• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /*
34  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
35  * These two lists should keep in accord with each other.
36  */
37 enum mem_cgroup_stat_index {
38 	/*
39 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
40 	 */
41 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
42 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
43 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
44 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
45 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
46 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
47 	MEM_CGROUP_STAT_NSTATS,
48 };
49 
50 struct mem_cgroup_reclaim_cookie {
51 	struct zone *zone;
52 	int priority;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
58 			  gfp_t gfp_mask, struct mem_cgroup **memcgp);
59 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
60 			      bool lrucare);
61 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
62 void mem_cgroup_uncharge(struct page *page);
63 void mem_cgroup_uncharge_list(struct list_head *page_list);
64 
65 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
66 			bool lrucare);
67 
68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70 
71 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
72 				  struct mem_cgroup *memcg);
73 bool task_in_mem_cgroup(struct task_struct *task,
74 			const struct mem_cgroup *memcg);
75 
76 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
77 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
78 
79 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
80 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
81 
82 static inline
mm_match_cgroup(const struct mm_struct * mm,const struct mem_cgroup * memcg)83 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
84 {
85 	struct mem_cgroup *task_memcg;
86 	bool match;
87 
88 	rcu_read_lock();
89 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
90 	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
91 	rcu_read_unlock();
92 	return match;
93 }
94 
95 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
96 
97 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
98 				   struct mem_cgroup *,
99 				   struct mem_cgroup_reclaim_cookie *);
100 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
101 
102 /*
103  * For memory reclaim.
104  */
105 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
106 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
107 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
108 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
109 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
110 					struct task_struct *p);
111 
mem_cgroup_oom_enable(void)112 static inline void mem_cgroup_oom_enable(void)
113 {
114 	WARN_ON(current->memcg_oom.may_oom);
115 	current->memcg_oom.may_oom = 1;
116 }
117 
mem_cgroup_oom_disable(void)118 static inline void mem_cgroup_oom_disable(void)
119 {
120 	WARN_ON(!current->memcg_oom.may_oom);
121 	current->memcg_oom.may_oom = 0;
122 }
123 
task_in_memcg_oom(struct task_struct * p)124 static inline bool task_in_memcg_oom(struct task_struct *p)
125 {
126 	return p->memcg_oom.memcg;
127 }
128 
129 bool mem_cgroup_oom_synchronize(bool wait);
130 
131 #ifdef CONFIG_MEMCG_SWAP
132 extern int do_swap_account;
133 #endif
134 
mem_cgroup_disabled(void)135 static inline bool mem_cgroup_disabled(void)
136 {
137 	if (memory_cgrp_subsys.disabled)
138 		return true;
139 	return false;
140 }
141 
142 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked,
143 					      unsigned long *flags);
144 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
145 			      unsigned long flags);
146 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
147 				 enum mem_cgroup_stat_index idx, int val);
148 
mem_cgroup_inc_page_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)149 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
150 					    enum mem_cgroup_stat_index idx)
151 {
152 	mem_cgroup_update_page_stat(memcg, idx, 1);
153 }
154 
mem_cgroup_dec_page_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)155 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
156 					    enum mem_cgroup_stat_index idx)
157 {
158 	mem_cgroup_update_page_stat(memcg, idx, -1);
159 }
160 
161 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
162 						gfp_t gfp_mask,
163 						unsigned long *total_scanned);
164 
165 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
mem_cgroup_count_vm_event(struct mm_struct * mm,enum vm_event_item idx)166 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
167 					     enum vm_event_item idx)
168 {
169 	if (mem_cgroup_disabled())
170 		return;
171 	__mem_cgroup_count_vm_event(mm, idx);
172 }
173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
174 void mem_cgroup_split_huge_fixup(struct page *head);
175 #endif
176 
177 #ifdef CONFIG_DEBUG_VM
178 bool mem_cgroup_bad_page_check(struct page *page);
179 void mem_cgroup_print_bad_page(struct page *page);
180 #endif
181 #else /* CONFIG_MEMCG */
182 struct mem_cgroup;
183 
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)184 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
185 					gfp_t gfp_mask,
186 					struct mem_cgroup **memcgp)
187 {
188 	*memcgp = NULL;
189 	return 0;
190 }
191 
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)192 static inline void mem_cgroup_commit_charge(struct page *page,
193 					    struct mem_cgroup *memcg,
194 					    bool lrucare)
195 {
196 }
197 
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)198 static inline void mem_cgroup_cancel_charge(struct page *page,
199 					    struct mem_cgroup *memcg)
200 {
201 }
202 
mem_cgroup_uncharge(struct page * page)203 static inline void mem_cgroup_uncharge(struct page *page)
204 {
205 }
206 
mem_cgroup_uncharge_list(struct list_head * page_list)207 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
208 {
209 }
210 
mem_cgroup_migrate(struct page * oldpage,struct page * newpage,bool lrucare)211 static inline void mem_cgroup_migrate(struct page *oldpage,
212 				      struct page *newpage,
213 				      bool lrucare)
214 {
215 }
216 
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)217 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
218 						    struct mem_cgroup *memcg)
219 {
220 	return &zone->lruvec;
221 }
222 
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)223 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
224 						    struct zone *zone)
225 {
226 	return &zone->lruvec;
227 }
228 
try_get_mem_cgroup_from_page(struct page * page)229 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
230 {
231 	return NULL;
232 }
233 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)234 static inline bool mm_match_cgroup(struct mm_struct *mm,
235 		struct mem_cgroup *memcg)
236 {
237 	return true;
238 }
239 
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)240 static inline bool task_in_mem_cgroup(struct task_struct *task,
241 				      const struct mem_cgroup *memcg)
242 {
243 	return true;
244 }
245 
246 static inline struct cgroup_subsys_state
mem_cgroup_css(struct mem_cgroup * memcg)247 		*mem_cgroup_css(struct mem_cgroup *memcg)
248 {
249 	return NULL;
250 }
251 
252 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)253 mem_cgroup_iter(struct mem_cgroup *root,
254 		struct mem_cgroup *prev,
255 		struct mem_cgroup_reclaim_cookie *reclaim)
256 {
257 	return NULL;
258 }
259 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)260 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
261 					 struct mem_cgroup *prev)
262 {
263 }
264 
mem_cgroup_disabled(void)265 static inline bool mem_cgroup_disabled(void)
266 {
267 	return true;
268 }
269 
270 static inline int
mem_cgroup_inactive_anon_is_low(struct lruvec * lruvec)271 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
272 {
273 	return 1;
274 }
275 
276 static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)277 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
278 {
279 	return 0;
280 }
281 
282 static inline void
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int increment)283 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
284 			      int increment)
285 {
286 }
287 
288 static inline void
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)289 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
290 {
291 }
292 
mem_cgroup_begin_page_stat(struct page * page,bool * locked,unsigned long * flags)293 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
294 					bool *locked, unsigned long *flags)
295 {
296 	return NULL;
297 }
298 
mem_cgroup_end_page_stat(struct mem_cgroup * memcg,bool locked,unsigned long flags)299 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg,
300 					bool locked, unsigned long flags)
301 {
302 }
303 
mem_cgroup_oom_enable(void)304 static inline void mem_cgroup_oom_enable(void)
305 {
306 }
307 
mem_cgroup_oom_disable(void)308 static inline void mem_cgroup_oom_disable(void)
309 {
310 }
311 
task_in_memcg_oom(struct task_struct * p)312 static inline bool task_in_memcg_oom(struct task_struct *p)
313 {
314 	return false;
315 }
316 
mem_cgroup_oom_synchronize(bool wait)317 static inline bool mem_cgroup_oom_synchronize(bool wait)
318 {
319 	return false;
320 }
321 
mem_cgroup_inc_page_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)322 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
323 					    enum mem_cgroup_stat_index idx)
324 {
325 }
326 
mem_cgroup_dec_page_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)327 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
328 					    enum mem_cgroup_stat_index idx)
329 {
330 }
331 
332 static inline
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)333 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
334 					    gfp_t gfp_mask,
335 					    unsigned long *total_scanned)
336 {
337 	return 0;
338 }
339 
mem_cgroup_split_huge_fixup(struct page * head)340 static inline void mem_cgroup_split_huge_fixup(struct page *head)
341 {
342 }
343 
344 static inline
mem_cgroup_count_vm_event(struct mm_struct * mm,enum vm_event_item idx)345 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
346 {
347 }
348 #endif /* CONFIG_MEMCG */
349 
350 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
351 static inline bool
mem_cgroup_bad_page_check(struct page * page)352 mem_cgroup_bad_page_check(struct page *page)
353 {
354 	return false;
355 }
356 
357 static inline void
mem_cgroup_print_bad_page(struct page * page)358 mem_cgroup_print_bad_page(struct page *page)
359 {
360 }
361 #endif
362 
363 enum {
364 	UNDER_LIMIT,
365 	SOFT_LIMIT,
366 	OVER_LIMIT,
367 };
368 
369 struct sock;
370 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
371 void sock_update_memcg(struct sock *sk);
372 void sock_release_memcg(struct sock *sk);
373 #else
sock_update_memcg(struct sock * sk)374 static inline void sock_update_memcg(struct sock *sk)
375 {
376 }
sock_release_memcg(struct sock * sk)377 static inline void sock_release_memcg(struct sock *sk)
378 {
379 }
380 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
381 
382 #ifdef CONFIG_MEMCG_KMEM
383 extern struct static_key memcg_kmem_enabled_key;
384 
385 extern int memcg_limited_groups_array_size;
386 
387 /*
388  * Helper macro to loop through all memcg-specific caches. Callers must still
389  * check if the cache is valid (it is either valid or NULL).
390  * the slab_mutex must be held when looping through those caches
391  */
392 #define for_each_memcg_cache_index(_idx)	\
393 	for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
394 
memcg_kmem_enabled(void)395 static inline bool memcg_kmem_enabled(void)
396 {
397 	return static_key_false(&memcg_kmem_enabled_key);
398 }
399 
400 /*
401  * In general, we'll do everything in our power to not incur in any overhead
402  * for non-memcg users for the kmem functions. Not even a function call, if we
403  * can avoid it.
404  *
405  * Therefore, we'll inline all those functions so that in the best case, we'll
406  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
407  * we'll still do most of the flag checking inline. We check a lot of
408  * conditions, but because they are pretty simple, they are expected to be
409  * fast.
410  */
411 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
412 					int order);
413 void __memcg_kmem_commit_charge(struct page *page,
414 				       struct mem_cgroup *memcg, int order);
415 void __memcg_kmem_uncharge_pages(struct page *page, int order);
416 
417 int memcg_cache_id(struct mem_cgroup *memcg);
418 
419 void memcg_update_array_size(int num_groups);
420 
421 struct kmem_cache *
422 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
423 
424 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order);
425 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order);
426 
427 int __memcg_cleanup_cache_params(struct kmem_cache *s);
428 
429 /**
430  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
431  * @gfp: the gfp allocation flags.
432  * @memcg: a pointer to the memcg this was charged against.
433  * @order: allocation order.
434  *
435  * returns true if the memcg where the current task belongs can hold this
436  * allocation.
437  *
438  * We return true automatically if this allocation is not to be accounted to
439  * any memcg.
440  */
441 static inline bool
memcg_kmem_newpage_charge(gfp_t gfp,struct mem_cgroup ** memcg,int order)442 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
443 {
444 	if (!memcg_kmem_enabled())
445 		return true;
446 
447 	/*
448 	 * __GFP_NOFAIL allocations will move on even if charging is not
449 	 * possible. Therefore we don't even try, and have this allocation
450 	 * unaccounted. We could in theory charge it with
451 	 * res_counter_charge_nofail, but we hope those allocations are rare,
452 	 * and won't be worth the trouble.
453 	 */
454 	if (gfp & __GFP_NOFAIL)
455 		return true;
456 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
457 		return true;
458 
459 	/* If the test is dying, just let it go. */
460 	if (unlikely(fatal_signal_pending(current)))
461 		return true;
462 
463 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
464 }
465 
466 /**
467  * memcg_kmem_uncharge_pages: uncharge pages from memcg
468  * @page: pointer to struct page being freed
469  * @order: allocation order.
470  *
471  * there is no need to specify memcg here, since it is embedded in page_cgroup
472  */
473 static inline void
memcg_kmem_uncharge_pages(struct page * page,int order)474 memcg_kmem_uncharge_pages(struct page *page, int order)
475 {
476 	if (memcg_kmem_enabled())
477 		__memcg_kmem_uncharge_pages(page, order);
478 }
479 
480 /**
481  * memcg_kmem_commit_charge: embeds correct memcg in a page
482  * @page: pointer to struct page recently allocated
483  * @memcg: the memcg structure we charged against
484  * @order: allocation order.
485  *
486  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
487  * failure of the allocation. if @page is NULL, this function will revert the
488  * charges. Otherwise, it will commit the memcg given by @memcg to the
489  * corresponding page_cgroup.
490  */
491 static inline void
memcg_kmem_commit_charge(struct page * page,struct mem_cgroup * memcg,int order)492 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
493 {
494 	if (memcg_kmem_enabled() && memcg)
495 		__memcg_kmem_commit_charge(page, memcg, order);
496 }
497 
498 /**
499  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
500  * @cachep: the original global kmem cache
501  * @gfp: allocation flags.
502  *
503  * All memory allocated from a per-memcg cache is charged to the owner memcg.
504  */
505 static __always_inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache * cachep,gfp_t gfp)506 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
507 {
508 	if (!memcg_kmem_enabled())
509 		return cachep;
510 	if (gfp & __GFP_NOFAIL)
511 		return cachep;
512 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
513 		return cachep;
514 	if (unlikely(fatal_signal_pending(current)))
515 		return cachep;
516 
517 	return __memcg_kmem_get_cache(cachep, gfp);
518 }
519 #else
520 #define for_each_memcg_cache_index(_idx)	\
521 	for (; NULL; )
522 
memcg_kmem_enabled(void)523 static inline bool memcg_kmem_enabled(void)
524 {
525 	return false;
526 }
527 
528 static inline bool
memcg_kmem_newpage_charge(gfp_t gfp,struct mem_cgroup ** memcg,int order)529 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
530 {
531 	return true;
532 }
533 
memcg_kmem_uncharge_pages(struct page * page,int order)534 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
535 {
536 }
537 
538 static inline void
memcg_kmem_commit_charge(struct page * page,struct mem_cgroup * memcg,int order)539 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
540 {
541 }
542 
memcg_cache_id(struct mem_cgroup * memcg)543 static inline int memcg_cache_id(struct mem_cgroup *memcg)
544 {
545 	return -1;
546 }
547 
548 static inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache * cachep,gfp_t gfp)549 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
550 {
551 	return cachep;
552 }
553 #endif /* CONFIG_MEMCG_KMEM */
554 #endif /* _LINUX_MEMCONTROL_H */
555 
556