lustre_msg lustre_msg_v2
1062 /* we depend on this structure to be 8-byte aligned */
1063 /* this type is only endian-adjusted in lustre_unpack_msg() */
1064 struct lustre_msg_v2 {
1065 __u32 lm_bufcount;
1066 __u32 lm_secflvr;
1067 __u32 lm_magic;
1068 __u32 lm_repsize;
1069 __u32 lm_cksum;
1070 __u32 lm_flags;
1071 __u32 lm_padding_2;
1072 __u32 lm_padding_3;
1073 __u32 lm_buflens[0];
1074 };
1075
1076 /* without gss, ptlrpc_body is put at the first buffer. */
1077 #define PTLRPC_NUM_VERSIONS 4
1078 #define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1079 struct ptlrpc_body_v3 {
1080 struct lustre_handle pb_handle;
1081 __u32 pb_type;
1082 __u32 pb_version;
1083 __u32 pb_opc;
1084 __u32 pb_status;
1085 __u64 pb_last_xid;
1086 __u64 pb_last_seen;
1087 __u64 pb_last_committed;
1088 __u64 pb_transno;
1089 __u32 pb_flags;
1090 __u32 pb_op_flags;
1091 __u32 pb_conn_cnt;
1092 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1093 __u32 pb_service_time; /* for rep, actual service time */
1094 __u32 pb_limit;
1095 __u64 pb_slv;
1096 /* VBR: pre-versions */
1097 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1098 /* padding for future needs */
1099 __u64 pb_padding[4];
1100 char pb_jobid[JOBSTATS_JOBID_SIZE];
1101 };
1102 #define ptlrpc_body ptlrpc_body_v3
1103
1104 struct ptlrpc_body_v2 {
1105 struct lustre_handle pb_handle;
1106 __u32 pb_type;
1107 __u32 pb_version;
1108 __u32 pb_opc;
1109 __u32 pb_status;
1110 __u64 pb_last_xid;
1111 __u64 pb_last_seen;
1112 __u64 pb_last_committed;
1113 __u64 pb_transno;
1114 __u32 pb_flags;
1115 __u32 pb_op_flags;
1116 __u32 pb_conn_cnt;
1117 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1118 __u32 pb_service_time; /* for rep, actual service time, also used for
1119 net_latency of req */
1120 __u32 pb_limit;
1121 __u64 pb_slv;
1122 /* VBR: pre-versions */
1123 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1124 /* padding for future needs */
1125 __u64 pb_padding[4];
1126 };
1127
1128 extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1129
1130 /* message body offset for lustre_msg_v2 */
1131 /* ptlrpc body offset in all request/reply messages */
1132 #define MSG_PTLRPC_BODY_OFF 0
1133
1134 /* normal request/reply message record offset */
1135 #define REQ_REC_OFF 1
1136 #define REPLY_REC_OFF 1
1137
1138 /* ldlm request message body offset */
1139 #define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1140 #define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1141
1142 /* ldlm intent lock message body offset */
1143 #define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1144 #define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1145
1146 /* ldlm reply message body offset */
1147 #define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1148 #define DLM_REPLY_REC_OFF 2 /* reply record offset */
1149
1150 /** only use in req->rq_{req,rep}_swab_mask */
1151 #define MSG_PTLRPC_HEADER_OFF 31
1152
1153 /* Flags that are operation-specific go in the top 16 bits. */
1154 #define MSG_OP_FLAG_MASK 0xffff0000
1155 #define MSG_OP_FLAG_SHIFT 16
1156
1157 /* Flags that apply to all requests are in the bottom 16 bits */
1158 #define MSG_GEN_FLAG_MASK 0x0000ffff
1159 #define MSG_LAST_REPLAY 0x0001
1160 #define MSG_RESENT 0x0002
1161 #define MSG_REPLAY 0x0004
1162 /* #define MSG_AT_SUPPORT 0x0008
1163 * This was used in early prototypes of adaptive timeouts, and while there
1164 * shouldn't be any users of that code there also isn't a need for using this
1165 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1166 #define MSG_DELAY_REPLAY 0x0010
1167 #define MSG_VERSION_REPLAY 0x0020
1168 #define MSG_REQ_REPLAY_DONE 0x0040
1169 #define MSG_LOCK_REPLAY_DONE 0x0080
1170
1171 /*
1172 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1173 */
1174
1175 #define MSG_CONNECT_RECOVERING 0x00000001
1176 #define MSG_CONNECT_RECONNECT 0x00000002
1177 #define MSG_CONNECT_REPLAYABLE 0x00000004
1178 //#define MSG_CONNECT_PEER 0x8
1179 #define MSG_CONNECT_LIBCLIENT 0x00000010
1180 #define MSG_CONNECT_INITIAL 0x00000020
1181 #define MSG_CONNECT_ASYNC 0x00000040
1182 #define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1183 #define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1184
1185 /* Connect flags */
1186 #define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1187 #define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1188 #define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1189 #define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1190 #define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1191 #define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1192 #define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1193 #define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1194 #define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1195 #define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1196 #define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1197 #define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1198 #define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1199 #define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1200 *We do not support JOIN FILE
1201 *anymore, reserve this flags
1202 *just for preventing such bit
1203 *to be reused.*/
1204 #define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1205 #define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1206 #define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1207 #define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1208 #define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1209 #define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1210 #define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1211 #define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1212 #define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1213 #define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1214 #define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1215 #define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1216 #define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1217 #define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1218 #define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1219 #define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1220 #define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1221 #define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1222 #define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1223 #define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1224 #define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1225 #define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1226 #define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1227 #define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1228 #define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1229 * directory hash */
1230 #define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1231 #define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1232 #define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1233 #define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1234 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1235 * RPC error properly */
1236 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1237 * finer space reservation */
1238 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1239 * policy and 2.x server */
1240 #define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1241 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1242 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1243 #define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1244 #define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1245 #define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
1246 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1247
1248 /* XXX README XXX:
1249 * Please DO NOT add flag values here before first ensuring that this same
1250 * flag value is not in use on some other branch. Please clear any such
1251 * changes with senior engineers before starting to use a new flag. Then,
1252 * submit a small patch against EVERY branch that ONLY adds the new flag,
1253 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1254 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1255 * can be approved and landed easily to reserve the flag for future use. */
1256
1257 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1258 * connection. It is a temporary bug fix for Imperative Recovery interop
1259 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1260 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1261 #define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1262
1263 #define OCD_HAS_FLAG(ocd, flg) \
1264 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1265
1266
1267 #define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1268
1269 #define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1270 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1271 OBD_CONNECT_IBITS | \
1272 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1273 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1274 OBD_CONNECT_RMT_CLIENT | \
1275 OBD_CONNECT_RMT_CLIENT_FORCE | \
1276 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1277 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1278 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1279 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1280 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1281 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1282 OBD_CONNECT_EINPROGRESS | \
1283 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1284 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1285 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1286 OBD_CONNECT_FLOCK_DEAD | \
1287 OBD_CONNECT_DISP_STRIPE)
1288
1289 #define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1290 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1291 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1292 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1293 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1294 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1295 OBD_CONNECT_RMT_CLIENT | \
1296 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1297 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1298 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1299 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1300 OBD_CONNECT_MAX_EASIZE | \
1301 OBD_CONNECT_EINPROGRESS | \
1302 OBD_CONNECT_JOBSTATS | \
1303 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1304 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1305 OBD_CONNECT_PINGLESS)
1306 #define ECHO_CONNECT_SUPPORTED (0)
1307 #define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1308 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1309 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1310
1311 /* Features required for this version of the client to work with server */
1312 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1313 OBD_CONNECT_FULL20)
1314
1315 #define OBD_OCD_VERSION(major, minor, patch, fix) (((major)<<24) + \
1316 ((minor)<<16) + \
1317 ((patch)<<8) + (fix))
1318 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1319 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1320 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1321 #define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1322
1323 /* This structure is used for both request and reply.
1324 *
1325 * If we eventually have separate connect data for different types, which we
1326 * almost certainly will, then perhaps we stick a union in here. */
1327 struct obd_connect_data_v1 {
1328 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1329 __u32 ocd_version; /* lustre release version number */
1330 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1331 __u32 ocd_index; /* LOV index to connect to */
1332 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1333 __u64 ocd_ibits_known; /* inode bits this client understands */
1334 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1335 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1336 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1337 __u32 ocd_unused; /* also fix lustre_swab_connect */
1338 __u64 ocd_transno; /* first transno from client to be replayed */
1339 __u32 ocd_group; /* MDS group on OST */
1340 __u32 ocd_cksum_types; /* supported checksum algorithms */
1341 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1342 __u32 ocd_instance; /* also fix lustre_swab_connect */
1343 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1344 };
1345
1346 struct obd_connect_data {
1347 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1348 __u32 ocd_version; /* lustre release version number */
1349 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1350 __u32 ocd_index; /* LOV index to connect to */
1351 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1352 __u64 ocd_ibits_known; /* inode bits this client understands */
1353 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1354 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1355 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1356 __u32 ocd_unused; /* also fix lustre_swab_connect */
1357 __u64 ocd_transno; /* first transno from client to be replayed */
1358 __u32 ocd_group; /* MDS group on OST */
1359 __u32 ocd_cksum_types; /* supported checksum algorithms */
1360 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1361 __u32 ocd_instance; /* instance # of this target */
1362 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1363 /* Fields after ocd_maxbytes are only accessible by the receiver
1364 * if the corresponding flag in ocd_connect_flags is set. Accessing
1365 * any field after ocd_maxbytes on the receiver without a valid flag
1366 * may result in out-of-bound memory access and kernel oops. */
1367 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1368 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1369 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1370 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1371 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1372 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1373 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1374 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1375 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1376 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1377 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1378 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1379 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1380 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1381 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1382 };
1383 /* XXX README XXX:
1384 * Please DO NOT use any fields here before first ensuring that this same
1385 * field is not in use on some other branch. Please clear any such changes
1386 * with senior engineers before starting to use a new field. Then, submit
1387 * a small patch against EVERY branch that ONLY adds the new field along with
1388 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1389 * reserve the flag for future use. */
1390
1391
1392 extern void lustre_swab_connect(struct obd_connect_data *ocd);
1393
1394 /*
1395 * Supported checksum algorithms. Up to 32 checksum types are supported.
1396 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1397 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1398 * algorithm and also the OBD_FL_CKSUM* flags.
1399 */
1400 typedef enum {
1401 OBD_CKSUM_CRC32 = 0x00000001,
1402 OBD_CKSUM_ADLER = 0x00000002,
1403 OBD_CKSUM_CRC32C= 0x00000004,
1404 } cksum_type_t;
1405
1406 /*
1407 * OST requests: OBDO & OBD request records
1408 */
1409
1410 /* opcodes */
1411 typedef enum {
1412 OST_REPLY = 0, /* reply ? */
1413 OST_GETATTR = 1,
1414 OST_SETATTR = 2,
1415 OST_READ = 3,
1416 OST_WRITE = 4,
1417 OST_CREATE = 5,
1418 OST_DESTROY = 6,
1419 OST_GET_INFO = 7,
1420 OST_CONNECT = 8,
1421 OST_DISCONNECT = 9,
1422 OST_PUNCH = 10,
1423 OST_OPEN = 11,
1424 OST_CLOSE = 12,
1425 OST_STATFS = 13,
1426 OST_SYNC = 16,
1427 OST_SET_INFO = 17,
1428 OST_QUOTACHECK = 18,
1429 OST_QUOTACTL = 19,
1430 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1431 OST_LAST_OPC
1432 } ost_cmd_t;
1433 #define OST_FIRST_OPC OST_REPLY
1434
1435 enum obdo_flags {
1436 OBD_FL_INLINEDATA = 0x00000001,
1437 OBD_FL_OBDMDEXISTS = 0x00000002,
1438 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1439 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1440 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1441 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1442 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1443 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1444 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1445 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1446 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1447 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1448 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1449 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1450 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1451 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1452 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1453 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1454 * XXX: obsoleted - reserved for old
1455 * clients prior than 2.2 */
1456 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1457 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1458
1459 /* Note that while these checksum values are currently separate bits,
1460 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1461 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1462 OBD_FL_CKSUM_CRC32C,
1463
1464 /* mask for local-only flag, which won't be sent over network */
1465 OBD_FL_LOCAL_MASK = 0xF0000000,
1466 };
1467
1468 #define LOV_MAGIC_V1 0x0BD10BD0
1469 #define LOV_MAGIC LOV_MAGIC_V1
1470 #define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1471 #define LOV_MAGIC_V3 0x0BD30BD0
1472
1473 /*
1474 * magic for fully defined striping
1475 * the idea is that we should have different magics for striping "hints"
1476 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1477 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1478 * we can't just change it w/o long way preparation, but we still need a
1479 * mechanism to allow LOD to differentiate hint versus ready striping.
1480 * so, at the moment we do a trick: MDT knows what to expect from request
1481 * depending on the case (replay uses ready striping, non-replay req uses
1482 * hints), so MDT replaces magic with appropriate one and now LOD can
1483 * easily understand what's inside -bzzz
1484 */
1485 #define LOV_MAGIC_V1_DEF 0x0CD10BD0
1486 #define LOV_MAGIC_V3_DEF 0x0CD30BD0
1487
1488 #define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1489 #define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1490 #define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1491 #define LOV_PATTERN_CMOBD 0x200
1492
1493 #define LOV_PATTERN_F_MASK 0xffff0000
1494 #define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1495
1496 #define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1497 #define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
1498
1499 #define lov_ost_data lov_ost_data_v1
1500 struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1501 struct ost_id l_ost_oi; /* OST object ID */
1502 __u32 l_ost_gen; /* generation of this l_ost_idx */
1503 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1504 };
1505
1506 #define lov_mds_md lov_mds_md_v1
1507 struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1508 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1509 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1510 struct ost_id lmm_oi; /* LOV object ID */
1511 __u32 lmm_stripe_size; /* size of stripe in bytes */
1512 /* lmm_stripe_count used to be __u32 */
1513 __u16 lmm_stripe_count; /* num stripes in use for this object */
1514 __u16 lmm_layout_gen; /* layout generation number */
1515 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1516 };
1517
1518 /**
1519 * Sigh, because pre-2.4 uses
1520 * struct lov_mds_md_v1 {
1521 * ........
1522 * __u64 lmm_object_id;
1523 * __u64 lmm_object_seq;
1524 * ......
1525 * }
1526 * to identify the LOV(MDT) object, and lmm_object_seq will
1527 * be normal_fid, which make it hard to combine these conversion
1528 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1529 *
1530 * We can tell the lmm_oi by this way,
1531 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1532 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1533 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1534 * lmm_oi.f_ver = 0
1535 *
1536 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1537 * except for printing some information, and the user can always
1538 * get the real FID from LMA, besides this multiple case check might
1539 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1540 */
1541
fid_to_lmm_oi(const struct lu_fid * fid,struct ost_id * oi)1542 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1543 struct ost_id *oi)
1544 {
1545 oi->oi.oi_id = fid_oid(fid);
1546 oi->oi.oi_seq = fid_seq(fid);
1547 }
1548
lmm_oi_set_seq(struct ost_id * oi,__u64 seq)1549 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1550 {
1551 oi->oi.oi_seq = seq;
1552 }
1553
lmm_oi_id(struct ost_id * oi)1554 static inline __u64 lmm_oi_id(struct ost_id *oi)
1555 {
1556 return oi->oi.oi_id;
1557 }
1558
lmm_oi_seq(struct ost_id * oi)1559 static inline __u64 lmm_oi_seq(struct ost_id *oi)
1560 {
1561 return oi->oi.oi_seq;
1562 }
1563
lmm_oi_le_to_cpu(struct ost_id * dst_oi,struct ost_id * src_oi)1564 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1565 struct ost_id *src_oi)
1566 {
1567 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1568 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1569 }
1570
lmm_oi_cpu_to_le(struct ost_id * dst_oi,struct ost_id * src_oi)1571 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1572 struct ost_id *src_oi)
1573 {
1574 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1575 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1576 }
1577
1578 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1579
1580 #define MAX_MD_SIZE \
1581 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1582 #define MIN_MD_SIZE \
1583 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1584
1585 #define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1586 #define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1587 #define XATTR_USER_PREFIX "user."
1588 #define XATTR_TRUSTED_PREFIX "trusted."
1589 #define XATTR_SECURITY_PREFIX "security."
1590 #define XATTR_LUSTRE_PREFIX "lustre."
1591
1592 #define XATTR_NAME_LOV "trusted.lov"
1593 #define XATTR_NAME_LMA "trusted.lma"
1594 #define XATTR_NAME_LMV "trusted.lmv"
1595 #define XATTR_NAME_LINK "trusted.link"
1596 #define XATTR_NAME_FID "trusted.fid"
1597 #define XATTR_NAME_VERSION "trusted.version"
1598 #define XATTR_NAME_SOM "trusted.som"
1599 #define XATTR_NAME_HSM "trusted.hsm"
1600 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1601
1602 struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1603 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1604 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1605 struct ost_id lmm_oi; /* LOV object ID */
1606 __u32 lmm_stripe_size; /* size of stripe in bytes */
1607 /* lmm_stripe_count used to be __u32 */
1608 __u16 lmm_stripe_count; /* num stripes in use for this object */
1609 __u16 lmm_layout_gen; /* layout generation number */
1610 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1611 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1612 };
1613
lov_mds_md_size(__u16 stripes,__u32 lmm_magic)1614 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1615 {
1616 if (lmm_magic == LOV_MAGIC_V3)
1617 return sizeof(struct lov_mds_md_v3) +
1618 stripes * sizeof(struct lov_ost_data_v1);
1619 else
1620 return sizeof(struct lov_mds_md_v1) +
1621 stripes * sizeof(struct lov_ost_data_v1);
1622 }
1623
1624 static inline __u32
lov_mds_md_max_stripe_count(size_t buf_size,__u32 lmm_magic)1625 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1626 {
1627 switch (lmm_magic) {
1628 case LOV_MAGIC_V1: {
1629 struct lov_mds_md_v1 lmm;
1630
1631 if (buf_size < sizeof(lmm))
1632 return 0;
1633
1634 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1635 }
1636 case LOV_MAGIC_V3: {
1637 struct lov_mds_md_v3 lmm;
1638
1639 if (buf_size < sizeof(lmm))
1640 return 0;
1641
1642 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1643 }
1644 default:
1645 return 0;
1646 }
1647 }
1648
1649 #define OBD_MD_FLID (0x00000001ULL) /* object ID */
1650 #define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1651 #define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1652 #define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1653 #define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1654 #define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1655 #define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1656 #define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1657 #define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1658 #define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1659 #define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1660 #define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1661 #define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1662 #define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1663 /*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1664 #define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1665 #define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1666 #define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1667 #define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1668 #define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1669 #define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1670 /*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1671 #define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1672 #define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1673 #define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1674 #define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1675 /* ->mds if epoch opens or closes */
1676 #define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1677 #define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1678 #define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1679 #define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1680 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1681
1682 #define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1683 #define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1684 #define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
1685 #define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
1686
1687 #define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1688 #define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1689 #define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1690 #define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1691 #define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1692 #define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1693 #define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1694 #define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1695 #define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1696 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1697 * under lock; for xattr
1698 * requests means the
1699 * client holds the lock */
1700 #define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1701
1702 #define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1703 #define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1704 #define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1705 #define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1706
1707 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1708 #define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
1709
1710 #define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1711 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1712 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1713 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1714 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1715
1716 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1717
1718 /* don't forget obdo_fid which is way down at the bottom so it can
1719 * come after the definition of llog_cookie */
1720
1721 enum hss_valid {
1722 HSS_SETMASK = 0x01,
1723 HSS_CLEARMASK = 0x02,
1724 HSS_ARCHIVE_ID = 0x04,
1725 };
1726
1727 struct hsm_state_set {
1728 __u32 hss_valid;
1729 __u32 hss_archive_id;
1730 __u64 hss_setmask;
1731 __u64 hss_clearmask;
1732 };
1733
1734 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1735 extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1736
1737 extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1738
1739 /* ost_body.data values for OST_BRW */
1740
1741 #define OBD_BRW_READ 0x01
1742 #define OBD_BRW_WRITE 0x02
1743 #define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1744 #define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1745 * transfer and is not accounted in
1746 * the grant. */
1747 #define OBD_BRW_CHECK 0x10
1748 #define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1749 #define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1750 #define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1751 #define OBD_BRW_NOQUOTA 0x100
1752 #define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1753 #define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1754 #define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1755 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1756 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1757
1758 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1759
1760 #define OST_MIN_PRECREATE 32
1761 #define OST_MAX_PRECREATE 20000
1762
1763 struct obd_ioobj {
1764 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1765 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1766 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1767 * high 16 bits in 2.4 and later */
1768 __u32 ioo_bufcnt; /* number of niobufs for this object */
1769 };
1770
1771 #define IOOBJ_MAX_BRW_BITS 16
1772 #define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1773 #define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1774 #define ioobj_max_brw_set(ioo, num) \
1775 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1776
1777 extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1778
1779 /* multiple of 8 bytes => can array */
1780 struct niobuf_remote {
1781 __u64 offset;
1782 __u32 len;
1783 __u32 flags;
1784 };
1785
1786 extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1787
1788 /* lock value block communicated between the filter and llite */
1789
1790 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1791 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1792 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1793 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1794 #define OST_LVB_IS_ERR(blocks) \
1795 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1796 #define OST_LVB_SET_ERR(blocks, rc) \
1797 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1798 #define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1799
1800 struct ost_lvb_v1 {
1801 __u64 lvb_size;
1802 __s64 lvb_mtime;
1803 __s64 lvb_atime;
1804 __s64 lvb_ctime;
1805 __u64 lvb_blocks;
1806 };
1807
1808 extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1809
1810 struct ost_lvb {
1811 __u64 lvb_size;
1812 __s64 lvb_mtime;
1813 __s64 lvb_atime;
1814 __s64 lvb_ctime;
1815 __u64 lvb_blocks;
1816 __u32 lvb_mtime_ns;
1817 __u32 lvb_atime_ns;
1818 __u32 lvb_ctime_ns;
1819 __u32 lvb_padding;
1820 };
1821
1822 extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1823
1824 /*
1825 * lquota data structures
1826 */
1827
1828 #ifndef QUOTABLOCK_BITS
1829 #define QUOTABLOCK_BITS 10
1830 #endif
1831
1832 #ifndef QUOTABLOCK_SIZE
1833 #define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1834 #endif
1835
1836 #ifndef toqb
1837 #define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1838 #endif
1839
1840 /* The lquota_id structure is an union of all the possible identifier types that
1841 * can be used with quota, this includes:
1842 * - 64-bit user ID
1843 * - 64-bit group ID
1844 * - a FID which can be used for per-directory quota in the future */
1845 union lquota_id {
1846 struct lu_fid qid_fid; /* FID for per-directory quota */
1847 __u64 qid_uid; /* user identifier */
1848 __u64 qid_gid; /* group identifier */
1849 };
1850
1851 /* quotactl management */
1852 struct obd_quotactl {
1853 __u32 qc_cmd;
1854 __u32 qc_type; /* see Q_* flag below */
1855 __u32 qc_id;
1856 __u32 qc_stat;
1857 struct obd_dqinfo qc_dqinfo;
1858 struct obd_dqblk qc_dqblk;
1859 };
1860
1861 extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1862
1863 #define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1864 #define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1865 #define Q_GETOINFO 0x800102 /* get obd quota info */
1866 #define Q_GETOQUOTA 0x800103 /* get obd quotas */
1867 #define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1868
1869 #define Q_COPY(out, in, member) (out)->member = (in)->member
1870
1871 #define QCTL_COPY(out, in) \
1872 do { \
1873 Q_COPY(out, in, qc_cmd); \
1874 Q_COPY(out, in, qc_type); \
1875 Q_COPY(out, in, qc_id); \
1876 Q_COPY(out, in, qc_stat); \
1877 Q_COPY(out, in, qc_dqinfo); \
1878 Q_COPY(out, in, qc_dqblk); \
1879 } while (0)
1880
1881 /* Body of quota request used for quota acquire/release RPCs between quota
1882 * master (aka QMT) and slaves (ak QSD). */
1883 struct quota_body {
1884 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1885 * and type (data or metadata) as well as
1886 * the quota type (user or group). */
1887 union lquota_id qb_id; /* uid or gid or directory FID */
1888 __u32 qb_flags; /* see below */
1889 __u32 qb_padding;
1890 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1891 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1892 __u64 qb_slv_ver; /* slave index file version */
1893 struct lustre_handle qb_lockh; /* per-ID lock handle */
1894 struct lustre_handle qb_glb_lockh; /* global lock handle */
1895 __u64 qb_padding1[4];
1896 };
1897
1898 /* When the quota_body is used in the reply of quota global intent
1899 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1900 #define qb_slv_fid qb_fid
1901 /* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1902 * quota reply */
1903 #define qb_qunit qb_usage
1904
1905 #define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1906 #define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1907 #define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1908 #define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1909
1910 extern void lustre_swab_quota_body(struct quota_body *b);
1911
1912 /* Quota types currently supported */
1913 enum {
1914 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1915 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1916 LQUOTA_TYPE_MAX
1917 };
1918
1919 /* There are 2 different resource types on which a quota limit can be enforced:
1920 * - inodes on the MDTs
1921 * - blocks on the OSTs */
1922 enum {
1923 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1924 LQUOTA_RES_DT = 0x02,
1925 LQUOTA_LAST_RES,
1926 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1927 };
1928 #define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1929
1930 /*
1931 * Space accounting support
1932 * Format of an accounting record, providing disk usage information for a given
1933 * user or group
1934 */
1935 struct lquota_acct_rec { /* 16 bytes */
1936 __u64 bspace; /* current space in use */
1937 __u64 ispace; /* current # inodes in use */
1938 };
1939
1940 /*
1941 * Global quota index support
1942 * Format of a global record, providing global quota settings for a given quota
1943 * identifier
1944 */
1945 struct lquota_glb_rec { /* 32 bytes */
1946 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1947 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1948 __u64 qbr_time; /* grace time, in seconds */
1949 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
1950 * kbytes */
1951 };
1952
1953 /*
1954 * Slave index support
1955 * Format of a slave record, recording how much space is granted to a given
1956 * slave
1957 */
1958 struct lquota_slv_rec { /* 8 bytes */
1959 __u64 qsr_granted; /* space granted to the slave for the key=ID,
1960 * in #inodes or kbytes */
1961 };
1962
1963 /* Data structures associated with the quota locks */
1964
1965 /* Glimpse descriptor used for the index & per-ID quota locks */
1966 struct ldlm_gl_lquota_desc {
1967 union lquota_id gl_id; /* quota ID subject to the glimpse */
1968 __u64 gl_flags; /* see LQUOTA_FL* below */
1969 __u64 gl_ver; /* new index version */
1970 __u64 gl_hardlimit; /* new hardlimit or qunit value */
1971 __u64 gl_softlimit; /* new softlimit */
1972 __u64 gl_time;
1973 __u64 gl_pad2;
1974 };
1975 #define gl_qunit gl_hardlimit /* current qunit value used when
1976 * glimpsing per-ID quota locks */
1977
1978 /* quota glimpse flags */
1979 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
1980
1981 /* LVB used with quota (global and per-ID) locks */
1982 struct lquota_lvb {
1983 __u64 lvb_flags; /* see LQUOTA_FL* above */
1984 __u64 lvb_id_may_rel; /* space that might be released later */
1985 __u64 lvb_id_rel; /* space released by the slave for this ID */
1986 __u64 lvb_id_qunit; /* current qunit value */
1987 __u64 lvb_pad1;
1988 };
1989
1990 extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
1991
1992 /* LVB used with global quota lock */
1993 #define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
1994
1995 /* op codes */
1996 typedef enum {
1997 QUOTA_DQACQ = 601,
1998 QUOTA_DQREL = 602,
1999 QUOTA_LAST_OPC
2000 } quota_cmd_t;
2001 #define QUOTA_FIRST_OPC QUOTA_DQACQ
2002
2003 /*
2004 * MDS REQ RECORDS
2005 */
2006
2007 /* opcodes */
2008 typedef enum {
2009 MDS_GETATTR = 33,
2010 MDS_GETATTR_NAME = 34,
2011 MDS_CLOSE = 35,
2012 MDS_REINT = 36,
2013 MDS_READPAGE = 37,
2014 MDS_CONNECT = 38,
2015 MDS_DISCONNECT = 39,
2016 MDS_GETSTATUS = 40,
2017 MDS_STATFS = 41,
2018 MDS_PIN = 42,
2019 MDS_UNPIN = 43,
2020 MDS_SYNC = 44,
2021 MDS_DONE_WRITING = 45,
2022 MDS_SET_INFO = 46,
2023 MDS_QUOTACHECK = 47,
2024 MDS_QUOTACTL = 48,
2025 MDS_GETXATTR = 49,
2026 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2027 MDS_WRITEPAGE = 51,
2028 MDS_IS_SUBDIR = 52,
2029 MDS_GET_INFO = 53,
2030 MDS_HSM_STATE_GET = 54,
2031 MDS_HSM_STATE_SET = 55,
2032 MDS_HSM_ACTION = 56,
2033 MDS_HSM_PROGRESS = 57,
2034 MDS_HSM_REQUEST = 58,
2035 MDS_HSM_CT_REGISTER = 59,
2036 MDS_HSM_CT_UNREGISTER = 60,
2037 MDS_SWAP_LAYOUTS = 61,
2038 MDS_LAST_OPC
2039 } mds_cmd_t;
2040
2041 #define MDS_FIRST_OPC MDS_GETATTR
2042
2043
2044 /* opcodes for object update */
2045 typedef enum {
2046 UPDATE_OBJ = 1000,
2047 UPDATE_LAST_OPC
2048 } update_cmd_t;
2049
2050 #define UPDATE_FIRST_OPC UPDATE_OBJ
2051
2052 /*
2053 * Do not exceed 63
2054 */
2055
2056 typedef enum {
2057 REINT_SETATTR = 1,
2058 REINT_CREATE = 2,
2059 REINT_LINK = 3,
2060 REINT_UNLINK = 4,
2061 REINT_RENAME = 5,
2062 REINT_OPEN = 6,
2063 REINT_SETXATTR = 7,
2064 REINT_RMENTRY = 8,
2065 // REINT_WRITE = 9,
2066 REINT_MAX
2067 } mds_reint_t, mdt_reint_t;
2068
2069 extern void lustre_swab_generic_32s (__u32 *val);
2070
2071 /* the disposition of the intent outlines what was executed */
2072 #define DISP_IT_EXECD 0x00000001
2073 #define DISP_LOOKUP_EXECD 0x00000002
2074 #define DISP_LOOKUP_NEG 0x00000004
2075 #define DISP_LOOKUP_POS 0x00000008
2076 #define DISP_OPEN_CREATE 0x00000010
2077 #define DISP_OPEN_OPEN 0x00000020
2078 #define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
2079 #define DISP_ENQ_OPEN_REF 0x00800000
2080 #define DISP_ENQ_CREATE_REF 0x01000000
2081 #define DISP_OPEN_LOCK 0x02000000
2082 #define DISP_OPEN_LEASE 0x04000000
2083 #define DISP_OPEN_STRIPE 0x08000000
2084
2085 /* INODE LOCK PARTS */
2086 #define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2087 * was used to protect permission (mode,
2088 * owner, group etc) before 2.4. */
2089 #define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2090 #define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2091 #define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2092
2093 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2094 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2095 * Because for remote directories(in DNE), these locks will be granted by
2096 * different MDTs(different ldlm namespace).
2097 *
2098 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2099 * For Remote directory, the master MDT, where the remote directory is, will
2100 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2101 * will grant LOOKUP_LOCK. */
2102 #define MDS_INODELOCK_PERM 0x000010
2103 #define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
2104
2105 #define MDS_INODELOCK_MAXSHIFT 5
2106 /* This FULL lock is useful to take on unlink sort of operations */
2107 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2108
2109 extern void lustre_swab_ll_fid (struct ll_fid *fid);
2110
2111 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2112 * but was moved into name[1] along with the OID to avoid consuming the
2113 * name[2,3] fields that need to be used for the quota id (also a FID). */
2114 enum {
2115 LUSTRE_RES_ID_SEQ_OFF = 0,
2116 LUSTRE_RES_ID_VER_OID_OFF = 1,
2117 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2118 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2119 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2120 LUSTRE_RES_ID_HSH_OFF = 3
2121 };
2122
2123 #define MDS_STATUS_CONN 1
2124 #define MDS_STATUS_LOV 2
2125
2126 /* mdt_thread_info.mti_flags. */
2127 enum md_op_flags {
2128 /* The flag indicates Size-on-MDS attributes are changed. */
2129 MF_SOM_CHANGE = (1 << 0),
2130 /* Flags indicates an epoch opens or closes. */
2131 MF_EPOCH_OPEN = (1 << 1),
2132 MF_EPOCH_CLOSE = (1 << 2),
2133 MF_MDC_CANCEL_FID1 = (1 << 3),
2134 MF_MDC_CANCEL_FID2 = (1 << 4),
2135 MF_MDC_CANCEL_FID3 = (1 << 5),
2136 MF_MDC_CANCEL_FID4 = (1 << 6),
2137 /* There is a pending attribute update. */
2138 MF_SOM_AU = (1 << 7),
2139 /* Cancel OST locks while getattr OST attributes. */
2140 MF_GETATTR_LOCK = (1 << 8),
2141 MF_GET_MDT_IDX = (1 << 9),
2142 };
2143
2144 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2145
2146 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2147
2148 /* these should be identical to their EXT4_*_FL counterparts, they are
2149 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2150 #define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2151 #define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2152 #define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2153 #define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2154 #define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2155
2156 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2157 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2158 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2159 * the S_* flags are kernel-internal values that change between kernel
2160 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2161 * See b=16526 for a full history. */
ll_ext_to_inode_flags(int flags)2162 static inline int ll_ext_to_inode_flags(int flags)
2163 {
2164 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2165 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2166 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2167 #if defined(S_DIRSYNC)
2168 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2169 #endif
2170 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2171 }
2172
ll_inode_to_ext_flags(int iflags)2173 static inline int ll_inode_to_ext_flags(int iflags)
2174 {
2175 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2176 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2177 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2178 #if defined(S_DIRSYNC)
2179 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2180 #endif
2181 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2182 }
2183
2184 /* 64 possible states */
2185 enum md_transient_state {
2186 MS_RESTORE = (1 << 0), /* restore is running */
2187 };
2188
2189 struct mdt_body {
2190 struct lu_fid fid1;
2191 struct lu_fid fid2;
2192 struct lustre_handle handle;
2193 __u64 valid;
2194 __u64 size; /* Offset, in the case of MDS_READPAGE */
2195 __s64 mtime;
2196 __s64 atime;
2197 __s64 ctime;
2198 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2199 __u64 ioepoch;
2200 __u64 t_state; /* transient file state defined in
2201 * enum md_transient_state
2202 * was "ino" until 2.4.0 */
2203 __u32 fsuid;
2204 __u32 fsgid;
2205 __u32 capability;
2206 __u32 mode;
2207 __u32 uid;
2208 __u32 gid;
2209 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2210 __u32 rdev;
2211 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2212 __u32 unused2; /* was "generation" until 2.4.0 */
2213 __u32 suppgid;
2214 __u32 eadatasize;
2215 __u32 aclsize;
2216 __u32 max_mdsize;
2217 __u32 max_cookiesize;
2218 __u32 uid_h; /* high 32-bits of uid, for FUID */
2219 __u32 gid_h; /* high 32-bits of gid, for FUID */
2220 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2221 __u64 padding_6;
2222 __u64 padding_7;
2223 __u64 padding_8;
2224 __u64 padding_9;
2225 __u64 padding_10;
2226 }; /* 216 */
2227
2228 extern void lustre_swab_mdt_body (struct mdt_body *b);
2229
2230 struct mdt_ioepoch {
2231 struct lustre_handle handle;
2232 __u64 ioepoch;
2233 __u32 flags;
2234 __u32 padding;
2235 };
2236
2237 extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2238
2239 /* permissions for md_perm.mp_perm */
2240 enum {
2241 CFS_SETUID_PERM = 0x01,
2242 CFS_SETGID_PERM = 0x02,
2243 CFS_SETGRP_PERM = 0x04,
2244 CFS_RMTACL_PERM = 0x08,
2245 CFS_RMTOWN_PERM = 0x10
2246 };
2247
2248 /* inode access permission for remote user, the inode info are omitted,
2249 * for client knows them. */
2250 struct mdt_remote_perm {
2251 __u32 rp_uid;
2252 __u32 rp_gid;
2253 __u32 rp_fsuid;
2254 __u32 rp_fsuid_h;
2255 __u32 rp_fsgid;
2256 __u32 rp_fsgid_h;
2257 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2258 __u32 rp_padding;
2259 };
2260
2261 extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2262
2263 struct mdt_rec_setattr {
2264 __u32 sa_opcode;
2265 __u32 sa_cap;
2266 __u32 sa_fsuid;
2267 __u32 sa_fsuid_h;
2268 __u32 sa_fsgid;
2269 __u32 sa_fsgid_h;
2270 __u32 sa_suppgid;
2271 __u32 sa_suppgid_h;
2272 __u32 sa_padding_1;
2273 __u32 sa_padding_1_h;
2274 struct lu_fid sa_fid;
2275 __u64 sa_valid;
2276 __u32 sa_uid;
2277 __u32 sa_gid;
2278 __u64 sa_size;
2279 __u64 sa_blocks;
2280 __s64 sa_mtime;
2281 __s64 sa_atime;
2282 __s64 sa_ctime;
2283 __u32 sa_attr_flags;
2284 __u32 sa_mode;
2285 __u32 sa_bias; /* some operation flags */
2286 __u32 sa_padding_3;
2287 __u32 sa_padding_4;
2288 __u32 sa_padding_5;
2289 };
2290
2291 extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2292
2293 /*
2294 * Attribute flags used in mdt_rec_setattr::sa_valid.
2295 * The kernel's #defines for ATTR_* should not be used over the network
2296 * since the client and MDS may run different kernels (see bug 13828)
2297 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2298 */
2299 #define MDS_ATTR_MODE 0x1ULL /* = 1 */
2300 #define MDS_ATTR_UID 0x2ULL /* = 2 */
2301 #define MDS_ATTR_GID 0x4ULL /* = 4 */
2302 #define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2303 #define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2304 #define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2305 #define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2306 #define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2307 #define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2308 #define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2309 #define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2310 #define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2311 #define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2312 #define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2313 #define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2314 #define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2315
2316 #ifndef FMODE_READ
2317 #define FMODE_READ 00000001
2318 #define FMODE_WRITE 00000002
2319 #endif
2320
2321 #define MDS_FMODE_CLOSED 00000000
2322 #define MDS_FMODE_EXEC 00000004
2323 /* IO Epoch is opened on a closed file. */
2324 #define MDS_FMODE_EPOCH 01000000
2325 /* IO Epoch is opened on a file truncate. */
2326 #define MDS_FMODE_TRUNC 02000000
2327 /* Size-on-MDS Attribute Update is pending. */
2328 #define MDS_FMODE_SOM 04000000
2329
2330 #define MDS_OPEN_CREATED 00000010
2331 #define MDS_OPEN_CROSS 00000020
2332
2333 #define MDS_OPEN_CREAT 00000100
2334 #define MDS_OPEN_EXCL 00000200
2335 #define MDS_OPEN_TRUNC 00001000
2336 #define MDS_OPEN_APPEND 00002000
2337 #define MDS_OPEN_SYNC 00010000
2338 #define MDS_OPEN_DIRECTORY 00200000
2339
2340 #define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2341 #define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2342 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2343 #define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2344 * We do not support JOIN FILE
2345 * anymore, reserve this flags
2346 * just for preventing such bit
2347 * to be reused. */
2348
2349 #define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2350 #define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2351 #define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2352 #define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2353 #define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2354 * hsm restore) */
2355 #define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2356 unlinked */
2357 #define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2358 * delegation, succeed if it's not
2359 * being opened with conflict mode.
2360 */
2361 #define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
2362
2363 /* permission for create non-directory file */
2364 #define MAY_CREATE (1 << 7)
2365 /* permission for create directory file */
2366 #define MAY_LINK (1 << 8)
2367 /* permission for delete from the directory */
2368 #define MAY_UNLINK (1 << 9)
2369 /* source's permission for rename */
2370 #define MAY_RENAME_SRC (1 << 10)
2371 /* target's permission for rename */
2372 #define MAY_RENAME_TAR (1 << 11)
2373 /* part (parent's) VTX permission check */
2374 #define MAY_VTX_PART (1 << 12)
2375 /* full VTX permission check */
2376 #define MAY_VTX_FULL (1 << 13)
2377 /* lfs rgetfacl permission check */
2378 #define MAY_RGETFACL (1 << 14)
2379
2380 enum mds_op_bias {
2381 MDS_CHECK_SPLIT = 1 << 0,
2382 MDS_CROSS_REF = 1 << 1,
2383 MDS_VTX_BYPASS = 1 << 2,
2384 MDS_PERM_BYPASS = 1 << 3,
2385 MDS_SOM = 1 << 4,
2386 MDS_QUOTA_IGNORE = 1 << 5,
2387 MDS_CLOSE_CLEANUP = 1 << 6,
2388 MDS_KEEP_ORPHAN = 1 << 7,
2389 MDS_RECOV_OPEN = 1 << 8,
2390 MDS_DATA_MODIFIED = 1 << 9,
2391 MDS_CREATE_VOLATILE = 1 << 10,
2392 MDS_OWNEROVERRIDE = 1 << 11,
2393 MDS_HSM_RELEASE = 1 << 12,
2394 };
2395
2396 /* instance of mdt_reint_rec */
2397 struct mdt_rec_create {
2398 __u32 cr_opcode;
2399 __u32 cr_cap;
2400 __u32 cr_fsuid;
2401 __u32 cr_fsuid_h;
2402 __u32 cr_fsgid;
2403 __u32 cr_fsgid_h;
2404 __u32 cr_suppgid1;
2405 __u32 cr_suppgid1_h;
2406 __u32 cr_suppgid2;
2407 __u32 cr_suppgid2_h;
2408 struct lu_fid cr_fid1;
2409 struct lu_fid cr_fid2;
2410 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2411 __s64 cr_time;
2412 __u64 cr_rdev;
2413 __u64 cr_ioepoch;
2414 __u64 cr_padding_1; /* rr_blocks */
2415 __u32 cr_mode;
2416 __u32 cr_bias;
2417 /* use of helpers set/get_mrc_cr_flags() is needed to access
2418 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2419 * extend cr_flags size without breaking 1.8 compat */
2420 __u32 cr_flags_l; /* for use with open, low 32 bits */
2421 __u32 cr_flags_h; /* for use with open, high 32 bits */
2422 __u32 cr_umask; /* umask for create */
2423 __u32 cr_padding_4; /* rr_padding_4 */
2424 };
2425
set_mrc_cr_flags(struct mdt_rec_create * mrc,__u64 flags)2426 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2427 {
2428 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2429 mrc->cr_flags_h = (__u32)(flags >> 32);
2430 }
2431
get_mrc_cr_flags(struct mdt_rec_create * mrc)2432 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2433 {
2434 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2435 }
2436
2437 /* instance of mdt_reint_rec */
2438 struct mdt_rec_link {
2439 __u32 lk_opcode;
2440 __u32 lk_cap;
2441 __u32 lk_fsuid;
2442 __u32 lk_fsuid_h;
2443 __u32 lk_fsgid;
2444 __u32 lk_fsgid_h;
2445 __u32 lk_suppgid1;
2446 __u32 lk_suppgid1_h;
2447 __u32 lk_suppgid2;
2448 __u32 lk_suppgid2_h;
2449 struct lu_fid lk_fid1;
2450 struct lu_fid lk_fid2;
2451 __s64 lk_time;
2452 __u64 lk_padding_1; /* rr_atime */
2453 __u64 lk_padding_2; /* rr_ctime */
2454 __u64 lk_padding_3; /* rr_size */
2455 __u64 lk_padding_4; /* rr_blocks */
2456 __u32 lk_bias;
2457 __u32 lk_padding_5; /* rr_mode */
2458 __u32 lk_padding_6; /* rr_flags */
2459 __u32 lk_padding_7; /* rr_padding_2 */
2460 __u32 lk_padding_8; /* rr_padding_3 */
2461 __u32 lk_padding_9; /* rr_padding_4 */
2462 };
2463
2464 /* instance of mdt_reint_rec */
2465 struct mdt_rec_unlink {
2466 __u32 ul_opcode;
2467 __u32 ul_cap;
2468 __u32 ul_fsuid;
2469 __u32 ul_fsuid_h;
2470 __u32 ul_fsgid;
2471 __u32 ul_fsgid_h;
2472 __u32 ul_suppgid1;
2473 __u32 ul_suppgid1_h;
2474 __u32 ul_suppgid2;
2475 __u32 ul_suppgid2_h;
2476 struct lu_fid ul_fid1;
2477 struct lu_fid ul_fid2;
2478 __s64 ul_time;
2479 __u64 ul_padding_2; /* rr_atime */
2480 __u64 ul_padding_3; /* rr_ctime */
2481 __u64 ul_padding_4; /* rr_size */
2482 __u64 ul_padding_5; /* rr_blocks */
2483 __u32 ul_bias;
2484 __u32 ul_mode;
2485 __u32 ul_padding_6; /* rr_flags */
2486 __u32 ul_padding_7; /* rr_padding_2 */
2487 __u32 ul_padding_8; /* rr_padding_3 */
2488 __u32 ul_padding_9; /* rr_padding_4 */
2489 };
2490
2491 /* instance of mdt_reint_rec */
2492 struct mdt_rec_rename {
2493 __u32 rn_opcode;
2494 __u32 rn_cap;
2495 __u32 rn_fsuid;
2496 __u32 rn_fsuid_h;
2497 __u32 rn_fsgid;
2498 __u32 rn_fsgid_h;
2499 __u32 rn_suppgid1;
2500 __u32 rn_suppgid1_h;
2501 __u32 rn_suppgid2;
2502 __u32 rn_suppgid2_h;
2503 struct lu_fid rn_fid1;
2504 struct lu_fid rn_fid2;
2505 __s64 rn_time;
2506 __u64 rn_padding_1; /* rr_atime */
2507 __u64 rn_padding_2; /* rr_ctime */
2508 __u64 rn_padding_3; /* rr_size */
2509 __u64 rn_padding_4; /* rr_blocks */
2510 __u32 rn_bias; /* some operation flags */
2511 __u32 rn_mode; /* cross-ref rename has mode */
2512 __u32 rn_padding_5; /* rr_flags */
2513 __u32 rn_padding_6; /* rr_padding_2 */
2514 __u32 rn_padding_7; /* rr_padding_3 */
2515 __u32 rn_padding_8; /* rr_padding_4 */
2516 };
2517
2518 /* instance of mdt_reint_rec */
2519 struct mdt_rec_setxattr {
2520 __u32 sx_opcode;
2521 __u32 sx_cap;
2522 __u32 sx_fsuid;
2523 __u32 sx_fsuid_h;
2524 __u32 sx_fsgid;
2525 __u32 sx_fsgid_h;
2526 __u32 sx_suppgid1;
2527 __u32 sx_suppgid1_h;
2528 __u32 sx_suppgid2;
2529 __u32 sx_suppgid2_h;
2530 struct lu_fid sx_fid;
2531 __u64 sx_padding_1; /* These three are rr_fid2 */
2532 __u32 sx_padding_2;
2533 __u32 sx_padding_3;
2534 __u64 sx_valid;
2535 __s64 sx_time;
2536 __u64 sx_padding_5; /* rr_ctime */
2537 __u64 sx_padding_6; /* rr_size */
2538 __u64 sx_padding_7; /* rr_blocks */
2539 __u32 sx_size;
2540 __u32 sx_flags;
2541 __u32 sx_padding_8; /* rr_flags */
2542 __u32 sx_padding_9; /* rr_padding_2 */
2543 __u32 sx_padding_10; /* rr_padding_3 */
2544 __u32 sx_padding_11; /* rr_padding_4 */
2545 };
2546
2547 /*
2548 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2549 * Do NOT change the size of various members, otherwise the value
2550 * will be broken in lustre_swab_mdt_rec_reint().
2551 *
2552 * If you add new members in other mdt_reint_xxx structures and need to use the
2553 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2554 */
2555 struct mdt_rec_reint {
2556 __u32 rr_opcode;
2557 __u32 rr_cap;
2558 __u32 rr_fsuid;
2559 __u32 rr_fsuid_h;
2560 __u32 rr_fsgid;
2561 __u32 rr_fsgid_h;
2562 __u32 rr_suppgid1;
2563 __u32 rr_suppgid1_h;
2564 __u32 rr_suppgid2;
2565 __u32 rr_suppgid2_h;
2566 struct lu_fid rr_fid1;
2567 struct lu_fid rr_fid2;
2568 __s64 rr_mtime;
2569 __s64 rr_atime;
2570 __s64 rr_ctime;
2571 __u64 rr_size;
2572 __u64 rr_blocks;
2573 __u32 rr_bias;
2574 __u32 rr_mode;
2575 __u32 rr_flags;
2576 __u32 rr_flags_h;
2577 __u32 rr_umask;
2578 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2579 };
2580
2581 extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2582
2583 struct lmv_desc {
2584 __u32 ld_tgt_count; /* how many MDS's */
2585 __u32 ld_active_tgt_count; /* how many active */
2586 __u32 ld_default_stripe_count; /* how many objects are used */
2587 __u32 ld_pattern; /* default MEA_MAGIC_* */
2588 __u64 ld_default_hash_size;
2589 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2590 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2591 __u32 ld_qos_maxage; /* in second */
2592 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2593 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2594 struct obd_uuid ld_uuid;
2595 };
2596
2597 extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2598
2599 /* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2600 struct lmv_stripe_md {
2601 __u32 mea_magic;
2602 __u32 mea_count;
2603 __u32 mea_master;
2604 __u32 mea_padding;
2605 char mea_pool_name[LOV_MAXPOOLNAME];
2606 struct lu_fid mea_ids[0];
2607 };
2608
2609 extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2610
2611 /* lmv structures */
2612 #define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2613 #define MEA_MAGIC_ALL_CHARS 0xb222a11c
2614 #define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2615
2616 #define MAX_HASH_SIZE_32 0x7fffffffUL
2617 #define MAX_HASH_SIZE 0x7fffffffffffffffULL
2618 #define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2619
2620 enum fld_rpc_opc {
2621 FLD_QUERY = 900,
2622 FLD_LAST_OPC,
2623 FLD_FIRST_OPC = FLD_QUERY
2624 };
2625
2626 enum seq_rpc_opc {
2627 SEQ_QUERY = 700,
2628 SEQ_LAST_OPC,
2629 SEQ_FIRST_OPC = SEQ_QUERY
2630 };
2631
2632 enum seq_op {
2633 SEQ_ALLOC_SUPER = 0,
2634 SEQ_ALLOC_META = 1
2635 };
2636
2637 /*
2638 * LOV data structures
2639 */
2640
2641 #define LOV_MAX_UUID_BUFFER_SIZE 8192
2642 /* The size of the buffer the lov/mdc reserves for the
2643 * array of UUIDs returned by the MDS. With the current
2644 * protocol, this will limit the max number of OSTs per LOV */
2645
2646 #define LOV_DESC_MAGIC 0xB0CCDE5C
2647 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2648 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2649
2650 /* LOV settings descriptor (should only contain static info) */
2651 struct lov_desc {
2652 __u32 ld_tgt_count; /* how many OBD's */
2653 __u32 ld_active_tgt_count; /* how many active */
2654 __u32 ld_default_stripe_count; /* how many objects are used */
2655 __u32 ld_pattern; /* default PATTERN_RAID0 */
2656 __u64 ld_default_stripe_size; /* in bytes */
2657 __u64 ld_default_stripe_offset; /* in bytes */
2658 __u32 ld_padding_0; /* unused */
2659 __u32 ld_qos_maxage; /* in second */
2660 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2661 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2662 struct obd_uuid ld_uuid;
2663 };
2664
2665 #define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2666
2667 extern void lustre_swab_lov_desc (struct lov_desc *ld);
2668
2669 /*
2670 * LDLM requests:
2671 */
2672 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2673 typedef enum {
2674 LDLM_ENQUEUE = 101,
2675 LDLM_CONVERT = 102,
2676 LDLM_CANCEL = 103,
2677 LDLM_BL_CALLBACK = 104,
2678 LDLM_CP_CALLBACK = 105,
2679 LDLM_GL_CALLBACK = 106,
2680 LDLM_SET_INFO = 107,
2681 LDLM_LAST_OPC
2682 } ldlm_cmd_t;
2683 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2684
2685 #define RES_NAME_SIZE 4
2686 struct ldlm_res_id {
2687 __u64 name[RES_NAME_SIZE];
2688 };
2689
2690 #define DLDLMRES "[%#llx:%#llx:%#llx].%llx"
2691 #define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2692 (res)->lr_name.name[2], (res)->lr_name.name[3]
2693
2694 extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2695
ldlm_res_eq(const struct ldlm_res_id * res0,const struct ldlm_res_id * res1)2696 static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2697 const struct ldlm_res_id *res1)
2698 {
2699 return !memcmp(res0, res1, sizeof(*res0));
2700 }
2701
2702 /* lock types */
2703 typedef enum {
2704 LCK_MINMODE = 0,
2705 LCK_EX = 1,
2706 LCK_PW = 2,
2707 LCK_PR = 4,
2708 LCK_CW = 8,
2709 LCK_CR = 16,
2710 LCK_NL = 32,
2711 LCK_GROUP = 64,
2712 LCK_COS = 128,
2713 LCK_MAXMODE
2714 } ldlm_mode_t;
2715
2716 #define LCK_MODE_NUM 8
2717
2718 typedef enum {
2719 LDLM_PLAIN = 10,
2720 LDLM_EXTENT = 11,
2721 LDLM_FLOCK = 12,
2722 LDLM_IBITS = 13,
2723 LDLM_MAX_TYPE
2724 } ldlm_type_t;
2725
2726 #define LDLM_MIN_TYPE LDLM_PLAIN
2727
2728 struct ldlm_extent {
2729 __u64 start;
2730 __u64 end;
2731 __u64 gid;
2732 };
2733
ldlm_extent_overlap(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2734 static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2735 struct ldlm_extent *ex2)
2736 {
2737 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2738 }
2739
2740 /* check if @ex1 contains @ex2 */
ldlm_extent_contain(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2741 static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2742 struct ldlm_extent *ex2)
2743 {
2744 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2745 }
2746
2747 struct ldlm_inodebits {
2748 __u64 bits;
2749 };
2750
2751 struct ldlm_flock_wire {
2752 __u64 lfw_start;
2753 __u64 lfw_end;
2754 __u64 lfw_owner;
2755 __u32 lfw_padding;
2756 __u32 lfw_pid;
2757 };
2758
2759 /* it's important that the fields of the ldlm_extent structure match
2760 * the first fields of the ldlm_flock structure because there is only
2761 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2762 * this ever changes we will need to swab the union differently based
2763 * on the resource type. */
2764
2765 typedef union {
2766 struct ldlm_extent l_extent;
2767 struct ldlm_flock_wire l_flock;
2768 struct ldlm_inodebits l_inodebits;
2769 } ldlm_wire_policy_data_t;
2770
2771 extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2772
2773 union ldlm_gl_desc {
2774 struct ldlm_gl_lquota_desc lquota_desc;
2775 };
2776
2777 extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2778
2779 struct ldlm_intent {
2780 __u64 opc;
2781 };
2782
2783 extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2784
2785 struct ldlm_resource_desc {
2786 ldlm_type_t lr_type;
2787 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2788 struct ldlm_res_id lr_name;
2789 };
2790
2791 extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2792
2793 struct ldlm_lock_desc {
2794 struct ldlm_resource_desc l_resource;
2795 ldlm_mode_t l_req_mode;
2796 ldlm_mode_t l_granted_mode;
2797 ldlm_wire_policy_data_t l_policy_data;
2798 };
2799
2800 extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2801
2802 #define LDLM_LOCKREQ_HANDLES 2
2803 #define LDLM_ENQUEUE_CANCEL_OFF 1
2804
2805 struct ldlm_request {
2806 __u32 lock_flags;
2807 __u32 lock_count;
2808 struct ldlm_lock_desc lock_desc;
2809 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2810 };
2811
2812 extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2813
2814 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2815 * Otherwise, 2 are available. */
2816 #define ldlm_request_bufsize(count, type) \
2817 ({ \
2818 int _avail = LDLM_LOCKREQ_HANDLES; \
2819 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2820 sizeof(struct ldlm_request) + \
2821 (count > _avail ? count - _avail : 0) * \
2822 sizeof(struct lustre_handle); \
2823 })
2824
2825 struct ldlm_reply {
2826 __u32 lock_flags;
2827 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2828 struct ldlm_lock_desc lock_desc;
2829 struct lustre_handle lock_handle;
2830 __u64 lock_policy_res1;
2831 __u64 lock_policy_res2;
2832 };
2833
2834 extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2835
2836 #define ldlm_flags_to_wire(flags) ((__u32)(flags))
2837 #define ldlm_flags_from_wire(flags) ((__u64)(flags))
2838
2839 /*
2840 * Opcodes for mountconf (mgs and mgc)
2841 */
2842 typedef enum {
2843 MGS_CONNECT = 250,
2844 MGS_DISCONNECT,
2845 MGS_EXCEPTION, /* node died, etc. */
2846 MGS_TARGET_REG, /* whenever target starts up */
2847 MGS_TARGET_DEL,
2848 MGS_SET_INFO,
2849 MGS_CONFIG_READ,
2850 MGS_LAST_OPC
2851 } mgs_cmd_t;
2852 #define MGS_FIRST_OPC MGS_CONNECT
2853
2854 #define MGS_PARAM_MAXLEN 1024
2855 #define KEY_SET_INFO "set_info"
2856
2857 struct mgs_send_param {
2858 char mgs_param[MGS_PARAM_MAXLEN];
2859 };
2860
2861 /* We pass this info to the MGS so it can write config logs */
2862 #define MTI_NAME_MAXLEN 64
2863 #define MTI_PARAM_MAXLEN 4096
2864 #define MTI_NIDS_MAX 32
2865 struct mgs_target_info {
2866 __u32 mti_lustre_ver;
2867 __u32 mti_stripe_index;
2868 __u32 mti_config_ver;
2869 __u32 mti_flags;
2870 __u32 mti_nid_count;
2871 __u32 mti_instance; /* Running instance of target */
2872 char mti_fsname[MTI_NAME_MAXLEN];
2873 char mti_svname[MTI_NAME_MAXLEN];
2874 char mti_uuid[sizeof(struct obd_uuid)];
2875 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2876 char mti_params[MTI_PARAM_MAXLEN];
2877 };
2878 extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2879
2880 struct mgs_nidtbl_entry {
2881 __u64 mne_version; /* table version of this entry */
2882 __u32 mne_instance; /* target instance # */
2883 __u32 mne_index; /* target index */
2884 __u32 mne_length; /* length of this entry - by bytes */
2885 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2886 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2887 __u8 mne_nid_size; /* size of each NID, by bytes */
2888 __u8 mne_nid_count; /* # of NIDs in buffer */
2889 union {
2890 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2891 } u;
2892 };
2893 extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2894
2895 struct mgs_config_body {
2896 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2897 __u64 mcb_offset; /* next index of config log to request */
2898 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2899 __u8 mcb_reserved;
2900 __u8 mcb_bits; /* bits unit size of config log */
2901 __u32 mcb_units; /* # of units for bulk transfer */
2902 };
2903 extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2904
2905 struct mgs_config_res {
2906 __u64 mcr_offset; /* index of last config log */
2907 __u64 mcr_size; /* size of the log */
2908 };
2909 extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2910
2911 /* Config marker flags (in config log) */
2912 #define CM_START 0x01
2913 #define CM_END 0x02
2914 #define CM_SKIP 0x04
2915 #define CM_UPGRADE146 0x08
2916 #define CM_EXCLUDE 0x10
2917 #define CM_START_SKIP (CM_START | CM_SKIP)
2918
2919 struct cfg_marker {
2920 __u32 cm_step; /* aka config version */
2921 __u32 cm_flags;
2922 __u32 cm_vers; /* lustre release version number */
2923 __u32 cm_padding; /* 64 bit align */
2924 __s64 cm_createtime; /*when this record was first created */
2925 __s64 cm_canceltime; /*when this record is no longer valid*/
2926 char cm_tgtname[MTI_NAME_MAXLEN];
2927 char cm_comment[MTI_NAME_MAXLEN];
2928 };
2929
2930 extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2931 int swab, int size);
2932
2933 /*
2934 * Opcodes for multiple servers.
2935 */
2936
2937 typedef enum {
2938 OBD_PING = 400,
2939 OBD_LOG_CANCEL,
2940 OBD_QC_CALLBACK,
2941 OBD_IDX_READ,
2942 OBD_LAST_OPC
2943 } obd_cmd_t;
2944 #define OBD_FIRST_OPC OBD_PING
2945
2946 /* catalog of log objects */
2947
2948 /** Identifier for a single log object */
2949 struct llog_logid {
2950 struct ost_id lgl_oi;
2951 __u32 lgl_ogen;
2952 } __attribute__((packed));
2953
2954 /** Records written to the CATALOGS list */
2955 #define CATLIST "CATALOGS"
2956 struct llog_catid {
2957 struct llog_logid lci_logid;
2958 __u32 lci_padding1;
2959 __u32 lci_padding2;
2960 __u32 lci_padding3;
2961 } __attribute__((packed));
2962
2963 /* Log data record types - there is no specific reason that these need to
2964 * be related to the RPC opcodes, but no reason not to (may be handy later?)
2965 */
2966 #define LLOG_OP_MAGIC 0x10600000
2967 #define LLOG_OP_MASK 0xfff00000
2968
2969 typedef enum {
2970 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
2971 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
2972 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
2973 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2974 REINT_UNLINK, /* obsolete after 2.5.0 */
2975 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2976 REINT_UNLINK,
2977 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2978 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2979 REINT_SETATTR,
2980 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
2981 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
2982 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
2983 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
2984 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
2985 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
2986 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
2987 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
2988 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
2989 } llog_op_type;
2990
2991 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
2992 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
2993
2994 /** Log record header - stored in little endian order.
2995 * Each record must start with this struct, end with a llog_rec_tail,
2996 * and be a multiple of 256 bits in size.
2997 */
2998 struct llog_rec_hdr {
2999 __u32 lrh_len;
3000 __u32 lrh_index;
3001 __u32 lrh_type;
3002 __u32 lrh_id;
3003 };
3004
3005 struct llog_rec_tail {
3006 __u32 lrt_len;
3007 __u32 lrt_index;
3008 };
3009
3010 /* Where data follow just after header */
3011 #define REC_DATA(ptr) \
3012 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3013
3014 #define REC_DATA_LEN(rec) \
3015 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3016 sizeof(struct llog_rec_tail))
3017
3018 struct llog_logid_rec {
3019 struct llog_rec_hdr lid_hdr;
3020 struct llog_logid lid_id;
3021 __u32 lid_padding1;
3022 __u64 lid_padding2;
3023 __u64 lid_padding3;
3024 struct llog_rec_tail lid_tail;
3025 } __attribute__((packed));
3026
3027 struct llog_unlink_rec {
3028 struct llog_rec_hdr lur_hdr;
3029 __u64 lur_oid;
3030 __u32 lur_oseq;
3031 __u32 lur_count;
3032 struct llog_rec_tail lur_tail;
3033 } __attribute__((packed));
3034
3035 struct llog_unlink64_rec {
3036 struct llog_rec_hdr lur_hdr;
3037 struct lu_fid lur_fid;
3038 __u32 lur_count; /* to destroy the lost precreated */
3039 __u32 lur_padding1;
3040 __u64 lur_padding2;
3041 __u64 lur_padding3;
3042 struct llog_rec_tail lur_tail;
3043 } __attribute__((packed));
3044
3045 struct llog_setattr64_rec {
3046 struct llog_rec_hdr lsr_hdr;
3047 struct ost_id lsr_oi;
3048 __u32 lsr_uid;
3049 __u32 lsr_uid_h;
3050 __u32 lsr_gid;
3051 __u32 lsr_gid_h;
3052 __u64 lsr_padding;
3053 struct llog_rec_tail lsr_tail;
3054 } __attribute__((packed));
3055
3056 struct llog_size_change_rec {
3057 struct llog_rec_hdr lsc_hdr;
3058 struct ll_fid lsc_fid;
3059 __u32 lsc_ioepoch;
3060 __u32 lsc_padding1;
3061 __u64 lsc_padding2;
3062 __u64 lsc_padding3;
3063 struct llog_rec_tail lsc_tail;
3064 } __attribute__((packed));
3065
3066 #define CHANGELOG_MAGIC 0xca103000
3067
3068 /** \a changelog_rec_type's that can't be masked */
3069 #define CHANGELOG_MINMASK (1 << CL_MARK)
3070 /** bits covering all \a changelog_rec_type's */
3071 #define CHANGELOG_ALLMASK 0XFFFFFFFF
3072 /** default \a changelog_rec_type mask */
3073 #define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3074
3075 /* changelog llog name, needed by client replicators */
3076 #define CHANGELOG_CATALOG "changelog_catalog"
3077
3078 struct changelog_setinfo {
3079 __u64 cs_recno;
3080 __u32 cs_id;
3081 } __attribute__((packed));
3082
3083 /** changelog record */
3084 struct llog_changelog_rec {
3085 struct llog_rec_hdr cr_hdr;
3086 struct changelog_rec cr;
3087 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3088 } __attribute__((packed));
3089
3090 struct llog_changelog_ext_rec {
3091 struct llog_rec_hdr cr_hdr;
3092 struct changelog_ext_rec cr;
3093 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3094 } __attribute__((packed));
3095
3096 #define CHANGELOG_USER_PREFIX "cl"
3097
3098 struct llog_changelog_user_rec {
3099 struct llog_rec_hdr cur_hdr;
3100 __u32 cur_id;
3101 __u32 cur_padding;
3102 __u64 cur_endrec;
3103 struct llog_rec_tail cur_tail;
3104 } __attribute__((packed));
3105
3106 enum agent_req_status {
3107 ARS_WAITING,
3108 ARS_STARTED,
3109 ARS_FAILED,
3110 ARS_CANCELED,
3111 ARS_SUCCEED,
3112 };
3113
agent_req_status2name(enum agent_req_status ars)3114 static inline char *agent_req_status2name(enum agent_req_status ars)
3115 {
3116 switch (ars) {
3117 case ARS_WAITING:
3118 return "WAITING";
3119 case ARS_STARTED:
3120 return "STARTED";
3121 case ARS_FAILED:
3122 return "FAILED";
3123 case ARS_CANCELED:
3124 return "CANCELED";
3125 case ARS_SUCCEED:
3126 return "SUCCEED";
3127 default:
3128 return "UNKNOWN";
3129 }
3130 }
3131
agent_req_in_final_state(enum agent_req_status ars)3132 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3133 {
3134 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3135 (ars == ARS_CANCELED));
3136 }
3137
3138 struct llog_agent_req_rec {
3139 struct llog_rec_hdr arr_hdr; /**< record header */
3140 __u32 arr_status; /**< status of the request */
3141 /* must match enum
3142 * agent_req_status */
3143 __u32 arr_archive_id; /**< backend archive number */
3144 __u64 arr_flags; /**< req flags */
3145 __u64 arr_compound_id; /**< compound cookie */
3146 __u64 arr_req_create; /**< req. creation time */
3147 __u64 arr_req_change; /**< req. status change time */
3148 struct hsm_action_item arr_hai; /**< req. to the agent */
3149 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3150 } __attribute__((packed));
3151
3152 /* Old llog gen for compatibility */
3153 struct llog_gen {
3154 __u64 mnt_cnt;
3155 __u64 conn_cnt;
3156 } __attribute__((packed));
3157
3158 struct llog_gen_rec {
3159 struct llog_rec_hdr lgr_hdr;
3160 struct llog_gen lgr_gen;
3161 __u64 padding1;
3162 __u64 padding2;
3163 __u64 padding3;
3164 struct llog_rec_tail lgr_tail;
3165 };
3166
3167 /* On-disk header structure of each log object, stored in little endian order */
3168 #define LLOG_CHUNK_SIZE 8192
3169 #define LLOG_HEADER_SIZE (96)
3170 #define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3171
3172 #define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3173
3174 /* flags for the logs */
3175 enum llog_flag {
3176 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3177 LLOG_F_IS_CAT = 0x2,
3178 LLOG_F_IS_PLAIN = 0x4,
3179 };
3180
3181 struct llog_log_hdr {
3182 struct llog_rec_hdr llh_hdr;
3183 __s64 llh_timestamp;
3184 __u32 llh_count;
3185 __u32 llh_bitmap_offset;
3186 __u32 llh_size;
3187 __u32 llh_flags;
3188 __u32 llh_cat_idx;
3189 /* for a catalog the first plain slot is next to it */
3190 struct obd_uuid llh_tgtuuid;
3191 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3192 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3193 struct llog_rec_tail llh_tail;
3194 } __attribute__((packed));
3195
3196 #define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3197 llh->llh_bitmap_offset - \
3198 sizeof(llh->llh_tail)) * 8)
3199
3200 /** log cookies are used to reference a specific log file and a record therein */
3201 struct llog_cookie {
3202 struct llog_logid lgc_lgl;
3203 __u32 lgc_subsys;
3204 __u32 lgc_index;
3205 __u32 lgc_padding;
3206 } __attribute__((packed));
3207
3208 /** llog protocol */
3209 enum llogd_rpc_ops {
3210 LLOG_ORIGIN_HANDLE_CREATE = 501,
3211 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3212 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3213 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3214 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3215 LLOG_ORIGIN_CONNECT = 506,
3216 LLOG_CATINFO = 507, /* deprecated */
3217 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3218 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3219 LLOG_LAST_OPC,
3220 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3221 };
3222
3223 struct llogd_body {
3224 struct llog_logid lgd_logid;
3225 __u32 lgd_ctxt_idx;
3226 __u32 lgd_llh_flags;
3227 __u32 lgd_index;
3228 __u32 lgd_saved_index;
3229 __u32 lgd_len;
3230 __u64 lgd_cur_offset;
3231 } __attribute__((packed));
3232
3233 struct llogd_conn_body {
3234 struct llog_gen lgdc_gen;
3235 struct llog_logid lgdc_logid;
3236 __u32 lgdc_ctxt_idx;
3237 } __attribute__((packed));
3238
3239 /* Note: 64-bit types are 64-bit aligned in structure */
3240 struct obdo {
3241 __u64 o_valid; /* hot fields in this obdo */
3242 struct ost_id o_oi;
3243 __u64 o_parent_seq;
3244 __u64 o_size; /* o_size-o_blocks == ost_lvb */
3245 __s64 o_mtime;
3246 __s64 o_atime;
3247 __s64 o_ctime;
3248 __u64 o_blocks; /* brw: cli sent cached bytes */
3249 __u64 o_grant;
3250
3251 /* 32-bit fields start here: keep an even number of them via padding */
3252 __u32 o_blksize; /* optimal IO blocksize */
3253 __u32 o_mode; /* brw: cli sent cache remain */
3254 __u32 o_uid;
3255 __u32 o_gid;
3256 __u32 o_flags;
3257 __u32 o_nlink; /* brw: checksum */
3258 __u32 o_parent_oid;
3259 __u32 o_misc; /* brw: o_dropped */
3260
3261 __u64 o_ioepoch; /* epoch in ost writes */
3262 __u32 o_stripe_idx; /* holds stripe idx */
3263 __u32 o_parent_ver;
3264 struct lustre_handle o_handle; /* brw: lock handle to prolong
3265 * locks */
3266 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3267 * MDS */
3268 __u32 o_uid_h;
3269 __u32 o_gid_h;
3270
3271 __u64 o_data_version; /* getattr: sum of iversion for
3272 * each stripe.
3273 * brw: grant space consumed on
3274 * the client for the write */
3275 __u64 o_padding_4;
3276 __u64 o_padding_5;
3277 __u64 o_padding_6;
3278 };
3279
3280 #define o_dirty o_blocks
3281 #define o_undirty o_mode
3282 #define o_dropped o_misc
3283 #define o_cksum o_nlink
3284 #define o_grant_used o_data_version
3285
lustre_set_wire_obdo(struct obd_connect_data * ocd,struct obdo * wobdo,const struct obdo * lobdo)3286 static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3287 struct obdo *wobdo,
3288 const struct obdo *lobdo)
3289 {
3290 *wobdo = *lobdo;
3291 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3292 if (ocd == NULL)
3293 return;
3294
3295 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3296 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3297 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3298 * client communicate with pre-2.4 server */
3299 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3300 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3301 }
3302 }
3303
lustre_get_wire_obdo(struct obd_connect_data * ocd,struct obdo * lobdo,const struct obdo * wobdo)3304 static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3305 struct obdo *lobdo,
3306 const struct obdo *wobdo)
3307 {
3308 __u32 local_flags = 0;
3309
3310 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3311 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3312
3313 *lobdo = *wobdo;
3314 if (local_flags != 0) {
3315 lobdo->o_valid |= OBD_MD_FLFLAGS;
3316 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3317 lobdo->o_flags |= local_flags;
3318 }
3319 if (ocd == NULL)
3320 return;
3321
3322 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3323 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3324 /* see above */
3325 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3326 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3327 lobdo->o_oi.oi_fid.f_ver = 0;
3328 }
3329 }
3330
3331 extern void lustre_swab_obdo (struct obdo *o);
3332
3333 /* request structure for OST's */
3334 struct ost_body {
3335 struct obdo oa;
3336 };
3337
3338 /* Key for FIEMAP to be used in get_info calls */
3339 struct ll_fiemap_info_key {
3340 char name[8];
3341 struct obdo oa;
3342 struct ll_user_fiemap fiemap;
3343 };
3344
3345 extern void lustre_swab_ost_body (struct ost_body *b);
3346 extern void lustre_swab_ost_last_id(__u64 *id);
3347 extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3348
3349 extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3350 extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3351 extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3352 int stripe_count);
3353 extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3354
3355 /* llog_swab.c */
3356 extern void lustre_swab_llogd_body (struct llogd_body *d);
3357 extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3358 extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3359 extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3360 extern void lustre_swab_llog_id(struct llog_logid *lid);
3361
3362 struct lustre_cfg;
3363 extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3364
3365 /* Functions for dumping PTLRPC fields */
3366 void dump_rniobuf(struct niobuf_remote *rnb);
3367 void dump_ioo(struct obd_ioobj *nb);
3368 void dump_obdo(struct obdo *oa);
3369 void dump_ost_body(struct ost_body *ob);
3370 void dump_rcs(__u32 *rc);
3371
3372 #define IDX_INFO_MAGIC 0x3D37CC37
3373
3374 /* Index file transfer through the network. The server serializes the index into
3375 * a byte stream which is sent to the client via a bulk transfer */
3376 struct idx_info {
3377 __u32 ii_magic;
3378
3379 /* reply: see idx_info_flags below */
3380 __u32 ii_flags;
3381
3382 /* request & reply: number of lu_idxpage (to be) transferred */
3383 __u16 ii_count;
3384 __u16 ii_pad0;
3385
3386 /* request: requested attributes passed down to the iterator API */
3387 __u32 ii_attrs;
3388
3389 /* request & reply: index file identifier (FID) */
3390 struct lu_fid ii_fid;
3391
3392 /* reply: version of the index file before starting to walk the index.
3393 * Please note that the version can be modified at any time during the
3394 * transfer */
3395 __u64 ii_version;
3396
3397 /* request: hash to start with:
3398 * reply: hash of the first entry of the first lu_idxpage and hash
3399 * of the entry to read next if any */
3400 __u64 ii_hash_start;
3401 __u64 ii_hash_end;
3402
3403 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3404 * set */
3405 __u16 ii_keysize;
3406
3407 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3408 * is set */
3409 __u16 ii_recsize;
3410
3411 __u32 ii_pad1;
3412 __u64 ii_pad2;
3413 __u64 ii_pad3;
3414 };
3415 extern void lustre_swab_idx_info(struct idx_info *ii);
3416
3417 #define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3418
3419 /* List of flags used in idx_info::ii_flags */
3420 enum idx_info_flags {
3421 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3422 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3423 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3424 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3425 };
3426
3427 #define LIP_MAGIC 0x8A6D6B6C
3428
3429 /* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3430 struct lu_idxpage {
3431 /* 16-byte header */
3432 __u32 lip_magic;
3433 __u16 lip_flags;
3434 __u16 lip_nr; /* number of entries in the container */
3435 __u64 lip_pad0; /* additional padding for future use */
3436
3437 /* key/record pairs are stored in the remaining 4080 bytes.
3438 * depending upon the flags in idx_info::ii_flags, each key/record
3439 * pair might be preceded by:
3440 * - a hash value
3441 * - the key size (II_FL_VARKEY is set)
3442 * - the record size (II_FL_VARREC is set)
3443 *
3444 * For the time being, we only support fixed-size key & record. */
3445 char lip_entries[0];
3446 };
3447 extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3448
3449 #define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3450
3451 /* Gather all possible type associated with a 4KB container */
3452 union lu_page {
3453 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3454 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3455 char lp_array[LU_PAGE_SIZE];
3456 };
3457
3458 /* security opcodes */
3459 typedef enum {
3460 SEC_CTX_INIT = 801,
3461 SEC_CTX_INIT_CONT = 802,
3462 SEC_CTX_FINI = 803,
3463 SEC_LAST_OPC,
3464 SEC_FIRST_OPC = SEC_CTX_INIT
3465 } sec_cmd_t;
3466
3467 /*
3468 * capa related definitions
3469 */
3470 #define CAPA_HMAC_MAX_LEN 64
3471 #define CAPA_HMAC_KEY_MAX_LEN 56
3472
3473 /* NB take care when changing the sequence of elements this struct,
3474 * because the offset info is used in find_capa() */
3475 struct lustre_capa {
3476 struct lu_fid lc_fid; /** fid */
3477 __u64 lc_opc; /** operations allowed */
3478 __u64 lc_uid; /** file owner */
3479 __u64 lc_gid; /** file group */
3480 __u32 lc_flags; /** HMAC algorithm & flags */
3481 __u32 lc_keyid; /** key# used for the capability */
3482 __u32 lc_timeout; /** capa timeout value (sec) */
3483 __u32 lc_expiry; /** expiry time (sec) */
3484 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3485 } __attribute__((packed));
3486
3487 extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3488
3489 /** lustre_capa::lc_opc */
3490 enum {
3491 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3492 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3493 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3494 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3495 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3496 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3497 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3498 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3499 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3500 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3501 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3502 };
3503
3504 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3505 #define CAPA_OPC_MDS_ONLY \
3506 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3507 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3508 #define CAPA_OPC_OSS_ONLY \
3509 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3510 CAPA_OPC_OSS_DESTROY)
3511 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3512 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3513
3514 /* MDS capability covers object capability for operations of body r/w
3515 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3516 * while OSS capability only covers object capability for operations of
3517 * oss data(file content) r/w/truncate.
3518 */
capa_for_mds(struct lustre_capa * c)3519 static inline int capa_for_mds(struct lustre_capa *c)
3520 {
3521 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3522 }
3523
capa_for_oss(struct lustre_capa * c)3524 static inline int capa_for_oss(struct lustre_capa *c)
3525 {
3526 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3527 }
3528
3529 /* lustre_capa::lc_hmac_alg */
3530 enum {
3531 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3532 CAPA_HMAC_ALG_MAX,
3533 };
3534
3535 #define CAPA_FL_MASK 0x00ffffff
3536 #define CAPA_HMAC_ALG_MASK 0xff000000
3537
3538 struct lustre_capa_key {
3539 __u64 lk_seq; /**< mds# */
3540 __u32 lk_keyid; /**< key# */
3541 __u32 lk_padding;
3542 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3543 } __attribute__((packed));
3544
3545 extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3546
3547 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3548 #define LINK_EA_MAGIC 0x11EAF1DFUL
3549 struct link_ea_header {
3550 __u32 leh_magic;
3551 __u32 leh_reccount;
3552 __u64 leh_len; /* total size */
3553 /* future use */
3554 __u32 padding1;
3555 __u32 padding2;
3556 };
3557
3558 /** Hardlink data is name and parent fid.
3559 * Stored in this crazy struct for maximum packing and endian-neutrality
3560 */
3561 struct link_ea_entry {
3562 /** __u16 stored big-endian, unaligned */
3563 unsigned char lee_reclen[2];
3564 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3565 char lee_name[0];
3566 }__attribute__((packed));
3567
3568 /** fid2path request/reply structure */
3569 struct getinfo_fid2path {
3570 struct lu_fid gf_fid;
3571 __u64 gf_recno;
3572 __u32 gf_linkno;
3573 __u32 gf_pathlen;
3574 char gf_path[0];
3575 } __attribute__((packed));
3576
3577 void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3578
3579 enum {
3580 LAYOUT_INTENT_ACCESS = 0,
3581 LAYOUT_INTENT_READ = 1,
3582 LAYOUT_INTENT_WRITE = 2,
3583 LAYOUT_INTENT_GLIMPSE = 3,
3584 LAYOUT_INTENT_TRUNC = 4,
3585 LAYOUT_INTENT_RELEASE = 5,
3586 LAYOUT_INTENT_RESTORE = 6
3587 };
3588
3589 /* enqueue layout lock with intent */
3590 struct layout_intent {
3591 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3592 __u32 li_flags;
3593 __u64 li_start;
3594 __u64 li_end;
3595 };
3596
3597 void lustre_swab_layout_intent(struct layout_intent *li);
3598
3599 /**
3600 * On the wire version of hsm_progress structure.
3601 *
3602 * Contains the userspace hsm_progress and some internal fields.
3603 */
3604 struct hsm_progress_kernel {
3605 /* Field taken from struct hsm_progress */
3606 lustre_fid hpk_fid;
3607 __u64 hpk_cookie;
3608 struct hsm_extent hpk_extent;
3609 __u16 hpk_flags;
3610 __u16 hpk_errval; /* positive val */
3611 __u32 hpk_padding1;
3612 /* Additional fields */
3613 __u64 hpk_data_version;
3614 __u64 hpk_padding2;
3615 } __attribute__((packed));
3616
3617 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3618 extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3619 extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3620 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3621 extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3622 extern void lustre_swab_hsm_request(struct hsm_request *hr);
3623
3624 /**
3625 * These are object update opcode under UPDATE_OBJ, which is currently
3626 * being used by cross-ref operations between MDT.
3627 *
3628 * During the cross-ref operation, the Master MDT, which the client send the
3629 * request to, will disassembly the operation into object updates, then OSP
3630 * will send these updates to the remote MDT to be executed.
3631 *
3632 * Update request format
3633 * magic: UPDATE_BUFFER_MAGIC_V1
3634 * Count: How many updates in the req.
3635 * bufs[0] : following are packets of object.
3636 * update[0]:
3637 * type: object_update_op, the op code of update
3638 * fid: The object fid of the update.
3639 * lens/bufs: other parameters of the update.
3640 * update[1]:
3641 * type: object_update_op, the op code of update
3642 * fid: The object fid of the update.
3643 * lens/bufs: other parameters of the update.
3644 * ..........
3645 * update[7]: type: object_update_op, the op code of update
3646 * fid: The object fid of the update.
3647 * lens/bufs: other parameters of the update.
3648 * Current 8 maxim updates per object update request.
3649 *
3650 *******************************************************************
3651 * update reply format:
3652 *
3653 * ur_version: UPDATE_REPLY_V1
3654 * ur_count: The count of the reply, which is usually equal
3655 * to the number of updates in the request.
3656 * ur_lens: The reply lengths of each object update.
3657 *
3658 * replies: 1st update reply [4bytes_ret: other body]
3659 * 2nd update reply [4bytes_ret: other body]
3660 * .....
3661 * nth update reply [4bytes_ret: other body]
3662 *
3663 * For each reply of the update, the format would be
3664 * result(4 bytes):Other stuff
3665 */
3666
3667 #define UPDATE_MAX_OPS 10
3668 #define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3669 #define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3670 #define UPDATE_BUF_COUNT 8
3671 enum object_update_op {
3672 OBJ_CREATE = 1,
3673 OBJ_DESTROY = 2,
3674 OBJ_REF_ADD = 3,
3675 OBJ_REF_DEL = 4,
3676 OBJ_ATTR_SET = 5,
3677 OBJ_ATTR_GET = 6,
3678 OBJ_XATTR_SET = 7,
3679 OBJ_XATTR_GET = 8,
3680 OBJ_INDEX_LOOKUP = 9,
3681 OBJ_INDEX_INSERT = 10,
3682 OBJ_INDEX_DELETE = 11,
3683 OBJ_LAST
3684 };
3685
3686 struct update {
3687 __u32 u_type;
3688 __u32 u_batchid;
3689 struct lu_fid u_fid;
3690 __u32 u_lens[UPDATE_BUF_COUNT];
3691 __u32 u_bufs[0];
3692 };
3693
3694 struct update_buf {
3695 __u32 ub_magic;
3696 __u32 ub_count;
3697 __u32 ub_bufs[0];
3698 };
3699
3700 #define UPDATE_REPLY_V1 0x00BD0001
3701 struct update_reply {
3702 __u32 ur_version;
3703 __u32 ur_count;
3704 __u32 ur_lens[0];
3705 };
3706
3707 void lustre_swab_update_buf(struct update_buf *ub);
3708 void lustre_swab_update_reply_buf(struct update_reply *ur);
3709
3710 /** layout swap request structure
3711 * fid1 and fid2 are in mdt_body
3712 */
3713 struct mdc_swap_layouts {
3714 __u64 msl_flags;
3715 } __packed;
3716
3717 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3718
3719 struct close_data {
3720 struct lustre_handle cd_handle;
3721 struct lu_fid cd_fid;
3722 __u64 cd_data_version;
3723 __u64 cd_reserved[8];
3724 };
3725
3726 void lustre_swab_close_data(struct close_data *data);
3727
3728 #endif
3729 /** @} lustreidl */
3730