• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
mb_correct_addr_and_bit(int * bit,void * addr)372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
mb_test_bit(int bit,void * addr)386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
mb_set_bit(int bit,void * addr)396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
mb_clear_bit(int bit,void * addr)402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
mb_test_and_clear_bit(int bit,void * addr)408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
mb_find_next_zero_bit(void * addr,int max,int start)414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
mb_find_next_bit(void * addr,int max,int start)427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned int border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
726 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 	ext4_grpblk_t i = 0;
728 	ext4_grpblk_t first;
729 	ext4_grpblk_t len;
730 	unsigned free = 0;
731 	unsigned fragments = 0;
732 	unsigned long long period = get_cycles();
733 
734 	/* initialize buddy from bitmap which is aggregation
735 	 * of on-disk bitmap and preallocations */
736 	i = mb_find_next_zero_bit(bitmap, max, 0);
737 	grp->bb_first_free = i;
738 	while (i < max) {
739 		fragments++;
740 		first = i;
741 		i = mb_find_next_bit(bitmap, max, i);
742 		len = i - first;
743 		free += len;
744 		if (len > 1)
745 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 		else
747 			grp->bb_counters[0]++;
748 		if (i < max)
749 			i = mb_find_next_zero_bit(bitmap, max, i);
750 	}
751 	grp->bb_fragments = fragments;
752 
753 	if (free != grp->bb_free) {
754 		ext4_grp_locked_error(sb, group, 0, 0,
755 				      "block bitmap and bg descriptor "
756 				      "inconsistent: %u vs %u free clusters",
757 				      free, grp->bb_free);
758 		/*
759 		 * If we intend to continue, we consider group descriptor
760 		 * corrupt and update bb_free using bitmap value
761 		 */
762 		grp->bb_free = free;
763 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 			percpu_counter_sub(&sbi->s_freeclusters_counter,
765 					   grp->bb_free);
766 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 	}
768 	mb_set_largest_free_order(sb, grp);
769 
770 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771 
772 	period = get_cycles() - period;
773 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 	EXT4_SB(sb)->s_mb_buddies_generated++;
775 	EXT4_SB(sb)->s_mb_generation_time += period;
776 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778 
mb_regenerate_buddy(struct ext4_buddy * e4b)779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 	int count;
782 	int order = 1;
783 	void *buddy;
784 
785 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 		ext4_set_bits(buddy, 0, count);
787 	}
788 	e4b->bd_info->bb_fragments = 0;
789 	memset(e4b->bd_info->bb_counters, 0,
790 		sizeof(*e4b->bd_info->bb_counters) *
791 		(e4b->bd_sb->s_blocksize_bits + 2));
792 
793 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 		e4b->bd_bitmap, e4b->bd_group);
795 }
796 
797 /* The buddy information is attached the buddy cache inode
798  * for convenience. The information regarding each group
799  * is loaded via ext4_mb_load_buddy. The information involve
800  * block bitmap and buddy information. The information are
801  * stored in the inode as
802  *
803  * {                        page                        }
804  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805  *
806  *
807  * one block each for bitmap and buddy information.
808  * So for each group we take up 2 blocks. A page can
809  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
810  * So it can have information regarding groups_per_page which
811  * is blocks_per_page/2
812  *
813  * Locking note:  This routine takes the block group lock of all groups
814  * for this page; do not hold this lock when calling this routine!
815  */
816 
ext4_mb_init_cache(struct page * page,char * incore)817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 	ext4_group_t ngroups;
820 	int blocksize;
821 	int blocks_per_page;
822 	int groups_per_page;
823 	int err = 0;
824 	int i;
825 	ext4_group_t first_group, group;
826 	int first_block;
827 	struct super_block *sb;
828 	struct buffer_head *bhs;
829 	struct buffer_head **bh = NULL;
830 	struct inode *inode;
831 	char *data;
832 	char *bitmap;
833 	struct ext4_group_info *grinfo;
834 
835 	mb_debug(1, "init page %lu\n", page->index);
836 
837 	inode = page->mapping->host;
838 	sb = inode->i_sb;
839 	ngroups = ext4_get_groups_count(sb);
840 	blocksize = 1 << inode->i_blkbits;
841 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842 
843 	groups_per_page = blocks_per_page >> 1;
844 	if (groups_per_page == 0)
845 		groups_per_page = 1;
846 
847 	/* allocate buffer_heads to read bitmaps */
848 	if (groups_per_page > 1) {
849 		i = sizeof(struct buffer_head *) * groups_per_page;
850 		bh = kzalloc(i, GFP_NOFS);
851 		if (bh == NULL) {
852 			err = -ENOMEM;
853 			goto out;
854 		}
855 	} else
856 		bh = &bhs;
857 
858 	first_group = page->index * blocks_per_page / 2;
859 
860 	/* read all groups the page covers into the cache */
861 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 		if (group >= ngroups)
863 			break;
864 
865 		grinfo = ext4_get_group_info(sb, group);
866 		/*
867 		 * If page is uptodate then we came here after online resize
868 		 * which added some new uninitialized group info structs, so
869 		 * we must skip all initialized uptodate buddies on the page,
870 		 * which may be currently in use by an allocating task.
871 		 */
872 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 			bh[i] = NULL;
874 			continue;
875 		}
876 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 			err = -ENOMEM;
878 			goto out;
879 		}
880 		mb_debug(1, "read bitmap for group %u\n", group);
881 	}
882 
883 	/* wait for I/O completion */
884 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 			err = -EIO;
887 			goto out;
888 		}
889 	}
890 
891 	first_block = page->index * blocks_per_page;
892 	for (i = 0; i < blocks_per_page; i++) {
893 		group = (first_block + i) >> 1;
894 		if (group >= ngroups)
895 			break;
896 
897 		if (!bh[group - first_group])
898 			/* skip initialized uptodate buddy */
899 			continue;
900 
901 		/*
902 		 * data carry information regarding this
903 		 * particular group in the format specified
904 		 * above
905 		 *
906 		 */
907 		data = page_address(page) + (i * blocksize);
908 		bitmap = bh[group - first_group]->b_data;
909 
910 		/*
911 		 * We place the buddy block and bitmap block
912 		 * close together
913 		 */
914 		if ((first_block + i) & 1) {
915 			/* this is block of buddy */
916 			BUG_ON(incore == NULL);
917 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 				group, page->index, i * blocksize);
919 			trace_ext4_mb_buddy_bitmap_load(sb, group);
920 			grinfo = ext4_get_group_info(sb, group);
921 			grinfo->bb_fragments = 0;
922 			memset(grinfo->bb_counters, 0,
923 			       sizeof(*grinfo->bb_counters) *
924 				(sb->s_blocksize_bits+2));
925 			/*
926 			 * incore got set to the group block bitmap below
927 			 */
928 			ext4_lock_group(sb, group);
929 			/* init the buddy */
930 			memset(data, 0xff, blocksize);
931 			ext4_mb_generate_buddy(sb, data, incore, group);
932 			ext4_unlock_group(sb, group);
933 			incore = NULL;
934 		} else {
935 			/* this is block of bitmap */
936 			BUG_ON(incore != NULL);
937 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 				group, page->index, i * blocksize);
939 			trace_ext4_mb_bitmap_load(sb, group);
940 
941 			/* see comments in ext4_mb_put_pa() */
942 			ext4_lock_group(sb, group);
943 			memcpy(data, bitmap, blocksize);
944 
945 			/* mark all preallocated blks used in in-core bitmap */
946 			ext4_mb_generate_from_pa(sb, data, group);
947 			ext4_mb_generate_from_freelist(sb, data, group);
948 			ext4_unlock_group(sb, group);
949 
950 			/* set incore so that the buddy information can be
951 			 * generated using this
952 			 */
953 			incore = data;
954 		}
955 	}
956 	SetPageUptodate(page);
957 
958 out:
959 	if (bh) {
960 		for (i = 0; i < groups_per_page; i++)
961 			brelse(bh[i]);
962 		if (bh != &bhs)
963 			kfree(bh);
964 	}
965 	return err;
966 }
967 
968 /*
969  * Lock the buddy and bitmap pages. This make sure other parallel init_group
970  * on the same buddy page doesn't happen whild holding the buddy page lock.
971  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 		ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 	int block, pnum, poff;
979 	int blocks_per_page;
980 	struct page *page;
981 
982 	e4b->bd_buddy_page = NULL;
983 	e4b->bd_bitmap_page = NULL;
984 
985 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 	/*
987 	 * the buddy cache inode stores the block bitmap
988 	 * and buddy information in consecutive blocks.
989 	 * So for each group we need two blocks.
990 	 */
991 	block = group * 2;
992 	pnum = block / blocks_per_page;
993 	poff = block % blocks_per_page;
994 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 	if (!page)
996 		return -ENOMEM;
997 	BUG_ON(page->mapping != inode->i_mapping);
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 
1001 	if (blocks_per_page >= 2) {
1002 		/* buddy and bitmap are on the same page */
1003 		return 0;
1004 	}
1005 
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 	if (!page)
1010 		return -ENOMEM;
1011 	BUG_ON(page->mapping != inode->i_mapping);
1012 	e4b->bd_buddy_page = page;
1013 	return 0;
1014 }
1015 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 	if (e4b->bd_bitmap_page) {
1019 		unlock_page(e4b->bd_bitmap_page);
1020 		page_cache_release(e4b->bd_bitmap_page);
1021 	}
1022 	if (e4b->bd_buddy_page) {
1023 		unlock_page(e4b->bd_buddy_page);
1024 		page_cache_release(e4b->bd_buddy_page);
1025 	}
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	struct ext4_group_info *this_grp;
1038 	struct ext4_buddy e4b;
1039 	struct page *page;
1040 	int ret = 0;
1041 
1042 	might_sleep();
1043 	mb_debug(1, "init group %u\n", group);
1044 	this_grp = ext4_get_group_info(sb, group);
1045 	/*
1046 	 * This ensures that we don't reinit the buddy cache
1047 	 * page which map to the group from which we are already
1048 	 * allocating. If we are looking at the buddy cache we would
1049 	 * have taken a reference using ext4_mb_load_buddy and that
1050 	 * would have pinned buddy page to page cache.
1051 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 	 * page accessed.
1053 	 */
1054 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 		/*
1057 		 * somebody initialized the group
1058 		 * return without doing anything
1059 		 */
1060 		goto err;
1061 	}
1062 
1063 	page = e4b.bd_bitmap_page;
1064 	ret = ext4_mb_init_cache(page, NULL);
1065 	if (ret)
1066 		goto err;
1067 	if (!PageUptodate(page)) {
1068 		ret = -EIO;
1069 		goto err;
1070 	}
1071 
1072 	if (e4b.bd_buddy_page == NULL) {
1073 		/*
1074 		 * If both the bitmap and buddy are in
1075 		 * the same page we don't need to force
1076 		 * init the buddy
1077 		 */
1078 		ret = 0;
1079 		goto err;
1080 	}
1081 	/* init buddy cache */
1082 	page = e4b.bd_buddy_page;
1083 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 	if (ret)
1085 		goto err;
1086 	if (!PageUptodate(page)) {
1087 		ret = -EIO;
1088 		goto err;
1089 	}
1090 err:
1091 	ext4_mb_put_buddy_page_lock(&e4b);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1097  * block group lock of all groups for this page; do not hold the BG lock when
1098  * calling this routine!
1099  */
1100 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 					struct ext4_buddy *e4b)
1103 {
1104 	int blocks_per_page;
1105 	int block;
1106 	int pnum;
1107 	int poff;
1108 	struct page *page;
1109 	int ret;
1110 	struct ext4_group_info *grp;
1111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 	struct inode *inode = sbi->s_buddy_cache;
1113 
1114 	might_sleep();
1115 	mb_debug(1, "load group %u\n", group);
1116 
1117 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 	grp = ext4_get_group_info(sb, group);
1119 
1120 	e4b->bd_blkbits = sb->s_blocksize_bits;
1121 	e4b->bd_info = grp;
1122 	e4b->bd_sb = sb;
1123 	e4b->bd_group = group;
1124 	e4b->bd_buddy_page = NULL;
1125 	e4b->bd_bitmap_page = NULL;
1126 
1127 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 		/*
1129 		 * we need full data about the group
1130 		 * to make a good selection
1131 		 */
1132 		ret = ext4_mb_init_group(sb, group);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	/*
1138 	 * the buddy cache inode stores the block bitmap
1139 	 * and buddy information in consecutive blocks.
1140 	 * So for each group we need two blocks.
1141 	 */
1142 	block = group * 2;
1143 	pnum = block / blocks_per_page;
1144 	poff = block % blocks_per_page;
1145 
1146 	/* we could use find_or_create_page(), but it locks page
1147 	 * what we'd like to avoid in fast path ... */
1148 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			/*
1152 			 * drop the page reference and try
1153 			 * to get the page with lock. If we
1154 			 * are not uptodate that implies
1155 			 * somebody just created the page but
1156 			 * is yet to initialize the same. So
1157 			 * wait for it to initialize.
1158 			 */
1159 			page_cache_release(page);
1160 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 		if (page) {
1162 			BUG_ON(page->mapping != inode->i_mapping);
1163 			if (!PageUptodate(page)) {
1164 				ret = ext4_mb_init_cache(page, NULL);
1165 				if (ret) {
1166 					unlock_page(page);
1167 					goto err;
1168 				}
1169 				mb_cmp_bitmaps(e4b, page_address(page) +
1170 					       (poff * sb->s_blocksize));
1171 			}
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	if (page == NULL) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	if (!PageUptodate(page)) {
1180 		ret = -EIO;
1181 		goto err;
1182 	}
1183 
1184 	/* Pages marked accessed already */
1185 	e4b->bd_bitmap_page = page;
1186 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 
1188 	block++;
1189 	pnum = block / blocks_per_page;
1190 	poff = block % blocks_per_page;
1191 
1192 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 	if (page == NULL || !PageUptodate(page)) {
1194 		if (page)
1195 			page_cache_release(page);
1196 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 		if (page) {
1198 			BUG_ON(page->mapping != inode->i_mapping);
1199 			if (!PageUptodate(page)) {
1200 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		page_cache_release(page);
1230 	if (e4b->bd_bitmap_page)
1231 		page_cache_release(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		page_cache_release(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 }
1246 
1247 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 	int order = 1;
1251 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1252 	void *bb;
1253 
1254 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1255 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1256 
1257 	bb = e4b->bd_buddy;
1258 	while (order <= e4b->bd_blkbits + 1) {
1259 		block = block >> 1;
1260 		if (!mb_test_bit(block, bb)) {
1261 			/* this block is part of buddy of order 'order' */
1262 			return order;
1263 		}
1264 		bb += bb_incr;
1265 		bb_incr >>= 1;
1266 		order++;
1267 	}
1268 	return 0;
1269 }
1270 
mb_clear_bits(void * bm,int cur,int len)1271 static void mb_clear_bits(void *bm, int cur, int len)
1272 {
1273 	__u32 *addr;
1274 
1275 	len = cur + len;
1276 	while (cur < len) {
1277 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1278 			/* fast path: clear whole word at once */
1279 			addr = bm + (cur >> 3);
1280 			*addr = 0;
1281 			cur += 32;
1282 			continue;
1283 		}
1284 		mb_clear_bit(cur, bm);
1285 		cur++;
1286 	}
1287 }
1288 
1289 /* clear bits in given range
1290  * will return first found zero bit if any, -1 otherwise
1291  */
mb_test_and_clear_bits(void * bm,int cur,int len)1292 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1293 {
1294 	__u32 *addr;
1295 	int zero_bit = -1;
1296 
1297 	len = cur + len;
1298 	while (cur < len) {
1299 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1300 			/* fast path: clear whole word at once */
1301 			addr = bm + (cur >> 3);
1302 			if (*addr != (__u32)(-1) && zero_bit == -1)
1303 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1304 			*addr = 0;
1305 			cur += 32;
1306 			continue;
1307 		}
1308 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1309 			zero_bit = cur;
1310 		cur++;
1311 	}
1312 
1313 	return zero_bit;
1314 }
1315 
ext4_set_bits(void * bm,int cur,int len)1316 void ext4_set_bits(void *bm, int cur, int len)
1317 {
1318 	__u32 *addr;
1319 
1320 	len = cur + len;
1321 	while (cur < len) {
1322 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1323 			/* fast path: set whole word at once */
1324 			addr = bm + (cur >> 3);
1325 			*addr = 0xffffffff;
1326 			cur += 32;
1327 			continue;
1328 		}
1329 		mb_set_bit(cur, bm);
1330 		cur++;
1331 	}
1332 }
1333 
1334 /*
1335  * _________________________________________________________________ */
1336 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1337 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1338 {
1339 	if (mb_test_bit(*bit + side, bitmap)) {
1340 		mb_clear_bit(*bit, bitmap);
1341 		(*bit) -= side;
1342 		return 1;
1343 	}
1344 	else {
1345 		(*bit) += side;
1346 		mb_set_bit(*bit, bitmap);
1347 		return -1;
1348 	}
1349 }
1350 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1351 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1352 {
1353 	int max;
1354 	int order = 1;
1355 	void *buddy = mb_find_buddy(e4b, order, &max);
1356 
1357 	while (buddy) {
1358 		void *buddy2;
1359 
1360 		/* Bits in range [first; last] are known to be set since
1361 		 * corresponding blocks were allocated. Bits in range
1362 		 * (first; last) will stay set because they form buddies on
1363 		 * upper layer. We just deal with borders if they don't
1364 		 * align with upper layer and then go up.
1365 		 * Releasing entire group is all about clearing
1366 		 * single bit of highest order buddy.
1367 		 */
1368 
1369 		/* Example:
1370 		 * ---------------------------------
1371 		 * |   1   |   1   |   1   |   1   |
1372 		 * ---------------------------------
1373 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1374 		 * ---------------------------------
1375 		 *   0   1   2   3   4   5   6   7
1376 		 *      \_____________________/
1377 		 *
1378 		 * Neither [1] nor [6] is aligned to above layer.
1379 		 * Left neighbour [0] is free, so mark it busy,
1380 		 * decrease bb_counters and extend range to
1381 		 * [0; 6]
1382 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1383 		 * mark [6] free, increase bb_counters and shrink range to
1384 		 * [0; 5].
1385 		 * Then shift range to [0; 2], go up and do the same.
1386 		 */
1387 
1388 
1389 		if (first & 1)
1390 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1391 		if (!(last & 1))
1392 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1393 		if (first > last)
1394 			break;
1395 		order++;
1396 
1397 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1398 			mb_clear_bits(buddy, first, last - first + 1);
1399 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1400 			break;
1401 		}
1402 		first >>= 1;
1403 		last >>= 1;
1404 		buddy = buddy2;
1405 	}
1406 }
1407 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1408 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1409 			   int first, int count)
1410 {
1411 	int left_is_free = 0;
1412 	int right_is_free = 0;
1413 	int block;
1414 	int last = first + count - 1;
1415 	struct super_block *sb = e4b->bd_sb;
1416 
1417 	if (WARN_ON(count == 0))
1418 		return;
1419 	BUG_ON(last >= (sb->s_blocksize << 3));
1420 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1421 	/* Don't bother if the block group is corrupt. */
1422 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1423 		return;
1424 
1425 	mb_check_buddy(e4b);
1426 	mb_free_blocks_double(inode, e4b, first, count);
1427 
1428 	e4b->bd_info->bb_free += count;
1429 	if (first < e4b->bd_info->bb_first_free)
1430 		e4b->bd_info->bb_first_free = first;
1431 
1432 	/* access memory sequentially: check left neighbour,
1433 	 * clear range and then check right neighbour
1434 	 */
1435 	if (first != 0)
1436 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1437 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1438 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1439 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1440 
1441 	if (unlikely(block != -1)) {
1442 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1443 		ext4_fsblk_t blocknr;
1444 
1445 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1446 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1447 		ext4_grp_locked_error(sb, e4b->bd_group,
1448 				      inode ? inode->i_ino : 0,
1449 				      blocknr,
1450 				      "freeing already freed block "
1451 				      "(bit %u); block bitmap corrupt.",
1452 				      block);
1453 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1454 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1455 					   e4b->bd_info->bb_free);
1456 		/* Mark the block group as corrupt. */
1457 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1458 			&e4b->bd_info->bb_state);
1459 		mb_regenerate_buddy(e4b);
1460 		goto done;
1461 	}
1462 
1463 	/* let's maintain fragments counter */
1464 	if (left_is_free && right_is_free)
1465 		e4b->bd_info->bb_fragments--;
1466 	else if (!left_is_free && !right_is_free)
1467 		e4b->bd_info->bb_fragments++;
1468 
1469 	/* buddy[0] == bd_bitmap is a special case, so handle
1470 	 * it right away and let mb_buddy_mark_free stay free of
1471 	 * zero order checks.
1472 	 * Check if neighbours are to be coaleasced,
1473 	 * adjust bitmap bb_counters and borders appropriately.
1474 	 */
1475 	if (first & 1) {
1476 		first += !left_is_free;
1477 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1478 	}
1479 	if (!(last & 1)) {
1480 		last -= !right_is_free;
1481 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1482 	}
1483 
1484 	if (first <= last)
1485 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1486 
1487 done:
1488 	mb_set_largest_free_order(sb, e4b->bd_info);
1489 	mb_check_buddy(e4b);
1490 }
1491 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1492 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1493 				int needed, struct ext4_free_extent *ex)
1494 {
1495 	int next = block;
1496 	int max, order;
1497 	void *buddy;
1498 
1499 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1500 	BUG_ON(ex == NULL);
1501 
1502 	buddy = mb_find_buddy(e4b, 0, &max);
1503 	BUG_ON(buddy == NULL);
1504 	BUG_ON(block >= max);
1505 	if (mb_test_bit(block, buddy)) {
1506 		ex->fe_len = 0;
1507 		ex->fe_start = 0;
1508 		ex->fe_group = 0;
1509 		return 0;
1510 	}
1511 
1512 	/* find actual order */
1513 	order = mb_find_order_for_block(e4b, block);
1514 	block = block >> order;
1515 
1516 	ex->fe_len = 1 << order;
1517 	ex->fe_start = block << order;
1518 	ex->fe_group = e4b->bd_group;
1519 
1520 	/* calc difference from given start */
1521 	next = next - ex->fe_start;
1522 	ex->fe_len -= next;
1523 	ex->fe_start += next;
1524 
1525 	while (needed > ex->fe_len &&
1526 	       mb_find_buddy(e4b, order, &max)) {
1527 
1528 		if (block + 1 >= max)
1529 			break;
1530 
1531 		next = (block + 1) * (1 << order);
1532 		if (mb_test_bit(next, e4b->bd_bitmap))
1533 			break;
1534 
1535 		order = mb_find_order_for_block(e4b, next);
1536 
1537 		block = next >> order;
1538 		ex->fe_len += 1 << order;
1539 	}
1540 
1541 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1542 	return ex->fe_len;
1543 }
1544 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1545 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1546 {
1547 	int ord;
1548 	int mlen = 0;
1549 	int max = 0;
1550 	int cur;
1551 	int start = ex->fe_start;
1552 	int len = ex->fe_len;
1553 	unsigned ret = 0;
1554 	int len0 = len;
1555 	void *buddy;
1556 
1557 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1558 	BUG_ON(e4b->bd_group != ex->fe_group);
1559 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1560 	mb_check_buddy(e4b);
1561 	mb_mark_used_double(e4b, start, len);
1562 
1563 	e4b->bd_info->bb_free -= len;
1564 	if (e4b->bd_info->bb_first_free == start)
1565 		e4b->bd_info->bb_first_free += len;
1566 
1567 	/* let's maintain fragments counter */
1568 	if (start != 0)
1569 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1570 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1571 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1572 	if (mlen && max)
1573 		e4b->bd_info->bb_fragments++;
1574 	else if (!mlen && !max)
1575 		e4b->bd_info->bb_fragments--;
1576 
1577 	/* let's maintain buddy itself */
1578 	while (len) {
1579 		ord = mb_find_order_for_block(e4b, start);
1580 
1581 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1582 			/* the whole chunk may be allocated at once! */
1583 			mlen = 1 << ord;
1584 			buddy = mb_find_buddy(e4b, ord, &max);
1585 			BUG_ON((start >> ord) >= max);
1586 			mb_set_bit(start >> ord, buddy);
1587 			e4b->bd_info->bb_counters[ord]--;
1588 			start += mlen;
1589 			len -= mlen;
1590 			BUG_ON(len < 0);
1591 			continue;
1592 		}
1593 
1594 		/* store for history */
1595 		if (ret == 0)
1596 			ret = len | (ord << 16);
1597 
1598 		/* we have to split large buddy */
1599 		BUG_ON(ord <= 0);
1600 		buddy = mb_find_buddy(e4b, ord, &max);
1601 		mb_set_bit(start >> ord, buddy);
1602 		e4b->bd_info->bb_counters[ord]--;
1603 
1604 		ord--;
1605 		cur = (start >> ord) & ~1U;
1606 		buddy = mb_find_buddy(e4b, ord, &max);
1607 		mb_clear_bit(cur, buddy);
1608 		mb_clear_bit(cur + 1, buddy);
1609 		e4b->bd_info->bb_counters[ord]++;
1610 		e4b->bd_info->bb_counters[ord]++;
1611 	}
1612 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1613 
1614 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1615 	mb_check_buddy(e4b);
1616 
1617 	return ret;
1618 }
1619 
1620 /*
1621  * Must be called under group lock!
1622  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1623 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1624 					struct ext4_buddy *e4b)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1627 	int ret;
1628 
1629 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1630 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1631 
1632 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1633 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1634 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1635 
1636 	/* preallocation can change ac_b_ex, thus we store actually
1637 	 * allocated blocks for history */
1638 	ac->ac_f_ex = ac->ac_b_ex;
1639 
1640 	ac->ac_status = AC_STATUS_FOUND;
1641 	ac->ac_tail = ret & 0xffff;
1642 	ac->ac_buddy = ret >> 16;
1643 
1644 	/*
1645 	 * take the page reference. We want the page to be pinned
1646 	 * so that we don't get a ext4_mb_init_cache_call for this
1647 	 * group until we update the bitmap. That would mean we
1648 	 * double allocate blocks. The reference is dropped
1649 	 * in ext4_mb_release_context
1650 	 */
1651 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1652 	get_page(ac->ac_bitmap_page);
1653 	ac->ac_buddy_page = e4b->bd_buddy_page;
1654 	get_page(ac->ac_buddy_page);
1655 	/* store last allocated for subsequent stream allocation */
1656 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1657 		spin_lock(&sbi->s_md_lock);
1658 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1659 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1660 		spin_unlock(&sbi->s_md_lock);
1661 	}
1662 }
1663 
1664 /*
1665  * regular allocator, for general purposes allocation
1666  */
1667 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1668 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1669 					struct ext4_buddy *e4b,
1670 					int finish_group)
1671 {
1672 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1673 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1674 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1675 	struct ext4_free_extent ex;
1676 	int max;
1677 
1678 	if (ac->ac_status == AC_STATUS_FOUND)
1679 		return;
1680 	/*
1681 	 * We don't want to scan for a whole year
1682 	 */
1683 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1684 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1685 		ac->ac_status = AC_STATUS_BREAK;
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * Haven't found good chunk so far, let's continue
1691 	 */
1692 	if (bex->fe_len < gex->fe_len)
1693 		return;
1694 
1695 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1696 			&& bex->fe_group == e4b->bd_group) {
1697 		/* recheck chunk's availability - we don't know
1698 		 * when it was found (within this lock-unlock
1699 		 * period or not) */
1700 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1701 		if (max >= gex->fe_len) {
1702 			ext4_mb_use_best_found(ac, e4b);
1703 			return;
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * The routine checks whether found extent is good enough. If it is,
1710  * then the extent gets marked used and flag is set to the context
1711  * to stop scanning. Otherwise, the extent is compared with the
1712  * previous found extent and if new one is better, then it's stored
1713  * in the context. Later, the best found extent will be used, if
1714  * mballoc can't find good enough extent.
1715  *
1716  * FIXME: real allocation policy is to be designed yet!
1717  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1718 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1719 					struct ext4_free_extent *ex,
1720 					struct ext4_buddy *e4b)
1721 {
1722 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1723 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1724 
1725 	BUG_ON(ex->fe_len <= 0);
1726 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1727 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1728 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1729 
1730 	ac->ac_found++;
1731 
1732 	/*
1733 	 * The special case - take what you catch first
1734 	 */
1735 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1736 		*bex = *ex;
1737 		ext4_mb_use_best_found(ac, e4b);
1738 		return;
1739 	}
1740 
1741 	/*
1742 	 * Let's check whether the chuck is good enough
1743 	 */
1744 	if (ex->fe_len == gex->fe_len) {
1745 		*bex = *ex;
1746 		ext4_mb_use_best_found(ac, e4b);
1747 		return;
1748 	}
1749 
1750 	/*
1751 	 * If this is first found extent, just store it in the context
1752 	 */
1753 	if (bex->fe_len == 0) {
1754 		*bex = *ex;
1755 		return;
1756 	}
1757 
1758 	/*
1759 	 * If new found extent is better, store it in the context
1760 	 */
1761 	if (bex->fe_len < gex->fe_len) {
1762 		/* if the request isn't satisfied, any found extent
1763 		 * larger than previous best one is better */
1764 		if (ex->fe_len > bex->fe_len)
1765 			*bex = *ex;
1766 	} else if (ex->fe_len > gex->fe_len) {
1767 		/* if the request is satisfied, then we try to find
1768 		 * an extent that still satisfy the request, but is
1769 		 * smaller than previous one */
1770 		if (ex->fe_len < bex->fe_len)
1771 			*bex = *ex;
1772 	}
1773 
1774 	ext4_mb_check_limits(ac, e4b, 0);
1775 }
1776 
1777 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1778 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1779 					struct ext4_buddy *e4b)
1780 {
1781 	struct ext4_free_extent ex = ac->ac_b_ex;
1782 	ext4_group_t group = ex.fe_group;
1783 	int max;
1784 	int err;
1785 
1786 	BUG_ON(ex.fe_len <= 0);
1787 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1788 	if (err)
1789 		return err;
1790 
1791 	ext4_lock_group(ac->ac_sb, group);
1792 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1793 
1794 	if (max > 0) {
1795 		ac->ac_b_ex = ex;
1796 		ext4_mb_use_best_found(ac, e4b);
1797 	}
1798 
1799 	ext4_unlock_group(ac->ac_sb, group);
1800 	ext4_mb_unload_buddy(e4b);
1801 
1802 	return 0;
1803 }
1804 
1805 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1806 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1807 				struct ext4_buddy *e4b)
1808 {
1809 	ext4_group_t group = ac->ac_g_ex.fe_group;
1810 	int max;
1811 	int err;
1812 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1813 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1814 	struct ext4_free_extent ex;
1815 
1816 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1817 		return 0;
1818 	if (grp->bb_free == 0)
1819 		return 0;
1820 
1821 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1822 	if (err)
1823 		return err;
1824 
1825 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1826 		ext4_mb_unload_buddy(e4b);
1827 		return 0;
1828 	}
1829 
1830 	ext4_lock_group(ac->ac_sb, group);
1831 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1832 			     ac->ac_g_ex.fe_len, &ex);
1833 	ex.fe_logical = 0xDEADFA11; /* debug value */
1834 
1835 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1836 		ext4_fsblk_t start;
1837 
1838 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1839 			ex.fe_start;
1840 		/* use do_div to get remainder (would be 64-bit modulo) */
1841 		if (do_div(start, sbi->s_stripe) == 0) {
1842 			ac->ac_found++;
1843 			ac->ac_b_ex = ex;
1844 			ext4_mb_use_best_found(ac, e4b);
1845 		}
1846 	} else if (max >= ac->ac_g_ex.fe_len) {
1847 		BUG_ON(ex.fe_len <= 0);
1848 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1849 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1850 		ac->ac_found++;
1851 		ac->ac_b_ex = ex;
1852 		ext4_mb_use_best_found(ac, e4b);
1853 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1854 		/* Sometimes, caller may want to merge even small
1855 		 * number of blocks to an existing extent */
1856 		BUG_ON(ex.fe_len <= 0);
1857 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1858 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1859 		ac->ac_found++;
1860 		ac->ac_b_ex = ex;
1861 		ext4_mb_use_best_found(ac, e4b);
1862 	}
1863 	ext4_unlock_group(ac->ac_sb, group);
1864 	ext4_mb_unload_buddy(e4b);
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * The routine scans buddy structures (not bitmap!) from given order
1871  * to max order and tries to find big enough chunk to satisfy the req
1872  */
1873 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1874 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1875 					struct ext4_buddy *e4b)
1876 {
1877 	struct super_block *sb = ac->ac_sb;
1878 	struct ext4_group_info *grp = e4b->bd_info;
1879 	void *buddy;
1880 	int i;
1881 	int k;
1882 	int max;
1883 
1884 	BUG_ON(ac->ac_2order <= 0);
1885 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1886 		if (grp->bb_counters[i] == 0)
1887 			continue;
1888 
1889 		buddy = mb_find_buddy(e4b, i, &max);
1890 		BUG_ON(buddy == NULL);
1891 
1892 		k = mb_find_next_zero_bit(buddy, max, 0);
1893 		BUG_ON(k >= max);
1894 
1895 		ac->ac_found++;
1896 
1897 		ac->ac_b_ex.fe_len = 1 << i;
1898 		ac->ac_b_ex.fe_start = k << i;
1899 		ac->ac_b_ex.fe_group = e4b->bd_group;
1900 
1901 		ext4_mb_use_best_found(ac, e4b);
1902 
1903 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1904 
1905 		if (EXT4_SB(sb)->s_mb_stats)
1906 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1907 
1908 		break;
1909 	}
1910 }
1911 
1912 /*
1913  * The routine scans the group and measures all found extents.
1914  * In order to optimize scanning, caller must pass number of
1915  * free blocks in the group, so the routine can know upper limit.
1916  */
1917 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1918 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1919 					struct ext4_buddy *e4b)
1920 {
1921 	struct super_block *sb = ac->ac_sb;
1922 	void *bitmap = e4b->bd_bitmap;
1923 	struct ext4_free_extent ex;
1924 	int i;
1925 	int free;
1926 
1927 	free = e4b->bd_info->bb_free;
1928 	BUG_ON(free <= 0);
1929 
1930 	i = e4b->bd_info->bb_first_free;
1931 
1932 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1933 		i = mb_find_next_zero_bit(bitmap,
1934 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1935 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1936 			/*
1937 			 * IF we have corrupt bitmap, we won't find any
1938 			 * free blocks even though group info says we
1939 			 * we have free blocks
1940 			 */
1941 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1942 					"%d free clusters as per "
1943 					"group info. But bitmap says 0",
1944 					free);
1945 			break;
1946 		}
1947 
1948 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1949 		BUG_ON(ex.fe_len <= 0);
1950 		if (free < ex.fe_len) {
1951 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1952 					"%d free clusters as per "
1953 					"group info. But got %d blocks",
1954 					free, ex.fe_len);
1955 			/*
1956 			 * The number of free blocks differs. This mostly
1957 			 * indicate that the bitmap is corrupt. So exit
1958 			 * without claiming the space.
1959 			 */
1960 			break;
1961 		}
1962 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1963 		ext4_mb_measure_extent(ac, &ex, e4b);
1964 
1965 		i += ex.fe_len;
1966 		free -= ex.fe_len;
1967 	}
1968 
1969 	ext4_mb_check_limits(ac, e4b, 1);
1970 }
1971 
1972 /*
1973  * This is a special case for storages like raid5
1974  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1975  */
1976 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1977 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1978 				 struct ext4_buddy *e4b)
1979 {
1980 	struct super_block *sb = ac->ac_sb;
1981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 	void *bitmap = e4b->bd_bitmap;
1983 	struct ext4_free_extent ex;
1984 	ext4_fsblk_t first_group_block;
1985 	ext4_fsblk_t a;
1986 	ext4_grpblk_t i;
1987 	int max;
1988 
1989 	BUG_ON(sbi->s_stripe == 0);
1990 
1991 	/* find first stripe-aligned block in group */
1992 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1993 
1994 	a = first_group_block + sbi->s_stripe - 1;
1995 	do_div(a, sbi->s_stripe);
1996 	i = (a * sbi->s_stripe) - first_group_block;
1997 
1998 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1999 		if (!mb_test_bit(i, bitmap)) {
2000 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2001 			if (max >= sbi->s_stripe) {
2002 				ac->ac_found++;
2003 				ex.fe_logical = 0xDEADF00D; /* debug value */
2004 				ac->ac_b_ex = ex;
2005 				ext4_mb_use_best_found(ac, e4b);
2006 				break;
2007 			}
2008 		}
2009 		i += sbi->s_stripe;
2010 	}
2011 }
2012 
2013 /* This is now called BEFORE we load the buddy bitmap. */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2014 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2015 				ext4_group_t group, int cr)
2016 {
2017 	unsigned free, fragments;
2018 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2019 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2020 
2021 	BUG_ON(cr < 0 || cr >= 4);
2022 
2023 	free = grp->bb_free;
2024 	if (free == 0)
2025 		return 0;
2026 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2027 		return 0;
2028 
2029 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2030 		return 0;
2031 
2032 	/* We only do this if the grp has never been initialized */
2033 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2034 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2035 		if (ret)
2036 			return 0;
2037 	}
2038 
2039 	fragments = grp->bb_fragments;
2040 	if (fragments == 0)
2041 		return 0;
2042 
2043 	switch (cr) {
2044 	case 0:
2045 		BUG_ON(ac->ac_2order == 0);
2046 
2047 		/* Avoid using the first bg of a flexgroup for data files */
2048 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2049 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2050 		    ((group % flex_size) == 0))
2051 			return 0;
2052 
2053 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2054 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2055 			return 1;
2056 
2057 		if (grp->bb_largest_free_order < ac->ac_2order)
2058 			return 0;
2059 
2060 		return 1;
2061 	case 1:
2062 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2063 			return 1;
2064 		break;
2065 	case 2:
2066 		if (free >= ac->ac_g_ex.fe_len)
2067 			return 1;
2068 		break;
2069 	case 3:
2070 		return 1;
2071 	default:
2072 		BUG();
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2079 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2080 {
2081 	ext4_group_t ngroups, group, i;
2082 	int cr;
2083 	int err = 0;
2084 	struct ext4_sb_info *sbi;
2085 	struct super_block *sb;
2086 	struct ext4_buddy e4b;
2087 
2088 	sb = ac->ac_sb;
2089 	sbi = EXT4_SB(sb);
2090 	ngroups = ext4_get_groups_count(sb);
2091 	/* non-extent files are limited to low blocks/groups */
2092 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2093 		ngroups = sbi->s_blockfile_groups;
2094 
2095 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2096 
2097 	/* first, try the goal */
2098 	err = ext4_mb_find_by_goal(ac, &e4b);
2099 	if (err || ac->ac_status == AC_STATUS_FOUND)
2100 		goto out;
2101 
2102 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2103 		goto out;
2104 
2105 	/*
2106 	 * ac->ac2_order is set only if the fe_len is a power of 2
2107 	 * if ac2_order is set we also set criteria to 0 so that we
2108 	 * try exact allocation using buddy.
2109 	 */
2110 	i = fls(ac->ac_g_ex.fe_len);
2111 	ac->ac_2order = 0;
2112 	/*
2113 	 * We search using buddy data only if the order of the request
2114 	 * is greater than equal to the sbi_s_mb_order2_reqs
2115 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2116 	 * We also support searching for power-of-two requests only for
2117 	 * requests upto maximum buddy size we have constructed.
2118 	 */
2119 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2120 		/*
2121 		 * This should tell if fe_len is exactly power of 2
2122 		 */
2123 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2124 			ac->ac_2order = i - 1;
2125 	}
2126 
2127 	/* if stream allocation is enabled, use global goal */
2128 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2129 		/* TBD: may be hot point */
2130 		spin_lock(&sbi->s_md_lock);
2131 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2132 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2133 		spin_unlock(&sbi->s_md_lock);
2134 	}
2135 
2136 	/* Let's just scan groups to find more-less suitable blocks */
2137 	cr = ac->ac_2order ? 0 : 1;
2138 	/*
2139 	 * cr == 0 try to get exact allocation,
2140 	 * cr == 3  try to get anything
2141 	 */
2142 repeat:
2143 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2144 		ac->ac_criteria = cr;
2145 		/*
2146 		 * searching for the right group start
2147 		 * from the goal value specified
2148 		 */
2149 		group = ac->ac_g_ex.fe_group;
2150 
2151 		for (i = 0; i < ngroups; group++, i++) {
2152 			cond_resched();
2153 			/*
2154 			 * Artificially restricted ngroups for non-extent
2155 			 * files makes group > ngroups possible on first loop.
2156 			 */
2157 			if (group >= ngroups)
2158 				group = 0;
2159 
2160 			/* This now checks without needing the buddy page */
2161 			if (!ext4_mb_good_group(ac, group, cr))
2162 				continue;
2163 
2164 			err = ext4_mb_load_buddy(sb, group, &e4b);
2165 			if (err)
2166 				goto out;
2167 
2168 			ext4_lock_group(sb, group);
2169 
2170 			/*
2171 			 * We need to check again after locking the
2172 			 * block group
2173 			 */
2174 			if (!ext4_mb_good_group(ac, group, cr)) {
2175 				ext4_unlock_group(sb, group);
2176 				ext4_mb_unload_buddy(&e4b);
2177 				continue;
2178 			}
2179 
2180 			ac->ac_groups_scanned++;
2181 			if (cr == 0)
2182 				ext4_mb_simple_scan_group(ac, &e4b);
2183 			else if (cr == 1 && sbi->s_stripe &&
2184 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2185 				ext4_mb_scan_aligned(ac, &e4b);
2186 			else
2187 				ext4_mb_complex_scan_group(ac, &e4b);
2188 
2189 			ext4_unlock_group(sb, group);
2190 			ext4_mb_unload_buddy(&e4b);
2191 
2192 			if (ac->ac_status != AC_STATUS_CONTINUE)
2193 				break;
2194 		}
2195 	}
2196 
2197 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2198 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2199 		/*
2200 		 * We've been searching too long. Let's try to allocate
2201 		 * the best chunk we've found so far
2202 		 */
2203 
2204 		ext4_mb_try_best_found(ac, &e4b);
2205 		if (ac->ac_status != AC_STATUS_FOUND) {
2206 			/*
2207 			 * Someone more lucky has already allocated it.
2208 			 * The only thing we can do is just take first
2209 			 * found block(s)
2210 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2211 			 */
2212 			ac->ac_b_ex.fe_group = 0;
2213 			ac->ac_b_ex.fe_start = 0;
2214 			ac->ac_b_ex.fe_len = 0;
2215 			ac->ac_status = AC_STATUS_CONTINUE;
2216 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2217 			cr = 3;
2218 			atomic_inc(&sbi->s_mb_lost_chunks);
2219 			goto repeat;
2220 		}
2221 	}
2222 out:
2223 	return err;
2224 }
2225 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2226 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2227 {
2228 	struct super_block *sb = seq->private;
2229 	ext4_group_t group;
2230 
2231 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2232 		return NULL;
2233 	group = *pos + 1;
2234 	return (void *) ((unsigned long) group);
2235 }
2236 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2237 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2238 {
2239 	struct super_block *sb = seq->private;
2240 	ext4_group_t group;
2241 
2242 	++*pos;
2243 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2244 		return NULL;
2245 	group = *pos + 1;
2246 	return (void *) ((unsigned long) group);
2247 }
2248 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2249 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2250 {
2251 	struct super_block *sb = seq->private;
2252 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2253 	int i;
2254 	int err, buddy_loaded = 0;
2255 	struct ext4_buddy e4b;
2256 	struct ext4_group_info *grinfo;
2257 	struct sg {
2258 		struct ext4_group_info info;
2259 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2260 	} sg;
2261 
2262 	group--;
2263 	if (group == 0)
2264 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2265 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2266 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2267 			   "group", "free", "frags", "first",
2268 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2269 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2270 
2271 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2272 		sizeof(struct ext4_group_info);
2273 	grinfo = ext4_get_group_info(sb, group);
2274 	/* Load the group info in memory only if not already loaded. */
2275 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2276 		err = ext4_mb_load_buddy(sb, group, &e4b);
2277 		if (err) {
2278 			seq_printf(seq, "#%-5u: I/O error\n", group);
2279 			return 0;
2280 		}
2281 		buddy_loaded = 1;
2282 	}
2283 
2284 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2285 
2286 	if (buddy_loaded)
2287 		ext4_mb_unload_buddy(&e4b);
2288 
2289 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2290 			sg.info.bb_fragments, sg.info.bb_first_free);
2291 	for (i = 0; i <= 13; i++)
2292 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2293 				sg.info.bb_counters[i] : 0);
2294 	seq_printf(seq, " ]\n");
2295 
2296 	return 0;
2297 }
2298 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2299 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2300 {
2301 }
2302 
2303 static const struct seq_operations ext4_mb_seq_groups_ops = {
2304 	.start  = ext4_mb_seq_groups_start,
2305 	.next   = ext4_mb_seq_groups_next,
2306 	.stop   = ext4_mb_seq_groups_stop,
2307 	.show   = ext4_mb_seq_groups_show,
2308 };
2309 
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2310 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2311 {
2312 	struct super_block *sb = PDE_DATA(inode);
2313 	int rc;
2314 
2315 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2316 	if (rc == 0) {
2317 		struct seq_file *m = file->private_data;
2318 		m->private = sb;
2319 	}
2320 	return rc;
2321 
2322 }
2323 
2324 static const struct file_operations ext4_mb_seq_groups_fops = {
2325 	.owner		= THIS_MODULE,
2326 	.open		= ext4_mb_seq_groups_open,
2327 	.read		= seq_read,
2328 	.llseek		= seq_lseek,
2329 	.release	= seq_release,
2330 };
2331 
get_groupinfo_cache(int blocksize_bits)2332 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2333 {
2334 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2335 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2336 
2337 	BUG_ON(!cachep);
2338 	return cachep;
2339 }
2340 
2341 /*
2342  * Allocate the top-level s_group_info array for the specified number
2343  * of groups
2344  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2345 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2346 {
2347 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2348 	unsigned size;
2349 	struct ext4_group_info ***new_groupinfo;
2350 
2351 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2352 		EXT4_DESC_PER_BLOCK_BITS(sb);
2353 	if (size <= sbi->s_group_info_size)
2354 		return 0;
2355 
2356 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2357 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2358 	if (!new_groupinfo) {
2359 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2360 		return -ENOMEM;
2361 	}
2362 	if (sbi->s_group_info) {
2363 		memcpy(new_groupinfo, sbi->s_group_info,
2364 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2365 		ext4_kvfree(sbi->s_group_info);
2366 	}
2367 	sbi->s_group_info = new_groupinfo;
2368 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2369 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2370 		   sbi->s_group_info_size);
2371 	return 0;
2372 }
2373 
2374 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2375 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2376 			  struct ext4_group_desc *desc)
2377 {
2378 	int i;
2379 	int metalen = 0;
2380 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 	struct ext4_group_info **meta_group_info;
2382 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2383 
2384 	/*
2385 	 * First check if this group is the first of a reserved block.
2386 	 * If it's true, we have to allocate a new table of pointers
2387 	 * to ext4_group_info structures
2388 	 */
2389 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2390 		metalen = sizeof(*meta_group_info) <<
2391 			EXT4_DESC_PER_BLOCK_BITS(sb);
2392 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2393 		if (meta_group_info == NULL) {
2394 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2395 				 "for a buddy group");
2396 			goto exit_meta_group_info;
2397 		}
2398 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2399 			meta_group_info;
2400 	}
2401 
2402 	meta_group_info =
2403 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2404 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2405 
2406 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2407 	if (meta_group_info[i] == NULL) {
2408 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2409 		goto exit_group_info;
2410 	}
2411 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2412 		&(meta_group_info[i]->bb_state));
2413 
2414 	/*
2415 	 * initialize bb_free to be able to skip
2416 	 * empty groups without initialization
2417 	 */
2418 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2419 		meta_group_info[i]->bb_free =
2420 			ext4_free_clusters_after_init(sb, group, desc);
2421 	} else {
2422 		meta_group_info[i]->bb_free =
2423 			ext4_free_group_clusters(sb, desc);
2424 	}
2425 
2426 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2427 	init_rwsem(&meta_group_info[i]->alloc_sem);
2428 	meta_group_info[i]->bb_free_root = RB_ROOT;
2429 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2430 
2431 #ifdef DOUBLE_CHECK
2432 	{
2433 		struct buffer_head *bh;
2434 		meta_group_info[i]->bb_bitmap =
2435 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2436 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2437 		bh = ext4_read_block_bitmap(sb, group);
2438 		BUG_ON(bh == NULL);
2439 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2440 			sb->s_blocksize);
2441 		put_bh(bh);
2442 	}
2443 #endif
2444 
2445 	return 0;
2446 
2447 exit_group_info:
2448 	/* If a meta_group_info table has been allocated, release it now */
2449 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2450 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2451 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2452 	}
2453 exit_meta_group_info:
2454 	return -ENOMEM;
2455 } /* ext4_mb_add_groupinfo */
2456 
ext4_mb_init_backend(struct super_block * sb)2457 static int ext4_mb_init_backend(struct super_block *sb)
2458 {
2459 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2460 	ext4_group_t i;
2461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2462 	int err;
2463 	struct ext4_group_desc *desc;
2464 	struct kmem_cache *cachep;
2465 
2466 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2467 	if (err)
2468 		return err;
2469 
2470 	sbi->s_buddy_cache = new_inode(sb);
2471 	if (sbi->s_buddy_cache == NULL) {
2472 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2473 		goto err_freesgi;
2474 	}
2475 	/* To avoid potentially colliding with an valid on-disk inode number,
2476 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2477 	 * not in the inode hash, so it should never be found by iget(), but
2478 	 * this will avoid confusion if it ever shows up during debugging. */
2479 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2480 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2481 	for (i = 0; i < ngroups; i++) {
2482 		desc = ext4_get_group_desc(sb, i, NULL);
2483 		if (desc == NULL) {
2484 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2485 			goto err_freebuddy;
2486 		}
2487 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2488 			goto err_freebuddy;
2489 	}
2490 
2491 	return 0;
2492 
2493 err_freebuddy:
2494 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2495 	while (i-- > 0)
2496 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2497 	i = sbi->s_group_info_size;
2498 	while (i-- > 0)
2499 		kfree(sbi->s_group_info[i]);
2500 	iput(sbi->s_buddy_cache);
2501 err_freesgi:
2502 	ext4_kvfree(sbi->s_group_info);
2503 	return -ENOMEM;
2504 }
2505 
ext4_groupinfo_destroy_slabs(void)2506 static void ext4_groupinfo_destroy_slabs(void)
2507 {
2508 	int i;
2509 
2510 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2511 		if (ext4_groupinfo_caches[i])
2512 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2513 		ext4_groupinfo_caches[i] = NULL;
2514 	}
2515 }
2516 
ext4_groupinfo_create_slab(size_t size)2517 static int ext4_groupinfo_create_slab(size_t size)
2518 {
2519 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2520 	int slab_size;
2521 	int blocksize_bits = order_base_2(size);
2522 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2523 	struct kmem_cache *cachep;
2524 
2525 	if (cache_index >= NR_GRPINFO_CACHES)
2526 		return -EINVAL;
2527 
2528 	if (unlikely(cache_index < 0))
2529 		cache_index = 0;
2530 
2531 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2532 	if (ext4_groupinfo_caches[cache_index]) {
2533 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2534 		return 0;	/* Already created */
2535 	}
2536 
2537 	slab_size = offsetof(struct ext4_group_info,
2538 				bb_counters[blocksize_bits + 2]);
2539 
2540 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2541 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2542 					NULL);
2543 
2544 	ext4_groupinfo_caches[cache_index] = cachep;
2545 
2546 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2547 	if (!cachep) {
2548 		printk(KERN_EMERG
2549 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2550 		return -ENOMEM;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
ext4_mb_init(struct super_block * sb)2556 int ext4_mb_init(struct super_block *sb)
2557 {
2558 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2559 	unsigned i, j;
2560 	unsigned offset, offset_incr;
2561 	unsigned max;
2562 	int ret;
2563 
2564 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2565 
2566 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2567 	if (sbi->s_mb_offsets == NULL) {
2568 		ret = -ENOMEM;
2569 		goto out;
2570 	}
2571 
2572 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2573 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2574 	if (sbi->s_mb_maxs == NULL) {
2575 		ret = -ENOMEM;
2576 		goto out;
2577 	}
2578 
2579 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2580 	if (ret < 0)
2581 		goto out;
2582 
2583 	/* order 0 is regular bitmap */
2584 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2585 	sbi->s_mb_offsets[0] = 0;
2586 
2587 	i = 1;
2588 	offset = 0;
2589 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2590 	max = sb->s_blocksize << 2;
2591 	do {
2592 		sbi->s_mb_offsets[i] = offset;
2593 		sbi->s_mb_maxs[i] = max;
2594 		offset += offset_incr;
2595 		offset_incr = offset_incr >> 1;
2596 		max = max >> 1;
2597 		i++;
2598 	} while (i <= sb->s_blocksize_bits + 1);
2599 
2600 	spin_lock_init(&sbi->s_md_lock);
2601 	spin_lock_init(&sbi->s_bal_lock);
2602 
2603 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2604 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2605 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2606 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2607 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2608 	/*
2609 	 * The default group preallocation is 512, which for 4k block
2610 	 * sizes translates to 2 megabytes.  However for bigalloc file
2611 	 * systems, this is probably too big (i.e, if the cluster size
2612 	 * is 1 megabyte, then group preallocation size becomes half a
2613 	 * gigabyte!).  As a default, we will keep a two megabyte
2614 	 * group pralloc size for cluster sizes up to 64k, and after
2615 	 * that, we will force a minimum group preallocation size of
2616 	 * 32 clusters.  This translates to 8 megs when the cluster
2617 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2618 	 * which seems reasonable as a default.
2619 	 */
2620 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2621 				       sbi->s_cluster_bits, 32);
2622 	/*
2623 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2624 	 * to the lowest multiple of s_stripe which is bigger than
2625 	 * the s_mb_group_prealloc as determined above. We want
2626 	 * the preallocation size to be an exact multiple of the
2627 	 * RAID stripe size so that preallocations don't fragment
2628 	 * the stripes.
2629 	 */
2630 	if (sbi->s_stripe > 1) {
2631 		sbi->s_mb_group_prealloc = roundup(
2632 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2633 	}
2634 
2635 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2636 	if (sbi->s_locality_groups == NULL) {
2637 		ret = -ENOMEM;
2638 		goto out;
2639 	}
2640 	for_each_possible_cpu(i) {
2641 		struct ext4_locality_group *lg;
2642 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2643 		mutex_init(&lg->lg_mutex);
2644 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2645 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2646 		spin_lock_init(&lg->lg_prealloc_lock);
2647 	}
2648 
2649 	/* init file for buddy data */
2650 	ret = ext4_mb_init_backend(sb);
2651 	if (ret != 0)
2652 		goto out_free_locality_groups;
2653 
2654 	if (sbi->s_proc)
2655 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2656 				 &ext4_mb_seq_groups_fops, sb);
2657 
2658 	return 0;
2659 
2660 out_free_locality_groups:
2661 	free_percpu(sbi->s_locality_groups);
2662 	sbi->s_locality_groups = NULL;
2663 out:
2664 	kfree(sbi->s_mb_offsets);
2665 	sbi->s_mb_offsets = NULL;
2666 	kfree(sbi->s_mb_maxs);
2667 	sbi->s_mb_maxs = NULL;
2668 	return ret;
2669 }
2670 
2671 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2672 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2673 {
2674 	struct ext4_prealloc_space *pa;
2675 	struct list_head *cur, *tmp;
2676 	int count = 0;
2677 
2678 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2679 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2680 		list_del(&pa->pa_group_list);
2681 		count++;
2682 		kmem_cache_free(ext4_pspace_cachep, pa);
2683 	}
2684 	if (count)
2685 		mb_debug(1, "mballoc: %u PAs left\n", count);
2686 
2687 }
2688 
ext4_mb_release(struct super_block * sb)2689 int ext4_mb_release(struct super_block *sb)
2690 {
2691 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2692 	ext4_group_t i;
2693 	int num_meta_group_infos;
2694 	struct ext4_group_info *grinfo;
2695 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2696 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2697 
2698 	if (sbi->s_proc)
2699 		remove_proc_entry("mb_groups", sbi->s_proc);
2700 
2701 	if (sbi->s_group_info) {
2702 		for (i = 0; i < ngroups; i++) {
2703 			grinfo = ext4_get_group_info(sb, i);
2704 #ifdef DOUBLE_CHECK
2705 			kfree(grinfo->bb_bitmap);
2706 #endif
2707 			ext4_lock_group(sb, i);
2708 			ext4_mb_cleanup_pa(grinfo);
2709 			ext4_unlock_group(sb, i);
2710 			kmem_cache_free(cachep, grinfo);
2711 		}
2712 		num_meta_group_infos = (ngroups +
2713 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2714 			EXT4_DESC_PER_BLOCK_BITS(sb);
2715 		for (i = 0; i < num_meta_group_infos; i++)
2716 			kfree(sbi->s_group_info[i]);
2717 		ext4_kvfree(sbi->s_group_info);
2718 	}
2719 	kfree(sbi->s_mb_offsets);
2720 	kfree(sbi->s_mb_maxs);
2721 	if (sbi->s_buddy_cache)
2722 		iput(sbi->s_buddy_cache);
2723 	if (sbi->s_mb_stats) {
2724 		ext4_msg(sb, KERN_INFO,
2725 		       "mballoc: %u blocks %u reqs (%u success)",
2726 				atomic_read(&sbi->s_bal_allocated),
2727 				atomic_read(&sbi->s_bal_reqs),
2728 				atomic_read(&sbi->s_bal_success));
2729 		ext4_msg(sb, KERN_INFO,
2730 		      "mballoc: %u extents scanned, %u goal hits, "
2731 				"%u 2^N hits, %u breaks, %u lost",
2732 				atomic_read(&sbi->s_bal_ex_scanned),
2733 				atomic_read(&sbi->s_bal_goals),
2734 				atomic_read(&sbi->s_bal_2orders),
2735 				atomic_read(&sbi->s_bal_breaks),
2736 				atomic_read(&sbi->s_mb_lost_chunks));
2737 		ext4_msg(sb, KERN_INFO,
2738 		       "mballoc: %lu generated and it took %Lu",
2739 				sbi->s_mb_buddies_generated,
2740 				sbi->s_mb_generation_time);
2741 		ext4_msg(sb, KERN_INFO,
2742 		       "mballoc: %u preallocated, %u discarded",
2743 				atomic_read(&sbi->s_mb_preallocated),
2744 				atomic_read(&sbi->s_mb_discarded));
2745 	}
2746 
2747 	free_percpu(sbi->s_locality_groups);
2748 
2749 	return 0;
2750 }
2751 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,unsigned long flags)2752 static inline int ext4_issue_discard(struct super_block *sb,
2753 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2754 		unsigned long flags)
2755 {
2756 	ext4_fsblk_t discard_block;
2757 
2758 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2759 			 ext4_group_first_block_no(sb, block_group));
2760 	count = EXT4_C2B(EXT4_SB(sb), count);
2761 	trace_ext4_discard_blocks(sb,
2762 			(unsigned long long) discard_block, count);
2763 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, flags);
2764 }
2765 
2766 /*
2767  * This function is called by the jbd2 layer once the commit has finished,
2768  * so we know we can free the blocks that were released with that commit.
2769  */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2770 static void ext4_free_data_callback(struct super_block *sb,
2771 				    struct ext4_journal_cb_entry *jce,
2772 				    int rc)
2773 {
2774 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2775 	struct ext4_buddy e4b;
2776 	struct ext4_group_info *db;
2777 	int err, count = 0, count2 = 0;
2778 
2779 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2780 		 entry->efd_count, entry->efd_group, entry);
2781 
2782 	if (test_opt(sb, DISCARD)) {
2783 		err = ext4_issue_discard(sb, entry->efd_group,
2784 					 entry->efd_start_cluster,
2785 					 entry->efd_count, 0);
2786 		if (err && err != -EOPNOTSUPP)
2787 			ext4_msg(sb, KERN_WARNING, "discard request in"
2788 				 " group:%d block:%d count:%d failed"
2789 				 " with %d", entry->efd_group,
2790 				 entry->efd_start_cluster,
2791 				 entry->efd_count, err);
2792 	}
2793 
2794 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2795 	/* we expect to find existing buddy because it's pinned */
2796 	BUG_ON(err != 0);
2797 
2798 
2799 	db = e4b.bd_info;
2800 	/* there are blocks to put in buddy to make them really free */
2801 	count += entry->efd_count;
2802 	count2++;
2803 	ext4_lock_group(sb, entry->efd_group);
2804 	/* Take it out of per group rb tree */
2805 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2806 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2807 
2808 	/*
2809 	 * Clear the trimmed flag for the group so that the next
2810 	 * ext4_trim_fs can trim it.
2811 	 * If the volume is mounted with -o discard, online discard
2812 	 * is supported and the free blocks will be trimmed online.
2813 	 */
2814 	if (!test_opt(sb, DISCARD))
2815 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2816 
2817 	if (!db->bb_free_root.rb_node) {
2818 		/* No more items in the per group rb tree
2819 		 * balance refcounts from ext4_mb_free_metadata()
2820 		 */
2821 		page_cache_release(e4b.bd_buddy_page);
2822 		page_cache_release(e4b.bd_bitmap_page);
2823 	}
2824 	ext4_unlock_group(sb, entry->efd_group);
2825 	kmem_cache_free(ext4_free_data_cachep, entry);
2826 	ext4_mb_unload_buddy(&e4b);
2827 
2828 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2829 }
2830 
ext4_init_mballoc(void)2831 int __init ext4_init_mballoc(void)
2832 {
2833 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2834 					SLAB_RECLAIM_ACCOUNT);
2835 	if (ext4_pspace_cachep == NULL)
2836 		return -ENOMEM;
2837 
2838 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2839 				    SLAB_RECLAIM_ACCOUNT);
2840 	if (ext4_ac_cachep == NULL) {
2841 		kmem_cache_destroy(ext4_pspace_cachep);
2842 		return -ENOMEM;
2843 	}
2844 
2845 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2846 					   SLAB_RECLAIM_ACCOUNT);
2847 	if (ext4_free_data_cachep == NULL) {
2848 		kmem_cache_destroy(ext4_pspace_cachep);
2849 		kmem_cache_destroy(ext4_ac_cachep);
2850 		return -ENOMEM;
2851 	}
2852 	return 0;
2853 }
2854 
ext4_exit_mballoc(void)2855 void ext4_exit_mballoc(void)
2856 {
2857 	/*
2858 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2859 	 * before destroying the slab cache.
2860 	 */
2861 	rcu_barrier();
2862 	kmem_cache_destroy(ext4_pspace_cachep);
2863 	kmem_cache_destroy(ext4_ac_cachep);
2864 	kmem_cache_destroy(ext4_free_data_cachep);
2865 	ext4_groupinfo_destroy_slabs();
2866 }
2867 
2868 
2869 /*
2870  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2871  * Returns 0 if success or error code
2872  */
2873 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2874 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2875 				handle_t *handle, unsigned int reserv_clstrs)
2876 {
2877 	struct buffer_head *bitmap_bh = NULL;
2878 	struct ext4_group_desc *gdp;
2879 	struct buffer_head *gdp_bh;
2880 	struct ext4_sb_info *sbi;
2881 	struct super_block *sb;
2882 	ext4_fsblk_t block;
2883 	int err, len;
2884 
2885 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2886 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2887 
2888 	sb = ac->ac_sb;
2889 	sbi = EXT4_SB(sb);
2890 
2891 	err = -EIO;
2892 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2893 	if (!bitmap_bh)
2894 		goto out_err;
2895 
2896 	BUFFER_TRACE(bitmap_bh, "getting write access");
2897 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2898 	if (err)
2899 		goto out_err;
2900 
2901 	err = -EIO;
2902 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2903 	if (!gdp)
2904 		goto out_err;
2905 
2906 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2907 			ext4_free_group_clusters(sb, gdp));
2908 
2909 	BUFFER_TRACE(gdp_bh, "get_write_access");
2910 	err = ext4_journal_get_write_access(handle, gdp_bh);
2911 	if (err)
2912 		goto out_err;
2913 
2914 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2915 
2916 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2917 	if (!ext4_data_block_valid(sbi, block, len)) {
2918 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2919 			   "fs metadata", block, block+len);
2920 		/* File system mounted not to panic on error
2921 		 * Fix the bitmap and repeat the block allocation
2922 		 * We leak some of the blocks here.
2923 		 */
2924 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2925 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2926 			      ac->ac_b_ex.fe_len);
2927 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2928 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2929 		if (!err)
2930 			err = -EAGAIN;
2931 		goto out_err;
2932 	}
2933 
2934 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2935 #ifdef AGGRESSIVE_CHECK
2936 	{
2937 		int i;
2938 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2939 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2940 						bitmap_bh->b_data));
2941 		}
2942 	}
2943 #endif
2944 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2945 		      ac->ac_b_ex.fe_len);
2946 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2947 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2948 		ext4_free_group_clusters_set(sb, gdp,
2949 					     ext4_free_clusters_after_init(sb,
2950 						ac->ac_b_ex.fe_group, gdp));
2951 	}
2952 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2953 	ext4_free_group_clusters_set(sb, gdp, len);
2954 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2955 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2956 
2957 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2958 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2959 	/*
2960 	 * Now reduce the dirty block count also. Should not go negative
2961 	 */
2962 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2963 		/* release all the reserved blocks if non delalloc */
2964 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2965 				   reserv_clstrs);
2966 
2967 	if (sbi->s_log_groups_per_flex) {
2968 		ext4_group_t flex_group = ext4_flex_group(sbi,
2969 							  ac->ac_b_ex.fe_group);
2970 		atomic64_sub(ac->ac_b_ex.fe_len,
2971 			     &sbi->s_flex_groups[flex_group].free_clusters);
2972 	}
2973 
2974 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2975 	if (err)
2976 		goto out_err;
2977 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2978 
2979 out_err:
2980 	brelse(bitmap_bh);
2981 	return err;
2982 }
2983 
2984 /*
2985  * here we normalize request for locality group
2986  * Group request are normalized to s_mb_group_prealloc, which goes to
2987  * s_strip if we set the same via mount option.
2988  * s_mb_group_prealloc can be configured via
2989  * /sys/fs/ext4/<partition>/mb_group_prealloc
2990  *
2991  * XXX: should we try to preallocate more than the group has now?
2992  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)2993 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2994 {
2995 	struct super_block *sb = ac->ac_sb;
2996 	struct ext4_locality_group *lg = ac->ac_lg;
2997 
2998 	BUG_ON(lg == NULL);
2999 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3000 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3001 		current->pid, ac->ac_g_ex.fe_len);
3002 }
3003 
3004 /*
3005  * Normalization means making request better in terms of
3006  * size and alignment
3007  */
3008 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3009 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3010 				struct ext4_allocation_request *ar)
3011 {
3012 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3013 	int bsbits, max;
3014 	ext4_lblk_t end;
3015 	loff_t size, start_off;
3016 	loff_t orig_size __maybe_unused;
3017 	ext4_lblk_t start;
3018 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3019 	struct ext4_prealloc_space *pa;
3020 
3021 	/* do normalize only data requests, metadata requests
3022 	   do not need preallocation */
3023 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3024 		return;
3025 
3026 	/* sometime caller may want exact blocks */
3027 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3028 		return;
3029 
3030 	/* caller may indicate that preallocation isn't
3031 	 * required (it's a tail, for example) */
3032 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3033 		return;
3034 
3035 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3036 		ext4_mb_normalize_group_request(ac);
3037 		return ;
3038 	}
3039 
3040 	bsbits = ac->ac_sb->s_blocksize_bits;
3041 
3042 	/* first, let's learn actual file size
3043 	 * given current request is allocated */
3044 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3045 	size = size << bsbits;
3046 	if (size < i_size_read(ac->ac_inode))
3047 		size = i_size_read(ac->ac_inode);
3048 	orig_size = size;
3049 
3050 	/* max size of free chunks */
3051 	max = 2 << bsbits;
3052 
3053 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3054 		(req <= (size) || max <= (chunk_size))
3055 
3056 	/* first, try to predict filesize */
3057 	/* XXX: should this table be tunable? */
3058 	start_off = 0;
3059 	if (size <= 16 * 1024) {
3060 		size = 16 * 1024;
3061 	} else if (size <= 32 * 1024) {
3062 		size = 32 * 1024;
3063 	} else if (size <= 64 * 1024) {
3064 		size = 64 * 1024;
3065 	} else if (size <= 128 * 1024) {
3066 		size = 128 * 1024;
3067 	} else if (size <= 256 * 1024) {
3068 		size = 256 * 1024;
3069 	} else if (size <= 512 * 1024) {
3070 		size = 512 * 1024;
3071 	} else if (size <= 1024 * 1024) {
3072 		size = 1024 * 1024;
3073 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3074 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3075 						(21 - bsbits)) << 21;
3076 		size = 2 * 1024 * 1024;
3077 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3078 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3079 							(22 - bsbits)) << 22;
3080 		size = 4 * 1024 * 1024;
3081 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3082 					(8<<20)>>bsbits, max, 8 * 1024)) {
3083 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3084 							(23 - bsbits)) << 23;
3085 		size = 8 * 1024 * 1024;
3086 	} else {
3087 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3088 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3089 					      ac->ac_o_ex.fe_len) << bsbits;
3090 	}
3091 	size = size >> bsbits;
3092 	start = start_off >> bsbits;
3093 
3094 	/* don't cover already allocated blocks in selected range */
3095 	if (ar->pleft && start <= ar->lleft) {
3096 		size -= ar->lleft + 1 - start;
3097 		start = ar->lleft + 1;
3098 	}
3099 	if (ar->pright && start + size - 1 >= ar->lright)
3100 		size -= start + size - ar->lright;
3101 
3102 	end = start + size;
3103 
3104 	/* check we don't cross already preallocated blocks */
3105 	rcu_read_lock();
3106 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3107 		ext4_lblk_t pa_end;
3108 
3109 		if (pa->pa_deleted)
3110 			continue;
3111 		spin_lock(&pa->pa_lock);
3112 		if (pa->pa_deleted) {
3113 			spin_unlock(&pa->pa_lock);
3114 			continue;
3115 		}
3116 
3117 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3118 						  pa->pa_len);
3119 
3120 		/* PA must not overlap original request */
3121 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3122 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3123 
3124 		/* skip PAs this normalized request doesn't overlap with */
3125 		if (pa->pa_lstart >= end || pa_end <= start) {
3126 			spin_unlock(&pa->pa_lock);
3127 			continue;
3128 		}
3129 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3130 
3131 		/* adjust start or end to be adjacent to this pa */
3132 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3133 			BUG_ON(pa_end < start);
3134 			start = pa_end;
3135 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3136 			BUG_ON(pa->pa_lstart > end);
3137 			end = pa->pa_lstart;
3138 		}
3139 		spin_unlock(&pa->pa_lock);
3140 	}
3141 	rcu_read_unlock();
3142 	size = end - start;
3143 
3144 	/* XXX: extra loop to check we really don't overlap preallocations */
3145 	rcu_read_lock();
3146 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3147 		ext4_lblk_t pa_end;
3148 
3149 		spin_lock(&pa->pa_lock);
3150 		if (pa->pa_deleted == 0) {
3151 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3152 							  pa->pa_len);
3153 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3154 		}
3155 		spin_unlock(&pa->pa_lock);
3156 	}
3157 	rcu_read_unlock();
3158 
3159 	if (start + size <= ac->ac_o_ex.fe_logical &&
3160 			start > ac->ac_o_ex.fe_logical) {
3161 		ext4_msg(ac->ac_sb, KERN_ERR,
3162 			 "start %lu, size %lu, fe_logical %lu",
3163 			 (unsigned long) start, (unsigned long) size,
3164 			 (unsigned long) ac->ac_o_ex.fe_logical);
3165 		BUG();
3166 	}
3167 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3168 
3169 	/* now prepare goal request */
3170 
3171 	/* XXX: is it better to align blocks WRT to logical
3172 	 * placement or satisfy big request as is */
3173 	ac->ac_g_ex.fe_logical = start;
3174 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3175 
3176 	/* define goal start in order to merge */
3177 	if (ar->pright && (ar->lright == (start + size))) {
3178 		/* merge to the right */
3179 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3180 						&ac->ac_f_ex.fe_group,
3181 						&ac->ac_f_ex.fe_start);
3182 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3183 	}
3184 	if (ar->pleft && (ar->lleft + 1 == start)) {
3185 		/* merge to the left */
3186 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3187 						&ac->ac_f_ex.fe_group,
3188 						&ac->ac_f_ex.fe_start);
3189 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3190 	}
3191 
3192 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3193 		(unsigned) orig_size, (unsigned) start);
3194 }
3195 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3196 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3197 {
3198 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3199 
3200 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3201 		atomic_inc(&sbi->s_bal_reqs);
3202 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3203 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3204 			atomic_inc(&sbi->s_bal_success);
3205 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3206 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3207 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3208 			atomic_inc(&sbi->s_bal_goals);
3209 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3210 			atomic_inc(&sbi->s_bal_breaks);
3211 	}
3212 
3213 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3214 		trace_ext4_mballoc_alloc(ac);
3215 	else
3216 		trace_ext4_mballoc_prealloc(ac);
3217 }
3218 
3219 /*
3220  * Called on failure; free up any blocks from the inode PA for this
3221  * context.  We don't need this for MB_GROUP_PA because we only change
3222  * pa_free in ext4_mb_release_context(), but on failure, we've already
3223  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3224  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3225 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3226 {
3227 	struct ext4_prealloc_space *pa = ac->ac_pa;
3228 	struct ext4_buddy e4b;
3229 	int err;
3230 
3231 	if (pa == NULL) {
3232 		if (ac->ac_f_ex.fe_len == 0)
3233 			return;
3234 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3235 		if (err) {
3236 			/*
3237 			 * This should never happen since we pin the
3238 			 * pages in the ext4_allocation_context so
3239 			 * ext4_mb_load_buddy() should never fail.
3240 			 */
3241 			WARN(1, "mb_load_buddy failed (%d)", err);
3242 			return;
3243 		}
3244 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3245 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3246 			       ac->ac_f_ex.fe_len);
3247 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3248 		ext4_mb_unload_buddy(&e4b);
3249 		return;
3250 	}
3251 	if (pa->pa_type == MB_INODE_PA)
3252 		pa->pa_free += ac->ac_b_ex.fe_len;
3253 }
3254 
3255 /*
3256  * use blocks preallocated to inode
3257  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3258 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3259 				struct ext4_prealloc_space *pa)
3260 {
3261 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3262 	ext4_fsblk_t start;
3263 	ext4_fsblk_t end;
3264 	int len;
3265 
3266 	/* found preallocated blocks, use them */
3267 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3268 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3269 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3270 	len = EXT4_NUM_B2C(sbi, end - start);
3271 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3272 					&ac->ac_b_ex.fe_start);
3273 	ac->ac_b_ex.fe_len = len;
3274 	ac->ac_status = AC_STATUS_FOUND;
3275 	ac->ac_pa = pa;
3276 
3277 	BUG_ON(start < pa->pa_pstart);
3278 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3279 	BUG_ON(pa->pa_free < len);
3280 	pa->pa_free -= len;
3281 
3282 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3283 }
3284 
3285 /*
3286  * use blocks preallocated to locality group
3287  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3288 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3289 				struct ext4_prealloc_space *pa)
3290 {
3291 	unsigned int len = ac->ac_o_ex.fe_len;
3292 
3293 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3294 					&ac->ac_b_ex.fe_group,
3295 					&ac->ac_b_ex.fe_start);
3296 	ac->ac_b_ex.fe_len = len;
3297 	ac->ac_status = AC_STATUS_FOUND;
3298 	ac->ac_pa = pa;
3299 
3300 	/* we don't correct pa_pstart or pa_plen here to avoid
3301 	 * possible race when the group is being loaded concurrently
3302 	 * instead we correct pa later, after blocks are marked
3303 	 * in on-disk bitmap -- see ext4_mb_release_context()
3304 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3305 	 */
3306 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3307 }
3308 
3309 /*
3310  * Return the prealloc space that have minimal distance
3311  * from the goal block. @cpa is the prealloc
3312  * space that is having currently known minimal distance
3313  * from the goal block.
3314  */
3315 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3316 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3317 			struct ext4_prealloc_space *pa,
3318 			struct ext4_prealloc_space *cpa)
3319 {
3320 	ext4_fsblk_t cur_distance, new_distance;
3321 
3322 	if (cpa == NULL) {
3323 		atomic_inc(&pa->pa_count);
3324 		return pa;
3325 	}
3326 	cur_distance = abs(goal_block - cpa->pa_pstart);
3327 	new_distance = abs(goal_block - pa->pa_pstart);
3328 
3329 	if (cur_distance <= new_distance)
3330 		return cpa;
3331 
3332 	/* drop the previous reference */
3333 	atomic_dec(&cpa->pa_count);
3334 	atomic_inc(&pa->pa_count);
3335 	return pa;
3336 }
3337 
3338 /*
3339  * search goal blocks in preallocated space
3340  */
3341 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3342 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3343 {
3344 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3345 	int order, i;
3346 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3347 	struct ext4_locality_group *lg;
3348 	struct ext4_prealloc_space *pa, *cpa = NULL;
3349 	ext4_fsblk_t goal_block;
3350 
3351 	/* only data can be preallocated */
3352 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3353 		return 0;
3354 
3355 	/* first, try per-file preallocation */
3356 	rcu_read_lock();
3357 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3358 
3359 		/* all fields in this condition don't change,
3360 		 * so we can skip locking for them */
3361 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3362 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3363 					       EXT4_C2B(sbi, pa->pa_len)))
3364 			continue;
3365 
3366 		/* non-extent files can't have physical blocks past 2^32 */
3367 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3368 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3369 		     EXT4_MAX_BLOCK_FILE_PHYS))
3370 			continue;
3371 
3372 		/* found preallocated blocks, use them */
3373 		spin_lock(&pa->pa_lock);
3374 		if (pa->pa_deleted == 0 && pa->pa_free) {
3375 			atomic_inc(&pa->pa_count);
3376 			ext4_mb_use_inode_pa(ac, pa);
3377 			spin_unlock(&pa->pa_lock);
3378 			ac->ac_criteria = 10;
3379 			rcu_read_unlock();
3380 			return 1;
3381 		}
3382 		spin_unlock(&pa->pa_lock);
3383 	}
3384 	rcu_read_unlock();
3385 
3386 	/* can we use group allocation? */
3387 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3388 		return 0;
3389 
3390 	/* inode may have no locality group for some reason */
3391 	lg = ac->ac_lg;
3392 	if (lg == NULL)
3393 		return 0;
3394 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3395 	if (order > PREALLOC_TB_SIZE - 1)
3396 		/* The max size of hash table is PREALLOC_TB_SIZE */
3397 		order = PREALLOC_TB_SIZE - 1;
3398 
3399 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3400 	/*
3401 	 * search for the prealloc space that is having
3402 	 * minimal distance from the goal block.
3403 	 */
3404 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3405 		rcu_read_lock();
3406 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3407 					pa_inode_list) {
3408 			spin_lock(&pa->pa_lock);
3409 			if (pa->pa_deleted == 0 &&
3410 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3411 
3412 				cpa = ext4_mb_check_group_pa(goal_block,
3413 								pa, cpa);
3414 			}
3415 			spin_unlock(&pa->pa_lock);
3416 		}
3417 		rcu_read_unlock();
3418 	}
3419 	if (cpa) {
3420 		ext4_mb_use_group_pa(ac, cpa);
3421 		ac->ac_criteria = 20;
3422 		return 1;
3423 	}
3424 	return 0;
3425 }
3426 
3427 /*
3428  * the function goes through all block freed in the group
3429  * but not yet committed and marks them used in in-core bitmap.
3430  * buddy must be generated from this bitmap
3431  * Need to be called with the ext4 group lock held
3432  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3433 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3434 						ext4_group_t group)
3435 {
3436 	struct rb_node *n;
3437 	struct ext4_group_info *grp;
3438 	struct ext4_free_data *entry;
3439 
3440 	grp = ext4_get_group_info(sb, group);
3441 	n = rb_first(&(grp->bb_free_root));
3442 
3443 	while (n) {
3444 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3445 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3446 		n = rb_next(n);
3447 	}
3448 	return;
3449 }
3450 
3451 /*
3452  * the function goes through all preallocation in this group and marks them
3453  * used in in-core bitmap. buddy must be generated from this bitmap
3454  * Need to be called with ext4 group lock held
3455  */
3456 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3457 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3458 					ext4_group_t group)
3459 {
3460 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3461 	struct ext4_prealloc_space *pa;
3462 	struct list_head *cur;
3463 	ext4_group_t groupnr;
3464 	ext4_grpblk_t start;
3465 	int preallocated = 0;
3466 	int len;
3467 
3468 	/* all form of preallocation discards first load group,
3469 	 * so the only competing code is preallocation use.
3470 	 * we don't need any locking here
3471 	 * notice we do NOT ignore preallocations with pa_deleted
3472 	 * otherwise we could leave used blocks available for
3473 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3474 	 * is dropping preallocation
3475 	 */
3476 	list_for_each(cur, &grp->bb_prealloc_list) {
3477 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3478 		spin_lock(&pa->pa_lock);
3479 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3480 					     &groupnr, &start);
3481 		len = pa->pa_len;
3482 		spin_unlock(&pa->pa_lock);
3483 		if (unlikely(len == 0))
3484 			continue;
3485 		BUG_ON(groupnr != group);
3486 		ext4_set_bits(bitmap, start, len);
3487 		preallocated += len;
3488 	}
3489 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3490 }
3491 
ext4_mb_pa_callback(struct rcu_head * head)3492 static void ext4_mb_pa_callback(struct rcu_head *head)
3493 {
3494 	struct ext4_prealloc_space *pa;
3495 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3496 
3497 	BUG_ON(atomic_read(&pa->pa_count));
3498 	BUG_ON(pa->pa_deleted == 0);
3499 	kmem_cache_free(ext4_pspace_cachep, pa);
3500 }
3501 
3502 /*
3503  * drops a reference to preallocated space descriptor
3504  * if this was the last reference and the space is consumed
3505  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3506 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3507 			struct super_block *sb, struct ext4_prealloc_space *pa)
3508 {
3509 	ext4_group_t grp;
3510 	ext4_fsblk_t grp_blk;
3511 
3512 	/* in this short window concurrent discard can set pa_deleted */
3513 	spin_lock(&pa->pa_lock);
3514 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3515 		spin_unlock(&pa->pa_lock);
3516 		return;
3517 	}
3518 
3519 	if (pa->pa_deleted == 1) {
3520 		spin_unlock(&pa->pa_lock);
3521 		return;
3522 	}
3523 
3524 	pa->pa_deleted = 1;
3525 	spin_unlock(&pa->pa_lock);
3526 
3527 	grp_blk = pa->pa_pstart;
3528 	/*
3529 	 * If doing group-based preallocation, pa_pstart may be in the
3530 	 * next group when pa is used up
3531 	 */
3532 	if (pa->pa_type == MB_GROUP_PA)
3533 		grp_blk--;
3534 
3535 	grp = ext4_get_group_number(sb, grp_blk);
3536 
3537 	/*
3538 	 * possible race:
3539 	 *
3540 	 *  P1 (buddy init)			P2 (regular allocation)
3541 	 *					find block B in PA
3542 	 *  copy on-disk bitmap to buddy
3543 	 *  					mark B in on-disk bitmap
3544 	 *					drop PA from group
3545 	 *  mark all PAs in buddy
3546 	 *
3547 	 * thus, P1 initializes buddy with B available. to prevent this
3548 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3549 	 * against that pair
3550 	 */
3551 	ext4_lock_group(sb, grp);
3552 	list_del(&pa->pa_group_list);
3553 	ext4_unlock_group(sb, grp);
3554 
3555 	spin_lock(pa->pa_obj_lock);
3556 	list_del_rcu(&pa->pa_inode_list);
3557 	spin_unlock(pa->pa_obj_lock);
3558 
3559 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3560 }
3561 
3562 /*
3563  * creates new preallocated space for given inode
3564  */
3565 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3566 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3567 {
3568 	struct super_block *sb = ac->ac_sb;
3569 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3570 	struct ext4_prealloc_space *pa;
3571 	struct ext4_group_info *grp;
3572 	struct ext4_inode_info *ei;
3573 
3574 	/* preallocate only when found space is larger then requested */
3575 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3576 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3577 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3578 
3579 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3580 	if (pa == NULL)
3581 		return -ENOMEM;
3582 
3583 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3584 		int winl;
3585 		int wins;
3586 		int win;
3587 		int offs;
3588 
3589 		/* we can't allocate as much as normalizer wants.
3590 		 * so, found space must get proper lstart
3591 		 * to cover original request */
3592 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3593 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3594 
3595 		/* we're limited by original request in that
3596 		 * logical block must be covered any way
3597 		 * winl is window we can move our chunk within */
3598 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3599 
3600 		/* also, we should cover whole original request */
3601 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3602 
3603 		/* the smallest one defines real window */
3604 		win = min(winl, wins);
3605 
3606 		offs = ac->ac_o_ex.fe_logical %
3607 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3608 		if (offs && offs < win)
3609 			win = offs;
3610 
3611 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3612 			EXT4_NUM_B2C(sbi, win);
3613 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3614 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3615 	}
3616 
3617 	/* preallocation can change ac_b_ex, thus we store actually
3618 	 * allocated blocks for history */
3619 	ac->ac_f_ex = ac->ac_b_ex;
3620 
3621 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3622 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3623 	pa->pa_len = ac->ac_b_ex.fe_len;
3624 	pa->pa_free = pa->pa_len;
3625 	atomic_set(&pa->pa_count, 1);
3626 	spin_lock_init(&pa->pa_lock);
3627 	INIT_LIST_HEAD(&pa->pa_inode_list);
3628 	INIT_LIST_HEAD(&pa->pa_group_list);
3629 	pa->pa_deleted = 0;
3630 	pa->pa_type = MB_INODE_PA;
3631 
3632 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3633 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3634 	trace_ext4_mb_new_inode_pa(ac, pa);
3635 
3636 	ext4_mb_use_inode_pa(ac, pa);
3637 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3638 
3639 	ei = EXT4_I(ac->ac_inode);
3640 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3641 
3642 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3643 	pa->pa_inode = ac->ac_inode;
3644 
3645 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3646 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3647 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3648 
3649 	spin_lock(pa->pa_obj_lock);
3650 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3651 	spin_unlock(pa->pa_obj_lock);
3652 
3653 	return 0;
3654 }
3655 
3656 /*
3657  * creates new preallocated space for locality group inodes belongs to
3658  */
3659 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3660 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3661 {
3662 	struct super_block *sb = ac->ac_sb;
3663 	struct ext4_locality_group *lg;
3664 	struct ext4_prealloc_space *pa;
3665 	struct ext4_group_info *grp;
3666 
3667 	/* preallocate only when found space is larger then requested */
3668 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3669 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3670 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3671 
3672 	BUG_ON(ext4_pspace_cachep == NULL);
3673 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3674 	if (pa == NULL)
3675 		return -ENOMEM;
3676 
3677 	/* preallocation can change ac_b_ex, thus we store actually
3678 	 * allocated blocks for history */
3679 	ac->ac_f_ex = ac->ac_b_ex;
3680 
3681 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3682 	pa->pa_lstart = pa->pa_pstart;
3683 	pa->pa_len = ac->ac_b_ex.fe_len;
3684 	pa->pa_free = pa->pa_len;
3685 	atomic_set(&pa->pa_count, 1);
3686 	spin_lock_init(&pa->pa_lock);
3687 	INIT_LIST_HEAD(&pa->pa_inode_list);
3688 	INIT_LIST_HEAD(&pa->pa_group_list);
3689 	pa->pa_deleted = 0;
3690 	pa->pa_type = MB_GROUP_PA;
3691 
3692 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3693 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3694 	trace_ext4_mb_new_group_pa(ac, pa);
3695 
3696 	ext4_mb_use_group_pa(ac, pa);
3697 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3698 
3699 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3700 	lg = ac->ac_lg;
3701 	BUG_ON(lg == NULL);
3702 
3703 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3704 	pa->pa_inode = NULL;
3705 
3706 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3707 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3708 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3709 
3710 	/*
3711 	 * We will later add the new pa to the right bucket
3712 	 * after updating the pa_free in ext4_mb_release_context
3713 	 */
3714 	return 0;
3715 }
3716 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3717 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3718 {
3719 	int err;
3720 
3721 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3722 		err = ext4_mb_new_group_pa(ac);
3723 	else
3724 		err = ext4_mb_new_inode_pa(ac);
3725 	return err;
3726 }
3727 
3728 /*
3729  * finds all unused blocks in on-disk bitmap, frees them in
3730  * in-core bitmap and buddy.
3731  * @pa must be unlinked from inode and group lists, so that
3732  * nobody else can find/use it.
3733  * the caller MUST hold group/inode locks.
3734  * TODO: optimize the case when there are no in-core structures yet
3735  */
3736 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3737 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3738 			struct ext4_prealloc_space *pa)
3739 {
3740 	struct super_block *sb = e4b->bd_sb;
3741 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3742 	unsigned int end;
3743 	unsigned int next;
3744 	ext4_group_t group;
3745 	ext4_grpblk_t bit;
3746 	unsigned long long grp_blk_start;
3747 	int err = 0;
3748 	int free = 0;
3749 
3750 	BUG_ON(pa->pa_deleted == 0);
3751 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3752 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3753 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3754 	end = bit + pa->pa_len;
3755 
3756 	while (bit < end) {
3757 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3758 		if (bit >= end)
3759 			break;
3760 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3761 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3762 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3763 			 (unsigned) next - bit, (unsigned) group);
3764 		free += next - bit;
3765 
3766 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3767 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3768 						    EXT4_C2B(sbi, bit)),
3769 					       next - bit);
3770 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3771 		bit = next + 1;
3772 	}
3773 	if (free != pa->pa_free) {
3774 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3775 			 "pa %p: logic %lu, phys. %lu, len %lu",
3776 			 pa, (unsigned long) pa->pa_lstart,
3777 			 (unsigned long) pa->pa_pstart,
3778 			 (unsigned long) pa->pa_len);
3779 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3780 					free, pa->pa_free);
3781 		/*
3782 		 * pa is already deleted so we use the value obtained
3783 		 * from the bitmap and continue.
3784 		 */
3785 	}
3786 	atomic_add(free, &sbi->s_mb_discarded);
3787 
3788 	return err;
3789 }
3790 
3791 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3792 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3793 				struct ext4_prealloc_space *pa)
3794 {
3795 	struct super_block *sb = e4b->bd_sb;
3796 	ext4_group_t group;
3797 	ext4_grpblk_t bit;
3798 
3799 	trace_ext4_mb_release_group_pa(sb, pa);
3800 	BUG_ON(pa->pa_deleted == 0);
3801 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3802 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3803 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3804 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3805 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3806 
3807 	return 0;
3808 }
3809 
3810 /*
3811  * releases all preallocations in given group
3812  *
3813  * first, we need to decide discard policy:
3814  * - when do we discard
3815  *   1) ENOSPC
3816  * - how many do we discard
3817  *   1) how many requested
3818  */
3819 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3820 ext4_mb_discard_group_preallocations(struct super_block *sb,
3821 					ext4_group_t group, int needed)
3822 {
3823 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3824 	struct buffer_head *bitmap_bh = NULL;
3825 	struct ext4_prealloc_space *pa, *tmp;
3826 	struct list_head list;
3827 	struct ext4_buddy e4b;
3828 	int err;
3829 	int busy = 0;
3830 	int free = 0;
3831 
3832 	mb_debug(1, "discard preallocation for group %u\n", group);
3833 
3834 	if (list_empty(&grp->bb_prealloc_list))
3835 		return 0;
3836 
3837 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3838 	if (bitmap_bh == NULL) {
3839 		ext4_error(sb, "Error reading block bitmap for %u", group);
3840 		return 0;
3841 	}
3842 
3843 	err = ext4_mb_load_buddy(sb, group, &e4b);
3844 	if (err) {
3845 		ext4_error(sb, "Error loading buddy information for %u", group);
3846 		put_bh(bitmap_bh);
3847 		return 0;
3848 	}
3849 
3850 	if (needed == 0)
3851 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3852 
3853 	INIT_LIST_HEAD(&list);
3854 repeat:
3855 	ext4_lock_group(sb, group);
3856 	list_for_each_entry_safe(pa, tmp,
3857 				&grp->bb_prealloc_list, pa_group_list) {
3858 		spin_lock(&pa->pa_lock);
3859 		if (atomic_read(&pa->pa_count)) {
3860 			spin_unlock(&pa->pa_lock);
3861 			busy = 1;
3862 			continue;
3863 		}
3864 		if (pa->pa_deleted) {
3865 			spin_unlock(&pa->pa_lock);
3866 			continue;
3867 		}
3868 
3869 		/* seems this one can be freed ... */
3870 		pa->pa_deleted = 1;
3871 
3872 		/* we can trust pa_free ... */
3873 		free += pa->pa_free;
3874 
3875 		spin_unlock(&pa->pa_lock);
3876 
3877 		list_del(&pa->pa_group_list);
3878 		list_add(&pa->u.pa_tmp_list, &list);
3879 	}
3880 
3881 	/* if we still need more blocks and some PAs were used, try again */
3882 	if (free < needed && busy) {
3883 		busy = 0;
3884 		ext4_unlock_group(sb, group);
3885 		cond_resched();
3886 		goto repeat;
3887 	}
3888 
3889 	/* found anything to free? */
3890 	if (list_empty(&list)) {
3891 		BUG_ON(free != 0);
3892 		goto out;
3893 	}
3894 
3895 	/* now free all selected PAs */
3896 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3897 
3898 		/* remove from object (inode or locality group) */
3899 		spin_lock(pa->pa_obj_lock);
3900 		list_del_rcu(&pa->pa_inode_list);
3901 		spin_unlock(pa->pa_obj_lock);
3902 
3903 		if (pa->pa_type == MB_GROUP_PA)
3904 			ext4_mb_release_group_pa(&e4b, pa);
3905 		else
3906 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3907 
3908 		list_del(&pa->u.pa_tmp_list);
3909 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3910 	}
3911 
3912 out:
3913 	ext4_unlock_group(sb, group);
3914 	ext4_mb_unload_buddy(&e4b);
3915 	put_bh(bitmap_bh);
3916 	return free;
3917 }
3918 
3919 /*
3920  * releases all non-used preallocated blocks for given inode
3921  *
3922  * It's important to discard preallocations under i_data_sem
3923  * We don't want another block to be served from the prealloc
3924  * space when we are discarding the inode prealloc space.
3925  *
3926  * FIXME!! Make sure it is valid at all the call sites
3927  */
ext4_discard_preallocations(struct inode * inode)3928 void ext4_discard_preallocations(struct inode *inode)
3929 {
3930 	struct ext4_inode_info *ei = EXT4_I(inode);
3931 	struct super_block *sb = inode->i_sb;
3932 	struct buffer_head *bitmap_bh = NULL;
3933 	struct ext4_prealloc_space *pa, *tmp;
3934 	ext4_group_t group = 0;
3935 	struct list_head list;
3936 	struct ext4_buddy e4b;
3937 	int err;
3938 
3939 	if (!S_ISREG(inode->i_mode)) {
3940 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3941 		return;
3942 	}
3943 
3944 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3945 	trace_ext4_discard_preallocations(inode);
3946 
3947 	INIT_LIST_HEAD(&list);
3948 
3949 repeat:
3950 	/* first, collect all pa's in the inode */
3951 	spin_lock(&ei->i_prealloc_lock);
3952 	while (!list_empty(&ei->i_prealloc_list)) {
3953 		pa = list_entry(ei->i_prealloc_list.next,
3954 				struct ext4_prealloc_space, pa_inode_list);
3955 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3956 		spin_lock(&pa->pa_lock);
3957 		if (atomic_read(&pa->pa_count)) {
3958 			/* this shouldn't happen often - nobody should
3959 			 * use preallocation while we're discarding it */
3960 			spin_unlock(&pa->pa_lock);
3961 			spin_unlock(&ei->i_prealloc_lock);
3962 			ext4_msg(sb, KERN_ERR,
3963 				 "uh-oh! used pa while discarding");
3964 			WARN_ON(1);
3965 			schedule_timeout_uninterruptible(HZ);
3966 			goto repeat;
3967 
3968 		}
3969 		if (pa->pa_deleted == 0) {
3970 			pa->pa_deleted = 1;
3971 			spin_unlock(&pa->pa_lock);
3972 			list_del_rcu(&pa->pa_inode_list);
3973 			list_add(&pa->u.pa_tmp_list, &list);
3974 			continue;
3975 		}
3976 
3977 		/* someone is deleting pa right now */
3978 		spin_unlock(&pa->pa_lock);
3979 		spin_unlock(&ei->i_prealloc_lock);
3980 
3981 		/* we have to wait here because pa_deleted
3982 		 * doesn't mean pa is already unlinked from
3983 		 * the list. as we might be called from
3984 		 * ->clear_inode() the inode will get freed
3985 		 * and concurrent thread which is unlinking
3986 		 * pa from inode's list may access already
3987 		 * freed memory, bad-bad-bad */
3988 
3989 		/* XXX: if this happens too often, we can
3990 		 * add a flag to force wait only in case
3991 		 * of ->clear_inode(), but not in case of
3992 		 * regular truncate */
3993 		schedule_timeout_uninterruptible(HZ);
3994 		goto repeat;
3995 	}
3996 	spin_unlock(&ei->i_prealloc_lock);
3997 
3998 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3999 		BUG_ON(pa->pa_type != MB_INODE_PA);
4000 		group = ext4_get_group_number(sb, pa->pa_pstart);
4001 
4002 		err = ext4_mb_load_buddy(sb, group, &e4b);
4003 		if (err) {
4004 			ext4_error(sb, "Error loading buddy information for %u",
4005 					group);
4006 			continue;
4007 		}
4008 
4009 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4010 		if (bitmap_bh == NULL) {
4011 			ext4_error(sb, "Error reading block bitmap for %u",
4012 					group);
4013 			ext4_mb_unload_buddy(&e4b);
4014 			continue;
4015 		}
4016 
4017 		ext4_lock_group(sb, group);
4018 		list_del(&pa->pa_group_list);
4019 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4020 		ext4_unlock_group(sb, group);
4021 
4022 		ext4_mb_unload_buddy(&e4b);
4023 		put_bh(bitmap_bh);
4024 
4025 		list_del(&pa->u.pa_tmp_list);
4026 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4027 	}
4028 }
4029 
4030 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4031 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4032 {
4033 	struct super_block *sb = ac->ac_sb;
4034 	ext4_group_t ngroups, i;
4035 
4036 	if (!ext4_mballoc_debug ||
4037 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4038 		return;
4039 
4040 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4041 			" Allocation context details:");
4042 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4043 			ac->ac_status, ac->ac_flags);
4044 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4045 		 	"goal %lu/%lu/%lu@%lu, "
4046 			"best %lu/%lu/%lu@%lu cr %d",
4047 			(unsigned long)ac->ac_o_ex.fe_group,
4048 			(unsigned long)ac->ac_o_ex.fe_start,
4049 			(unsigned long)ac->ac_o_ex.fe_len,
4050 			(unsigned long)ac->ac_o_ex.fe_logical,
4051 			(unsigned long)ac->ac_g_ex.fe_group,
4052 			(unsigned long)ac->ac_g_ex.fe_start,
4053 			(unsigned long)ac->ac_g_ex.fe_len,
4054 			(unsigned long)ac->ac_g_ex.fe_logical,
4055 			(unsigned long)ac->ac_b_ex.fe_group,
4056 			(unsigned long)ac->ac_b_ex.fe_start,
4057 			(unsigned long)ac->ac_b_ex.fe_len,
4058 			(unsigned long)ac->ac_b_ex.fe_logical,
4059 			(int)ac->ac_criteria);
4060 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4061 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4062 	ngroups = ext4_get_groups_count(sb);
4063 	for (i = 0; i < ngroups; i++) {
4064 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4065 		struct ext4_prealloc_space *pa;
4066 		ext4_grpblk_t start;
4067 		struct list_head *cur;
4068 		ext4_lock_group(sb, i);
4069 		list_for_each(cur, &grp->bb_prealloc_list) {
4070 			pa = list_entry(cur, struct ext4_prealloc_space,
4071 					pa_group_list);
4072 			spin_lock(&pa->pa_lock);
4073 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4074 						     NULL, &start);
4075 			spin_unlock(&pa->pa_lock);
4076 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4077 			       start, pa->pa_len);
4078 		}
4079 		ext4_unlock_group(sb, i);
4080 
4081 		if (grp->bb_free == 0)
4082 			continue;
4083 		printk(KERN_ERR "%u: %d/%d \n",
4084 		       i, grp->bb_free, grp->bb_fragments);
4085 	}
4086 	printk(KERN_ERR "\n");
4087 }
4088 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4089 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4090 {
4091 	return;
4092 }
4093 #endif
4094 
4095 /*
4096  * We use locality group preallocation for small size file. The size of the
4097  * file is determined by the current size or the resulting size after
4098  * allocation which ever is larger
4099  *
4100  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4101  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4102 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4103 {
4104 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4105 	int bsbits = ac->ac_sb->s_blocksize_bits;
4106 	loff_t size, isize;
4107 
4108 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4109 		return;
4110 
4111 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4112 		return;
4113 
4114 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4115 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4116 		>> bsbits;
4117 
4118 	if ((size == isize) &&
4119 	    !ext4_fs_is_busy(sbi) &&
4120 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4121 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4122 		return;
4123 	}
4124 
4125 	if (sbi->s_mb_group_prealloc <= 0) {
4126 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4127 		return;
4128 	}
4129 
4130 	/* don't use group allocation for large files */
4131 	size = max(size, isize);
4132 	if (size > sbi->s_mb_stream_request) {
4133 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4134 		return;
4135 	}
4136 
4137 	BUG_ON(ac->ac_lg != NULL);
4138 	/*
4139 	 * locality group prealloc space are per cpu. The reason for having
4140 	 * per cpu locality group is to reduce the contention between block
4141 	 * request from multiple CPUs.
4142 	 */
4143 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4144 
4145 	/* we're going to use group allocation */
4146 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4147 
4148 	/* serialize all allocations in the group */
4149 	mutex_lock(&ac->ac_lg->lg_mutex);
4150 }
4151 
4152 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4153 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4154 				struct ext4_allocation_request *ar)
4155 {
4156 	struct super_block *sb = ar->inode->i_sb;
4157 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4158 	struct ext4_super_block *es = sbi->s_es;
4159 	ext4_group_t group;
4160 	unsigned int len;
4161 	ext4_fsblk_t goal;
4162 	ext4_grpblk_t block;
4163 
4164 	/* we can't allocate > group size */
4165 	len = ar->len;
4166 
4167 	/* just a dirty hack to filter too big requests  */
4168 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4169 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4170 
4171 	/* start searching from the goal */
4172 	goal = ar->goal;
4173 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4174 			goal >= ext4_blocks_count(es))
4175 		goal = le32_to_cpu(es->s_first_data_block);
4176 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4177 
4178 	/* set up allocation goals */
4179 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4180 	ac->ac_status = AC_STATUS_CONTINUE;
4181 	ac->ac_sb = sb;
4182 	ac->ac_inode = ar->inode;
4183 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4184 	ac->ac_o_ex.fe_group = group;
4185 	ac->ac_o_ex.fe_start = block;
4186 	ac->ac_o_ex.fe_len = len;
4187 	ac->ac_g_ex = ac->ac_o_ex;
4188 	ac->ac_flags = ar->flags;
4189 
4190 	/* we have to define context: we'll we work with a file or
4191 	 * locality group. this is a policy, actually */
4192 	ext4_mb_group_or_file(ac);
4193 
4194 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4195 			"left: %u/%u, right %u/%u to %swritable\n",
4196 			(unsigned) ar->len, (unsigned) ar->logical,
4197 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4198 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4199 			(unsigned) ar->lright, (unsigned) ar->pright,
4200 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4201 	return 0;
4202 
4203 }
4204 
4205 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4206 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4207 					struct ext4_locality_group *lg,
4208 					int order, int total_entries)
4209 {
4210 	ext4_group_t group = 0;
4211 	struct ext4_buddy e4b;
4212 	struct list_head discard_list;
4213 	struct ext4_prealloc_space *pa, *tmp;
4214 
4215 	mb_debug(1, "discard locality group preallocation\n");
4216 
4217 	INIT_LIST_HEAD(&discard_list);
4218 
4219 	spin_lock(&lg->lg_prealloc_lock);
4220 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4221 						pa_inode_list) {
4222 		spin_lock(&pa->pa_lock);
4223 		if (atomic_read(&pa->pa_count)) {
4224 			/*
4225 			 * This is the pa that we just used
4226 			 * for block allocation. So don't
4227 			 * free that
4228 			 */
4229 			spin_unlock(&pa->pa_lock);
4230 			continue;
4231 		}
4232 		if (pa->pa_deleted) {
4233 			spin_unlock(&pa->pa_lock);
4234 			continue;
4235 		}
4236 		/* only lg prealloc space */
4237 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4238 
4239 		/* seems this one can be freed ... */
4240 		pa->pa_deleted = 1;
4241 		spin_unlock(&pa->pa_lock);
4242 
4243 		list_del_rcu(&pa->pa_inode_list);
4244 		list_add(&pa->u.pa_tmp_list, &discard_list);
4245 
4246 		total_entries--;
4247 		if (total_entries <= 5) {
4248 			/*
4249 			 * we want to keep only 5 entries
4250 			 * allowing it to grow to 8. This
4251 			 * mak sure we don't call discard
4252 			 * soon for this list.
4253 			 */
4254 			break;
4255 		}
4256 	}
4257 	spin_unlock(&lg->lg_prealloc_lock);
4258 
4259 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4260 
4261 		group = ext4_get_group_number(sb, pa->pa_pstart);
4262 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4263 			ext4_error(sb, "Error loading buddy information for %u",
4264 					group);
4265 			continue;
4266 		}
4267 		ext4_lock_group(sb, group);
4268 		list_del(&pa->pa_group_list);
4269 		ext4_mb_release_group_pa(&e4b, pa);
4270 		ext4_unlock_group(sb, group);
4271 
4272 		ext4_mb_unload_buddy(&e4b);
4273 		list_del(&pa->u.pa_tmp_list);
4274 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4275 	}
4276 }
4277 
4278 /*
4279  * We have incremented pa_count. So it cannot be freed at this
4280  * point. Also we hold lg_mutex. So no parallel allocation is
4281  * possible from this lg. That means pa_free cannot be updated.
4282  *
4283  * A parallel ext4_mb_discard_group_preallocations is possible.
4284  * which can cause the lg_prealloc_list to be updated.
4285  */
4286 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4287 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4288 {
4289 	int order, added = 0, lg_prealloc_count = 1;
4290 	struct super_block *sb = ac->ac_sb;
4291 	struct ext4_locality_group *lg = ac->ac_lg;
4292 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4293 
4294 	order = fls(pa->pa_free) - 1;
4295 	if (order > PREALLOC_TB_SIZE - 1)
4296 		/* The max size of hash table is PREALLOC_TB_SIZE */
4297 		order = PREALLOC_TB_SIZE - 1;
4298 	/* Add the prealloc space to lg */
4299 	spin_lock(&lg->lg_prealloc_lock);
4300 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4301 						pa_inode_list) {
4302 		spin_lock(&tmp_pa->pa_lock);
4303 		if (tmp_pa->pa_deleted) {
4304 			spin_unlock(&tmp_pa->pa_lock);
4305 			continue;
4306 		}
4307 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4308 			/* Add to the tail of the previous entry */
4309 			list_add_tail_rcu(&pa->pa_inode_list,
4310 						&tmp_pa->pa_inode_list);
4311 			added = 1;
4312 			/*
4313 			 * we want to count the total
4314 			 * number of entries in the list
4315 			 */
4316 		}
4317 		spin_unlock(&tmp_pa->pa_lock);
4318 		lg_prealloc_count++;
4319 	}
4320 	if (!added)
4321 		list_add_tail_rcu(&pa->pa_inode_list,
4322 					&lg->lg_prealloc_list[order]);
4323 	spin_unlock(&lg->lg_prealloc_lock);
4324 
4325 	/* Now trim the list to be not more than 8 elements */
4326 	if (lg_prealloc_count > 8) {
4327 		ext4_mb_discard_lg_preallocations(sb, lg,
4328 						  order, lg_prealloc_count);
4329 		return;
4330 	}
4331 	return ;
4332 }
4333 
4334 /*
4335  * release all resource we used in allocation
4336  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4337 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4338 {
4339 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4340 	struct ext4_prealloc_space *pa = ac->ac_pa;
4341 	if (pa) {
4342 		if (pa->pa_type == MB_GROUP_PA) {
4343 			/* see comment in ext4_mb_use_group_pa() */
4344 			spin_lock(&pa->pa_lock);
4345 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4346 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4347 			pa->pa_free -= ac->ac_b_ex.fe_len;
4348 			pa->pa_len -= ac->ac_b_ex.fe_len;
4349 			spin_unlock(&pa->pa_lock);
4350 		}
4351 	}
4352 	if (pa) {
4353 		/*
4354 		 * We want to add the pa to the right bucket.
4355 		 * Remove it from the list and while adding
4356 		 * make sure the list to which we are adding
4357 		 * doesn't grow big.
4358 		 */
4359 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4360 			spin_lock(pa->pa_obj_lock);
4361 			list_del_rcu(&pa->pa_inode_list);
4362 			spin_unlock(pa->pa_obj_lock);
4363 			ext4_mb_add_n_trim(ac);
4364 		}
4365 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4366 	}
4367 	if (ac->ac_bitmap_page)
4368 		page_cache_release(ac->ac_bitmap_page);
4369 	if (ac->ac_buddy_page)
4370 		page_cache_release(ac->ac_buddy_page);
4371 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4372 		mutex_unlock(&ac->ac_lg->lg_mutex);
4373 	ext4_mb_collect_stats(ac);
4374 	return 0;
4375 }
4376 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4377 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4378 {
4379 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4380 	int ret;
4381 	int freed = 0;
4382 
4383 	trace_ext4_mb_discard_preallocations(sb, needed);
4384 	for (i = 0; i < ngroups && needed > 0; i++) {
4385 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4386 		freed += ret;
4387 		needed -= ret;
4388 	}
4389 
4390 	return freed;
4391 }
4392 
4393 /*
4394  * Main entry point into mballoc to allocate blocks
4395  * it tries to use preallocation first, then falls back
4396  * to usual allocation
4397  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4398 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4399 				struct ext4_allocation_request *ar, int *errp)
4400 {
4401 	int freed;
4402 	struct ext4_allocation_context *ac = NULL;
4403 	struct ext4_sb_info *sbi;
4404 	struct super_block *sb;
4405 	ext4_fsblk_t block = 0;
4406 	unsigned int inquota = 0;
4407 	unsigned int reserv_clstrs = 0;
4408 
4409 	might_sleep();
4410 	sb = ar->inode->i_sb;
4411 	sbi = EXT4_SB(sb);
4412 
4413 	trace_ext4_request_blocks(ar);
4414 
4415 	/* Allow to use superuser reservation for quota file */
4416 	if (IS_NOQUOTA(ar->inode))
4417 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4418 
4419 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4420 		/* Without delayed allocation we need to verify
4421 		 * there is enough free blocks to do block allocation
4422 		 * and verify allocation doesn't exceed the quota limits.
4423 		 */
4424 		while (ar->len &&
4425 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4426 
4427 			/* let others to free the space */
4428 			cond_resched();
4429 			ar->len = ar->len >> 1;
4430 		}
4431 		if (!ar->len) {
4432 			*errp = -ENOSPC;
4433 			return 0;
4434 		}
4435 		reserv_clstrs = ar->len;
4436 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4437 			dquot_alloc_block_nofail(ar->inode,
4438 						 EXT4_C2B(sbi, ar->len));
4439 		} else {
4440 			while (ar->len &&
4441 				dquot_alloc_block(ar->inode,
4442 						  EXT4_C2B(sbi, ar->len))) {
4443 
4444 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4445 				ar->len--;
4446 			}
4447 		}
4448 		inquota = ar->len;
4449 		if (ar->len == 0) {
4450 			*errp = -EDQUOT;
4451 			goto out;
4452 		}
4453 	}
4454 
4455 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4456 	if (!ac) {
4457 		ar->len = 0;
4458 		*errp = -ENOMEM;
4459 		goto out;
4460 	}
4461 
4462 	*errp = ext4_mb_initialize_context(ac, ar);
4463 	if (*errp) {
4464 		ar->len = 0;
4465 		goto out;
4466 	}
4467 
4468 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4469 	if (!ext4_mb_use_preallocated(ac)) {
4470 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4471 		ext4_mb_normalize_request(ac, ar);
4472 repeat:
4473 		/* allocate space in core */
4474 		*errp = ext4_mb_regular_allocator(ac);
4475 		if (*errp)
4476 			goto discard_and_exit;
4477 
4478 		/* as we've just preallocated more space than
4479 		 * user requested originally, we store allocated
4480 		 * space in a special descriptor */
4481 		if (ac->ac_status == AC_STATUS_FOUND &&
4482 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4483 			*errp = ext4_mb_new_preallocation(ac);
4484 		if (*errp) {
4485 		discard_and_exit:
4486 			ext4_discard_allocated_blocks(ac);
4487 			goto errout;
4488 		}
4489 	}
4490 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4491 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4492 		if (*errp == -EAGAIN) {
4493 			/*
4494 			 * drop the reference that we took
4495 			 * in ext4_mb_use_best_found
4496 			 */
4497 			ext4_mb_release_context(ac);
4498 			ac->ac_b_ex.fe_group = 0;
4499 			ac->ac_b_ex.fe_start = 0;
4500 			ac->ac_b_ex.fe_len = 0;
4501 			ac->ac_status = AC_STATUS_CONTINUE;
4502 			goto repeat;
4503 		} else if (*errp) {
4504 			ext4_discard_allocated_blocks(ac);
4505 			goto errout;
4506 		} else {
4507 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4508 			ar->len = ac->ac_b_ex.fe_len;
4509 		}
4510 	} else {
4511 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4512 		if (freed)
4513 			goto repeat;
4514 		*errp = -ENOSPC;
4515 	}
4516 
4517 errout:
4518 	if (*errp) {
4519 		ac->ac_b_ex.fe_len = 0;
4520 		ar->len = 0;
4521 		ext4_mb_show_ac(ac);
4522 	}
4523 	ext4_mb_release_context(ac);
4524 out:
4525 	if (ac)
4526 		kmem_cache_free(ext4_ac_cachep, ac);
4527 	if (inquota && ar->len < inquota)
4528 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4529 	if (!ar->len) {
4530 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4531 			/* release all the reserved blocks if non delalloc */
4532 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4533 						reserv_clstrs);
4534 	}
4535 
4536 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4537 
4538 	return block;
4539 }
4540 
4541 /*
4542  * We can merge two free data extents only if the physical blocks
4543  * are contiguous, AND the extents were freed by the same transaction,
4544  * AND the blocks are associated with the same group.
4545  */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4546 static int can_merge(struct ext4_free_data *entry1,
4547 			struct ext4_free_data *entry2)
4548 {
4549 	if ((entry1->efd_tid == entry2->efd_tid) &&
4550 	    (entry1->efd_group == entry2->efd_group) &&
4551 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4552 		return 1;
4553 	return 0;
4554 }
4555 
4556 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4557 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4558 		      struct ext4_free_data *new_entry)
4559 {
4560 	ext4_group_t group = e4b->bd_group;
4561 	ext4_grpblk_t cluster;
4562 	struct ext4_free_data *entry;
4563 	struct ext4_group_info *db = e4b->bd_info;
4564 	struct super_block *sb = e4b->bd_sb;
4565 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4566 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4567 	struct rb_node *parent = NULL, *new_node;
4568 
4569 	BUG_ON(!ext4_handle_valid(handle));
4570 	BUG_ON(e4b->bd_bitmap_page == NULL);
4571 	BUG_ON(e4b->bd_buddy_page == NULL);
4572 
4573 	new_node = &new_entry->efd_node;
4574 	cluster = new_entry->efd_start_cluster;
4575 
4576 	if (!*n) {
4577 		/* first free block exent. We need to
4578 		   protect buddy cache from being freed,
4579 		 * otherwise we'll refresh it from
4580 		 * on-disk bitmap and lose not-yet-available
4581 		 * blocks */
4582 		page_cache_get(e4b->bd_buddy_page);
4583 		page_cache_get(e4b->bd_bitmap_page);
4584 	}
4585 	while (*n) {
4586 		parent = *n;
4587 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4588 		if (cluster < entry->efd_start_cluster)
4589 			n = &(*n)->rb_left;
4590 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4591 			n = &(*n)->rb_right;
4592 		else {
4593 			ext4_grp_locked_error(sb, group, 0,
4594 				ext4_group_first_block_no(sb, group) +
4595 				EXT4_C2B(sbi, cluster),
4596 				"Block already on to-be-freed list");
4597 			return 0;
4598 		}
4599 	}
4600 
4601 	rb_link_node(new_node, parent, n);
4602 	rb_insert_color(new_node, &db->bb_free_root);
4603 
4604 	/* Now try to see the extent can be merged to left and right */
4605 	node = rb_prev(new_node);
4606 	if (node) {
4607 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4608 		if (can_merge(entry, new_entry) &&
4609 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4610 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4611 			new_entry->efd_count += entry->efd_count;
4612 			rb_erase(node, &(db->bb_free_root));
4613 			kmem_cache_free(ext4_free_data_cachep, entry);
4614 		}
4615 	}
4616 
4617 	node = rb_next(new_node);
4618 	if (node) {
4619 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4620 		if (can_merge(new_entry, entry) &&
4621 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4622 			new_entry->efd_count += entry->efd_count;
4623 			rb_erase(node, &(db->bb_free_root));
4624 			kmem_cache_free(ext4_free_data_cachep, entry);
4625 		}
4626 	}
4627 	/* Add the extent to transaction's private list */
4628 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4629 				  &new_entry->efd_jce);
4630 	return 0;
4631 }
4632 
4633 /**
4634  * ext4_free_blocks() -- Free given blocks and update quota
4635  * @handle:		handle for this transaction
4636  * @inode:		inode
4637  * @block:		start physical block to free
4638  * @count:		number of blocks to count
4639  * @flags:		flags used by ext4_free_blocks
4640  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4641 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4642 		      struct buffer_head *bh, ext4_fsblk_t block,
4643 		      unsigned long count, int flags)
4644 {
4645 	struct buffer_head *bitmap_bh = NULL;
4646 	struct super_block *sb = inode->i_sb;
4647 	struct ext4_group_desc *gdp;
4648 	unsigned int overflow;
4649 	ext4_grpblk_t bit;
4650 	struct buffer_head *gd_bh;
4651 	ext4_group_t block_group;
4652 	struct ext4_sb_info *sbi;
4653 	struct ext4_buddy e4b;
4654 	unsigned int count_clusters;
4655 	int err = 0;
4656 	int ret;
4657 
4658 	might_sleep();
4659 	if (bh) {
4660 		if (block)
4661 			BUG_ON(block != bh->b_blocknr);
4662 		else
4663 			block = bh->b_blocknr;
4664 	}
4665 
4666 	sbi = EXT4_SB(sb);
4667 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4668 	    !ext4_data_block_valid(sbi, block, count)) {
4669 		ext4_error(sb, "Freeing blocks not in datazone - "
4670 			   "block = %llu, count = %lu", block, count);
4671 		goto error_return;
4672 	}
4673 
4674 	ext4_debug("freeing block %llu\n", block);
4675 	trace_ext4_free_blocks(inode, block, count, flags);
4676 
4677 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4678 		struct buffer_head *tbh = bh;
4679 		int i;
4680 
4681 		BUG_ON(bh && (count > 1));
4682 
4683 		for (i = 0; i < count; i++) {
4684 			cond_resched();
4685 			if (!bh)
4686 				tbh = sb_find_get_block(inode->i_sb,
4687 							block + i);
4688 			if (!tbh)
4689 				continue;
4690 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4691 				    inode, tbh, block + i);
4692 		}
4693 	}
4694 
4695 	/*
4696 	 * We need to make sure we don't reuse the freed block until
4697 	 * after the transaction is committed, which we can do by
4698 	 * treating the block as metadata, below.  We make an
4699 	 * exception if the inode is to be written in writeback mode
4700 	 * since writeback mode has weak data consistency guarantees.
4701 	 */
4702 	if (!ext4_should_writeback_data(inode))
4703 		flags |= EXT4_FREE_BLOCKS_METADATA;
4704 
4705 	/*
4706 	 * If the extent to be freed does not begin on a cluster
4707 	 * boundary, we need to deal with partial clusters at the
4708 	 * beginning and end of the extent.  Normally we will free
4709 	 * blocks at the beginning or the end unless we are explicitly
4710 	 * requested to avoid doing so.
4711 	 */
4712 	overflow = EXT4_PBLK_COFF(sbi, block);
4713 	if (overflow) {
4714 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4715 			overflow = sbi->s_cluster_ratio - overflow;
4716 			block += overflow;
4717 			if (count > overflow)
4718 				count -= overflow;
4719 			else
4720 				return;
4721 		} else {
4722 			block -= overflow;
4723 			count += overflow;
4724 		}
4725 	}
4726 	overflow = EXT4_LBLK_COFF(sbi, count);
4727 	if (overflow) {
4728 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4729 			if (count > overflow)
4730 				count -= overflow;
4731 			else
4732 				return;
4733 		} else
4734 			count += sbi->s_cluster_ratio - overflow;
4735 	}
4736 
4737 do_more:
4738 	overflow = 0;
4739 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4740 
4741 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4742 			ext4_get_group_info(sb, block_group))))
4743 		return;
4744 
4745 	/*
4746 	 * Check to see if we are freeing blocks across a group
4747 	 * boundary.
4748 	 */
4749 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4750 		overflow = EXT4_C2B(sbi, bit) + count -
4751 			EXT4_BLOCKS_PER_GROUP(sb);
4752 		count -= overflow;
4753 	}
4754 	count_clusters = EXT4_NUM_B2C(sbi, count);
4755 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4756 	if (!bitmap_bh) {
4757 		err = -EIO;
4758 		goto error_return;
4759 	}
4760 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4761 	if (!gdp) {
4762 		err = -EIO;
4763 		goto error_return;
4764 	}
4765 
4766 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4767 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4768 	    in_range(block, ext4_inode_table(sb, gdp),
4769 		     EXT4_SB(sb)->s_itb_per_group) ||
4770 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4771 		     EXT4_SB(sb)->s_itb_per_group)) {
4772 
4773 		ext4_error(sb, "Freeing blocks in system zone - "
4774 			   "Block = %llu, count = %lu", block, count);
4775 		/* err = 0. ext4_std_error should be a no op */
4776 		goto error_return;
4777 	}
4778 
4779 	BUFFER_TRACE(bitmap_bh, "getting write access");
4780 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4781 	if (err)
4782 		goto error_return;
4783 
4784 	/*
4785 	 * We are about to modify some metadata.  Call the journal APIs
4786 	 * to unshare ->b_data if a currently-committing transaction is
4787 	 * using it
4788 	 */
4789 	BUFFER_TRACE(gd_bh, "get_write_access");
4790 	err = ext4_journal_get_write_access(handle, gd_bh);
4791 	if (err)
4792 		goto error_return;
4793 #ifdef AGGRESSIVE_CHECK
4794 	{
4795 		int i;
4796 		for (i = 0; i < count_clusters; i++)
4797 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4798 	}
4799 #endif
4800 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4801 
4802 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4803 	if (err)
4804 		goto error_return;
4805 
4806 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4807 		struct ext4_free_data *new_entry;
4808 		/*
4809 		 * blocks being freed are metadata. these blocks shouldn't
4810 		 * be used until this transaction is committed
4811 		 *
4812 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4813 		 * to fail.
4814 		 */
4815 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4816 				GFP_NOFS|__GFP_NOFAIL);
4817 		new_entry->efd_start_cluster = bit;
4818 		new_entry->efd_group = block_group;
4819 		new_entry->efd_count = count_clusters;
4820 		new_entry->efd_tid = handle->h_transaction->t_tid;
4821 
4822 		ext4_lock_group(sb, block_group);
4823 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4824 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4825 	} else {
4826 		/* need to update group_info->bb_free and bitmap
4827 		 * with group lock held. generate_buddy look at
4828 		 * them with group lock_held
4829 		 */
4830 		if (test_opt(sb, DISCARD)) {
4831 			err = ext4_issue_discard(sb, block_group, bit, count,
4832 						 0);
4833 			if (err && err != -EOPNOTSUPP)
4834 				ext4_msg(sb, KERN_WARNING, "discard request in"
4835 					 " group:%d block:%d count:%lu failed"
4836 					 " with %d", block_group, bit, count,
4837 					 err);
4838 		} else
4839 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4840 
4841 		ext4_lock_group(sb, block_group);
4842 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4844 	}
4845 
4846 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4847 	ext4_free_group_clusters_set(sb, gdp, ret);
4848 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4849 	ext4_group_desc_csum_set(sb, block_group, gdp);
4850 	ext4_unlock_group(sb, block_group);
4851 
4852 	if (sbi->s_log_groups_per_flex) {
4853 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4854 		atomic64_add(count_clusters,
4855 			     &sbi->s_flex_groups[flex_group].free_clusters);
4856 	}
4857 
4858 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4859 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4860 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4861 
4862 	ext4_mb_unload_buddy(&e4b);
4863 
4864 	/* We dirtied the bitmap block */
4865 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4866 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4867 
4868 	/* And the group descriptor block */
4869 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4870 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4871 	if (!err)
4872 		err = ret;
4873 
4874 	if (overflow && !err) {
4875 		block += count;
4876 		count = overflow;
4877 		put_bh(bitmap_bh);
4878 		goto do_more;
4879 	}
4880 error_return:
4881 	brelse(bitmap_bh);
4882 	ext4_std_error(sb, err);
4883 	return;
4884 }
4885 
4886 /**
4887  * ext4_group_add_blocks() -- Add given blocks to an existing group
4888  * @handle:			handle to this transaction
4889  * @sb:				super block
4890  * @block:			start physical block to add to the block group
4891  * @count:			number of blocks to free
4892  *
4893  * This marks the blocks as free in the bitmap and buddy.
4894  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4895 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4896 			 ext4_fsblk_t block, unsigned long count)
4897 {
4898 	struct buffer_head *bitmap_bh = NULL;
4899 	struct buffer_head *gd_bh;
4900 	ext4_group_t block_group;
4901 	ext4_grpblk_t bit;
4902 	unsigned int i;
4903 	struct ext4_group_desc *desc;
4904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 	struct ext4_buddy e4b;
4906 	int err = 0, ret, blk_free_count;
4907 	ext4_grpblk_t blocks_freed;
4908 
4909 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4910 
4911 	if (count == 0)
4912 		return 0;
4913 
4914 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4915 	/*
4916 	 * Check to see if we are freeing blocks across a group
4917 	 * boundary.
4918 	 */
4919 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4920 		ext4_warning(sb, "too much blocks added to group %u\n",
4921 			     block_group);
4922 		err = -EINVAL;
4923 		goto error_return;
4924 	}
4925 
4926 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4927 	if (!bitmap_bh) {
4928 		err = -EIO;
4929 		goto error_return;
4930 	}
4931 
4932 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4933 	if (!desc) {
4934 		err = -EIO;
4935 		goto error_return;
4936 	}
4937 
4938 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4939 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4940 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4941 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4942 		     sbi->s_itb_per_group)) {
4943 		ext4_error(sb, "Adding blocks in system zones - "
4944 			   "Block = %llu, count = %lu",
4945 			   block, count);
4946 		err = -EINVAL;
4947 		goto error_return;
4948 	}
4949 
4950 	BUFFER_TRACE(bitmap_bh, "getting write access");
4951 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4952 	if (err)
4953 		goto error_return;
4954 
4955 	/*
4956 	 * We are about to modify some metadata.  Call the journal APIs
4957 	 * to unshare ->b_data if a currently-committing transaction is
4958 	 * using it
4959 	 */
4960 	BUFFER_TRACE(gd_bh, "get_write_access");
4961 	err = ext4_journal_get_write_access(handle, gd_bh);
4962 	if (err)
4963 		goto error_return;
4964 
4965 	for (i = 0, blocks_freed = 0; i < count; i++) {
4966 		BUFFER_TRACE(bitmap_bh, "clear bit");
4967 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4968 			ext4_error(sb, "bit already cleared for block %llu",
4969 				   (ext4_fsblk_t)(block + i));
4970 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4971 		} else {
4972 			blocks_freed++;
4973 		}
4974 	}
4975 
4976 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4977 	if (err)
4978 		goto error_return;
4979 
4980 	/*
4981 	 * need to update group_info->bb_free and bitmap
4982 	 * with group lock held. generate_buddy look at
4983 	 * them with group lock_held
4984 	 */
4985 	ext4_lock_group(sb, block_group);
4986 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4987 	mb_free_blocks(NULL, &e4b, bit, count);
4988 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4989 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4990 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4991 	ext4_group_desc_csum_set(sb, block_group, desc);
4992 	ext4_unlock_group(sb, block_group);
4993 	percpu_counter_add(&sbi->s_freeclusters_counter,
4994 			   EXT4_NUM_B2C(sbi, blocks_freed));
4995 
4996 	if (sbi->s_log_groups_per_flex) {
4997 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4998 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4999 			     &sbi->s_flex_groups[flex_group].free_clusters);
5000 	}
5001 
5002 	ext4_mb_unload_buddy(&e4b);
5003 
5004 	/* We dirtied the bitmap block */
5005 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5006 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5007 
5008 	/* And the group descriptor block */
5009 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5010 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5011 	if (!err)
5012 		err = ret;
5013 
5014 error_return:
5015 	brelse(bitmap_bh);
5016 	ext4_std_error(sb, err);
5017 	return err;
5018 }
5019 
5020 /**
5021  * ext4_trim_extent -- function to TRIM one single free extent in the group
5022  * @sb:		super block for the file system
5023  * @start:	starting block of the free extent in the alloc. group
5024  * @count:	number of blocks to TRIM
5025  * @group:	alloc. group we are working with
5026  * @e4b:	ext4 buddy for the group
5027  * @blkdev_flags: flags for the block device
5028  *
5029  * Trim "count" blocks starting at "start" in the "group". To assure that no
5030  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5031  * be called with under the group lock.
5032  */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b,unsigned long blkdev_flags)5033 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5034 			    ext4_group_t group, struct ext4_buddy *e4b,
5035 			    unsigned long blkdev_flags)
5036 __releases(bitlock)
5037 __acquires(bitlock)
5038 {
5039 	struct ext4_free_extent ex;
5040 	int ret = 0;
5041 
5042 	trace_ext4_trim_extent(sb, group, start, count);
5043 
5044 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5045 
5046 	ex.fe_start = start;
5047 	ex.fe_group = group;
5048 	ex.fe_len = count;
5049 
5050 	/*
5051 	 * Mark blocks used, so no one can reuse them while
5052 	 * being trimmed.
5053 	 */
5054 	mb_mark_used(e4b, &ex);
5055 	ext4_unlock_group(sb, group);
5056 	ret = ext4_issue_discard(sb, group, start, count, blkdev_flags);
5057 	ext4_lock_group(sb, group);
5058 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5059 	return ret;
5060 }
5061 
5062 /**
5063  * ext4_trim_all_free -- function to trim all free space in alloc. group
5064  * @sb:			super block for file system
5065  * @group:		group to be trimmed
5066  * @start:		first group block to examine
5067  * @max:		last group block to examine
5068  * @minblocks:		minimum extent block count
5069  * @blkdev_flags:	flags for the block device
5070  *
5071  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5072  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5073  * the extent.
5074  *
5075  *
5076  * ext4_trim_all_free walks through group's block bitmap searching for free
5077  * extents. When the free extent is found, mark it as used in group buddy
5078  * bitmap. Then issue a TRIM command on this extent and free the extent in
5079  * the group buddy bitmap. This is done until whole group is scanned.
5080  */
5081 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks,unsigned long blkdev_flags)5082 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5083 		   ext4_grpblk_t start, ext4_grpblk_t max,
5084 		   ext4_grpblk_t minblocks, unsigned long blkdev_flags)
5085 {
5086 	void *bitmap;
5087 	ext4_grpblk_t next, count = 0, free_count = 0;
5088 	struct ext4_buddy e4b;
5089 	int ret = 0;
5090 
5091 	trace_ext4_trim_all_free(sb, group, start, max);
5092 
5093 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5094 	if (ret) {
5095 		ext4_error(sb, "Error in loading buddy "
5096 				"information for %u", group);
5097 		return ret;
5098 	}
5099 	bitmap = e4b.bd_bitmap;
5100 
5101 	ext4_lock_group(sb, group);
5102 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5103 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5104 		goto out;
5105 
5106 	start = (e4b.bd_info->bb_first_free > start) ?
5107 		e4b.bd_info->bb_first_free : start;
5108 
5109 	while (start <= max) {
5110 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5111 		if (start > max)
5112 			break;
5113 		next = mb_find_next_bit(bitmap, max + 1, start);
5114 
5115 		if ((next - start) >= minblocks) {
5116 			ret = ext4_trim_extent(sb, start,
5117 					       next - start, group, &e4b,
5118 					       blkdev_flags);
5119 			if (ret && ret != -EOPNOTSUPP)
5120 				break;
5121 			ret = 0;
5122 			count += next - start;
5123 		}
5124 		free_count += next - start;
5125 		start = next + 1;
5126 
5127 		if (fatal_signal_pending(current)) {
5128 			count = -ERESTARTSYS;
5129 			break;
5130 		}
5131 
5132 		if (need_resched()) {
5133 			ext4_unlock_group(sb, group);
5134 			cond_resched();
5135 			ext4_lock_group(sb, group);
5136 		}
5137 
5138 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5139 			break;
5140 	}
5141 
5142 	if (!ret) {
5143 		ret = count;
5144 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5145 	}
5146 out:
5147 	ext4_unlock_group(sb, group);
5148 	ext4_mb_unload_buddy(&e4b);
5149 
5150 	ext4_debug("trimmed %d blocks in the group %d\n",
5151 		count, group);
5152 
5153 	return ret;
5154 }
5155 
5156 /**
5157  * ext4_trim_fs() -- trim ioctl handle function
5158  * @sb:			superblock for filesystem
5159  * @range:		fstrim_range structure
5160  * @blkdev_flags:	flags for the block device
5161  *
5162  * start:	First Byte to trim
5163  * len:		number of Bytes to trim from start
5164  * minlen:	minimum extent length in Bytes
5165  * ext4_trim_fs goes through all allocation groups containing Bytes from
5166  * start to start+len. For each such a group ext4_trim_all_free function
5167  * is invoked to trim all free space.
5168  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range,unsigned long blkdev_flags)5169 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range,
5170 			unsigned long blkdev_flags)
5171 {
5172 	struct ext4_group_info *grp;
5173 	ext4_group_t group, first_group, last_group;
5174 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5175 	uint64_t start, end, minlen, trimmed = 0;
5176 	ext4_fsblk_t first_data_blk =
5177 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5178 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5179 	int ret = 0;
5180 
5181 	start = range->start >> sb->s_blocksize_bits;
5182 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5183 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5184 			      range->minlen >> sb->s_blocksize_bits);
5185 
5186 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5187 	    start >= max_blks ||
5188 	    range->len < sb->s_blocksize)
5189 		return -EINVAL;
5190 	if (end >= max_blks)
5191 		end = max_blks - 1;
5192 	if (end <= first_data_blk)
5193 		goto out;
5194 	if (start < first_data_blk)
5195 		start = first_data_blk;
5196 
5197 	/* Determine first and last group to examine based on start and end */
5198 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5199 				     &first_group, &first_cluster);
5200 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5201 				     &last_group, &last_cluster);
5202 
5203 	/* end now represents the last cluster to discard in this group */
5204 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5205 
5206 	for (group = first_group; group <= last_group; group++) {
5207 		grp = ext4_get_group_info(sb, group);
5208 		/* We only do this if the grp has never been initialized */
5209 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5210 			ret = ext4_mb_init_group(sb, group);
5211 			if (ret)
5212 				break;
5213 		}
5214 
5215 		/*
5216 		 * For all the groups except the last one, last cluster will
5217 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5218 		 * change it for the last group, note that last_cluster is
5219 		 * already computed earlier by ext4_get_group_no_and_offset()
5220 		 */
5221 		if (group == last_group)
5222 			end = last_cluster;
5223 
5224 		if (grp->bb_free >= minlen) {
5225 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5226 						end, minlen, blkdev_flags);
5227 			if (cnt < 0) {
5228 				ret = cnt;
5229 				break;
5230 			}
5231 			trimmed += cnt;
5232 		}
5233 
5234 		/*
5235 		 * For every group except the first one, we are sure
5236 		 * that the first cluster to discard will be cluster #0.
5237 		 */
5238 		first_cluster = 0;
5239 	}
5240 
5241 	if (!ret)
5242 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5243 
5244 out:
5245 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5246 	return ret;
5247 }
5248