• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/include/lustre/lustre_idl.h
37  *
38  * Lustre wire protocol definitions.
39  */
40 
41 /** \defgroup lustreidl lustreidl
42  *
43  * Lustre wire protocol definitions.
44  *
45  * ALL structs passing over the wire should be declared here.  Structs
46  * that are used in interfaces with userspace should go in lustre_user.h.
47  *
48  * All structs being declared here should be built from simple fixed-size
49  * types (__u8, __u16, __u32, __u64) or be built from other types or
50  * structs also declared in this file.  Similarly, all flags and magic
51  * values in those structs should also be declared here.  This ensures
52  * that the Lustre wire protocol is not influenced by external dependencies.
53  *
54  * The only other acceptable items in this file are VERY SIMPLE accessor
55  * functions to avoid callers grubbing inside the structures, and the
56  * prototypes of the swabber functions for each struct.  Nothing that
57  * depends on external functions or definitions should be in here.
58  *
59  * Structs must be properly aligned to put 64-bit values on an 8-byte
60  * boundary.  Any structs being added here must also be added to
61  * utils/wirecheck.c and "make newwiretest" run to regenerate the
62  * utils/wiretest.c sources.  This allows us to verify that wire structs
63  * have the proper alignment/size on all architectures.
64  *
65  * DO NOT CHANGE any of the structs, flags, values declared here and used
66  * in released Lustre versions.  Some structs may have padding fields that
67  * can be used.  Some structs might allow addition at the end (verify this
68  * in the code to ensure that new/old clients that see this larger struct
69  * do not fail, otherwise you need to implement protocol compatibility).
70  *
71  * We assume all nodes are either little-endian or big-endian, and we
72  * always send messages in the sender's native format.  The receiver
73  * detects the message format by checking the 'magic' field of the message
74  * (see lustre_msg_swabbed() below).
75  *
76  * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77  * implemented either here, inline (trivial implementations) or in
78  * ptlrpc/pack_generic.c.  These 'swabbers' convert the type from "other"
79  * endian, in-place in the message buffer.
80  *
81  * A swabber takes a single pointer argument.  The caller must already have
82  * verified that the length of the message buffer >= sizeof (type).
83  *
84  * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85  * may be defined that swabs just the variable part, after the caller has
86  * verified that the message buffer is large enough.
87  *
88  * @{
89  */
90 
91 #ifndef _LUSTRE_IDL_H_
92 #define _LUSTRE_IDL_H_
93 
94 #include "../../../include/linux/libcfs/libcfs.h"
95 
96 /* Defn's shared with user-space. */
97 #include "lustre_user.h"
98 #include "lustre_errno.h"
99 
100 /*
101  *  GENERAL STUFF
102  */
103 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
104  * FOO_REPLY_PORTAL   is for incoming replies on the FOO
105  * FOO_BULK_PORTAL    is for incoming bulk on the FOO
106  */
107 
108 #define CONNMGR_REQUEST_PORTAL	  1
109 #define CONNMGR_REPLY_PORTAL	    2
110 //#define OSC_REQUEST_PORTAL	    3
111 #define OSC_REPLY_PORTAL		4
112 //#define OSC_BULK_PORTAL	       5
113 #define OST_IO_PORTAL		   6
114 #define OST_CREATE_PORTAL	       7
115 #define OST_BULK_PORTAL		 8
116 //#define MDC_REQUEST_PORTAL	    9
117 #define MDC_REPLY_PORTAL	       10
118 //#define MDC_BULK_PORTAL	      11
119 #define MDS_REQUEST_PORTAL	     12
120 //#define MDS_REPLY_PORTAL	     13
121 #define MDS_BULK_PORTAL		14
122 #define LDLM_CB_REQUEST_PORTAL	 15
123 #define LDLM_CB_REPLY_PORTAL	   16
124 #define LDLM_CANCEL_REQUEST_PORTAL     17
125 #define LDLM_CANCEL_REPLY_PORTAL       18
126 //#define PTLBD_REQUEST_PORTAL	   19
127 //#define PTLBD_REPLY_PORTAL	     20
128 //#define PTLBD_BULK_PORTAL	      21
129 #define MDS_SETATTR_PORTAL	     22
130 #define MDS_READPAGE_PORTAL	    23
131 #define OUT_PORTAL		    24
132 
133 #define MGC_REPLY_PORTAL	       25
134 #define MGS_REQUEST_PORTAL	     26
135 #define MGS_REPLY_PORTAL	       27
136 #define OST_REQUEST_PORTAL	     28
137 #define FLD_REQUEST_PORTAL	     29
138 #define SEQ_METADATA_PORTAL	    30
139 #define SEQ_DATA_PORTAL		31
140 #define SEQ_CONTROLLER_PORTAL	  32
141 #define MGS_BULK_PORTAL		33
142 
143 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
144 
145 /* packet types */
146 #define PTL_RPC_MSG_REQUEST 4711
147 #define PTL_RPC_MSG_ERR     4712
148 #define PTL_RPC_MSG_REPLY   4713
149 
150 /* DON'T use swabbed values of MAGIC as magic! */
151 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
152 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
153 
154 #define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
155 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
156 
157 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
158 
159 #define PTLRPC_MSG_VERSION  0x00000003
160 #define LUSTRE_VERSION_MASK 0xffff0000
161 #define LUSTRE_OBD_VERSION  0x00010000
162 #define LUSTRE_MDS_VERSION  0x00020000
163 #define LUSTRE_OST_VERSION  0x00030000
164 #define LUSTRE_DLM_VERSION  0x00040000
165 #define LUSTRE_LOG_VERSION  0x00050000
166 #define LUSTRE_MGS_VERSION  0x00060000
167 
168 /**
169  * Describes a range of sequence, lsr_start is included but lsr_end is
170  * not in the range.
171  * Same structure is used in fld module where lsr_index field holds mdt id
172  * of the home mdt.
173  */
174 struct lu_seq_range {
175 	__u64 lsr_start;
176 	__u64 lsr_end;
177 	__u32 lsr_index;
178 	__u32 lsr_flags;
179 };
180 
181 #define LU_SEQ_RANGE_MDT	0x0
182 #define LU_SEQ_RANGE_OST	0x1
183 #define LU_SEQ_RANGE_ANY	0x3
184 
185 #define LU_SEQ_RANGE_MASK	0x3
186 
fld_range_type(const struct lu_seq_range * range)187 static inline unsigned fld_range_type(const struct lu_seq_range *range)
188 {
189 	return range->lsr_flags & LU_SEQ_RANGE_MASK;
190 }
191 
fld_range_is_ost(const struct lu_seq_range * range)192 static inline int fld_range_is_ost(const struct lu_seq_range *range)
193 {
194 	return fld_range_type(range) == LU_SEQ_RANGE_OST;
195 }
196 
fld_range_is_mdt(const struct lu_seq_range * range)197 static inline int fld_range_is_mdt(const struct lu_seq_range *range)
198 {
199 	return fld_range_type(range) == LU_SEQ_RANGE_MDT;
200 }
201 
202 /**
203  * This all range is only being used when fld client sends fld query request,
204  * but it does not know whether the seq is MDT or OST, so it will send req
205  * with ALL type, which means either seq type gotten from lookup can be
206  * expected.
207  */
fld_range_is_any(const struct lu_seq_range * range)208 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
209 {
210 	return fld_range_type(range) == LU_SEQ_RANGE_ANY;
211 }
212 
fld_range_set_type(struct lu_seq_range * range,unsigned flags)213 static inline void fld_range_set_type(struct lu_seq_range *range,
214 				      unsigned flags)
215 {
216 	range->lsr_flags |= flags;
217 }
218 
fld_range_set_mdt(struct lu_seq_range * range)219 static inline void fld_range_set_mdt(struct lu_seq_range *range)
220 {
221 	fld_range_set_type(range, LU_SEQ_RANGE_MDT);
222 }
223 
fld_range_set_ost(struct lu_seq_range * range)224 static inline void fld_range_set_ost(struct lu_seq_range *range)
225 {
226 	fld_range_set_type(range, LU_SEQ_RANGE_OST);
227 }
228 
fld_range_set_any(struct lu_seq_range * range)229 static inline void fld_range_set_any(struct lu_seq_range *range)
230 {
231 	fld_range_set_type(range, LU_SEQ_RANGE_ANY);
232 }
233 
234 /**
235  * returns  width of given range \a r
236  */
237 
range_space(const struct lu_seq_range * range)238 static inline __u64 range_space(const struct lu_seq_range *range)
239 {
240 	return range->lsr_end - range->lsr_start;
241 }
242 
243 /**
244  * initialize range to zero
245  */
246 
range_init(struct lu_seq_range * range)247 static inline void range_init(struct lu_seq_range *range)
248 {
249 	memset(range, 0, sizeof(*range));
250 }
251 
252 /**
253  * check if given seq id \a s is within given range \a r
254  */
255 
range_within(const struct lu_seq_range * range,__u64 s)256 static inline int range_within(const struct lu_seq_range *range,
257 			       __u64 s)
258 {
259 	return s >= range->lsr_start && s < range->lsr_end;
260 }
261 
range_is_sane(const struct lu_seq_range * range)262 static inline int range_is_sane(const struct lu_seq_range *range)
263 {
264 	return (range->lsr_end >= range->lsr_start);
265 }
266 
range_is_zero(const struct lu_seq_range * range)267 static inline int range_is_zero(const struct lu_seq_range *range)
268 {
269 	return (range->lsr_start == 0 && range->lsr_end == 0);
270 }
271 
range_is_exhausted(const struct lu_seq_range * range)272 static inline int range_is_exhausted(const struct lu_seq_range *range)
273 
274 {
275 	return range_space(range) == 0;
276 }
277 
278 /* return 0 if two range have the same location */
range_compare_loc(const struct lu_seq_range * r1,const struct lu_seq_range * r2)279 static inline int range_compare_loc(const struct lu_seq_range *r1,
280 				    const struct lu_seq_range *r2)
281 {
282 	return r1->lsr_index != r2->lsr_index ||
283 	       r1->lsr_flags != r2->lsr_flags;
284 }
285 
286 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
287 
288 #define PRANGE(range)		\
289 	(range)->lsr_start,	\
290 	(range)->lsr_end,	\
291 	(range)->lsr_index,	\
292 	fld_range_is_mdt(range) ? "mdt" : "ost"
293 
294 
295 /** \defgroup lu_fid lu_fid
296  * @{ */
297 
298 /**
299  * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
300  * Deprecated since HSM and SOM attributes are now stored in separate on-disk
301  * xattr.
302  */
303 enum lma_compat {
304 	LMAC_HSM	= 0x00000001,
305 	LMAC_SOM	= 0x00000002,
306 	LMAC_NOT_IN_OI	= 0x00000004, /* the object does NOT need OI mapping */
307 	LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
308 				       * under /O/<seq>/d<x>. */
309 };
310 
311 /**
312  * Masks for all features that should be supported by a Lustre version to
313  * access a specific file.
314  * This information is stored in lustre_mdt_attrs::lma_incompat.
315  */
316 enum lma_incompat {
317 	LMAI_RELEASED		= 0x00000001, /* file is released */
318 	LMAI_AGENT		= 0x00000002, /* agent inode */
319 	LMAI_REMOTE_PARENT	= 0x00000004, /* the parent of the object
320 						 is on the remote MDT */
321 };
322 #define LMA_INCOMPAT_SUPP	(LMAI_AGENT | LMAI_REMOTE_PARENT)
323 
324 /**
325  * fid constants
326  */
327 enum {
328 	/** LASTID file has zero OID */
329 	LUSTRE_FID_LASTID_OID = 0UL,
330 	/** initial fid id value */
331 	LUSTRE_FID_INIT_OID  = 1UL
332 };
333 
334 /** returns fid object sequence */
fid_seq(const struct lu_fid * fid)335 static inline __u64 fid_seq(const struct lu_fid *fid)
336 {
337 	return fid->f_seq;
338 }
339 
340 /** returns fid object id */
fid_oid(const struct lu_fid * fid)341 static inline __u32 fid_oid(const struct lu_fid *fid)
342 {
343 	return fid->f_oid;
344 }
345 
346 /** returns fid object version */
fid_ver(const struct lu_fid * fid)347 static inline __u32 fid_ver(const struct lu_fid *fid)
348 {
349 	return fid->f_ver;
350 }
351 
fid_zero(struct lu_fid * fid)352 static inline void fid_zero(struct lu_fid *fid)
353 {
354 	memset(fid, 0, sizeof(*fid));
355 }
356 
fid_ver_oid(const struct lu_fid * fid)357 static inline __u64 fid_ver_oid(const struct lu_fid *fid)
358 {
359 	return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
360 }
361 
362 /**
363  * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
364  * inodes in the IGIF namespace, so these reserved SEQ numbers can be
365  * used for other purposes and not risk collisions with existing inodes.
366  *
367  * Different FID Format
368  * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
369  */
370 enum fid_seq {
371 	FID_SEQ_OST_MDT0	= 0,
372 	FID_SEQ_LLOG		= 1, /* unnamed llogs */
373 	FID_SEQ_ECHO		= 2,
374 	FID_SEQ_OST_MDT1	= 3,
375 	FID_SEQ_OST_MAX		= 9, /* Max MDT count before OST_on_FID */
376 	FID_SEQ_LLOG_NAME	= 10, /* named llogs */
377 	FID_SEQ_RSVD		= 11,
378 	FID_SEQ_IGIF		= 12,
379 	FID_SEQ_IGIF_MAX	= 0x0ffffffffULL,
380 	FID_SEQ_IDIF		= 0x100000000ULL,
381 	FID_SEQ_IDIF_MAX	= 0x1ffffffffULL,
382 	/* Normal FID sequence starts from this value, i.e. 1<<33 */
383 	FID_SEQ_START		= 0x200000000ULL,
384 	/* sequence for local pre-defined FIDs listed in local_oid */
385 	FID_SEQ_LOCAL_FILE	= 0x200000001ULL,
386 	FID_SEQ_DOT_LUSTRE	= 0x200000002ULL,
387 	/* sequence is used for local named objects FIDs generated
388 	 * by local_object_storage library */
389 	FID_SEQ_LOCAL_NAME	= 0x200000003ULL,
390 	/* Because current FLD will only cache the fid sequence, instead
391 	 * of oid on the client side, if the FID needs to be exposed to
392 	 * clients sides, it needs to make sure all of fids under one
393 	 * sequence will be located in one MDT. */
394 	FID_SEQ_SPECIAL		= 0x200000004ULL,
395 	FID_SEQ_QUOTA		= 0x200000005ULL,
396 	FID_SEQ_QUOTA_GLB	= 0x200000006ULL,
397 	FID_SEQ_ROOT		= 0x200000007ULL,  /* Located on MDT0 */
398 	FID_SEQ_NORMAL		= 0x200000400ULL,
399 	FID_SEQ_LOV_DEFAULT	= 0xffffffffffffffffULL
400 };
401 
402 #define OBIF_OID_MAX_BITS	   32
403 #define OBIF_MAX_OID		(1ULL << OBIF_OID_MAX_BITS)
404 #define OBIF_OID_MASK	       ((1ULL << OBIF_OID_MAX_BITS) - 1)
405 #define IDIF_OID_MAX_BITS	   48
406 #define IDIF_MAX_OID		(1ULL << IDIF_OID_MAX_BITS)
407 #define IDIF_OID_MASK	       ((1ULL << IDIF_OID_MAX_BITS) - 1)
408 
409 /** OID for FID_SEQ_SPECIAL */
410 enum special_oid {
411 	/* Big Filesystem Lock to serialize rename operations */
412 	FID_OID_SPECIAL_BFL     = 1UL,
413 };
414 
415 /** OID for FID_SEQ_DOT_LUSTRE */
416 enum dot_lustre_oid {
417 	FID_OID_DOT_LUSTRE  = 1UL,
418 	FID_OID_DOT_LUSTRE_OBF = 2UL,
419 };
420 
fid_seq_is_mdt0(__u64 seq)421 static inline int fid_seq_is_mdt0(__u64 seq)
422 {
423 	return (seq == FID_SEQ_OST_MDT0);
424 }
425 
fid_seq_is_mdt(const __u64 seq)426 static inline int fid_seq_is_mdt(const __u64 seq)
427 {
428 	return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
429 };
430 
fid_seq_is_echo(__u64 seq)431 static inline int fid_seq_is_echo(__u64 seq)
432 {
433 	return (seq == FID_SEQ_ECHO);
434 }
435 
fid_is_echo(const struct lu_fid * fid)436 static inline int fid_is_echo(const struct lu_fid *fid)
437 {
438 	return fid_seq_is_echo(fid_seq(fid));
439 }
440 
fid_seq_is_llog(__u64 seq)441 static inline int fid_seq_is_llog(__u64 seq)
442 {
443 	return (seq == FID_SEQ_LLOG);
444 }
445 
fid_is_llog(const struct lu_fid * fid)446 static inline int fid_is_llog(const struct lu_fid *fid)
447 {
448 	/* file with OID == 0 is not llog but contains last oid */
449 	return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
450 }
451 
fid_seq_is_rsvd(const __u64 seq)452 static inline int fid_seq_is_rsvd(const __u64 seq)
453 {
454 	return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
455 };
456 
fid_seq_is_special(const __u64 seq)457 static inline int fid_seq_is_special(const __u64 seq)
458 {
459 	return seq == FID_SEQ_SPECIAL;
460 };
461 
fid_seq_is_local_file(const __u64 seq)462 static inline int fid_seq_is_local_file(const __u64 seq)
463 {
464 	return seq == FID_SEQ_LOCAL_FILE ||
465 	       seq == FID_SEQ_LOCAL_NAME;
466 };
467 
fid_seq_is_root(const __u64 seq)468 static inline int fid_seq_is_root(const __u64 seq)
469 {
470 	return seq == FID_SEQ_ROOT;
471 }
472 
fid_seq_is_dot(const __u64 seq)473 static inline int fid_seq_is_dot(const __u64 seq)
474 {
475 	return seq == FID_SEQ_DOT_LUSTRE;
476 }
477 
fid_seq_is_default(const __u64 seq)478 static inline int fid_seq_is_default(const __u64 seq)
479 {
480 	return seq == FID_SEQ_LOV_DEFAULT;
481 }
482 
fid_is_mdt0(const struct lu_fid * fid)483 static inline int fid_is_mdt0(const struct lu_fid *fid)
484 {
485 	return fid_seq_is_mdt0(fid_seq(fid));
486 }
487 
lu_root_fid(struct lu_fid * fid)488 static inline void lu_root_fid(struct lu_fid *fid)
489 {
490 	fid->f_seq = FID_SEQ_ROOT;
491 	fid->f_oid = 1;
492 	fid->f_ver = 0;
493 }
494 
495 /**
496  * Check if a fid is igif or not.
497  * \param fid the fid to be tested.
498  * \return true if the fid is a igif; otherwise false.
499  */
fid_seq_is_igif(const __u64 seq)500 static inline int fid_seq_is_igif(const __u64 seq)
501 {
502 	return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
503 }
504 
fid_is_igif(const struct lu_fid * fid)505 static inline int fid_is_igif(const struct lu_fid *fid)
506 {
507 	return fid_seq_is_igif(fid_seq(fid));
508 }
509 
510 /**
511  * Check if a fid is idif or not.
512  * \param fid the fid to be tested.
513  * \return true if the fid is a idif; otherwise false.
514  */
fid_seq_is_idif(const __u64 seq)515 static inline int fid_seq_is_idif(const __u64 seq)
516 {
517 	return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
518 }
519 
fid_is_idif(const struct lu_fid * fid)520 static inline int fid_is_idif(const struct lu_fid *fid)
521 {
522 	return fid_seq_is_idif(fid_seq(fid));
523 }
524 
fid_is_local_file(const struct lu_fid * fid)525 static inline int fid_is_local_file(const struct lu_fid *fid)
526 {
527 	return fid_seq_is_local_file(fid_seq(fid));
528 }
529 
fid_seq_is_norm(const __u64 seq)530 static inline int fid_seq_is_norm(const __u64 seq)
531 {
532 	return (seq >= FID_SEQ_NORMAL);
533 }
534 
fid_is_norm(const struct lu_fid * fid)535 static inline int fid_is_norm(const struct lu_fid *fid)
536 {
537 	return fid_seq_is_norm(fid_seq(fid));
538 }
539 
540 /* convert an OST objid into an IDIF FID SEQ number */
fid_idif_seq(__u64 id,__u32 ost_idx)541 static inline __u64 fid_idif_seq(__u64 id, __u32 ost_idx)
542 {
543 	return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
544 }
545 
546 /* convert a packed IDIF FID into an OST objid */
fid_idif_id(__u64 seq,__u32 oid,__u32 ver)547 static inline __u64 fid_idif_id(__u64 seq, __u32 oid, __u32 ver)
548 {
549 	return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
550 }
551 
552 /* extract ost index from IDIF FID */
fid_idif_ost_idx(const struct lu_fid * fid)553 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
554 {
555 	return (fid_seq(fid) >> 16) & 0xffff;
556 }
557 
558 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
ostid_seq(const struct ost_id * ostid)559 static inline __u64 ostid_seq(const struct ost_id *ostid)
560 {
561 	if (fid_seq_is_mdt0(ostid->oi.oi_seq))
562 		return FID_SEQ_OST_MDT0;
563 
564 	if (fid_seq_is_default(ostid->oi.oi_seq))
565 		return FID_SEQ_LOV_DEFAULT;
566 
567 	if (fid_is_idif(&ostid->oi_fid))
568 		return FID_SEQ_OST_MDT0;
569 
570 	return fid_seq(&ostid->oi_fid);
571 }
572 
573 /* extract OST objid from a wire ost_id (id/seq) pair */
ostid_id(const struct ost_id * ostid)574 static inline __u64 ostid_id(const struct ost_id *ostid)
575 {
576 	if (fid_seq_is_mdt0(ostid_seq(ostid)))
577 		return ostid->oi.oi_id & IDIF_OID_MASK;
578 
579 	if (fid_is_idif(&ostid->oi_fid))
580 		return fid_idif_id(fid_seq(&ostid->oi_fid),
581 				   fid_oid(&ostid->oi_fid), 0);
582 
583 	return fid_oid(&ostid->oi_fid);
584 }
585 
ostid_set_seq(struct ost_id * oi,__u64 seq)586 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
587 {
588 	if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
589 		oi->oi.oi_seq = seq;
590 	} else {
591 		oi->oi_fid.f_seq = seq;
592 		/* Note: if f_oid + f_ver is zero, we need init it
593 		 * to be 1, otherwise, ostid_seq will treat this
594 		 * as old ostid (oi_seq == 0) */
595 		if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
596 			oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
597 	}
598 }
599 
ostid_set_seq_mdt0(struct ost_id * oi)600 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
601 {
602 	ostid_set_seq(oi, FID_SEQ_OST_MDT0);
603 }
604 
ostid_set_seq_echo(struct ost_id * oi)605 static inline void ostid_set_seq_echo(struct ost_id *oi)
606 {
607 	ostid_set_seq(oi, FID_SEQ_ECHO);
608 }
609 
ostid_set_seq_llog(struct ost_id * oi)610 static inline void ostid_set_seq_llog(struct ost_id *oi)
611 {
612 	ostid_set_seq(oi, FID_SEQ_LLOG);
613 }
614 
615 /**
616  * Note: we need check oi_seq to decide where to set oi_id,
617  * so oi_seq should always be set ahead of oi_id.
618  */
ostid_set_id(struct ost_id * oi,__u64 oid)619 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
620 {
621 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
622 		if (oid >= IDIF_MAX_OID) {
623 			CERROR("Bad %llu to set "DOSTID"\n",
624 				oid, POSTID(oi));
625 			return;
626 		}
627 		oi->oi.oi_id = oid;
628 	} else {
629 		if (oid > OBIF_MAX_OID) {
630 			CERROR("Bad %llu to set "DOSTID"\n",
631 				oid, POSTID(oi));
632 			return;
633 		}
634 		oi->oi_fid.f_oid = oid;
635 	}
636 }
637 
ostid_inc_id(struct ost_id * oi)638 static inline void ostid_inc_id(struct ost_id *oi)
639 {
640 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
641 		if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
642 			CERROR("Bad inc "DOSTID"\n", POSTID(oi));
643 			return;
644 		}
645 		oi->oi.oi_id++;
646 	} else {
647 		oi->oi_fid.f_oid++;
648 	}
649 }
650 
ostid_dec_id(struct ost_id * oi)651 static inline void ostid_dec_id(struct ost_id *oi)
652 {
653 	if (fid_seq_is_mdt0(ostid_seq(oi)))
654 		oi->oi.oi_id--;
655 	else
656 		oi->oi_fid.f_oid--;
657 }
658 
659 /**
660  * Unpack an OST object id/seq (group) into a FID.  This is needed for
661  * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
662  * FIDs.  Note that if an id/seq is already in FID/IDIF format it will
663  * be passed through unchanged.  Only legacy OST objects in "group 0"
664  * will be mapped into the IDIF namespace so that they can fit into the
665  * struct lu_fid fields without loss.  For reference see:
666  * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
667  */
ostid_to_fid(struct lu_fid * fid,struct ost_id * ostid,__u32 ost_idx)668 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
669 			       __u32 ost_idx)
670 {
671 	if (ost_idx > 0xffff) {
672 		CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
673 		       ost_idx);
674 		return -EBADF;
675 	}
676 
677 	if (fid_seq_is_mdt0(ostid_seq(ostid))) {
678 		/* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
679 		 * that we map into the IDIF namespace.  It allows up to 2^48
680 		 * objects per OST, as this is the object namespace that has
681 		 * been in production for years.  This can handle create rates
682 		 * of 1M objects/s/OST for 9 years, or combinations thereof. */
683 		if (ostid_id(ostid) >= IDIF_MAX_OID) {
684 			 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
685 				POSTID(ostid), ost_idx);
686 			 return -EBADF;
687 		}
688 		fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
689 		/* truncate to 32 bits by assignment */
690 		fid->f_oid = ostid_id(ostid);
691 		/* in theory, not currently used */
692 		fid->f_ver = ostid_id(ostid) >> 48;
693 	} else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
694 	       /* This is either an IDIF object, which identifies objects across
695 		* all OSTs, or a regular FID.  The IDIF namespace maps legacy
696 		* OST objects into the FID namespace.  In both cases, we just
697 		* pass the FID through, no conversion needed. */
698 		if (ostid->oi_fid.f_ver != 0) {
699 			CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
700 				POSTID(ostid), ost_idx);
701 			return -EBADF;
702 		}
703 		*fid = ostid->oi_fid;
704 	}
705 
706 	return 0;
707 }
708 
709 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
fid_to_ostid(const struct lu_fid * fid,struct ost_id * ostid)710 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
711 {
712 	if (unlikely(fid_seq_is_igif(fid->f_seq))) {
713 		CERROR("bad IGIF, "DFID"\n", PFID(fid));
714 		return -EBADF;
715 	}
716 
717 	if (fid_is_idif(fid)) {
718 		ostid_set_seq_mdt0(ostid);
719 		ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
720 						fid_ver(fid)));
721 	} else {
722 		ostid->oi_fid = *fid;
723 	}
724 
725 	return 0;
726 }
727 
728 /* Check whether the fid is for LAST_ID */
fid_is_last_id(const struct lu_fid * fid)729 static inline int fid_is_last_id(const struct lu_fid *fid)
730 {
731 	return (fid_oid(fid) == 0);
732 }
733 
734 /**
735  * Get inode number from a igif.
736  * \param fid a igif to get inode number from.
737  * \return inode number for the igif.
738  */
lu_igif_ino(const struct lu_fid * fid)739 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
740 {
741 	return fid_seq(fid);
742 }
743 
744 extern void lustre_swab_ost_id(struct ost_id *oid);
745 
746 /**
747  * Get inode generation from a igif.
748  * \param fid a igif to get inode generation from.
749  * \return inode generation for the igif.
750  */
lu_igif_gen(const struct lu_fid * fid)751 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
752 {
753 	return fid_oid(fid);
754 }
755 
756 /**
757  * Build igif from the inode number/generation.
758  */
lu_igif_build(struct lu_fid * fid,__u32 ino,__u32 gen)759 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
760 {
761 	fid->f_seq = ino;
762 	fid->f_oid = gen;
763 	fid->f_ver = 0;
764 }
765 
766 /*
767  * Fids are transmitted across network (in the sender byte-ordering),
768  * and stored on disk in big-endian order.
769  */
fid_cpu_to_le(struct lu_fid * dst,const struct lu_fid * src)770 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
771 {
772 	dst->f_seq = cpu_to_le64(fid_seq(src));
773 	dst->f_oid = cpu_to_le32(fid_oid(src));
774 	dst->f_ver = cpu_to_le32(fid_ver(src));
775 }
776 
fid_le_to_cpu(struct lu_fid * dst,const struct lu_fid * src)777 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
778 {
779 	dst->f_seq = le64_to_cpu(fid_seq(src));
780 	dst->f_oid = le32_to_cpu(fid_oid(src));
781 	dst->f_ver = le32_to_cpu(fid_ver(src));
782 }
783 
fid_cpu_to_be(struct lu_fid * dst,const struct lu_fid * src)784 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
785 {
786 	dst->f_seq = cpu_to_be64(fid_seq(src));
787 	dst->f_oid = cpu_to_be32(fid_oid(src));
788 	dst->f_ver = cpu_to_be32(fid_ver(src));
789 }
790 
fid_be_to_cpu(struct lu_fid * dst,const struct lu_fid * src)791 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
792 {
793 	dst->f_seq = be64_to_cpu(fid_seq(src));
794 	dst->f_oid = be32_to_cpu(fid_oid(src));
795 	dst->f_ver = be32_to_cpu(fid_ver(src));
796 }
797 
fid_is_sane(const struct lu_fid * fid)798 static inline int fid_is_sane(const struct lu_fid *fid)
799 {
800 	return fid != NULL &&
801 	       ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
802 		fid_is_igif(fid) || fid_is_idif(fid) ||
803 		fid_seq_is_rsvd(fid_seq(fid)));
804 }
805 
fid_is_zero(const struct lu_fid * fid)806 static inline int fid_is_zero(const struct lu_fid *fid)
807 {
808 	return fid_seq(fid) == 0 && fid_oid(fid) == 0;
809 }
810 
811 extern void lustre_swab_lu_fid(struct lu_fid *fid);
812 extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
813 
lu_fid_eq(const struct lu_fid * f0,const struct lu_fid * f1)814 static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
815 {
816 	return memcmp(f0, f1, sizeof(*f0)) == 0;
817 }
818 
819 #define __diff_normalize(val0, val1)			    \
820 ({							      \
821 	typeof(val0) __val0 = (val0);			   \
822 	typeof(val1) __val1 = (val1);			   \
823 								\
824 	(__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1);     \
825 })
826 
lu_fid_cmp(const struct lu_fid * f0,const struct lu_fid * f1)827 static inline int lu_fid_cmp(const struct lu_fid *f0,
828 			     const struct lu_fid *f1)
829 {
830 	return
831 		__diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
832 		__diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
833 		__diff_normalize(fid_ver(f0), fid_ver(f1));
834 }
835 
ostid_cpu_to_le(const struct ost_id * src_oi,struct ost_id * dst_oi)836 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
837 				   struct ost_id *dst_oi)
838 {
839 	if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
840 		dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
841 		dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
842 	} else {
843 		fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
844 	}
845 }
846 
ostid_le_to_cpu(const struct ost_id * src_oi,struct ost_id * dst_oi)847 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
848 				   struct ost_id *dst_oi)
849 {
850 	if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
851 		dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
852 		dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
853 	} else {
854 		fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
855 	}
856 }
857 
858 /** @} lu_fid */
859 
860 /** \defgroup lu_dir lu_dir
861  * @{ */
862 
863 /**
864  * Enumeration of possible directory entry attributes.
865  *
866  * Attributes follow directory entry header in the order they appear in this
867  * enumeration.
868  */
869 enum lu_dirent_attrs {
870 	LUDA_FID		= 0x0001,
871 	LUDA_TYPE		= 0x0002,
872 	LUDA_64BITHASH		= 0x0004,
873 
874 	/* The following attrs are used for MDT internal only,
875 	 * not visible to client */
876 
877 	/* Verify the dirent consistency */
878 	LUDA_VERIFY		= 0x8000,
879 	/* Only check but not repair the dirent inconsistency */
880 	LUDA_VERIFY_DRYRUN	= 0x4000,
881 	/* The dirent has been repaired, or to be repaired (dryrun). */
882 	LUDA_REPAIR		= 0x2000,
883 	/* The system is upgraded, has beed or to be repaired (dryrun). */
884 	LUDA_UPGRADE		= 0x1000,
885 	/* Ignore this record, go to next directly. */
886 	LUDA_IGNORE		= 0x0800,
887 };
888 
889 #define LU_DIRENT_ATTRS_MASK	0xf800
890 
891 /**
892  * Layout of readdir pages, as transmitted on wire.
893  */
894 struct lu_dirent {
895 	/** valid if LUDA_FID is set. */
896 	struct lu_fid lde_fid;
897 	/** a unique entry identifier: a hash or an offset. */
898 	__u64	 lde_hash;
899 	/** total record length, including all attributes. */
900 	__u16	 lde_reclen;
901 	/** name length */
902 	__u16	 lde_namelen;
903 	/** optional variable size attributes following this entry.
904 	 *  taken from enum lu_dirent_attrs.
905 	 */
906 	__u32	 lde_attrs;
907 	/** name is followed by the attributes indicated in ->ldp_attrs, in
908 	 *  their natural order. After the last attribute, padding bytes are
909 	 *  added to make ->lde_reclen a multiple of 8.
910 	 */
911 	char	  lde_name[0];
912 };
913 
914 /*
915  * Definitions of optional directory entry attributes formats.
916  *
917  * Individual attributes do not have their length encoded in a generic way. It
918  * is assumed that consumer of an attribute knows its format. This means that
919  * it is impossible to skip over an unknown attribute, except by skipping over all
920  * remaining attributes (by using ->lde_reclen), which is not too
921  * constraining, because new server versions will append new attributes at
922  * the end of an entry.
923  */
924 
925 /**
926  * Fid directory attribute: a fid of an object referenced by the entry. This
927  * will be almost always requested by the client and supplied by the server.
928  *
929  * Aligned to 8 bytes.
930  */
931 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
932 
933 /**
934  * File type.
935  *
936  * Aligned to 2 bytes.
937  */
938 struct luda_type {
939 	__u16 lt_type;
940 };
941 
942 #ifndef IFSHIFT
943 #define IFSHIFT                 12
944 #endif
945 
946 #ifndef IFTODT
947 #define IFTODT(type)		(((type) & S_IFMT) >> IFSHIFT)
948 #endif
949 #ifndef DTTOIF
950 #define DTTOIF(dirtype)		((dirtype) << IFSHIFT)
951 #endif
952 
953 
954 struct lu_dirpage {
955 	__u64	    ldp_hash_start;
956 	__u64	    ldp_hash_end;
957 	__u32	    ldp_flags;
958 	__u32	    ldp_pad0;
959 	struct lu_dirent ldp_entries[0];
960 };
961 
962 enum lu_dirpage_flags {
963 	/**
964 	 * dirpage contains no entry.
965 	 */
966 	LDF_EMPTY   = 1 << 0,
967 	/**
968 	 * last entry's lde_hash equals ldp_hash_end.
969 	 */
970 	LDF_COLLIDE = 1 << 1
971 };
972 
lu_dirent_start(struct lu_dirpage * dp)973 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
974 {
975 	if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
976 		return NULL;
977 	else
978 		return dp->ldp_entries;
979 }
980 
lu_dirent_next(struct lu_dirent * ent)981 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
982 {
983 	struct lu_dirent *next;
984 
985 	if (le16_to_cpu(ent->lde_reclen) != 0)
986 		next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
987 	else
988 		next = NULL;
989 
990 	return next;
991 }
992 
lu_dirent_calc_size(int namelen,__u16 attr)993 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
994 {
995 	int size;
996 
997 	if (attr & LUDA_TYPE) {
998 		const unsigned align = sizeof(struct luda_type) - 1;
999 		size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1000 		size += sizeof(struct luda_type);
1001 	} else
1002 		size = sizeof(struct lu_dirent) + namelen;
1003 
1004 	return (size + 7) & ~7;
1005 }
1006 
lu_dirent_size(struct lu_dirent * ent)1007 static inline int lu_dirent_size(struct lu_dirent *ent)
1008 {
1009 	if (le16_to_cpu(ent->lde_reclen) == 0) {
1010 		return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1011 					   le32_to_cpu(ent->lde_attrs));
1012 	}
1013 	return le16_to_cpu(ent->lde_reclen);
1014 }
1015 
1016 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1017 
1018 /**
1019  * MDS_READPAGE page size
1020  *
1021  * This is the directory page size packed in MDS_READPAGE RPC.
1022  * It's different than PAGE_CACHE_SIZE because the client needs to
1023  * access the struct lu_dirpage header packed at the beginning of
1024  * the "page" and without this there isn't any way to know find the
1025  * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1026  */
1027 #define LU_PAGE_SHIFT 12
1028 #define LU_PAGE_SIZE  (1UL << LU_PAGE_SHIFT)
1029 #define LU_PAGE_MASK  (~(LU_PAGE_SIZE - 1))
1030 
1031 #define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1032 
1033 /** @} lu_dir */
1034 
1035 struct lustre_handle {
1036 	__u64 cookie;
1037 };
1038 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1039 
lustre_handle_is_used(struct lustre_handle * lh)1040 static inline int lustre_handle_is_used(struct lustre_handle *lh)
1041 {
1042 	return lh->cookie != 0ull;
1043 }
1044 
lustre_handle_equal(const struct lustre_handle * lh1,const struct lustre_handle * lh2)1045 static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1046 				      const struct lustre_handle *lh2)
1047 {
1048 	return lh1->cookie == lh2->cookie;
1049 }
1050 
lustre_handle_copy(struct lustre_handle * tgt,struct lustre_handle * src)1051 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1052 				      struct lustre_handle *src)
1053 {
1054 	tgt->cookie = src->cookie;
1055 }
1056 
1057 /* flags for lm_flags */
1058 #define MSGHDR_AT_SUPPORT	       0x1
1059 #define MSGHDR_CKSUM_INCOMPAT18	 0x2
1060 
1061 #define lustre_msg lustre_msg_v2
1062 /* we depend on this structure to be 8-byte aligned */
1063 /* this type is only endian-adjusted in lustre_unpack_msg() */
1064 struct lustre_msg_v2 {
1065 	__u32 lm_bufcount;
1066 	__u32 lm_secflvr;
1067 	__u32 lm_magic;
1068 	__u32 lm_repsize;
1069 	__u32 lm_cksum;
1070 	__u32 lm_flags;
1071 	__u32 lm_padding_2;
1072 	__u32 lm_padding_3;
1073 	__u32 lm_buflens[0];
1074 };
1075 
1076 /* without gss, ptlrpc_body is put at the first buffer. */
1077 #define PTLRPC_NUM_VERSIONS     4
1078 #define JOBSTATS_JOBID_SIZE     32  /* 32 bytes string */
1079 struct ptlrpc_body_v3 {
1080 	struct lustre_handle pb_handle;
1081 	__u32 pb_type;
1082 	__u32 pb_version;
1083 	__u32 pb_opc;
1084 	__u32 pb_status;
1085 	__u64 pb_last_xid;
1086 	__u64 pb_last_seen;
1087 	__u64 pb_last_committed;
1088 	__u64 pb_transno;
1089 	__u32 pb_flags;
1090 	__u32 pb_op_flags;
1091 	__u32 pb_conn_cnt;
1092 	__u32 pb_timeout;  /* for req, the deadline, for rep, the service est */
1093 	__u32 pb_service_time; /* for rep, actual service time */
1094 	__u32 pb_limit;
1095 	__u64 pb_slv;
1096 	/* VBR: pre-versions */
1097 	__u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1098 	/* padding for future needs */
1099 	__u64 pb_padding[4];
1100 	char  pb_jobid[JOBSTATS_JOBID_SIZE];
1101 };
1102 #define ptlrpc_body     ptlrpc_body_v3
1103 
1104 struct ptlrpc_body_v2 {
1105 	struct lustre_handle pb_handle;
1106 	__u32 pb_type;
1107 	__u32 pb_version;
1108 	__u32 pb_opc;
1109 	__u32 pb_status;
1110 	__u64 pb_last_xid;
1111 	__u64 pb_last_seen;
1112 	__u64 pb_last_committed;
1113 	__u64 pb_transno;
1114 	__u32 pb_flags;
1115 	__u32 pb_op_flags;
1116 	__u32 pb_conn_cnt;
1117 	__u32 pb_timeout;  /* for req, the deadline, for rep, the service est */
1118 	__u32 pb_service_time; /* for rep, actual service time, also used for
1119 				  net_latency of req */
1120 	__u32 pb_limit;
1121 	__u64 pb_slv;
1122 	/* VBR: pre-versions */
1123 	__u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1124 	/* padding for future needs */
1125 	__u64 pb_padding[4];
1126 };
1127 
1128 extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1129 
1130 /* message body offset for lustre_msg_v2 */
1131 /* ptlrpc body offset in all request/reply messages */
1132 #define MSG_PTLRPC_BODY_OFF	     0
1133 
1134 /* normal request/reply message record offset */
1135 #define REQ_REC_OFF		     1
1136 #define REPLY_REC_OFF		   1
1137 
1138 /* ldlm request message body offset */
1139 #define DLM_LOCKREQ_OFF		 1 /* lockreq offset */
1140 #define DLM_REQ_REC_OFF		 2 /* normal dlm request record offset */
1141 
1142 /* ldlm intent lock message body offset */
1143 #define DLM_INTENT_IT_OFF	       2 /* intent lock it offset */
1144 #define DLM_INTENT_REC_OFF	      3 /* intent lock record offset */
1145 
1146 /* ldlm reply message body offset */
1147 #define DLM_LOCKREPLY_OFF	       1 /* lockrep offset */
1148 #define DLM_REPLY_REC_OFF	       2 /* reply record offset */
1149 
1150 /** only use in req->rq_{req,rep}_swab_mask */
1151 #define MSG_PTLRPC_HEADER_OFF	   31
1152 
1153 /* Flags that are operation-specific go in the top 16 bits. */
1154 #define MSG_OP_FLAG_MASK   0xffff0000
1155 #define MSG_OP_FLAG_SHIFT  16
1156 
1157 /* Flags that apply to all requests are in the bottom 16 bits */
1158 #define MSG_GEN_FLAG_MASK     0x0000ffff
1159 #define MSG_LAST_REPLAY	   0x0001
1160 #define MSG_RESENT		0x0002
1161 #define MSG_REPLAY		0x0004
1162 /* #define MSG_AT_SUPPORT	 0x0008
1163  * This was used in early prototypes of adaptive timeouts, and while there
1164  * shouldn't be any users of that code there also isn't a need for using this
1165  * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1166 #define MSG_DELAY_REPLAY	  0x0010
1167 #define MSG_VERSION_REPLAY	0x0020
1168 #define MSG_REQ_REPLAY_DONE       0x0040
1169 #define MSG_LOCK_REPLAY_DONE      0x0080
1170 
1171 /*
1172  * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1173  */
1174 
1175 #define MSG_CONNECT_RECOVERING  0x00000001
1176 #define MSG_CONNECT_RECONNECT   0x00000002
1177 #define MSG_CONNECT_REPLAYABLE  0x00000004
1178 //#define MSG_CONNECT_PEER	0x8
1179 #define MSG_CONNECT_LIBCLIENT   0x00000010
1180 #define MSG_CONNECT_INITIAL     0x00000020
1181 #define MSG_CONNECT_ASYNC       0x00000040
1182 #define MSG_CONNECT_NEXT_VER    0x00000080 /* use next version of lustre_msg */
1183 #define MSG_CONNECT_TRANSNO     0x00000100 /* report transno */
1184 
1185 /* Connect flags */
1186 #define OBD_CONNECT_RDONLY		0x1ULL /*client has read-only access*/
1187 #define OBD_CONNECT_INDEX		 0x2ULL /*connect specific LOV idx */
1188 #define OBD_CONNECT_MDS		   0x4ULL /*connect from MDT to OST */
1189 #define OBD_CONNECT_GRANT		 0x8ULL /*OSC gets grant at connect */
1190 #define OBD_CONNECT_SRVLOCK	      0x10ULL /*server takes locks for cli */
1191 #define OBD_CONNECT_VERSION	      0x20ULL /*Lustre versions in ocd */
1192 #define OBD_CONNECT_REQPORTAL	    0x40ULL /*Separate non-IO req portal */
1193 #define OBD_CONNECT_ACL		  0x80ULL /*access control lists */
1194 #define OBD_CONNECT_XATTR	       0x100ULL /*client use extended attr */
1195 #define OBD_CONNECT_CROW		0x200ULL /*MDS+OST create obj on write*/
1196 #define OBD_CONNECT_TRUNCLOCK	   0x400ULL /*locks on server for punch */
1197 #define OBD_CONNECT_TRANSNO	     0x800ULL /*replay sends init transno */
1198 #define OBD_CONNECT_IBITS	      0x1000ULL /*support for inodebits locks*/
1199 #define OBD_CONNECT_JOIN	       0x2000ULL /*files can be concatenated.
1200 						  *We do not support JOIN FILE
1201 						  *anymore, reserve this flags
1202 						  *just for preventing such bit
1203 						  *to be reused.*/
1204 #define OBD_CONNECT_ATTRFID	    0x4000ULL /*Server can GetAttr By Fid*/
1205 #define OBD_CONNECT_NODEVOH	    0x8000ULL /*No open hndl on specl nodes*/
1206 #define OBD_CONNECT_RMT_CLIENT	0x10000ULL /*Remote client */
1207 #define OBD_CONNECT_RMT_CLIENT_FORCE  0x20000ULL /*Remote client by force */
1208 #define OBD_CONNECT_BRW_SIZE	  0x40000ULL /*Max bytes per rpc */
1209 #define OBD_CONNECT_QUOTA64	   0x80000ULL /*Not used since 2.4 */
1210 #define OBD_CONNECT_MDS_CAPA	 0x100000ULL /*MDS capability */
1211 #define OBD_CONNECT_OSS_CAPA	 0x200000ULL /*OSS capability */
1212 #define OBD_CONNECT_CANCELSET	0x400000ULL /*Early batched cancels. */
1213 #define OBD_CONNECT_SOM	      0x800000ULL /*Size on MDS */
1214 #define OBD_CONNECT_AT	      0x1000000ULL /*client uses AT */
1215 #define OBD_CONNECT_LRU_RESIZE      0x2000000ULL /*LRU resize feature. */
1216 #define OBD_CONNECT_MDS_MDS	 0x4000000ULL /*MDS-MDS connection */
1217 #define OBD_CONNECT_REAL	    0x8000000ULL /*real connection */
1218 #define OBD_CONNECT_CHANGE_QS      0x10000000ULL /*Not used since 2.4 */
1219 #define OBD_CONNECT_CKSUM	  0x20000000ULL /*support several cksum algos*/
1220 #define OBD_CONNECT_FID	    0x40000000ULL /*FID is supported by server */
1221 #define OBD_CONNECT_VBR	    0x80000000ULL /*version based recovery */
1222 #define OBD_CONNECT_LOV_V3	0x100000000ULL /*client supports LOV v3 EA */
1223 #define OBD_CONNECT_GRANT_SHRINK  0x200000000ULL /* support grant shrink */
1224 #define OBD_CONNECT_SKIP_ORPHAN   0x400000000ULL /* don't reuse orphan objids */
1225 #define OBD_CONNECT_MAX_EASIZE    0x800000000ULL /* preserved for large EA */
1226 #define OBD_CONNECT_FULL20       0x1000000000ULL /* it is 2.0 client */
1227 #define OBD_CONNECT_LAYOUTLOCK   0x2000000000ULL /* client uses layout lock */
1228 #define OBD_CONNECT_64BITHASH    0x4000000000ULL /* client supports 64-bits
1229 						  * directory hash */
1230 #define OBD_CONNECT_MAXBYTES     0x8000000000ULL /* max stripe size */
1231 #define OBD_CONNECT_IMP_RECOV   0x10000000000ULL /* imp recovery support */
1232 #define OBD_CONNECT_JOBSTATS    0x20000000000ULL /* jobid in ptlrpc_body */
1233 #define OBD_CONNECT_UMASK       0x40000000000ULL /* create uses client umask */
1234 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1235 						  * RPC error properly */
1236 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1237 						  * finer space reservation */
1238 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1239 						   * policy and 2.x server */
1240 #define OBD_CONNECT_LVB_TYPE	0x400000000000ULL /* variable type of LVB */
1241 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1242 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1243 #define OBD_CONNECT_SHORTIO     0x2000000000000ULL/* short io */
1244 #define OBD_CONNECT_PINGLESS	0x4000000000000ULL/* pings not required */
1245 #define OBD_CONNECT_FLOCK_DEAD	0x8000000000000ULL/* flock deadlock detection */
1246 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1247 
1248 /* XXX README XXX:
1249  * Please DO NOT add flag values here before first ensuring that this same
1250  * flag value is not in use on some other branch.  Please clear any such
1251  * changes with senior engineers before starting to use a new flag.  Then,
1252  * submit a small patch against EVERY branch that ONLY adds the new flag,
1253  * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1254  * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1255  * can be approved and landed easily to reserve the flag for future use. */
1256 
1257 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1258  * connection.  It is a temporary bug fix for Imperative Recovery interop
1259  * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1260  * 2.2 clients/servers is no longer needed.  LU-1252/LU-1644. */
1261 #define OBD_CONNECT_MNE_SWAB		 OBD_CONNECT_MDS_MDS
1262 
1263 #define OCD_HAS_FLAG(ocd, flg)  \
1264 	(!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1265 
1266 
1267 #define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1268 
1269 #define MDT_CONNECT_SUPPORTED  (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1270 				OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1271 				OBD_CONNECT_IBITS | \
1272 				OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1273 				OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1274 				OBD_CONNECT_RMT_CLIENT | \
1275 				OBD_CONNECT_RMT_CLIENT_FORCE | \
1276 				OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1277 				OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1278 				OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1279 				OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1280 				OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1281 				OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1282 				OBD_CONNECT_EINPROGRESS | \
1283 				OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1284 				OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1285 				OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1286 				OBD_CONNECT_FLOCK_DEAD | \
1287 				OBD_CONNECT_DISP_STRIPE)
1288 
1289 #define OST_CONNECT_SUPPORTED  (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1290 				OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1291 				OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1292 				OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1293 				OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1294 				LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1295 				OBD_CONNECT_RMT_CLIENT | \
1296 				OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1297 				OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1298 				OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1299 				OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1300 				OBD_CONNECT_MAX_EASIZE | \
1301 				OBD_CONNECT_EINPROGRESS | \
1302 				OBD_CONNECT_JOBSTATS | \
1303 				OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1304 				OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1305 				OBD_CONNECT_PINGLESS)
1306 #define ECHO_CONNECT_SUPPORTED (0)
1307 #define MGS_CONNECT_SUPPORTED  (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1308 				OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1309 				OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1310 
1311 /* Features required for this version of the client to work with server */
1312 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1313 				 OBD_CONNECT_FULL20)
1314 
1315 #define OBD_OCD_VERSION(major, minor, patch, fix) (((major)<<24) + \
1316 						  ((minor)<<16) + \
1317 						  ((patch)<<8) + (fix))
1318 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1319 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1320 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1321 #define OBD_OCD_VERSION_FIX(version)   ((int)(version)&255)
1322 
1323 /* This structure is used for both request and reply.
1324  *
1325  * If we eventually have separate connect data for different types, which we
1326  * almost certainly will, then perhaps we stick a union in here. */
1327 struct obd_connect_data_v1 {
1328 	__u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1329 	__u32 ocd_version;	 /* lustre release version number */
1330 	__u32 ocd_grant;	 /* initial cache grant amount (bytes) */
1331 	__u32 ocd_index;	 /* LOV index to connect to */
1332 	__u32 ocd_brw_size;	 /* Maximum BRW size in bytes, must be 2^n */
1333 	__u64 ocd_ibits_known;   /* inode bits this client understands */
1334 	__u8  ocd_blocksize;     /* log2 of the backend filesystem blocksize */
1335 	__u8  ocd_inodespace;    /* log2 of the per-inode space consumption */
1336 	__u16 ocd_grant_extent;  /* per-extent grant overhead, in 1K blocks */
1337 	__u32 ocd_unused;	/* also fix lustre_swab_connect */
1338 	__u64 ocd_transno;       /* first transno from client to be replayed */
1339 	__u32 ocd_group;	 /* MDS group on OST */
1340 	__u32 ocd_cksum_types;   /* supported checksum algorithms */
1341 	__u32 ocd_max_easize;    /* How big LOV EA can be on MDS */
1342 	__u32 ocd_instance;      /* also fix lustre_swab_connect */
1343 	__u64 ocd_maxbytes;      /* Maximum stripe size in bytes */
1344 };
1345 
1346 struct obd_connect_data {
1347 	__u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1348 	__u32 ocd_version;	 /* lustre release version number */
1349 	__u32 ocd_grant;	 /* initial cache grant amount (bytes) */
1350 	__u32 ocd_index;	 /* LOV index to connect to */
1351 	__u32 ocd_brw_size;	 /* Maximum BRW size in bytes */
1352 	__u64 ocd_ibits_known;   /* inode bits this client understands */
1353 	__u8  ocd_blocksize;     /* log2 of the backend filesystem blocksize */
1354 	__u8  ocd_inodespace;    /* log2 of the per-inode space consumption */
1355 	__u16 ocd_grant_extent;  /* per-extent grant overhead, in 1K blocks */
1356 	__u32 ocd_unused;	/* also fix lustre_swab_connect */
1357 	__u64 ocd_transno;       /* first transno from client to be replayed */
1358 	__u32 ocd_group;	 /* MDS group on OST */
1359 	__u32 ocd_cksum_types;   /* supported checksum algorithms */
1360 	__u32 ocd_max_easize;    /* How big LOV EA can be on MDS */
1361 	__u32 ocd_instance;      /* instance # of this target */
1362 	__u64 ocd_maxbytes;      /* Maximum stripe size in bytes */
1363 	/* Fields after ocd_maxbytes are only accessible by the receiver
1364 	 * if the corresponding flag in ocd_connect_flags is set. Accessing
1365 	 * any field after ocd_maxbytes on the receiver without a valid flag
1366 	 * may result in out-of-bound memory access and kernel oops. */
1367 	__u64 padding1;	  /* added 2.1.0. also fix lustre_swab_connect */
1368 	__u64 padding2;	  /* added 2.1.0. also fix lustre_swab_connect */
1369 	__u64 padding3;	  /* added 2.1.0. also fix lustre_swab_connect */
1370 	__u64 padding4;	  /* added 2.1.0. also fix lustre_swab_connect */
1371 	__u64 padding5;	  /* added 2.1.0. also fix lustre_swab_connect */
1372 	__u64 padding6;	  /* added 2.1.0. also fix lustre_swab_connect */
1373 	__u64 padding7;	  /* added 2.1.0. also fix lustre_swab_connect */
1374 	__u64 padding8;	  /* added 2.1.0. also fix lustre_swab_connect */
1375 	__u64 padding9;	  /* added 2.1.0. also fix lustre_swab_connect */
1376 	__u64 paddingA;	  /* added 2.1.0. also fix lustre_swab_connect */
1377 	__u64 paddingB;	  /* added 2.1.0. also fix lustre_swab_connect */
1378 	__u64 paddingC;	  /* added 2.1.0. also fix lustre_swab_connect */
1379 	__u64 paddingD;	  /* added 2.1.0. also fix lustre_swab_connect */
1380 	__u64 paddingE;	  /* added 2.1.0. also fix lustre_swab_connect */
1381 	__u64 paddingF;	  /* added 2.1.0. also fix lustre_swab_connect */
1382 };
1383 /* XXX README XXX:
1384  * Please DO NOT use any fields here before first ensuring that this same
1385  * field is not in use on some other branch.  Please clear any such changes
1386  * with senior engineers before starting to use a new field.  Then, submit
1387  * a small patch against EVERY branch that ONLY adds the new field along with
1388  * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1389  * reserve the flag for future use. */
1390 
1391 
1392 extern void lustre_swab_connect(struct obd_connect_data *ocd);
1393 
1394 /*
1395  * Supported checksum algorithms. Up to 32 checksum types are supported.
1396  * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1397  * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1398  * algorithm and also the OBD_FL_CKSUM* flags.
1399  */
1400 typedef enum {
1401 	OBD_CKSUM_CRC32 = 0x00000001,
1402 	OBD_CKSUM_ADLER = 0x00000002,
1403 	OBD_CKSUM_CRC32C= 0x00000004,
1404 } cksum_type_t;
1405 
1406 /*
1407  *   OST requests: OBDO & OBD request records
1408  */
1409 
1410 /* opcodes */
1411 typedef enum {
1412 	OST_REPLY      =  0,       /* reply ? */
1413 	OST_GETATTR    =  1,
1414 	OST_SETATTR    =  2,
1415 	OST_READ       =  3,
1416 	OST_WRITE      =  4,
1417 	OST_CREATE     =  5,
1418 	OST_DESTROY    =  6,
1419 	OST_GET_INFO   =  7,
1420 	OST_CONNECT    =  8,
1421 	OST_DISCONNECT =  9,
1422 	OST_PUNCH      = 10,
1423 	OST_OPEN       = 11,
1424 	OST_CLOSE      = 12,
1425 	OST_STATFS     = 13,
1426 	OST_SYNC       = 16,
1427 	OST_SET_INFO   = 17,
1428 	OST_QUOTACHECK = 18,
1429 	OST_QUOTACTL   = 19,
1430 	OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1431 	OST_LAST_OPC
1432 } ost_cmd_t;
1433 #define OST_FIRST_OPC  OST_REPLY
1434 
1435 enum obdo_flags {
1436 	OBD_FL_INLINEDATA   = 0x00000001,
1437 	OBD_FL_OBDMDEXISTS  = 0x00000002,
1438 	OBD_FL_DELORPHAN    = 0x00000004, /* if set in o_flags delete orphans */
1439 	OBD_FL_NORPC	= 0x00000008, /* set in o_flags do in OSC not OST */
1440 	OBD_FL_IDONLY       = 0x00000010, /* set in o_flags only adjust obj id*/
1441 	OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1442 	OBD_FL_DEBUG_CHECK  = 0x00000040, /* echo client/server debug check */
1443 	OBD_FL_NO_USRQUOTA  = 0x00000100, /* the object's owner is over quota */
1444 	OBD_FL_NO_GRPQUOTA  = 0x00000200, /* the object's group is over quota */
1445 	OBD_FL_CREATE_CROW  = 0x00000400, /* object should be create on write */
1446 	OBD_FL_SRVLOCK      = 0x00000800, /* delegate DLM locking to server */
1447 	OBD_FL_CKSUM_CRC32  = 0x00001000, /* CRC32 checksum type */
1448 	OBD_FL_CKSUM_ADLER  = 0x00002000, /* ADLER checksum type */
1449 	OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1450 	OBD_FL_CKSUM_RSVD2  = 0x00008000, /* for future cksum types */
1451 	OBD_FL_CKSUM_RSVD3  = 0x00010000, /* for future cksum types */
1452 	OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1453 	OBD_FL_MMAP	 = 0x00040000, /* object is mmapped on the client.
1454 					   * XXX: obsoleted - reserved for old
1455 					   * clients prior than 2.2 */
1456 	OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1457 	OBD_FL_NOSPC_BLK    = 0x00100000, /* no more block space on OST */
1458 
1459 	/* Note that while these checksum values are currently separate bits,
1460 	 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1461 	OBD_FL_CKSUM_ALL    = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1462 			      OBD_FL_CKSUM_CRC32C,
1463 
1464 	/* mask for local-only flag, which won't be sent over network */
1465 	OBD_FL_LOCAL_MASK   = 0xF0000000,
1466 };
1467 
1468 #define LOV_MAGIC_V1      0x0BD10BD0
1469 #define LOV_MAGIC	 LOV_MAGIC_V1
1470 #define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1471 #define LOV_MAGIC_V3      0x0BD30BD0
1472 
1473 /*
1474  * magic for fully defined striping
1475  * the idea is that we should have different magics for striping "hints"
1476  * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1477  * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1478  * we can't just change it w/o long way preparation, but we still need a
1479  * mechanism to allow LOD to differentiate hint versus ready striping.
1480  * so, at the moment we do a trick: MDT knows what to expect from request
1481  * depending on the case (replay uses ready striping, non-replay req uses
1482  * hints), so MDT replaces magic with appropriate one and now LOD can
1483  * easily understand what's inside -bzzz
1484  */
1485 #define LOV_MAGIC_V1_DEF  0x0CD10BD0
1486 #define LOV_MAGIC_V3_DEF  0x0CD30BD0
1487 
1488 #define LOV_PATTERN_RAID0	0x001   /* stripes are used round-robin */
1489 #define LOV_PATTERN_RAID1	0x002   /* stripes are mirrors of each other */
1490 #define LOV_PATTERN_FIRST	0x100   /* first stripe is not in round-robin */
1491 #define LOV_PATTERN_CMOBD	0x200
1492 
1493 #define LOV_PATTERN_F_MASK	0xffff0000
1494 #define LOV_PATTERN_F_RELEASED	0x80000000 /* HSM released file */
1495 
1496 #define lov_pattern(pattern)		(pattern & ~LOV_PATTERN_F_MASK)
1497 #define lov_pattern_flags(pattern)	(pattern & LOV_PATTERN_F_MASK)
1498 
1499 #define lov_ost_data lov_ost_data_v1
1500 struct lov_ost_data_v1 {	  /* per-stripe data structure (little-endian)*/
1501 	struct ost_id l_ost_oi;	  /* OST object ID */
1502 	__u32 l_ost_gen;	  /* generation of this l_ost_idx */
1503 	__u32 l_ost_idx;	  /* OST index in LOV (lov_tgt_desc->tgts) */
1504 };
1505 
1506 #define lov_mds_md lov_mds_md_v1
1507 struct lov_mds_md_v1 {	    /* LOV EA mds/wire data (little-endian) */
1508 	__u32 lmm_magic;	  /* magic number = LOV_MAGIC_V1 */
1509 	__u32 lmm_pattern;	/* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1510 	struct ost_id	lmm_oi;	  /* LOV object ID */
1511 	__u32 lmm_stripe_size;    /* size of stripe in bytes */
1512 	/* lmm_stripe_count used to be __u32 */
1513 	__u16 lmm_stripe_count;   /* num stripes in use for this object */
1514 	__u16 lmm_layout_gen;     /* layout generation number */
1515 	struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1516 };
1517 
1518 /**
1519  * Sigh, because pre-2.4 uses
1520  * struct lov_mds_md_v1 {
1521  *	........
1522  *	__u64 lmm_object_id;
1523  *	__u64 lmm_object_seq;
1524  *      ......
1525  *      }
1526  * to identify the LOV(MDT) object, and lmm_object_seq will
1527  * be normal_fid, which make it hard to combine these conversion
1528  * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1529  *
1530  * We can tell the lmm_oi by this way,
1531  * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1532  * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1533  * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1534  *      lmm_oi.f_ver = 0
1535  *
1536  * But currently lmm_oi/lsm_oi does not have any "real" usages,
1537  * except for printing some information, and the user can always
1538  * get the real FID from LMA, besides this multiple case check might
1539  * make swab more complicate. So we will keep using id/seq for lmm_oi.
1540  */
1541 
fid_to_lmm_oi(const struct lu_fid * fid,struct ost_id * oi)1542 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1543 				 struct ost_id *oi)
1544 {
1545 	oi->oi.oi_id = fid_oid(fid);
1546 	oi->oi.oi_seq = fid_seq(fid);
1547 }
1548 
lmm_oi_set_seq(struct ost_id * oi,__u64 seq)1549 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1550 {
1551 	oi->oi.oi_seq = seq;
1552 }
1553 
lmm_oi_id(struct ost_id * oi)1554 static inline __u64 lmm_oi_id(struct ost_id *oi)
1555 {
1556 	return oi->oi.oi_id;
1557 }
1558 
lmm_oi_seq(struct ost_id * oi)1559 static inline __u64 lmm_oi_seq(struct ost_id *oi)
1560 {
1561 	return oi->oi.oi_seq;
1562 }
1563 
lmm_oi_le_to_cpu(struct ost_id * dst_oi,struct ost_id * src_oi)1564 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1565 				    struct ost_id *src_oi)
1566 {
1567 	dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1568 	dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1569 }
1570 
lmm_oi_cpu_to_le(struct ost_id * dst_oi,struct ost_id * src_oi)1571 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1572 				    struct ost_id *src_oi)
1573 {
1574 	dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1575 	dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1576 }
1577 
1578 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1579 
1580 #define MAX_MD_SIZE							\
1581 	(sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1582 #define MIN_MD_SIZE							\
1583 	(sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1584 
1585 #define XATTR_NAME_ACL_ACCESS   "system.posix_acl_access"
1586 #define XATTR_NAME_ACL_DEFAULT  "system.posix_acl_default"
1587 #define XATTR_USER_PREFIX       "user."
1588 #define XATTR_TRUSTED_PREFIX    "trusted."
1589 #define XATTR_SECURITY_PREFIX   "security."
1590 #define XATTR_LUSTRE_PREFIX     "lustre."
1591 
1592 #define XATTR_NAME_LOV	  "trusted.lov"
1593 #define XATTR_NAME_LMA	  "trusted.lma"
1594 #define XATTR_NAME_LMV	  "trusted.lmv"
1595 #define XATTR_NAME_LINK	 "trusted.link"
1596 #define XATTR_NAME_FID	  "trusted.fid"
1597 #define XATTR_NAME_VERSION      "trusted.version"
1598 #define XATTR_NAME_SOM		"trusted.som"
1599 #define XATTR_NAME_HSM		"trusted.hsm"
1600 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1601 
1602 struct lov_mds_md_v3 {	    /* LOV EA mds/wire data (little-endian) */
1603 	__u32 lmm_magic;	  /* magic number = LOV_MAGIC_V3 */
1604 	__u32 lmm_pattern;	/* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1605 	struct ost_id	lmm_oi;	  /* LOV object ID */
1606 	__u32 lmm_stripe_size;    /* size of stripe in bytes */
1607 	/* lmm_stripe_count used to be __u32 */
1608 	__u16 lmm_stripe_count;   /* num stripes in use for this object */
1609 	__u16 lmm_layout_gen;     /* layout generation number */
1610 	char  lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1611 	struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1612 };
1613 
lov_mds_md_size(__u16 stripes,__u32 lmm_magic)1614 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1615 {
1616 	if (lmm_magic == LOV_MAGIC_V3)
1617 		return sizeof(struct lov_mds_md_v3) +
1618 				stripes * sizeof(struct lov_ost_data_v1);
1619 	else
1620 		return sizeof(struct lov_mds_md_v1) +
1621 				stripes * sizeof(struct lov_ost_data_v1);
1622 }
1623 
1624 static inline __u32
lov_mds_md_max_stripe_count(size_t buf_size,__u32 lmm_magic)1625 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1626 {
1627 	switch (lmm_magic) {
1628 	case LOV_MAGIC_V1: {
1629 		struct lov_mds_md_v1 lmm;
1630 
1631 		if (buf_size < sizeof(lmm))
1632 			return 0;
1633 
1634 		return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1635 	}
1636 	case LOV_MAGIC_V3: {
1637 		struct lov_mds_md_v3 lmm;
1638 
1639 		if (buf_size < sizeof(lmm))
1640 			return 0;
1641 
1642 		return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1643 	}
1644 	default:
1645 		return 0;
1646 	}
1647 }
1648 
1649 #define OBD_MD_FLID	(0x00000001ULL) /* object ID */
1650 #define OBD_MD_FLATIME     (0x00000002ULL) /* access time */
1651 #define OBD_MD_FLMTIME     (0x00000004ULL) /* data modification time */
1652 #define OBD_MD_FLCTIME     (0x00000008ULL) /* change time */
1653 #define OBD_MD_FLSIZE      (0x00000010ULL) /* size */
1654 #define OBD_MD_FLBLOCKS    (0x00000020ULL) /* allocated blocks count */
1655 #define OBD_MD_FLBLKSZ     (0x00000040ULL) /* block size */
1656 #define OBD_MD_FLMODE      (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1657 #define OBD_MD_FLTYPE      (0x00000100ULL) /* object type (mode & S_IFMT) */
1658 #define OBD_MD_FLUID       (0x00000200ULL) /* user ID */
1659 #define OBD_MD_FLGID       (0x00000400ULL) /* group ID */
1660 #define OBD_MD_FLFLAGS     (0x00000800ULL) /* flags word */
1661 #define OBD_MD_FLNLINK     (0x00002000ULL) /* link count */
1662 #define OBD_MD_FLGENER     (0x00004000ULL) /* generation number */
1663 /*#define OBD_MD_FLINLINE    (0x00008000ULL)  inline data. used until 1.6.5 */
1664 #define OBD_MD_FLRDEV      (0x00010000ULL) /* device number */
1665 #define OBD_MD_FLEASIZE    (0x00020000ULL) /* extended attribute data */
1666 #define OBD_MD_LINKNAME    (0x00040000ULL) /* symbolic link target */
1667 #define OBD_MD_FLHANDLE    (0x00080000ULL) /* file/lock handle */
1668 #define OBD_MD_FLCKSUM     (0x00100000ULL) /* bulk data checksum */
1669 #define OBD_MD_FLQOS       (0x00200000ULL) /* quality of service stats */
1670 /*#define OBD_MD_FLOSCOPQ    (0x00400000ULL) osc opaque data, never used */
1671 #define OBD_MD_FLCOOKIE    (0x00800000ULL) /* log cancellation cookie */
1672 #define OBD_MD_FLGROUP     (0x01000000ULL) /* group */
1673 #define OBD_MD_FLFID       (0x02000000ULL) /* ->ost write inline fid */
1674 #define OBD_MD_FLEPOCH     (0x04000000ULL) /* ->ost write with ioepoch */
1675 					   /* ->mds if epoch opens or closes */
1676 #define OBD_MD_FLGRANT     (0x08000000ULL) /* ost preallocation space grant */
1677 #define OBD_MD_FLDIREA     (0x10000000ULL) /* dir's extended attribute data */
1678 #define OBD_MD_FLUSRQUOTA  (0x20000000ULL) /* over quota flags sent from ost */
1679 #define OBD_MD_FLGRPQUOTA  (0x40000000ULL) /* over quota flags sent from ost */
1680 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1681 
1682 #define OBD_MD_MDS	 (0x0000000100000000ULL) /* where an inode lives on */
1683 #define OBD_MD_REINT       (0x0000000200000000ULL) /* reintegrate oa */
1684 #define OBD_MD_MEA	 (0x0000000400000000ULL) /* CMD split EA  */
1685 #define OBD_MD_TSTATE      (0x0000000800000000ULL) /* transient state field */
1686 
1687 #define OBD_MD_FLXATTR       (0x0000001000000000ULL) /* xattr */
1688 #define OBD_MD_FLXATTRLS     (0x0000002000000000ULL) /* xattr list */
1689 #define OBD_MD_FLXATTRRM     (0x0000004000000000ULL) /* xattr remove */
1690 #define OBD_MD_FLACL	 (0x0000008000000000ULL) /* ACL */
1691 #define OBD_MD_FLRMTPERM     (0x0000010000000000ULL) /* remote permission */
1692 #define OBD_MD_FLMDSCAPA     (0x0000020000000000ULL) /* MDS capability */
1693 #define OBD_MD_FLOSSCAPA     (0x0000040000000000ULL) /* OSS capability */
1694 #define OBD_MD_FLCKSPLIT     (0x0000080000000000ULL) /* Check split on server */
1695 #define OBD_MD_FLCROSSREF    (0x0000100000000000ULL) /* Cross-ref case */
1696 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1697 						      * under lock; for xattr
1698 						      * requests means the
1699 						      * client holds the lock */
1700 #define OBD_MD_FLOBJCOUNT    (0x0000400000000000ULL) /* for multiple destroy */
1701 
1702 #define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1703 #define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1704 #define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1705 #define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1706 
1707 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1708 #define OBD_MD_FLRELEASED    (0x0020000000000000ULL) /* file released */
1709 
1710 #define OBD_MD_FLGETATTR (OBD_MD_FLID    | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1711 			  OBD_MD_FLCTIME | OBD_MD_FLSIZE  | OBD_MD_FLBLKSZ | \
1712 			  OBD_MD_FLMODE  | OBD_MD_FLTYPE  | OBD_MD_FLUID   | \
1713 			  OBD_MD_FLGID   | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1714 			  OBD_MD_FLGENER | OBD_MD_FLRDEV  | OBD_MD_FLGROUP)
1715 
1716 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1717 
1718 /* don't forget obdo_fid which is way down at the bottom so it can
1719  * come after the definition of llog_cookie */
1720 
1721 enum hss_valid {
1722 	HSS_SETMASK	= 0x01,
1723 	HSS_CLEARMASK	= 0x02,
1724 	HSS_ARCHIVE_ID	= 0x04,
1725 };
1726 
1727 struct hsm_state_set {
1728 	__u32	hss_valid;
1729 	__u32	hss_archive_id;
1730 	__u64	hss_setmask;
1731 	__u64	hss_clearmask;
1732 };
1733 
1734 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1735 extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1736 
1737 extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1738 
1739 /* ost_body.data values for OST_BRW */
1740 
1741 #define OBD_BRW_READ	    0x01
1742 #define OBD_BRW_WRITE	   0x02
1743 #define OBD_BRW_RWMASK	  (OBD_BRW_READ | OBD_BRW_WRITE)
1744 #define OBD_BRW_SYNC	    0x08 /* this page is a part of synchronous
1745 				      * transfer and is not accounted in
1746 				      * the grant. */
1747 #define OBD_BRW_CHECK	   0x10
1748 #define OBD_BRW_FROM_GRANT      0x20 /* the osc manages this under llite */
1749 #define OBD_BRW_GRANTED	 0x40 /* the ost manages this */
1750 #define OBD_BRW_NOCACHE	 0x80 /* this page is a part of non-cached IO */
1751 #define OBD_BRW_NOQUOTA	0x100
1752 #define OBD_BRW_SRVLOCK	0x200 /* Client holds no lock over this page */
1753 #define OBD_BRW_ASYNC	  0x400 /* Server may delay commit to disk */
1754 #define OBD_BRW_MEMALLOC       0x800 /* Client runs in the "kswapd" context */
1755 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1756 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1757 
1758 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1759 
1760 #define OST_MIN_PRECREATE 32
1761 #define OST_MAX_PRECREATE 20000
1762 
1763 struct obd_ioobj {
1764 	struct ost_id	ioo_oid;	/* object ID, if multi-obj BRW */
1765 	__u32		ioo_max_brw;	/* low 16 bits were o_mode before 2.4,
1766 					 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1767 					 * high 16 bits in 2.4 and later */
1768 	__u32		ioo_bufcnt;	/* number of niobufs for this object */
1769 };
1770 
1771 #define IOOBJ_MAX_BRW_BITS	16
1772 #define IOOBJ_TYPE_MASK		((1U << IOOBJ_MAX_BRW_BITS) - 1)
1773 #define ioobj_max_brw_get(ioo)	(((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1774 #define ioobj_max_brw_set(ioo, num)					\
1775 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1776 
1777 extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1778 
1779 /* multiple of 8 bytes => can array */
1780 struct niobuf_remote {
1781 	__u64 offset;
1782 	__u32 len;
1783 	__u32 flags;
1784 };
1785 
1786 extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1787 
1788 /* lock value block communicated between the filter and llite */
1789 
1790 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1791  * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1792 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1793 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1794 #define OST_LVB_IS_ERR(blocks)					  \
1795 	((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1796 #define OST_LVB_SET_ERR(blocks, rc)				     \
1797 	do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1798 #define OST_LVB_GET_ERR(blocks)    (int)(blocks - OST_LVB_ERR_INIT)
1799 
1800 struct ost_lvb_v1 {
1801 	__u64		lvb_size;
1802 	__s64		lvb_mtime;
1803 	__s64		lvb_atime;
1804 	__s64		lvb_ctime;
1805 	__u64		lvb_blocks;
1806 };
1807 
1808 extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1809 
1810 struct ost_lvb {
1811 	__u64		lvb_size;
1812 	__s64		lvb_mtime;
1813 	__s64		lvb_atime;
1814 	__s64		lvb_ctime;
1815 	__u64		lvb_blocks;
1816 	__u32		lvb_mtime_ns;
1817 	__u32		lvb_atime_ns;
1818 	__u32		lvb_ctime_ns;
1819 	__u32		lvb_padding;
1820 };
1821 
1822 extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1823 
1824 /*
1825  *   lquota data structures
1826  */
1827 
1828 #ifndef QUOTABLOCK_BITS
1829 #define QUOTABLOCK_BITS 10
1830 #endif
1831 
1832 #ifndef QUOTABLOCK_SIZE
1833 #define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1834 #endif
1835 
1836 #ifndef toqb
1837 #define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1838 #endif
1839 
1840 /* The lquota_id structure is an union of all the possible identifier types that
1841  * can be used with quota, this includes:
1842  * - 64-bit user ID
1843  * - 64-bit group ID
1844  * - a FID which can be used for per-directory quota in the future */
1845 union lquota_id {
1846 	struct lu_fid	qid_fid; /* FID for per-directory quota */
1847 	__u64		qid_uid; /* user identifier */
1848 	__u64		qid_gid; /* group identifier */
1849 };
1850 
1851 /* quotactl management */
1852 struct obd_quotactl {
1853 	__u32			qc_cmd;
1854 	__u32			qc_type; /* see Q_* flag below */
1855 	__u32			qc_id;
1856 	__u32			qc_stat;
1857 	struct obd_dqinfo	qc_dqinfo;
1858 	struct obd_dqblk	qc_dqblk;
1859 };
1860 
1861 extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1862 
1863 #define Q_QUOTACHECK	0x800100 /* deprecated as of 2.4 */
1864 #define Q_INITQUOTA	0x800101 /* deprecated as of 2.4  */
1865 #define Q_GETOINFO	0x800102 /* get obd quota info */
1866 #define Q_GETOQUOTA	0x800103 /* get obd quotas */
1867 #define Q_FINVALIDATE	0x800104 /* deprecated as of 2.4 */
1868 
1869 #define Q_COPY(out, in, member) (out)->member = (in)->member
1870 
1871 #define QCTL_COPY(out, in)		\
1872 do {					\
1873 	Q_COPY(out, in, qc_cmd);	\
1874 	Q_COPY(out, in, qc_type);	\
1875 	Q_COPY(out, in, qc_id);		\
1876 	Q_COPY(out, in, qc_stat);	\
1877 	Q_COPY(out, in, qc_dqinfo);	\
1878 	Q_COPY(out, in, qc_dqblk);	\
1879 } while (0)
1880 
1881 /* Body of quota request used for quota acquire/release RPCs between quota
1882  * master (aka QMT) and slaves (ak QSD). */
1883 struct quota_body {
1884 	struct lu_fid	qb_fid;     /* FID of global index packing the pool ID
1885 				      * and type (data or metadata) as well as
1886 				      * the quota type (user or group). */
1887 	union lquota_id	qb_id;      /* uid or gid or directory FID */
1888 	__u32		qb_flags;   /* see below */
1889 	__u32		qb_padding;
1890 	__u64		qb_count;   /* acquire/release count (kbytes/inodes) */
1891 	__u64		qb_usage;   /* current slave usage (kbytes/inodes) */
1892 	__u64		qb_slv_ver; /* slave index file version */
1893 	struct lustre_handle	qb_lockh;     /* per-ID lock handle */
1894 	struct lustre_handle	qb_glb_lockh; /* global lock handle */
1895 	__u64		qb_padding1[4];
1896 };
1897 
1898 /* When the quota_body is used in the reply of quota global intent
1899  * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1900 #define qb_slv_fid	qb_fid
1901 /* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1902  * quota reply */
1903 #define qb_qunit	qb_usage
1904 
1905 #define QUOTA_DQACQ_FL_ACQ	0x1  /* acquire quota */
1906 #define QUOTA_DQACQ_FL_PREACQ	0x2  /* pre-acquire */
1907 #define QUOTA_DQACQ_FL_REL	0x4  /* release quota */
1908 #define QUOTA_DQACQ_FL_REPORT	0x8  /* report usage */
1909 
1910 extern void lustre_swab_quota_body(struct quota_body *b);
1911 
1912 /* Quota types currently supported */
1913 enum {
1914 	LQUOTA_TYPE_USR	= 0x00, /* maps to USRQUOTA */
1915 	LQUOTA_TYPE_GRP	= 0x01, /* maps to GRPQUOTA */
1916 	LQUOTA_TYPE_MAX
1917 };
1918 
1919 /* There are 2 different resource types on which a quota limit can be enforced:
1920  * - inodes on the MDTs
1921  * - blocks on the OSTs */
1922 enum {
1923 	LQUOTA_RES_MD		= 0x01, /* skip 0 to avoid null oid in FID */
1924 	LQUOTA_RES_DT		= 0x02,
1925 	LQUOTA_LAST_RES,
1926 	LQUOTA_FIRST_RES	= LQUOTA_RES_MD
1927 };
1928 #define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1929 
1930 /*
1931  * Space accounting support
1932  * Format of an accounting record, providing disk usage information for a given
1933  * user or group
1934  */
1935 struct lquota_acct_rec { /* 16 bytes */
1936 	__u64 bspace;  /* current space in use */
1937 	__u64 ispace;  /* current # inodes in use */
1938 };
1939 
1940 /*
1941  * Global quota index support
1942  * Format of a global record, providing global quota settings for a given quota
1943  * identifier
1944  */
1945 struct lquota_glb_rec { /* 32 bytes */
1946 	__u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1947 	__u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1948 	__u64 qbr_time;      /* grace time, in seconds */
1949 	__u64 qbr_granted;   /* how much is granted to slaves, in #inodes or
1950 			      * kbytes */
1951 };
1952 
1953 /*
1954  * Slave index support
1955  * Format of a slave record, recording how much space is granted to a given
1956  * slave
1957  */
1958 struct lquota_slv_rec { /* 8 bytes */
1959 	__u64 qsr_granted; /* space granted to the slave for the key=ID,
1960 			    * in #inodes or kbytes */
1961 };
1962 
1963 /* Data structures associated with the quota locks */
1964 
1965 /* Glimpse descriptor used for the index & per-ID quota locks */
1966 struct ldlm_gl_lquota_desc {
1967 	union lquota_id	gl_id;    /* quota ID subject to the glimpse */
1968 	__u64		gl_flags; /* see LQUOTA_FL* below */
1969 	__u64		gl_ver;   /* new index version */
1970 	__u64		gl_hardlimit; /* new hardlimit or qunit value */
1971 	__u64		gl_softlimit; /* new softlimit */
1972 	__u64		gl_time;
1973 	__u64		gl_pad2;
1974 };
1975 #define gl_qunit	gl_hardlimit /* current qunit value used when
1976 				      * glimpsing per-ID quota locks */
1977 
1978 /* quota glimpse flags */
1979 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
1980 
1981 /* LVB used with quota (global and per-ID) locks */
1982 struct lquota_lvb {
1983 	__u64	lvb_flags;	/* see LQUOTA_FL* above */
1984 	__u64	lvb_id_may_rel; /* space that might be released later */
1985 	__u64	lvb_id_rel;     /* space released by the slave for this ID */
1986 	__u64	lvb_id_qunit;   /* current qunit value */
1987 	__u64	lvb_pad1;
1988 };
1989 
1990 extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
1991 
1992 /* LVB used with global quota lock */
1993 #define lvb_glb_ver  lvb_id_may_rel /* current version of the global index */
1994 
1995 /* op codes */
1996 typedef enum {
1997 	QUOTA_DQACQ	= 601,
1998 	QUOTA_DQREL	= 602,
1999 	QUOTA_LAST_OPC
2000 } quota_cmd_t;
2001 #define QUOTA_FIRST_OPC	QUOTA_DQACQ
2002 
2003 /*
2004  *   MDS REQ RECORDS
2005  */
2006 
2007 /* opcodes */
2008 typedef enum {
2009 	MDS_GETATTR		= 33,
2010 	MDS_GETATTR_NAME	= 34,
2011 	MDS_CLOSE		= 35,
2012 	MDS_REINT		= 36,
2013 	MDS_READPAGE		= 37,
2014 	MDS_CONNECT		= 38,
2015 	MDS_DISCONNECT		= 39,
2016 	MDS_GETSTATUS		= 40,
2017 	MDS_STATFS		= 41,
2018 	MDS_PIN			= 42,
2019 	MDS_UNPIN		= 43,
2020 	MDS_SYNC		= 44,
2021 	MDS_DONE_WRITING	= 45,
2022 	MDS_SET_INFO		= 46,
2023 	MDS_QUOTACHECK		= 47,
2024 	MDS_QUOTACTL		= 48,
2025 	MDS_GETXATTR		= 49,
2026 	MDS_SETXATTR		= 50, /* obsolete, now it's MDS_REINT op */
2027 	MDS_WRITEPAGE		= 51,
2028 	MDS_IS_SUBDIR		= 52,
2029 	MDS_GET_INFO		= 53,
2030 	MDS_HSM_STATE_GET	= 54,
2031 	MDS_HSM_STATE_SET	= 55,
2032 	MDS_HSM_ACTION		= 56,
2033 	MDS_HSM_PROGRESS	= 57,
2034 	MDS_HSM_REQUEST		= 58,
2035 	MDS_HSM_CT_REGISTER	= 59,
2036 	MDS_HSM_CT_UNREGISTER	= 60,
2037 	MDS_SWAP_LAYOUTS	= 61,
2038 	MDS_LAST_OPC
2039 } mds_cmd_t;
2040 
2041 #define MDS_FIRST_OPC    MDS_GETATTR
2042 
2043 
2044 /* opcodes for object update */
2045 typedef enum {
2046 	UPDATE_OBJ	= 1000,
2047 	UPDATE_LAST_OPC
2048 } update_cmd_t;
2049 
2050 #define UPDATE_FIRST_OPC    UPDATE_OBJ
2051 
2052 /*
2053  * Do not exceed 63
2054  */
2055 
2056 typedef enum {
2057 	REINT_SETATTR  = 1,
2058 	REINT_CREATE   = 2,
2059 	REINT_LINK     = 3,
2060 	REINT_UNLINK   = 4,
2061 	REINT_RENAME   = 5,
2062 	REINT_OPEN     = 6,
2063 	REINT_SETXATTR = 7,
2064 	REINT_RMENTRY  = 8,
2065 //      REINT_WRITE    = 9,
2066 	REINT_MAX
2067 } mds_reint_t, mdt_reint_t;
2068 
2069 extern void lustre_swab_generic_32s (__u32 *val);
2070 
2071 /* the disposition of the intent outlines what was executed */
2072 #define DISP_IT_EXECD	0x00000001
2073 #define DISP_LOOKUP_EXECD    0x00000002
2074 #define DISP_LOOKUP_NEG      0x00000004
2075 #define DISP_LOOKUP_POS      0x00000008
2076 #define DISP_OPEN_CREATE     0x00000010
2077 #define DISP_OPEN_OPEN       0x00000020
2078 #define DISP_ENQ_COMPLETE    0x00400000		/* obsolete and unused */
2079 #define DISP_ENQ_OPEN_REF    0x00800000
2080 #define DISP_ENQ_CREATE_REF  0x01000000
2081 #define DISP_OPEN_LOCK       0x02000000
2082 #define DISP_OPEN_LEASE      0x04000000
2083 #define DISP_OPEN_STRIPE     0x08000000
2084 
2085 /* INODE LOCK PARTS */
2086 #define MDS_INODELOCK_LOOKUP 0x000001	/* For namespace, dentry etc, and also
2087 					 * was used to protect permission (mode,
2088 					 * owner, group etc) before 2.4. */
2089 #define MDS_INODELOCK_UPDATE 0x000002	/* size, links, timestamps */
2090 #define MDS_INODELOCK_OPEN   0x000004	/* For opened files */
2091 #define MDS_INODELOCK_LAYOUT 0x000008	/* for layout */
2092 
2093 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2094  * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2095  * Because for remote directories(in DNE), these locks will be granted by
2096  * different MDTs(different ldlm namespace).
2097  *
2098  * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2099  * For Remote directory, the master MDT, where the remote directory is, will
2100  * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2101  * will grant LOOKUP_LOCK. */
2102 #define MDS_INODELOCK_PERM   0x000010
2103 #define MDS_INODELOCK_XATTR  0x000020	/* extended attributes */
2104 
2105 #define MDS_INODELOCK_MAXSHIFT 5
2106 /* This FULL lock is useful to take on unlink sort of operations */
2107 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2108 
2109 extern void lustre_swab_ll_fid (struct ll_fid *fid);
2110 
2111 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2112  * but was moved into name[1] along with the OID to avoid consuming the
2113  * name[2,3] fields that need to be used for the quota id (also a FID). */
2114 enum {
2115 	LUSTRE_RES_ID_SEQ_OFF = 0,
2116 	LUSTRE_RES_ID_VER_OID_OFF = 1,
2117 	LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2118 	LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2119 	LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2120 	LUSTRE_RES_ID_HSH_OFF = 3
2121 };
2122 
2123 #define MDS_STATUS_CONN 1
2124 #define MDS_STATUS_LOV 2
2125 
2126 /* mdt_thread_info.mti_flags. */
2127 enum md_op_flags {
2128 	/* The flag indicates Size-on-MDS attributes are changed. */
2129 	MF_SOM_CHANGE	   = (1 << 0),
2130 	/* Flags indicates an epoch opens or closes. */
2131 	MF_EPOCH_OPEN	   = (1 << 1),
2132 	MF_EPOCH_CLOSE	  = (1 << 2),
2133 	MF_MDC_CANCEL_FID1      = (1 << 3),
2134 	MF_MDC_CANCEL_FID2      = (1 << 4),
2135 	MF_MDC_CANCEL_FID3      = (1 << 5),
2136 	MF_MDC_CANCEL_FID4      = (1 << 6),
2137 	/* There is a pending attribute update. */
2138 	MF_SOM_AU	       = (1 << 7),
2139 	/* Cancel OST locks while getattr OST attributes. */
2140 	MF_GETATTR_LOCK	 = (1 << 8),
2141 	MF_GET_MDT_IDX	  = (1 << 9),
2142 };
2143 
2144 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2145 
2146 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES   0x1
2147 
2148 /* these should be identical to their EXT4_*_FL counterparts, they are
2149  * redefined here only to avoid dragging in fs/ext4/ext4.h */
2150 #define LUSTRE_SYNC_FL	 0x00000008 /* Synchronous updates */
2151 #define LUSTRE_IMMUTABLE_FL    0x00000010 /* Immutable file */
2152 #define LUSTRE_APPEND_FL       0x00000020 /* writes to file may only append */
2153 #define LUSTRE_NOATIME_FL      0x00000080 /* do not update atime */
2154 #define LUSTRE_DIRSYNC_FL      0x00010000 /* dirsync behaviour (dir only) */
2155 
2156 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2157  * for the client inode i_flags.  The LUSTRE_*_FL are the Lustre wire
2158  * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2159  * the S_* flags are kernel-internal values that change between kernel
2160  * versions.  These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2161  * See b=16526 for a full history. */
ll_ext_to_inode_flags(int flags)2162 static inline int ll_ext_to_inode_flags(int flags)
2163 {
2164 	return (((flags & LUSTRE_SYNC_FL)      ? S_SYNC      : 0) |
2165 		((flags & LUSTRE_NOATIME_FL)   ? S_NOATIME   : 0) |
2166 		((flags & LUSTRE_APPEND_FL)    ? S_APPEND    : 0) |
2167 #if defined(S_DIRSYNC)
2168 		((flags & LUSTRE_DIRSYNC_FL)   ? S_DIRSYNC   : 0) |
2169 #endif
2170 		((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2171 }
2172 
ll_inode_to_ext_flags(int iflags)2173 static inline int ll_inode_to_ext_flags(int iflags)
2174 {
2175 	return (((iflags & S_SYNC)      ? LUSTRE_SYNC_FL      : 0) |
2176 		((iflags & S_NOATIME)   ? LUSTRE_NOATIME_FL   : 0) |
2177 		((iflags & S_APPEND)    ? LUSTRE_APPEND_FL    : 0) |
2178 #if defined(S_DIRSYNC)
2179 		((iflags & S_DIRSYNC)   ? LUSTRE_DIRSYNC_FL   : 0) |
2180 #endif
2181 		((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2182 }
2183 
2184 /* 64 possible states */
2185 enum md_transient_state {
2186 	MS_RESTORE	= (1 << 0),	/* restore is running */
2187 };
2188 
2189 struct mdt_body {
2190 	struct lu_fid  fid1;
2191 	struct lu_fid  fid2;
2192 	struct lustre_handle handle;
2193 	__u64	  valid;
2194 	__u64	  size;   /* Offset, in the case of MDS_READPAGE */
2195 	__s64	  mtime;
2196 	__s64	  atime;
2197 	__s64	  ctime;
2198 	__u64	  blocks; /* XID, in the case of MDS_READPAGE */
2199 	__u64	  ioepoch;
2200 	__u64	       t_state; /* transient file state defined in
2201 				 * enum md_transient_state
2202 				 * was "ino" until 2.4.0 */
2203 	__u32	  fsuid;
2204 	__u32	  fsgid;
2205 	__u32	  capability;
2206 	__u32	  mode;
2207 	__u32	  uid;
2208 	__u32	  gid;
2209 	__u32	  flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2210 	__u32	  rdev;
2211 	__u32	  nlink; /* #bytes to read in the case of MDS_READPAGE */
2212 	__u32	       unused2; /* was "generation" until 2.4.0 */
2213 	__u32	  suppgid;
2214 	__u32	  eadatasize;
2215 	__u32	  aclsize;
2216 	__u32	  max_mdsize;
2217 	__u32	  max_cookiesize;
2218 	__u32	  uid_h; /* high 32-bits of uid, for FUID */
2219 	__u32	  gid_h; /* high 32-bits of gid, for FUID */
2220 	__u32	  padding_5; /* also fix lustre_swab_mdt_body */
2221 	__u64	  padding_6;
2222 	__u64	  padding_7;
2223 	__u64	  padding_8;
2224 	__u64	  padding_9;
2225 	__u64	  padding_10;
2226 }; /* 216 */
2227 
2228 extern void lustre_swab_mdt_body (struct mdt_body *b);
2229 
2230 struct mdt_ioepoch {
2231 	struct lustre_handle handle;
2232 	__u64  ioepoch;
2233 	__u32  flags;
2234 	__u32  padding;
2235 };
2236 
2237 extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2238 
2239 /* permissions for md_perm.mp_perm */
2240 enum {
2241 	CFS_SETUID_PERM = 0x01,
2242 	CFS_SETGID_PERM = 0x02,
2243 	CFS_SETGRP_PERM = 0x04,
2244 	CFS_RMTACL_PERM = 0x08,
2245 	CFS_RMTOWN_PERM = 0x10
2246 };
2247 
2248 /* inode access permission for remote user, the inode info are omitted,
2249  * for client knows them. */
2250 struct mdt_remote_perm {
2251 	__u32	   rp_uid;
2252 	__u32	   rp_gid;
2253 	__u32	   rp_fsuid;
2254 	__u32	   rp_fsuid_h;
2255 	__u32	   rp_fsgid;
2256 	__u32	   rp_fsgid_h;
2257 	__u32	   rp_access_perm; /* MAY_READ/WRITE/EXEC */
2258 	__u32	   rp_padding;
2259 };
2260 
2261 extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2262 
2263 struct mdt_rec_setattr {
2264 	__u32	   sa_opcode;
2265 	__u32	   sa_cap;
2266 	__u32	   sa_fsuid;
2267 	__u32	   sa_fsuid_h;
2268 	__u32	   sa_fsgid;
2269 	__u32	   sa_fsgid_h;
2270 	__u32	   sa_suppgid;
2271 	__u32	   sa_suppgid_h;
2272 	__u32	   sa_padding_1;
2273 	__u32	   sa_padding_1_h;
2274 	struct lu_fid   sa_fid;
2275 	__u64	   sa_valid;
2276 	__u32	   sa_uid;
2277 	__u32	   sa_gid;
2278 	__u64	   sa_size;
2279 	__u64	   sa_blocks;
2280 	__s64	   sa_mtime;
2281 	__s64	   sa_atime;
2282 	__s64	   sa_ctime;
2283 	__u32	   sa_attr_flags;
2284 	__u32	   sa_mode;
2285 	__u32	   sa_bias;      /* some operation flags */
2286 	__u32	   sa_padding_3;
2287 	__u32	   sa_padding_4;
2288 	__u32	   sa_padding_5;
2289 };
2290 
2291 extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2292 
2293 /*
2294  * Attribute flags used in mdt_rec_setattr::sa_valid.
2295  * The kernel's #defines for ATTR_* should not be used over the network
2296  * since the client and MDS may run different kernels (see bug 13828)
2297  * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2298  */
2299 #define MDS_ATTR_MODE	  0x1ULL /* = 1 */
2300 #define MDS_ATTR_UID	   0x2ULL /* = 2 */
2301 #define MDS_ATTR_GID	   0x4ULL /* = 4 */
2302 #define MDS_ATTR_SIZE	  0x8ULL /* = 8 */
2303 #define MDS_ATTR_ATIME	0x10ULL /* = 16 */
2304 #define MDS_ATTR_MTIME	0x20ULL /* = 32 */
2305 #define MDS_ATTR_CTIME	0x40ULL /* = 64 */
2306 #define MDS_ATTR_ATIME_SET    0x80ULL /* = 128 */
2307 #define MDS_ATTR_MTIME_SET   0x100ULL /* = 256 */
2308 #define MDS_ATTR_FORCE       0x200ULL /* = 512, Not a change, but a change it */
2309 #define MDS_ATTR_ATTR_FLAG   0x400ULL /* = 1024 */
2310 #define MDS_ATTR_KILL_SUID   0x800ULL /* = 2048 */
2311 #define MDS_ATTR_KILL_SGID  0x1000ULL /* = 4096 */
2312 #define MDS_ATTR_CTIME_SET  0x2000ULL /* = 8192 */
2313 #define MDS_ATTR_FROM_OPEN  0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2314 #define MDS_ATTR_BLOCKS     0x8000ULL /* = 32768 */
2315 
2316 #ifndef FMODE_READ
2317 #define FMODE_READ	       00000001
2318 #define FMODE_WRITE	      00000002
2319 #endif
2320 
2321 #define MDS_FMODE_CLOSED	 00000000
2322 #define MDS_FMODE_EXEC	   00000004
2323 /* IO Epoch is opened on a closed file. */
2324 #define MDS_FMODE_EPOCH	  01000000
2325 /* IO Epoch is opened on a file truncate. */
2326 #define MDS_FMODE_TRUNC	  02000000
2327 /* Size-on-MDS Attribute Update is pending. */
2328 #define MDS_FMODE_SOM	    04000000
2329 
2330 #define MDS_OPEN_CREATED	 00000010
2331 #define MDS_OPEN_CROSS	   00000020
2332 
2333 #define MDS_OPEN_CREAT	   00000100
2334 #define MDS_OPEN_EXCL	    00000200
2335 #define MDS_OPEN_TRUNC	   00001000
2336 #define MDS_OPEN_APPEND	  00002000
2337 #define MDS_OPEN_SYNC	    00010000
2338 #define MDS_OPEN_DIRECTORY       00200000
2339 
2340 #define MDS_OPEN_BY_FID		040000000 /* open_by_fid for known object */
2341 #define MDS_OPEN_DELAY_CREATE  0100000000 /* delay initial object create */
2342 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2343 #define MDS_OPEN_JOIN_FILE     0400000000 /* open for join file.
2344 					   * We do not support JOIN FILE
2345 					   * anymore, reserve this flags
2346 					   * just for preventing such bit
2347 					   * to be reused. */
2348 
2349 #define MDS_OPEN_LOCK	 04000000000 /* This open requires open lock */
2350 #define MDS_OPEN_HAS_EA      010000000000 /* specify object create pattern */
2351 #define MDS_OPEN_HAS_OBJS    020000000000 /* Just set the EA the obj exist */
2352 #define MDS_OPEN_NORESTORE  0100000000000ULL /* Do not restore file at open */
2353 #define MDS_OPEN_NEWSTRIPE  0200000000000ULL /* New stripe needed (restripe or
2354 					      * hsm restore) */
2355 #define MDS_OPEN_VOLATILE   0400000000000ULL /* File is volatile = created
2356 						unlinked */
2357 #define MDS_OPEN_LEASE	   01000000000000ULL /* Open the file and grant lease
2358 					      * delegation, succeed if it's not
2359 					      * being opened with conflict mode.
2360 					      */
2361 #define MDS_OPEN_RELEASE   02000000000000ULL /* Open the file for HSM release */
2362 
2363 /* permission for create non-directory file */
2364 #define MAY_CREATE      (1 << 7)
2365 /* permission for create directory file */
2366 #define MAY_LINK	(1 << 8)
2367 /* permission for delete from the directory */
2368 #define MAY_UNLINK      (1 << 9)
2369 /* source's permission for rename */
2370 #define MAY_RENAME_SRC  (1 << 10)
2371 /* target's permission for rename */
2372 #define MAY_RENAME_TAR  (1 << 11)
2373 /* part (parent's) VTX permission check */
2374 #define MAY_VTX_PART    (1 << 12)
2375 /* full VTX permission check */
2376 #define MAY_VTX_FULL    (1 << 13)
2377 /* lfs rgetfacl permission check */
2378 #define MAY_RGETFACL    (1 << 14)
2379 
2380 enum mds_op_bias {
2381 	MDS_CHECK_SPLIT		= 1 << 0,
2382 	MDS_CROSS_REF		= 1 << 1,
2383 	MDS_VTX_BYPASS		= 1 << 2,
2384 	MDS_PERM_BYPASS		= 1 << 3,
2385 	MDS_SOM			= 1 << 4,
2386 	MDS_QUOTA_IGNORE	= 1 << 5,
2387 	MDS_CLOSE_CLEANUP	= 1 << 6,
2388 	MDS_KEEP_ORPHAN		= 1 << 7,
2389 	MDS_RECOV_OPEN		= 1 << 8,
2390 	MDS_DATA_MODIFIED	= 1 << 9,
2391 	MDS_CREATE_VOLATILE	= 1 << 10,
2392 	MDS_OWNEROVERRIDE	= 1 << 11,
2393 	MDS_HSM_RELEASE		= 1 << 12,
2394 };
2395 
2396 /* instance of mdt_reint_rec */
2397 struct mdt_rec_create {
2398 	__u32	   cr_opcode;
2399 	__u32	   cr_cap;
2400 	__u32	   cr_fsuid;
2401 	__u32	   cr_fsuid_h;
2402 	__u32	   cr_fsgid;
2403 	__u32	   cr_fsgid_h;
2404 	__u32	   cr_suppgid1;
2405 	__u32	   cr_suppgid1_h;
2406 	__u32	   cr_suppgid2;
2407 	__u32	   cr_suppgid2_h;
2408 	struct lu_fid   cr_fid1;
2409 	struct lu_fid   cr_fid2;
2410 	struct lustre_handle cr_old_handle; /* handle in case of open replay */
2411 	__s64	   cr_time;
2412 	__u64	   cr_rdev;
2413 	__u64	   cr_ioepoch;
2414 	__u64	   cr_padding_1;   /* rr_blocks */
2415 	__u32	   cr_mode;
2416 	__u32	   cr_bias;
2417 	/* use of helpers set/get_mrc_cr_flags() is needed to access
2418 	 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2419 	 * extend cr_flags size without breaking 1.8 compat */
2420 	__u32	   cr_flags_l;     /* for use with open, low  32 bits  */
2421 	__u32	   cr_flags_h;     /* for use with open, high 32 bits */
2422 	__u32	   cr_umask;       /* umask for create */
2423 	__u32	   cr_padding_4;   /* rr_padding_4 */
2424 };
2425 
set_mrc_cr_flags(struct mdt_rec_create * mrc,__u64 flags)2426 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2427 {
2428 	mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2429 	mrc->cr_flags_h = (__u32)(flags >> 32);
2430 }
2431 
get_mrc_cr_flags(struct mdt_rec_create * mrc)2432 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2433 {
2434 	return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2435 }
2436 
2437 /* instance of mdt_reint_rec */
2438 struct mdt_rec_link {
2439 	__u32	   lk_opcode;
2440 	__u32	   lk_cap;
2441 	__u32	   lk_fsuid;
2442 	__u32	   lk_fsuid_h;
2443 	__u32	   lk_fsgid;
2444 	__u32	   lk_fsgid_h;
2445 	__u32	   lk_suppgid1;
2446 	__u32	   lk_suppgid1_h;
2447 	__u32	   lk_suppgid2;
2448 	__u32	   lk_suppgid2_h;
2449 	struct lu_fid   lk_fid1;
2450 	struct lu_fid   lk_fid2;
2451 	__s64	   lk_time;
2452 	__u64	   lk_padding_1;   /* rr_atime */
2453 	__u64	   lk_padding_2;   /* rr_ctime */
2454 	__u64	   lk_padding_3;   /* rr_size */
2455 	__u64	   lk_padding_4;   /* rr_blocks */
2456 	__u32	   lk_bias;
2457 	__u32	   lk_padding_5;   /* rr_mode */
2458 	__u32	   lk_padding_6;   /* rr_flags */
2459 	__u32	   lk_padding_7;   /* rr_padding_2 */
2460 	__u32	   lk_padding_8;   /* rr_padding_3 */
2461 	__u32	   lk_padding_9;   /* rr_padding_4 */
2462 };
2463 
2464 /* instance of mdt_reint_rec */
2465 struct mdt_rec_unlink {
2466 	__u32	   ul_opcode;
2467 	__u32	   ul_cap;
2468 	__u32	   ul_fsuid;
2469 	__u32	   ul_fsuid_h;
2470 	__u32	   ul_fsgid;
2471 	__u32	   ul_fsgid_h;
2472 	__u32	   ul_suppgid1;
2473 	__u32	   ul_suppgid1_h;
2474 	__u32	   ul_suppgid2;
2475 	__u32	   ul_suppgid2_h;
2476 	struct lu_fid   ul_fid1;
2477 	struct lu_fid   ul_fid2;
2478 	__s64	   ul_time;
2479 	__u64	   ul_padding_2;   /* rr_atime */
2480 	__u64	   ul_padding_3;   /* rr_ctime */
2481 	__u64	   ul_padding_4;   /* rr_size */
2482 	__u64	   ul_padding_5;   /* rr_blocks */
2483 	__u32	   ul_bias;
2484 	__u32	   ul_mode;
2485 	__u32	   ul_padding_6;   /* rr_flags */
2486 	__u32	   ul_padding_7;   /* rr_padding_2 */
2487 	__u32	   ul_padding_8;   /* rr_padding_3 */
2488 	__u32	   ul_padding_9;   /* rr_padding_4 */
2489 };
2490 
2491 /* instance of mdt_reint_rec */
2492 struct mdt_rec_rename {
2493 	__u32	   rn_opcode;
2494 	__u32	   rn_cap;
2495 	__u32	   rn_fsuid;
2496 	__u32	   rn_fsuid_h;
2497 	__u32	   rn_fsgid;
2498 	__u32	   rn_fsgid_h;
2499 	__u32	   rn_suppgid1;
2500 	__u32	   rn_suppgid1_h;
2501 	__u32	   rn_suppgid2;
2502 	__u32	   rn_suppgid2_h;
2503 	struct lu_fid   rn_fid1;
2504 	struct lu_fid   rn_fid2;
2505 	__s64	   rn_time;
2506 	__u64	   rn_padding_1;   /* rr_atime */
2507 	__u64	   rn_padding_2;   /* rr_ctime */
2508 	__u64	   rn_padding_3;   /* rr_size */
2509 	__u64	   rn_padding_4;   /* rr_blocks */
2510 	__u32	   rn_bias;	/* some operation flags */
2511 	__u32	   rn_mode;	/* cross-ref rename has mode */
2512 	__u32	   rn_padding_5;   /* rr_flags */
2513 	__u32	   rn_padding_6;   /* rr_padding_2 */
2514 	__u32	   rn_padding_7;   /* rr_padding_3 */
2515 	__u32	   rn_padding_8;   /* rr_padding_4 */
2516 };
2517 
2518 /* instance of mdt_reint_rec */
2519 struct mdt_rec_setxattr {
2520 	__u32	   sx_opcode;
2521 	__u32	   sx_cap;
2522 	__u32	   sx_fsuid;
2523 	__u32	   sx_fsuid_h;
2524 	__u32	   sx_fsgid;
2525 	__u32	   sx_fsgid_h;
2526 	__u32	   sx_suppgid1;
2527 	__u32	   sx_suppgid1_h;
2528 	__u32	   sx_suppgid2;
2529 	__u32	   sx_suppgid2_h;
2530 	struct lu_fid   sx_fid;
2531 	__u64	   sx_padding_1;   /* These three are rr_fid2 */
2532 	__u32	   sx_padding_2;
2533 	__u32	   sx_padding_3;
2534 	__u64	   sx_valid;
2535 	__s64	   sx_time;
2536 	__u64	   sx_padding_5;   /* rr_ctime */
2537 	__u64	   sx_padding_6;   /* rr_size */
2538 	__u64	   sx_padding_7;   /* rr_blocks */
2539 	__u32	   sx_size;
2540 	__u32	   sx_flags;
2541 	__u32	   sx_padding_8;   /* rr_flags */
2542 	__u32	   sx_padding_9;   /* rr_padding_2 */
2543 	__u32	   sx_padding_10;  /* rr_padding_3 */
2544 	__u32	   sx_padding_11;  /* rr_padding_4 */
2545 };
2546 
2547 /*
2548  * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2549  * Do NOT change the size of various members, otherwise the value
2550  * will be broken in lustre_swab_mdt_rec_reint().
2551  *
2552  * If you add new members in other mdt_reint_xxx structures and need to use the
2553  * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2554  */
2555 struct mdt_rec_reint {
2556 	__u32	   rr_opcode;
2557 	__u32	   rr_cap;
2558 	__u32	   rr_fsuid;
2559 	__u32	   rr_fsuid_h;
2560 	__u32	   rr_fsgid;
2561 	__u32	   rr_fsgid_h;
2562 	__u32	   rr_suppgid1;
2563 	__u32	   rr_suppgid1_h;
2564 	__u32	   rr_suppgid2;
2565 	__u32	   rr_suppgid2_h;
2566 	struct lu_fid   rr_fid1;
2567 	struct lu_fid   rr_fid2;
2568 	__s64	   rr_mtime;
2569 	__s64	   rr_atime;
2570 	__s64	   rr_ctime;
2571 	__u64	   rr_size;
2572 	__u64	   rr_blocks;
2573 	__u32	   rr_bias;
2574 	__u32	   rr_mode;
2575 	__u32	   rr_flags;
2576 	__u32	   rr_flags_h;
2577 	__u32	   rr_umask;
2578 	__u32	   rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2579 };
2580 
2581 extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2582 
2583 struct lmv_desc {
2584 	__u32 ld_tgt_count;		/* how many MDS's */
2585 	__u32 ld_active_tgt_count;	 /* how many active */
2586 	__u32 ld_default_stripe_count;     /* how many objects are used */
2587 	__u32 ld_pattern;		  /* default MEA_MAGIC_* */
2588 	__u64 ld_default_hash_size;
2589 	__u64 ld_padding_1;		/* also fix lustre_swab_lmv_desc */
2590 	__u32 ld_padding_2;		/* also fix lustre_swab_lmv_desc */
2591 	__u32 ld_qos_maxage;	       /* in second */
2592 	__u32 ld_padding_3;		/* also fix lustre_swab_lmv_desc */
2593 	__u32 ld_padding_4;		/* also fix lustre_swab_lmv_desc */
2594 	struct obd_uuid ld_uuid;
2595 };
2596 
2597 extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2598 
2599 /* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2600 struct lmv_stripe_md {
2601 	__u32	 mea_magic;
2602 	__u32	 mea_count;
2603 	__u32	 mea_master;
2604 	__u32	 mea_padding;
2605 	char	  mea_pool_name[LOV_MAXPOOLNAME];
2606 	struct lu_fid mea_ids[0];
2607 };
2608 
2609 extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2610 
2611 /* lmv structures */
2612 #define MEA_MAGIC_LAST_CHAR      0xb2221ca1
2613 #define MEA_MAGIC_ALL_CHARS      0xb222a11c
2614 #define MEA_MAGIC_HASH_SEGMENT   0xb222a11b
2615 
2616 #define MAX_HASH_SIZE_32	 0x7fffffffUL
2617 #define MAX_HASH_SIZE	    0x7fffffffffffffffULL
2618 #define MAX_HASH_HIGHEST_BIT     0x1000000000000000ULL
2619 
2620 enum fld_rpc_opc {
2621 	FLD_QUERY		       = 900,
2622 	FLD_LAST_OPC,
2623 	FLD_FIRST_OPC		   = FLD_QUERY
2624 };
2625 
2626 enum seq_rpc_opc {
2627 	SEQ_QUERY		       = 700,
2628 	SEQ_LAST_OPC,
2629 	SEQ_FIRST_OPC		   = SEQ_QUERY
2630 };
2631 
2632 enum seq_op {
2633 	SEQ_ALLOC_SUPER = 0,
2634 	SEQ_ALLOC_META = 1
2635 };
2636 
2637 /*
2638  *  LOV data structures
2639  */
2640 
2641 #define LOV_MAX_UUID_BUFFER_SIZE  8192
2642 /* The size of the buffer the lov/mdc reserves for the
2643  * array of UUIDs returned by the MDS.  With the current
2644  * protocol, this will limit the max number of OSTs per LOV */
2645 
2646 #define LOV_DESC_MAGIC 0xB0CCDE5C
2647 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5  /* Seconds */
2648 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2649 
2650 /* LOV settings descriptor (should only contain static info) */
2651 struct lov_desc {
2652 	__u32 ld_tgt_count;		/* how many OBD's */
2653 	__u32 ld_active_tgt_count;	 /* how many active */
2654 	__u32 ld_default_stripe_count;     /* how many objects are used */
2655 	__u32 ld_pattern;		  /* default PATTERN_RAID0 */
2656 	__u64 ld_default_stripe_size;      /* in bytes */
2657 	__u64 ld_default_stripe_offset;    /* in bytes */
2658 	__u32 ld_padding_0;		/* unused */
2659 	__u32 ld_qos_maxage;	       /* in second */
2660 	__u32 ld_padding_1;		/* also fix lustre_swab_lov_desc */
2661 	__u32 ld_padding_2;		/* also fix lustre_swab_lov_desc */
2662 	struct obd_uuid ld_uuid;
2663 };
2664 
2665 #define ld_magic ld_active_tgt_count       /* for swabbing from llogs */
2666 
2667 extern void lustre_swab_lov_desc (struct lov_desc *ld);
2668 
2669 /*
2670  *   LDLM requests:
2671  */
2672 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2673 typedef enum {
2674 	LDLM_ENQUEUE     = 101,
2675 	LDLM_CONVERT     = 102,
2676 	LDLM_CANCEL      = 103,
2677 	LDLM_BL_CALLBACK = 104,
2678 	LDLM_CP_CALLBACK = 105,
2679 	LDLM_GL_CALLBACK = 106,
2680 	LDLM_SET_INFO    = 107,
2681 	LDLM_LAST_OPC
2682 } ldlm_cmd_t;
2683 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2684 
2685 #define RES_NAME_SIZE 4
2686 struct ldlm_res_id {
2687 	__u64 name[RES_NAME_SIZE];
2688 };
2689 
2690 #define DLDLMRES	"[%#llx:%#llx:%#llx].%llx"
2691 #define PLDLMRES(res)	(res)->lr_name.name[0], (res)->lr_name.name[1], \
2692 			(res)->lr_name.name[2], (res)->lr_name.name[3]
2693 
2694 extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2695 
ldlm_res_eq(const struct ldlm_res_id * res0,const struct ldlm_res_id * res1)2696 static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2697 			      const struct ldlm_res_id *res1)
2698 {
2699 	return !memcmp(res0, res1, sizeof(*res0));
2700 }
2701 
2702 /* lock types */
2703 typedef enum {
2704 	LCK_MINMODE = 0,
2705 	LCK_EX      = 1,
2706 	LCK_PW      = 2,
2707 	LCK_PR      = 4,
2708 	LCK_CW      = 8,
2709 	LCK_CR      = 16,
2710 	LCK_NL      = 32,
2711 	LCK_GROUP   = 64,
2712 	LCK_COS     = 128,
2713 	LCK_MAXMODE
2714 } ldlm_mode_t;
2715 
2716 #define LCK_MODE_NUM    8
2717 
2718 typedef enum {
2719 	LDLM_PLAIN     = 10,
2720 	LDLM_EXTENT    = 11,
2721 	LDLM_FLOCK     = 12,
2722 	LDLM_IBITS     = 13,
2723 	LDLM_MAX_TYPE
2724 } ldlm_type_t;
2725 
2726 #define LDLM_MIN_TYPE LDLM_PLAIN
2727 
2728 struct ldlm_extent {
2729 	__u64 start;
2730 	__u64 end;
2731 	__u64 gid;
2732 };
2733 
ldlm_extent_overlap(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2734 static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2735 				      struct ldlm_extent *ex2)
2736 {
2737 	return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2738 }
2739 
2740 /* check if @ex1 contains @ex2 */
ldlm_extent_contain(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2741 static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2742 				      struct ldlm_extent *ex2)
2743 {
2744 	return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2745 }
2746 
2747 struct ldlm_inodebits {
2748 	__u64 bits;
2749 };
2750 
2751 struct ldlm_flock_wire {
2752 	__u64 lfw_start;
2753 	__u64 lfw_end;
2754 	__u64 lfw_owner;
2755 	__u32 lfw_padding;
2756 	__u32 lfw_pid;
2757 };
2758 
2759 /* it's important that the fields of the ldlm_extent structure match
2760  * the first fields of the ldlm_flock structure because there is only
2761  * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2762  * this ever changes we will need to swab the union differently based
2763  * on the resource type. */
2764 
2765 typedef union {
2766 	struct ldlm_extent l_extent;
2767 	struct ldlm_flock_wire l_flock;
2768 	struct ldlm_inodebits l_inodebits;
2769 } ldlm_wire_policy_data_t;
2770 
2771 extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2772 
2773 union ldlm_gl_desc {
2774 	struct ldlm_gl_lquota_desc	lquota_desc;
2775 };
2776 
2777 extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2778 
2779 struct ldlm_intent {
2780 	__u64 opc;
2781 };
2782 
2783 extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2784 
2785 struct ldlm_resource_desc {
2786 	ldlm_type_t lr_type;
2787 	__u32 lr_padding;       /* also fix lustre_swab_ldlm_resource_desc */
2788 	struct ldlm_res_id lr_name;
2789 };
2790 
2791 extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2792 
2793 struct ldlm_lock_desc {
2794 	struct ldlm_resource_desc l_resource;
2795 	ldlm_mode_t l_req_mode;
2796 	ldlm_mode_t l_granted_mode;
2797 	ldlm_wire_policy_data_t l_policy_data;
2798 };
2799 
2800 extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2801 
2802 #define LDLM_LOCKREQ_HANDLES 2
2803 #define LDLM_ENQUEUE_CANCEL_OFF 1
2804 
2805 struct ldlm_request {
2806 	__u32 lock_flags;
2807 	__u32 lock_count;
2808 	struct ldlm_lock_desc lock_desc;
2809 	struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2810 };
2811 
2812 extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2813 
2814 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2815  * Otherwise, 2 are available. */
2816 #define ldlm_request_bufsize(count, type)				\
2817 ({								      \
2818 	int _avail = LDLM_LOCKREQ_HANDLES;			      \
2819 	_avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2820 	sizeof(struct ldlm_request) +				   \
2821 	(count > _avail ? count - _avail : 0) *			 \
2822 	sizeof(struct lustre_handle);				   \
2823 })
2824 
2825 struct ldlm_reply {
2826 	__u32 lock_flags;
2827 	__u32 lock_padding;     /* also fix lustre_swab_ldlm_reply */
2828 	struct ldlm_lock_desc lock_desc;
2829 	struct lustre_handle lock_handle;
2830 	__u64  lock_policy_res1;
2831 	__u64  lock_policy_res2;
2832 };
2833 
2834 extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2835 
2836 #define ldlm_flags_to_wire(flags)    ((__u32)(flags))
2837 #define ldlm_flags_from_wire(flags)  ((__u64)(flags))
2838 
2839 /*
2840  * Opcodes for mountconf (mgs and mgc)
2841  */
2842 typedef enum {
2843 	MGS_CONNECT = 250,
2844 	MGS_DISCONNECT,
2845 	MGS_EXCEPTION,	 /* node died, etc. */
2846 	MGS_TARGET_REG,	/* whenever target starts up */
2847 	MGS_TARGET_DEL,
2848 	MGS_SET_INFO,
2849 	MGS_CONFIG_READ,
2850 	MGS_LAST_OPC
2851 } mgs_cmd_t;
2852 #define MGS_FIRST_OPC MGS_CONNECT
2853 
2854 #define MGS_PARAM_MAXLEN 1024
2855 #define KEY_SET_INFO "set_info"
2856 
2857 struct mgs_send_param {
2858 	char	     mgs_param[MGS_PARAM_MAXLEN];
2859 };
2860 
2861 /* We pass this info to the MGS so it can write config logs */
2862 #define MTI_NAME_MAXLEN  64
2863 #define MTI_PARAM_MAXLEN 4096
2864 #define MTI_NIDS_MAX     32
2865 struct mgs_target_info {
2866 	__u32	    mti_lustre_ver;
2867 	__u32	    mti_stripe_index;
2868 	__u32	    mti_config_ver;
2869 	__u32	    mti_flags;
2870 	__u32	    mti_nid_count;
2871 	__u32	    mti_instance; /* Running instance of target */
2872 	char	     mti_fsname[MTI_NAME_MAXLEN];
2873 	char	     mti_svname[MTI_NAME_MAXLEN];
2874 	char	     mti_uuid[sizeof(struct obd_uuid)];
2875 	__u64	    mti_nids[MTI_NIDS_MAX];     /* host nids (lnet_nid_t)*/
2876 	char	     mti_params[MTI_PARAM_MAXLEN];
2877 };
2878 extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2879 
2880 struct mgs_nidtbl_entry {
2881 	__u64	   mne_version;    /* table version of this entry */
2882 	__u32	   mne_instance;   /* target instance # */
2883 	__u32	   mne_index;      /* target index */
2884 	__u32	   mne_length;     /* length of this entry - by bytes */
2885 	__u8	    mne_type;       /* target type LDD_F_SV_TYPE_OST/MDT */
2886 	__u8	    mne_nid_type;   /* type of nid(mbz). for ipv6. */
2887 	__u8	    mne_nid_size;   /* size of each NID, by bytes */
2888 	__u8	    mne_nid_count;  /* # of NIDs in buffer */
2889 	union {
2890 		lnet_nid_t nids[0];     /* variable size buffer for NIDs. */
2891 	} u;
2892 };
2893 extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2894 
2895 struct mgs_config_body {
2896 	char     mcb_name[MTI_NAME_MAXLEN]; /* logname */
2897 	__u64    mcb_offset;    /* next index of config log to request */
2898 	__u16    mcb_type;      /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2899 	__u8     mcb_reserved;
2900 	__u8     mcb_bits;      /* bits unit size of config log */
2901 	__u32    mcb_units;     /* # of units for bulk transfer */
2902 };
2903 extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2904 
2905 struct mgs_config_res {
2906 	__u64    mcr_offset;    /* index of last config log */
2907 	__u64    mcr_size;      /* size of the log */
2908 };
2909 extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2910 
2911 /* Config marker flags (in config log) */
2912 #define CM_START       0x01
2913 #define CM_END	 0x02
2914 #define CM_SKIP	0x04
2915 #define CM_UPGRADE146  0x08
2916 #define CM_EXCLUDE     0x10
2917 #define CM_START_SKIP (CM_START | CM_SKIP)
2918 
2919 struct cfg_marker {
2920 	__u32	     cm_step;       /* aka config version */
2921 	__u32	     cm_flags;
2922 	__u32	     cm_vers;       /* lustre release version number */
2923 	__u32	     cm_padding;    /* 64 bit align */
2924 	__s64	     cm_createtime; /*when this record was first created */
2925 	__s64	     cm_canceltime; /*when this record is no longer valid*/
2926 	char	      cm_tgtname[MTI_NAME_MAXLEN];
2927 	char	      cm_comment[MTI_NAME_MAXLEN];
2928 };
2929 
2930 extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2931 				   int swab, int size);
2932 
2933 /*
2934  * Opcodes for multiple servers.
2935  */
2936 
2937 typedef enum {
2938 	OBD_PING = 400,
2939 	OBD_LOG_CANCEL,
2940 	OBD_QC_CALLBACK,
2941 	OBD_IDX_READ,
2942 	OBD_LAST_OPC
2943 } obd_cmd_t;
2944 #define OBD_FIRST_OPC OBD_PING
2945 
2946 /* catalog of log objects */
2947 
2948 /** Identifier for a single log object */
2949 struct llog_logid {
2950 	struct ost_id		lgl_oi;
2951 	__u32		   lgl_ogen;
2952 } __attribute__((packed));
2953 
2954 /** Records written to the CATALOGS list */
2955 #define CATLIST "CATALOGS"
2956 struct llog_catid {
2957 	struct llog_logid       lci_logid;
2958 	__u32		   lci_padding1;
2959 	__u32		   lci_padding2;
2960 	__u32		   lci_padding3;
2961 } __attribute__((packed));
2962 
2963 /* Log data record types - there is no specific reason that these need to
2964  * be related to the RPC opcodes, but no reason not to (may be handy later?)
2965  */
2966 #define LLOG_OP_MAGIC 0x10600000
2967 #define LLOG_OP_MASK  0xfff00000
2968 
2969 typedef enum {
2970 	LLOG_PAD_MAGIC		= LLOG_OP_MAGIC | 0x00000,
2971 	OST_SZ_REC		= LLOG_OP_MAGIC | 0x00f00,
2972 	/* OST_RAID1_REC	= LLOG_OP_MAGIC | 0x01000, never used */
2973 	MDS_UNLINK_REC		= LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2974 				  REINT_UNLINK, /* obsolete after 2.5.0 */
2975 	MDS_UNLINK64_REC	= LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2976 				  REINT_UNLINK,
2977 	/* MDS_SETATTR_REC	= LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2978 	MDS_SETATTR64_REC	= LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2979 				  REINT_SETATTR,
2980 	OBD_CFG_REC		= LLOG_OP_MAGIC | 0x20000,
2981 	/* PTL_CFG_REC		= LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
2982 	LLOG_GEN_REC		= LLOG_OP_MAGIC | 0x40000,
2983 	/* LLOG_JOIN_REC	= LLOG_OP_MAGIC | 0x50000, obsolete  1.8.0 */
2984 	CHANGELOG_REC		= LLOG_OP_MAGIC | 0x60000,
2985 	CHANGELOG_USER_REC	= LLOG_OP_MAGIC | 0x70000,
2986 	HSM_AGENT_REC		= LLOG_OP_MAGIC | 0x80000,
2987 	LLOG_HDR_MAGIC		= LLOG_OP_MAGIC | 0x45539,
2988 	LLOG_LOGID_MAGIC	= LLOG_OP_MAGIC | 0x4553b,
2989 } llog_op_type;
2990 
2991 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
2992 	(((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
2993 
2994 /** Log record header - stored in little endian order.
2995  * Each record must start with this struct, end with a llog_rec_tail,
2996  * and be a multiple of 256 bits in size.
2997  */
2998 struct llog_rec_hdr {
2999 	__u32	lrh_len;
3000 	__u32	lrh_index;
3001 	__u32	lrh_type;
3002 	__u32	lrh_id;
3003 };
3004 
3005 struct llog_rec_tail {
3006 	__u32	lrt_len;
3007 	__u32	lrt_index;
3008 };
3009 
3010 /* Where data follow just after header */
3011 #define REC_DATA(ptr)						\
3012 	((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3013 
3014 #define REC_DATA_LEN(rec)					\
3015 	(rec->lrh_len - sizeof(struct llog_rec_hdr) -		\
3016 	 sizeof(struct llog_rec_tail))
3017 
3018 struct llog_logid_rec {
3019 	struct llog_rec_hdr	lid_hdr;
3020 	struct llog_logid	lid_id;
3021 	__u32			lid_padding1;
3022 	__u64			lid_padding2;
3023 	__u64			lid_padding3;
3024 	struct llog_rec_tail	lid_tail;
3025 } __attribute__((packed));
3026 
3027 struct llog_unlink_rec {
3028 	struct llog_rec_hdr	lur_hdr;
3029 	__u64			lur_oid;
3030 	__u32			lur_oseq;
3031 	__u32			lur_count;
3032 	struct llog_rec_tail	lur_tail;
3033 } __attribute__((packed));
3034 
3035 struct llog_unlink64_rec {
3036 	struct llog_rec_hdr	lur_hdr;
3037 	struct lu_fid		lur_fid;
3038 	__u32			lur_count; /* to destroy the lost precreated */
3039 	__u32			lur_padding1;
3040 	__u64			lur_padding2;
3041 	__u64			lur_padding3;
3042 	struct llog_rec_tail    lur_tail;
3043 } __attribute__((packed));
3044 
3045 struct llog_setattr64_rec {
3046 	struct llog_rec_hdr	lsr_hdr;
3047 	struct ost_id		lsr_oi;
3048 	__u32			lsr_uid;
3049 	__u32			lsr_uid_h;
3050 	__u32			lsr_gid;
3051 	__u32			lsr_gid_h;
3052 	__u64			lsr_padding;
3053 	struct llog_rec_tail    lsr_tail;
3054 } __attribute__((packed));
3055 
3056 struct llog_size_change_rec {
3057 	struct llog_rec_hdr	lsc_hdr;
3058 	struct ll_fid		lsc_fid;
3059 	__u32			lsc_ioepoch;
3060 	__u32			lsc_padding1;
3061 	__u64			lsc_padding2;
3062 	__u64			lsc_padding3;
3063 	struct llog_rec_tail	lsc_tail;
3064 } __attribute__((packed));
3065 
3066 #define CHANGELOG_MAGIC 0xca103000
3067 
3068 /** \a changelog_rec_type's that can't be masked */
3069 #define CHANGELOG_MINMASK (1 << CL_MARK)
3070 /** bits covering all \a changelog_rec_type's */
3071 #define CHANGELOG_ALLMASK 0XFFFFFFFF
3072 /** default \a changelog_rec_type mask */
3073 #define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3074 
3075 /* changelog llog name, needed by client replicators */
3076 #define CHANGELOG_CATALOG "changelog_catalog"
3077 
3078 struct changelog_setinfo {
3079 	__u64 cs_recno;
3080 	__u32 cs_id;
3081 } __attribute__((packed));
3082 
3083 /** changelog record */
3084 struct llog_changelog_rec {
3085 	struct llog_rec_hdr  cr_hdr;
3086 	struct changelog_rec cr;
3087 	struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3088 } __attribute__((packed));
3089 
3090 struct llog_changelog_ext_rec {
3091 	struct llog_rec_hdr      cr_hdr;
3092 	struct changelog_ext_rec cr;
3093 	struct llog_rec_tail     cr_tail; /**< for_sizezof_only */
3094 } __attribute__((packed));
3095 
3096 #define CHANGELOG_USER_PREFIX "cl"
3097 
3098 struct llog_changelog_user_rec {
3099 	struct llog_rec_hdr   cur_hdr;
3100 	__u32		 cur_id;
3101 	__u32		 cur_padding;
3102 	__u64		 cur_endrec;
3103 	struct llog_rec_tail  cur_tail;
3104 } __attribute__((packed));
3105 
3106 enum agent_req_status {
3107 	ARS_WAITING,
3108 	ARS_STARTED,
3109 	ARS_FAILED,
3110 	ARS_CANCELED,
3111 	ARS_SUCCEED,
3112 };
3113 
agent_req_status2name(enum agent_req_status ars)3114 static inline char *agent_req_status2name(enum agent_req_status ars)
3115 {
3116 	switch (ars) {
3117 	case ARS_WAITING:
3118 		return "WAITING";
3119 	case ARS_STARTED:
3120 		return "STARTED";
3121 	case ARS_FAILED:
3122 		return "FAILED";
3123 	case ARS_CANCELED:
3124 		return "CANCELED";
3125 	case ARS_SUCCEED:
3126 		return "SUCCEED";
3127 	default:
3128 		return "UNKNOWN";
3129 	}
3130 }
3131 
agent_req_in_final_state(enum agent_req_status ars)3132 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3133 {
3134 	return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3135 		(ars == ARS_CANCELED));
3136 }
3137 
3138 struct llog_agent_req_rec {
3139 	struct llog_rec_hdr	arr_hdr;	/**< record header */
3140 	__u32			arr_status;	/**< status of the request */
3141 						/* must match enum
3142 						 * agent_req_status */
3143 	__u32			arr_archive_id;	/**< backend archive number */
3144 	__u64			arr_flags;	/**< req flags */
3145 	__u64			arr_compound_id;	/**< compound cookie */
3146 	__u64			arr_req_create;	/**< req. creation time */
3147 	__u64			arr_req_change;	/**< req. status change time */
3148 	struct hsm_action_item	arr_hai;	/**< req. to the agent */
3149 	struct llog_rec_tail	arr_tail; /**< record tail for_sizezof_only */
3150 } __attribute__((packed));
3151 
3152 /* Old llog gen for compatibility */
3153 struct llog_gen {
3154 	__u64 mnt_cnt;
3155 	__u64 conn_cnt;
3156 } __attribute__((packed));
3157 
3158 struct llog_gen_rec {
3159 	struct llog_rec_hdr	lgr_hdr;
3160 	struct llog_gen		lgr_gen;
3161 	__u64			padding1;
3162 	__u64			padding2;
3163 	__u64			padding3;
3164 	struct llog_rec_tail	lgr_tail;
3165 };
3166 
3167 /* On-disk header structure of each log object, stored in little endian order */
3168 #define LLOG_CHUNK_SIZE	 8192
3169 #define LLOG_HEADER_SIZE	(96)
3170 #define LLOG_BITMAP_BYTES       (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3171 
3172 #define LLOG_MIN_REC_SIZE       (24) /* round(llog_rec_hdr + llog_rec_tail) */
3173 
3174 /* flags for the logs */
3175 enum llog_flag {
3176 	LLOG_F_ZAP_WHEN_EMPTY	= 0x1,
3177 	LLOG_F_IS_CAT		= 0x2,
3178 	LLOG_F_IS_PLAIN		= 0x4,
3179 };
3180 
3181 struct llog_log_hdr {
3182 	struct llog_rec_hdr     llh_hdr;
3183 	__s64		   llh_timestamp;
3184 	__u32		   llh_count;
3185 	__u32		   llh_bitmap_offset;
3186 	__u32		   llh_size;
3187 	__u32		   llh_flags;
3188 	__u32		   llh_cat_idx;
3189 	/* for a catalog the first plain slot is next to it */
3190 	struct obd_uuid	 llh_tgtuuid;
3191 	__u32		   llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3192 	__u32		   llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3193 	struct llog_rec_tail    llh_tail;
3194 } __attribute__((packed));
3195 
3196 #define LLOG_BITMAP_SIZE(llh)  (__u32)((llh->llh_hdr.lrh_len -		\
3197 					llh->llh_bitmap_offset -	\
3198 					sizeof(llh->llh_tail)) * 8)
3199 
3200 /** log cookies are used to reference a specific log file and a record therein */
3201 struct llog_cookie {
3202 	struct llog_logid       lgc_lgl;
3203 	__u32		   lgc_subsys;
3204 	__u32		   lgc_index;
3205 	__u32		   lgc_padding;
3206 } __attribute__((packed));
3207 
3208 /** llog protocol */
3209 enum llogd_rpc_ops {
3210 	LLOG_ORIGIN_HANDLE_CREATE       = 501,
3211 	LLOG_ORIGIN_HANDLE_NEXT_BLOCK   = 502,
3212 	LLOG_ORIGIN_HANDLE_READ_HEADER  = 503,
3213 	LLOG_ORIGIN_HANDLE_WRITE_REC    = 504,
3214 	LLOG_ORIGIN_HANDLE_CLOSE	= 505,
3215 	LLOG_ORIGIN_CONNECT	     = 506,
3216 	LLOG_CATINFO			= 507,  /* deprecated */
3217 	LLOG_ORIGIN_HANDLE_PREV_BLOCK   = 508,
3218 	LLOG_ORIGIN_HANDLE_DESTROY      = 509,  /* for destroy llog object*/
3219 	LLOG_LAST_OPC,
3220 	LLOG_FIRST_OPC		  = LLOG_ORIGIN_HANDLE_CREATE
3221 };
3222 
3223 struct llogd_body {
3224 	struct llog_logid  lgd_logid;
3225 	__u32 lgd_ctxt_idx;
3226 	__u32 lgd_llh_flags;
3227 	__u32 lgd_index;
3228 	__u32 lgd_saved_index;
3229 	__u32 lgd_len;
3230 	__u64 lgd_cur_offset;
3231 } __attribute__((packed));
3232 
3233 struct llogd_conn_body {
3234 	struct llog_gen	 lgdc_gen;
3235 	struct llog_logid       lgdc_logid;
3236 	__u32		   lgdc_ctxt_idx;
3237 } __attribute__((packed));
3238 
3239 /* Note: 64-bit types are 64-bit aligned in structure */
3240 struct obdo {
3241 	__u64		o_valid;	/* hot fields in this obdo */
3242 	struct ost_id	o_oi;
3243 	__u64		o_parent_seq;
3244 	__u64		o_size;	 /* o_size-o_blocks == ost_lvb */
3245 	__s64		o_mtime;
3246 	__s64		o_atime;
3247 	__s64		o_ctime;
3248 	__u64		o_blocks;       /* brw: cli sent cached bytes */
3249 	__u64		o_grant;
3250 
3251 	/* 32-bit fields start here: keep an even number of them via padding */
3252 	__u32		o_blksize;      /* optimal IO blocksize */
3253 	__u32		o_mode;	 /* brw: cli sent cache remain */
3254 	__u32		o_uid;
3255 	__u32		o_gid;
3256 	__u32		o_flags;
3257 	__u32		o_nlink;	/* brw: checksum */
3258 	__u32		o_parent_oid;
3259 	__u32		o_misc;		/* brw: o_dropped */
3260 
3261 	__u64		   o_ioepoch;      /* epoch in ost writes */
3262 	__u32		   o_stripe_idx;   /* holds stripe idx */
3263 	__u32		   o_parent_ver;
3264 	struct lustre_handle    o_handle;       /* brw: lock handle to prolong
3265 						 * locks */
3266 	struct llog_cookie      o_lcookie;      /* destroy: unlink cookie from
3267 						 * MDS */
3268 	__u32			o_uid_h;
3269 	__u32			o_gid_h;
3270 
3271 	__u64			o_data_version; /* getattr: sum of iversion for
3272 						 * each stripe.
3273 						 * brw: grant space consumed on
3274 						 * the client for the write */
3275 	__u64			o_padding_4;
3276 	__u64			o_padding_5;
3277 	__u64			o_padding_6;
3278 };
3279 
3280 #define o_dirty   o_blocks
3281 #define o_undirty o_mode
3282 #define o_dropped o_misc
3283 #define o_cksum   o_nlink
3284 #define o_grant_used o_data_version
3285 
lustre_set_wire_obdo(struct obd_connect_data * ocd,struct obdo * wobdo,const struct obdo * lobdo)3286 static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3287 					struct obdo *wobdo,
3288 					const struct obdo *lobdo)
3289 {
3290 	*wobdo = *lobdo;
3291 	wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3292 	if (ocd == NULL)
3293 		return;
3294 
3295 	if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3296 	    fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3297 		/* Currently OBD_FL_OSTID will only be used when 2.4 echo
3298 		 * client communicate with pre-2.4 server */
3299 		wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3300 		wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3301 	}
3302 }
3303 
lustre_get_wire_obdo(struct obd_connect_data * ocd,struct obdo * lobdo,const struct obdo * wobdo)3304 static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3305 					struct obdo *lobdo,
3306 					const struct obdo *wobdo)
3307 {
3308 	__u32 local_flags = 0;
3309 
3310 	if (lobdo->o_valid & OBD_MD_FLFLAGS)
3311 		 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3312 
3313 	*lobdo = *wobdo;
3314 	if (local_flags != 0) {
3315 		lobdo->o_valid |= OBD_MD_FLFLAGS;
3316 		lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3317 		lobdo->o_flags |= local_flags;
3318 	}
3319 	if (ocd == NULL)
3320 		return;
3321 
3322 	if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3323 	    fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3324 		/* see above */
3325 		lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3326 		lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3327 		lobdo->o_oi.oi_fid.f_ver = 0;
3328 	}
3329 }
3330 
3331 extern void lustre_swab_obdo (struct obdo *o);
3332 
3333 /* request structure for OST's */
3334 struct ost_body {
3335 	struct  obdo oa;
3336 };
3337 
3338 /* Key for FIEMAP to be used in get_info calls */
3339 struct ll_fiemap_info_key {
3340 	char    name[8];
3341 	struct  obdo oa;
3342 	struct  ll_user_fiemap fiemap;
3343 };
3344 
3345 extern void lustre_swab_ost_body (struct ost_body *b);
3346 extern void lustre_swab_ost_last_id(__u64 *id);
3347 extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3348 
3349 extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3350 extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3351 extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3352 					    int stripe_count);
3353 extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3354 
3355 /* llog_swab.c */
3356 extern void lustre_swab_llogd_body (struct llogd_body *d);
3357 extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3358 extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3359 extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3360 extern void lustre_swab_llog_id(struct llog_logid *lid);
3361 
3362 struct lustre_cfg;
3363 extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3364 
3365 /* Functions for dumping PTLRPC fields */
3366 void dump_rniobuf(struct niobuf_remote *rnb);
3367 void dump_ioo(struct obd_ioobj *nb);
3368 void dump_obdo(struct obdo *oa);
3369 void dump_ost_body(struct ost_body *ob);
3370 void dump_rcs(__u32 *rc);
3371 
3372 #define IDX_INFO_MAGIC 0x3D37CC37
3373 
3374 /* Index file transfer through the network. The server serializes the index into
3375  * a byte stream which is sent to the client via a bulk transfer */
3376 struct idx_info {
3377 	__u32		ii_magic;
3378 
3379 	/* reply: see idx_info_flags below */
3380 	__u32		ii_flags;
3381 
3382 	/* request & reply: number of lu_idxpage (to be) transferred */
3383 	__u16		ii_count;
3384 	__u16		ii_pad0;
3385 
3386 	/* request: requested attributes passed down to the iterator API */
3387 	__u32		ii_attrs;
3388 
3389 	/* request & reply: index file identifier (FID) */
3390 	struct lu_fid	ii_fid;
3391 
3392 	/* reply: version of the index file before starting to walk the index.
3393 	 * Please note that the version can be modified at any time during the
3394 	 * transfer */
3395 	__u64		ii_version;
3396 
3397 	/* request: hash to start with:
3398 	 * reply: hash of the first entry of the first lu_idxpage and hash
3399 	 *	of the entry to read next if any */
3400 	__u64		ii_hash_start;
3401 	__u64		ii_hash_end;
3402 
3403 	/* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3404 	 * set */
3405 	__u16		ii_keysize;
3406 
3407 	/* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3408 	 * is set */
3409 	__u16		ii_recsize;
3410 
3411 	__u32		ii_pad1;
3412 	__u64		ii_pad2;
3413 	__u64		ii_pad3;
3414 };
3415 extern void lustre_swab_idx_info(struct idx_info *ii);
3416 
3417 #define II_END_OFF	MDS_DIR_END_OFF /* all entries have been read */
3418 
3419 /* List of flags used in idx_info::ii_flags */
3420 enum idx_info_flags {
3421 	II_FL_NOHASH	= 1 << 0, /* client doesn't care about hash value */
3422 	II_FL_VARKEY	= 1 << 1, /* keys can be of variable size */
3423 	II_FL_VARREC	= 1 << 2, /* records can be of variable size */
3424 	II_FL_NONUNQ	= 1 << 3, /* index supports non-unique keys */
3425 };
3426 
3427 #define LIP_MAGIC 0x8A6D6B6C
3428 
3429 /* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3430 struct lu_idxpage {
3431 	/* 16-byte header */
3432 	__u32	lip_magic;
3433 	__u16	lip_flags;
3434 	__u16	lip_nr;   /* number of entries in the container */
3435 	__u64	lip_pad0; /* additional padding for future use */
3436 
3437 	/* key/record pairs are stored in the remaining 4080 bytes.
3438 	 * depending upon the flags in idx_info::ii_flags, each key/record
3439 	 * pair might be preceded by:
3440 	 * - a hash value
3441 	 * - the key size (II_FL_VARKEY is set)
3442 	 * - the record size (II_FL_VARREC is set)
3443 	 *
3444 	 * For the time being, we only support fixed-size key & record. */
3445 	char	lip_entries[0];
3446 };
3447 extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3448 
3449 #define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3450 
3451 /* Gather all possible type associated with a 4KB container */
3452 union lu_page {
3453 	struct lu_dirpage	lp_dir; /* for MDS_READPAGE */
3454 	struct lu_idxpage	lp_idx; /* for OBD_IDX_READ */
3455 	char			lp_array[LU_PAGE_SIZE];
3456 };
3457 
3458 /* security opcodes */
3459 typedef enum {
3460 	SEC_CTX_INIT	    = 801,
3461 	SEC_CTX_INIT_CONT       = 802,
3462 	SEC_CTX_FINI	    = 803,
3463 	SEC_LAST_OPC,
3464 	SEC_FIRST_OPC	   = SEC_CTX_INIT
3465 } sec_cmd_t;
3466 
3467 /*
3468  * capa related definitions
3469  */
3470 #define CAPA_HMAC_MAX_LEN       64
3471 #define CAPA_HMAC_KEY_MAX_LEN   56
3472 
3473 /* NB take care when changing the sequence of elements this struct,
3474  * because the offset info is used in find_capa() */
3475 struct lustre_capa {
3476 	struct lu_fid   lc_fid;	 /** fid */
3477 	__u64	   lc_opc;	 /** operations allowed */
3478 	__u64	   lc_uid;	 /** file owner */
3479 	__u64	   lc_gid;	 /** file group */
3480 	__u32	   lc_flags;       /** HMAC algorithm & flags */
3481 	__u32	   lc_keyid;       /** key# used for the capability */
3482 	__u32	   lc_timeout;     /** capa timeout value (sec) */
3483 	__u32	   lc_expiry;      /** expiry time (sec) */
3484 	__u8	    lc_hmac[CAPA_HMAC_MAX_LEN];   /** HMAC */
3485 } __attribute__((packed));
3486 
3487 extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3488 
3489 /** lustre_capa::lc_opc */
3490 enum {
3491 	CAPA_OPC_BODY_WRITE   = 1<<0,  /**< write object data */
3492 	CAPA_OPC_BODY_READ    = 1<<1,  /**< read object data */
3493 	CAPA_OPC_INDEX_LOOKUP = 1<<2,  /**< lookup object fid */
3494 	CAPA_OPC_INDEX_INSERT = 1<<3,  /**< insert object fid */
3495 	CAPA_OPC_INDEX_DELETE = 1<<4,  /**< delete object fid */
3496 	CAPA_OPC_OSS_WRITE    = 1<<5,  /**< write oss object data */
3497 	CAPA_OPC_OSS_READ     = 1<<6,  /**< read oss object data */
3498 	CAPA_OPC_OSS_TRUNC    = 1<<7,  /**< truncate oss object */
3499 	CAPA_OPC_OSS_DESTROY  = 1<<8,  /**< destroy oss object */
3500 	CAPA_OPC_META_WRITE   = 1<<9,  /**< write object meta data */
3501 	CAPA_OPC_META_READ    = 1<<10, /**< read object meta data */
3502 };
3503 
3504 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3505 #define CAPA_OPC_MDS_ONLY						   \
3506 	(CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3507 	 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3508 #define CAPA_OPC_OSS_ONLY						   \
3509 	(CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC |      \
3510 	 CAPA_OPC_OSS_DESTROY)
3511 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3512 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3513 
3514 /* MDS capability covers object capability for operations of body r/w
3515  * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3516  * while OSS capability only covers object capability for operations of
3517  * oss data(file content) r/w/truncate.
3518  */
capa_for_mds(struct lustre_capa * c)3519 static inline int capa_for_mds(struct lustre_capa *c)
3520 {
3521 	return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3522 }
3523 
capa_for_oss(struct lustre_capa * c)3524 static inline int capa_for_oss(struct lustre_capa *c)
3525 {
3526 	return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3527 }
3528 
3529 /* lustre_capa::lc_hmac_alg */
3530 enum {
3531 	CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3532 	CAPA_HMAC_ALG_MAX,
3533 };
3534 
3535 #define CAPA_FL_MASK	    0x00ffffff
3536 #define CAPA_HMAC_ALG_MASK      0xff000000
3537 
3538 struct lustre_capa_key {
3539 	__u64   lk_seq;       /**< mds# */
3540 	__u32   lk_keyid;     /**< key# */
3541 	__u32   lk_padding;
3542 	__u8    lk_key[CAPA_HMAC_KEY_MAX_LEN];    /**< key */
3543 } __attribute__((packed));
3544 
3545 extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3546 
3547 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3548 #define LINK_EA_MAGIC 0x11EAF1DFUL
3549 struct link_ea_header {
3550 	__u32 leh_magic;
3551 	__u32 leh_reccount;
3552 	__u64 leh_len;      /* total size */
3553 	/* future use */
3554 	__u32 padding1;
3555 	__u32 padding2;
3556 };
3557 
3558 /** Hardlink data is name and parent fid.
3559  * Stored in this crazy struct for maximum packing and endian-neutrality
3560  */
3561 struct link_ea_entry {
3562 	/** __u16 stored big-endian, unaligned */
3563 	unsigned char      lee_reclen[2];
3564 	unsigned char      lee_parent_fid[sizeof(struct lu_fid)];
3565 	char	       lee_name[0];
3566 }__attribute__((packed));
3567 
3568 /** fid2path request/reply structure */
3569 struct getinfo_fid2path {
3570 	struct lu_fid   gf_fid;
3571 	__u64	   gf_recno;
3572 	__u32	   gf_linkno;
3573 	__u32	   gf_pathlen;
3574 	char	    gf_path[0];
3575 } __attribute__((packed));
3576 
3577 void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3578 
3579 enum {
3580 	LAYOUT_INTENT_ACCESS    = 0,
3581 	LAYOUT_INTENT_READ      = 1,
3582 	LAYOUT_INTENT_WRITE     = 2,
3583 	LAYOUT_INTENT_GLIMPSE   = 3,
3584 	LAYOUT_INTENT_TRUNC     = 4,
3585 	LAYOUT_INTENT_RELEASE   = 5,
3586 	LAYOUT_INTENT_RESTORE   = 6
3587 };
3588 
3589 /* enqueue layout lock with intent */
3590 struct layout_intent {
3591 	__u32 li_opc; /* intent operation for enqueue, read, write etc */
3592 	__u32 li_flags;
3593 	__u64 li_start;
3594 	__u64 li_end;
3595 };
3596 
3597 void lustre_swab_layout_intent(struct layout_intent *li);
3598 
3599 /**
3600  * On the wire version of hsm_progress structure.
3601  *
3602  * Contains the userspace hsm_progress and some internal fields.
3603  */
3604 struct hsm_progress_kernel {
3605 	/* Field taken from struct hsm_progress */
3606 	lustre_fid		hpk_fid;
3607 	__u64			hpk_cookie;
3608 	struct hsm_extent	hpk_extent;
3609 	__u16			hpk_flags;
3610 	__u16			hpk_errval; /* positive val */
3611 	__u32			hpk_padding1;
3612 	/* Additional fields */
3613 	__u64			hpk_data_version;
3614 	__u64			hpk_padding2;
3615 } __attribute__((packed));
3616 
3617 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3618 extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3619 extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3620 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3621 extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3622 extern void lustre_swab_hsm_request(struct hsm_request *hr);
3623 
3624 /**
3625  * These are object update opcode under UPDATE_OBJ, which is currently
3626  * being used by cross-ref operations between MDT.
3627  *
3628  * During the cross-ref operation, the Master MDT, which the client send the
3629  * request to, will disassembly the operation into object updates, then OSP
3630  * will send these updates to the remote MDT to be executed.
3631  *
3632  *   Update request format
3633  *   magic:  UPDATE_BUFFER_MAGIC_V1
3634  *   Count:  How many updates in the req.
3635  *   bufs[0] : following are packets of object.
3636  *   update[0]:
3637  *		type: object_update_op, the op code of update
3638  *		fid: The object fid of the update.
3639  *		lens/bufs: other parameters of the update.
3640  *   update[1]:
3641  *		type: object_update_op, the op code of update
3642  *		fid: The object fid of the update.
3643  *		lens/bufs: other parameters of the update.
3644  *   ..........
3645  *   update[7]:	type: object_update_op, the op code of update
3646  *		fid: The object fid of the update.
3647  *		lens/bufs: other parameters of the update.
3648  *   Current 8 maxim updates per object update request.
3649  *
3650  *******************************************************************
3651  *   update reply format:
3652  *
3653  *   ur_version: UPDATE_REPLY_V1
3654  *   ur_count:   The count of the reply, which is usually equal
3655  *		 to the number of updates in the request.
3656  *   ur_lens:    The reply lengths of each object update.
3657  *
3658  *   replies:    1st update reply  [4bytes_ret: other body]
3659  *		 2nd update reply  [4bytes_ret: other body]
3660  *		 .....
3661  *		 nth update reply  [4bytes_ret: other body]
3662  *
3663  *   For each reply of the update, the format would be
3664  *	 result(4 bytes):Other stuff
3665  */
3666 
3667 #define UPDATE_MAX_OPS		10
3668 #define UPDATE_BUFFER_MAGIC_V1	0xBDDE0001
3669 #define UPDATE_BUFFER_MAGIC	UPDATE_BUFFER_MAGIC_V1
3670 #define UPDATE_BUF_COUNT	8
3671 enum object_update_op {
3672 	OBJ_CREATE		= 1,
3673 	OBJ_DESTROY		= 2,
3674 	OBJ_REF_ADD		= 3,
3675 	OBJ_REF_DEL		= 4,
3676 	OBJ_ATTR_SET		= 5,
3677 	OBJ_ATTR_GET		= 6,
3678 	OBJ_XATTR_SET		= 7,
3679 	OBJ_XATTR_GET		= 8,
3680 	OBJ_INDEX_LOOKUP	= 9,
3681 	OBJ_INDEX_INSERT	= 10,
3682 	OBJ_INDEX_DELETE	= 11,
3683 	OBJ_LAST
3684 };
3685 
3686 struct update {
3687 	__u32		u_type;
3688 	__u32		u_batchid;
3689 	struct lu_fid	u_fid;
3690 	__u32		u_lens[UPDATE_BUF_COUNT];
3691 	__u32		u_bufs[0];
3692 };
3693 
3694 struct update_buf {
3695 	__u32	ub_magic;
3696 	__u32	ub_count;
3697 	__u32	ub_bufs[0];
3698 };
3699 
3700 #define UPDATE_REPLY_V1		0x00BD0001
3701 struct update_reply {
3702 	__u32	ur_version;
3703 	__u32	ur_count;
3704 	__u32	ur_lens[0];
3705 };
3706 
3707 void lustre_swab_update_buf(struct update_buf *ub);
3708 void lustre_swab_update_reply_buf(struct update_reply *ur);
3709 
3710 /** layout swap request structure
3711  * fid1 and fid2 are in mdt_body
3712  */
3713 struct mdc_swap_layouts {
3714 	__u64	   msl_flags;
3715 } __packed;
3716 
3717 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3718 
3719 struct close_data {
3720 	struct lustre_handle	cd_handle;
3721 	struct lu_fid		cd_fid;
3722 	__u64			cd_data_version;
3723 	__u64			cd_reserved[8];
3724 };
3725 
3726 void lustre_swab_close_data(struct close_data *data);
3727 
3728 #endif
3729 /** @} lustreidl */
3730