• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
anon_vma_alloc(void)68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		anon_vma->degree = 1;	/* Reference for first vma */
76 		anon_vma->parent = anon_vma;
77 		/*
78 		 * Initialise the anon_vma root to point to itself. If called
79 		 * from fork, the root will be reset to the parents anon_vma.
80 		 */
81 		anon_vma->root = anon_vma;
82 	}
83 
84 	return anon_vma;
85 }
86 
anon_vma_free(struct anon_vma * anon_vma)87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 
91 	/*
92 	 * Synchronize against page_lock_anon_vma_read() such that
93 	 * we can safely hold the lock without the anon_vma getting
94 	 * freed.
95 	 *
96 	 * Relies on the full mb implied by the atomic_dec_and_test() from
97 	 * put_anon_vma() against the acquire barrier implied by
98 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 	 *
100 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
101 	 *   down_read_trylock()		  atomic_dec_and_test()
102 	 *   LOCK				  MB
103 	 *   atomic_read()			  rwsem_is_locked()
104 	 *
105 	 * LOCK should suffice since the actual taking of the lock must
106 	 * happen _before_ what follows.
107 	 */
108 	might_sleep();
109 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 		anon_vma_lock_write(anon_vma);
111 		anon_vma_unlock_write(anon_vma);
112 	}
113 
114 	kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116 
anon_vma_chain_alloc(gfp_t gfp)117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 				struct anon_vma_chain *avc,
129 				struct anon_vma *anon_vma)
130 {
131 	avc->vma = vma;
132 	avc->anon_vma = anon_vma;
133 	list_add(&avc->same_vma, &vma->anon_vma_chain);
134 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136 
137 /**
138  * anon_vma_prepare - attach an anon_vma to a memory region
139  * @vma: the memory region in question
140  *
141  * This makes sure the memory mapping described by 'vma' has
142  * an 'anon_vma' attached to it, so that we can associate the
143  * anonymous pages mapped into it with that anon_vma.
144  *
145  * The common case will be that we already have one, but if
146  * not we either need to find an adjacent mapping that we
147  * can re-use the anon_vma from (very common when the only
148  * reason for splitting a vma has been mprotect()), or we
149  * allocate a new one.
150  *
151  * Anon-vma allocations are very subtle, because we may have
152  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153  * and that may actually touch the spinlock even in the newly
154  * allocated vma (it depends on RCU to make sure that the
155  * anon_vma isn't actually destroyed).
156  *
157  * As a result, we need to do proper anon_vma locking even
158  * for the new allocation. At the same time, we do not want
159  * to do any locking for the common case of already having
160  * an anon_vma.
161  *
162  * This must be called with the mmap_sem held for reading.
163  */
anon_vma_prepare(struct vm_area_struct * vma)164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 	struct anon_vma *anon_vma = vma->anon_vma;
167 	struct anon_vma_chain *avc;
168 
169 	might_sleep();
170 	if (unlikely(!anon_vma)) {
171 		struct mm_struct *mm = vma->vm_mm;
172 		struct anon_vma *allocated;
173 
174 		avc = anon_vma_chain_alloc(GFP_KERNEL);
175 		if (!avc)
176 			goto out_enomem;
177 
178 		anon_vma = find_mergeable_anon_vma(vma);
179 		allocated = NULL;
180 		if (!anon_vma) {
181 			anon_vma = anon_vma_alloc();
182 			if (unlikely(!anon_vma))
183 				goto out_enomem_free_avc;
184 			allocated = anon_vma;
185 		}
186 
187 		anon_vma_lock_write(anon_vma);
188 		/* page_table_lock to protect against threads */
189 		spin_lock(&mm->page_table_lock);
190 		if (likely(!vma->anon_vma)) {
191 			vma->anon_vma = anon_vma;
192 			anon_vma_chain_link(vma, avc, anon_vma);
193 			/* vma reference or self-parent link for new root */
194 			anon_vma->degree++;
195 			allocated = NULL;
196 			avc = NULL;
197 		}
198 		spin_unlock(&mm->page_table_lock);
199 		anon_vma_unlock_write(anon_vma);
200 
201 		if (unlikely(allocated))
202 			put_anon_vma(allocated);
203 		if (unlikely(avc))
204 			anon_vma_chain_free(avc);
205 	}
206 	return 0;
207 
208  out_enomem_free_avc:
209 	anon_vma_chain_free(avc);
210  out_enomem:
211 	return -ENOMEM;
212 }
213 
214 /*
215  * This is a useful helper function for locking the anon_vma root as
216  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217  * have the same vma.
218  *
219  * Such anon_vma's should have the same root, so you'd expect to see
220  * just a single mutex_lock for the whole traversal.
221  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 	struct anon_vma *new_root = anon_vma->root;
225 	if (new_root != root) {
226 		if (WARN_ON_ONCE(root))
227 			up_write(&root->rwsem);
228 		root = new_root;
229 		down_write(&root->rwsem);
230 	}
231 	return root;
232 }
233 
unlock_anon_vma_root(struct anon_vma * root)234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 	if (root)
237 		up_write(&root->rwsem);
238 }
239 
240 /*
241  * Attach the anon_vmas from src to dst.
242  * Returns 0 on success, -ENOMEM on failure.
243  *
244  * If dst->anon_vma is NULL this function tries to find and reuse existing
245  * anon_vma which has no vmas and only one child anon_vma. This prevents
246  * degradation of anon_vma hierarchy to endless linear chain in case of
247  * constantly forking task. On the other hand, an anon_vma with more than one
248  * child isn't reused even if there was no alive vma, thus rmap walker has a
249  * good chance of avoiding scanning the whole hierarchy when it searches where
250  * page is mapped.
251  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 	struct anon_vma_chain *avc, *pavc;
255 	struct anon_vma *root = NULL;
256 
257 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 		struct anon_vma *anon_vma;
259 
260 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 		if (unlikely(!avc)) {
262 			unlock_anon_vma_root(root);
263 			root = NULL;
264 			avc = anon_vma_chain_alloc(GFP_KERNEL);
265 			if (!avc)
266 				goto enomem_failure;
267 		}
268 		anon_vma = pavc->anon_vma;
269 		root = lock_anon_vma_root(root, anon_vma);
270 		anon_vma_chain_link(dst, avc, anon_vma);
271 
272 		/*
273 		 * Reuse existing anon_vma if its degree lower than two,
274 		 * that means it has no vma and only one anon_vma child.
275 		 *
276 		 * Do not chose parent anon_vma, otherwise first child
277 		 * will always reuse it. Root anon_vma is never reused:
278 		 * it has self-parent reference and at least one child.
279 		 */
280 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 				anon_vma->degree < 2)
282 			dst->anon_vma = anon_vma;
283 	}
284 	if (dst->anon_vma)
285 		dst->anon_vma->degree++;
286 	unlock_anon_vma_root(root);
287 	return 0;
288 
289  enomem_failure:
290 	/*
291 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 	 * decremented in unlink_anon_vmas().
293 	 * We can safely do this because callers of anon_vma_clone() don't care
294 	 * about dst->anon_vma if anon_vma_clone() failed.
295 	 */
296 	dst->anon_vma = NULL;
297 	unlink_anon_vmas(dst);
298 	return -ENOMEM;
299 }
300 
301 /*
302  * Attach vma to its own anon_vma, as well as to the anon_vmas that
303  * the corresponding VMA in the parent process is attached to.
304  * Returns 0 on success, non-zero on failure.
305  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)306 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
307 {
308 	struct anon_vma_chain *avc;
309 	struct anon_vma *anon_vma;
310 	int error;
311 
312 	/* Don't bother if the parent process has no anon_vma here. */
313 	if (!pvma->anon_vma)
314 		return 0;
315 
316 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 	vma->anon_vma = NULL;
318 
319 	/*
320 	 * First, attach the new VMA to the parent VMA's anon_vmas,
321 	 * so rmap can find non-COWed pages in child processes.
322 	 */
323 	error = anon_vma_clone(vma, pvma);
324 	if (error)
325 		return error;
326 
327 	/* An existing anon_vma has been reused, all done then. */
328 	if (vma->anon_vma)
329 		return 0;
330 
331 	/* Then add our own anon_vma. */
332 	anon_vma = anon_vma_alloc();
333 	if (!anon_vma)
334 		goto out_error;
335 	avc = anon_vma_chain_alloc(GFP_KERNEL);
336 	if (!avc)
337 		goto out_error_free_anon_vma;
338 
339 	/*
340 	 * The root anon_vma's spinlock is the lock actually used when we
341 	 * lock any of the anon_vmas in this anon_vma tree.
342 	 */
343 	anon_vma->root = pvma->anon_vma->root;
344 	anon_vma->parent = pvma->anon_vma;
345 	/*
346 	 * With refcounts, an anon_vma can stay around longer than the
347 	 * process it belongs to. The root anon_vma needs to be pinned until
348 	 * this anon_vma is freed, because the lock lives in the root.
349 	 */
350 	get_anon_vma(anon_vma->root);
351 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
352 	vma->anon_vma = anon_vma;
353 	anon_vma_lock_write(anon_vma);
354 	anon_vma_chain_link(vma, avc, anon_vma);
355 	anon_vma->parent->degree++;
356 	anon_vma_unlock_write(anon_vma);
357 
358 	return 0;
359 
360  out_error_free_anon_vma:
361 	put_anon_vma(anon_vma);
362  out_error:
363 	unlink_anon_vmas(vma);
364 	return -ENOMEM;
365 }
366 
unlink_anon_vmas(struct vm_area_struct * vma)367 void unlink_anon_vmas(struct vm_area_struct *vma)
368 {
369 	struct anon_vma_chain *avc, *next;
370 	struct anon_vma *root = NULL;
371 
372 	/*
373 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
374 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
375 	 */
376 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
377 		struct anon_vma *anon_vma = avc->anon_vma;
378 
379 		root = lock_anon_vma_root(root, anon_vma);
380 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
381 
382 		/*
383 		 * Leave empty anon_vmas on the list - we'll need
384 		 * to free them outside the lock.
385 		 */
386 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387 			anon_vma->parent->degree--;
388 			continue;
389 		}
390 
391 		list_del(&avc->same_vma);
392 		anon_vma_chain_free(avc);
393 	}
394 	if (vma->anon_vma)
395 		vma->anon_vma->degree--;
396 	unlock_anon_vma_root(root);
397 
398 	/*
399 	 * Iterate the list once more, it now only contains empty and unlinked
400 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 	 * needing to write-acquire the anon_vma->root->rwsem.
402 	 */
403 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 		struct anon_vma *anon_vma = avc->anon_vma;
405 
406 		BUG_ON(anon_vma->degree);
407 		put_anon_vma(anon_vma);
408 
409 		list_del(&avc->same_vma);
410 		anon_vma_chain_free(avc);
411 	}
412 }
413 
anon_vma_ctor(void * data)414 static void anon_vma_ctor(void *data)
415 {
416 	struct anon_vma *anon_vma = data;
417 
418 	init_rwsem(&anon_vma->rwsem);
419 	atomic_set(&anon_vma->refcount, 0);
420 	anon_vma->rb_root = RB_ROOT;
421 }
422 
anon_vma_init(void)423 void __init anon_vma_init(void)
424 {
425 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
426 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
427 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
428 }
429 
430 /*
431  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
432  *
433  * Since there is no serialization what so ever against page_remove_rmap()
434  * the best this function can do is return a locked anon_vma that might
435  * have been relevant to this page.
436  *
437  * The page might have been remapped to a different anon_vma or the anon_vma
438  * returned may already be freed (and even reused).
439  *
440  * In case it was remapped to a different anon_vma, the new anon_vma will be a
441  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442  * ensure that any anon_vma obtained from the page will still be valid for as
443  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
444  *
445  * All users of this function must be very careful when walking the anon_vma
446  * chain and verify that the page in question is indeed mapped in it
447  * [ something equivalent to page_mapped_in_vma() ].
448  *
449  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450  * that the anon_vma pointer from page->mapping is valid if there is a
451  * mapcount, we can dereference the anon_vma after observing those.
452  */
page_get_anon_vma(struct page * page)453 struct anon_vma *page_get_anon_vma(struct page *page)
454 {
455 	struct anon_vma *anon_vma = NULL;
456 	unsigned long anon_mapping;
457 
458 	rcu_read_lock();
459 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 		goto out;
462 	if (!page_mapped(page))
463 		goto out;
464 
465 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467 		anon_vma = NULL;
468 		goto out;
469 	}
470 
471 	/*
472 	 * If this page is still mapped, then its anon_vma cannot have been
473 	 * freed.  But if it has been unmapped, we have no security against the
474 	 * anon_vma structure being freed and reused (for another anon_vma:
475 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 	 * above cannot corrupt).
477 	 */
478 	if (!page_mapped(page)) {
479 		rcu_read_unlock();
480 		put_anon_vma(anon_vma);
481 		return NULL;
482 	}
483 out:
484 	rcu_read_unlock();
485 
486 	return anon_vma;
487 }
488 
489 /*
490  * Similar to page_get_anon_vma() except it locks the anon_vma.
491  *
492  * Its a little more complex as it tries to keep the fast path to a single
493  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494  * reference like with page_get_anon_vma() and then block on the mutex.
495  */
page_lock_anon_vma_read(struct page * page)496 struct anon_vma *page_lock_anon_vma_read(struct page *page)
497 {
498 	struct anon_vma *anon_vma = NULL;
499 	struct anon_vma *root_anon_vma;
500 	unsigned long anon_mapping;
501 
502 	rcu_read_lock();
503 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
504 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505 		goto out;
506 	if (!page_mapped(page))
507 		goto out;
508 
509 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
510 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
511 	if (down_read_trylock(&root_anon_vma->rwsem)) {
512 		/*
513 		 * If the page is still mapped, then this anon_vma is still
514 		 * its anon_vma, and holding the mutex ensures that it will
515 		 * not go away, see anon_vma_free().
516 		 */
517 		if (!page_mapped(page)) {
518 			up_read(&root_anon_vma->rwsem);
519 			anon_vma = NULL;
520 		}
521 		goto out;
522 	}
523 
524 	/* trylock failed, we got to sleep */
525 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526 		anon_vma = NULL;
527 		goto out;
528 	}
529 
530 	if (!page_mapped(page)) {
531 		rcu_read_unlock();
532 		put_anon_vma(anon_vma);
533 		return NULL;
534 	}
535 
536 	/* we pinned the anon_vma, its safe to sleep */
537 	rcu_read_unlock();
538 	anon_vma_lock_read(anon_vma);
539 
540 	if (atomic_dec_and_test(&anon_vma->refcount)) {
541 		/*
542 		 * Oops, we held the last refcount, release the lock
543 		 * and bail -- can't simply use put_anon_vma() because
544 		 * we'll deadlock on the anon_vma_lock_write() recursion.
545 		 */
546 		anon_vma_unlock_read(anon_vma);
547 		__put_anon_vma(anon_vma);
548 		anon_vma = NULL;
549 	}
550 
551 	return anon_vma;
552 
553 out:
554 	rcu_read_unlock();
555 	return anon_vma;
556 }
557 
page_unlock_anon_vma_read(struct anon_vma * anon_vma)558 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
559 {
560 	anon_vma_unlock_read(anon_vma);
561 }
562 
563 /*
564  * At what user virtual address is page expected in @vma?
565  */
566 static inline unsigned long
__vma_address(struct page * page,struct vm_area_struct * vma)567 __vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 	pgoff_t pgoff = page_to_pgoff(page);
570 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
571 }
572 
573 inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)574 vma_address(struct page *page, struct vm_area_struct *vma)
575 {
576 	unsigned long address = __vma_address(page, vma);
577 
578 	/* page should be within @vma mapping range */
579 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
580 
581 	return address;
582 }
583 
584 /*
585  * At what user virtual address is page expected in vma?
586  * Caller should check the page is actually part of the vma.
587  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)588 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
589 {
590 	unsigned long address;
591 	if (PageAnon(page)) {
592 		struct anon_vma *page__anon_vma = page_anon_vma(page);
593 		/*
594 		 * Note: swapoff's unuse_vma() is more efficient with this
595 		 * check, and needs it to match anon_vma when KSM is active.
596 		 */
597 		if (!vma->anon_vma || !page__anon_vma ||
598 		    vma->anon_vma->root != page__anon_vma->root)
599 			return -EFAULT;
600 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
601 		if (!vma->vm_file ||
602 		    vma->vm_file->f_mapping != page->mapping)
603 			return -EFAULT;
604 	} else
605 		return -EFAULT;
606 	address = __vma_address(page, vma);
607 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
608 		return -EFAULT;
609 	return address;
610 }
611 
mm_find_pmd(struct mm_struct * mm,unsigned long address)612 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
613 {
614 	pgd_t *pgd;
615 	pud_t *pud;
616 	pmd_t *pmd = NULL;
617 	pmd_t pmde;
618 
619 	pgd = pgd_offset(mm, address);
620 	if (!pgd_present(*pgd))
621 		goto out;
622 
623 	pud = pud_offset(pgd, address);
624 	if (!pud_present(*pud))
625 		goto out;
626 
627 	pmd = pmd_offset(pud, address);
628 	/*
629 	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
630 	 * without holding anon_vma lock for write.  So when looking for a
631 	 * genuine pmde (in which to find pte), test present and !THP together.
632 	 */
633 	pmde = ACCESS_ONCE(*pmd);
634 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
635 		pmd = NULL;
636 out:
637 	return pmd;
638 }
639 
640 /*
641  * Check that @page is mapped at @address into @mm.
642  *
643  * If @sync is false, page_check_address may perform a racy check to avoid
644  * the page table lock when the pte is not present (helpful when reclaiming
645  * highly shared pages).
646  *
647  * On success returns with pte mapped and locked.
648  */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)649 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
650 			  unsigned long address, spinlock_t **ptlp, int sync)
651 {
652 	pmd_t *pmd;
653 	pte_t *pte;
654 	spinlock_t *ptl;
655 
656 	if (unlikely(PageHuge(page))) {
657 		/* when pud is not present, pte will be NULL */
658 		pte = huge_pte_offset(mm, address);
659 		if (!pte)
660 			return NULL;
661 
662 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
663 		goto check;
664 	}
665 
666 	pmd = mm_find_pmd(mm, address);
667 	if (!pmd)
668 		return NULL;
669 
670 	pte = pte_offset_map(pmd, address);
671 	/* Make a quick check before getting the lock */
672 	if (!sync && !pte_present(*pte)) {
673 		pte_unmap(pte);
674 		return NULL;
675 	}
676 
677 	ptl = pte_lockptr(mm, pmd);
678 check:
679 	spin_lock(ptl);
680 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
681 		*ptlp = ptl;
682 		return pte;
683 	}
684 	pte_unmap_unlock(pte, ptl);
685 	return NULL;
686 }
687 
688 /**
689  * page_mapped_in_vma - check whether a page is really mapped in a VMA
690  * @page: the page to test
691  * @vma: the VMA to test
692  *
693  * Returns 1 if the page is mapped into the page tables of the VMA, 0
694  * if the page is not mapped into the page tables of this VMA.  Only
695  * valid for normal file or anonymous VMAs.
696  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)697 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
698 {
699 	unsigned long address;
700 	pte_t *pte;
701 	spinlock_t *ptl;
702 
703 	address = __vma_address(page, vma);
704 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
705 		return 0;
706 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
707 	if (!pte)			/* the page is not in this mm */
708 		return 0;
709 	pte_unmap_unlock(pte, ptl);
710 
711 	return 1;
712 }
713 
714 struct page_referenced_arg {
715 	int mapcount;
716 	int referenced;
717 	unsigned long vm_flags;
718 	struct mem_cgroup *memcg;
719 };
720 /*
721  * arg: page_referenced_arg will be passed
722  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)723 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
724 			unsigned long address, void *arg)
725 {
726 	struct mm_struct *mm = vma->vm_mm;
727 	spinlock_t *ptl;
728 	int referenced = 0;
729 	struct page_referenced_arg *pra = arg;
730 
731 	if (unlikely(PageTransHuge(page))) {
732 		pmd_t *pmd;
733 
734 		/*
735 		 * rmap might return false positives; we must filter
736 		 * these out using page_check_address_pmd().
737 		 */
738 		pmd = page_check_address_pmd(page, mm, address,
739 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
740 		if (!pmd)
741 			return SWAP_AGAIN;
742 
743 		if (vma->vm_flags & VM_LOCKED) {
744 			spin_unlock(ptl);
745 			pra->vm_flags |= VM_LOCKED;
746 			return SWAP_FAIL; /* To break the loop */
747 		}
748 
749 		/* go ahead even if the pmd is pmd_trans_splitting() */
750 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
751 			referenced++;
752 		spin_unlock(ptl);
753 	} else {
754 		pte_t *pte;
755 
756 		/*
757 		 * rmap might return false positives; we must filter
758 		 * these out using page_check_address().
759 		 */
760 		pte = page_check_address(page, mm, address, &ptl, 0);
761 		if (!pte)
762 			return SWAP_AGAIN;
763 
764 		if (vma->vm_flags & VM_LOCKED) {
765 			pte_unmap_unlock(pte, ptl);
766 			pra->vm_flags |= VM_LOCKED;
767 			return SWAP_FAIL; /* To break the loop */
768 		}
769 
770 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
771 			/*
772 			 * Don't treat a reference through a sequentially read
773 			 * mapping as such.  If the page has been used in
774 			 * another mapping, we will catch it; if this other
775 			 * mapping is already gone, the unmap path will have
776 			 * set PG_referenced or activated the page.
777 			 */
778 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
779 				referenced++;
780 		}
781 		pte_unmap_unlock(pte, ptl);
782 	}
783 
784 	if (referenced) {
785 		pra->referenced++;
786 		pra->vm_flags |= vma->vm_flags;
787 	}
788 
789 	pra->mapcount--;
790 	if (!pra->mapcount)
791 		return SWAP_SUCCESS; /* To break the loop */
792 
793 	return SWAP_AGAIN;
794 }
795 
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)796 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
797 {
798 	struct page_referenced_arg *pra = arg;
799 	struct mem_cgroup *memcg = pra->memcg;
800 
801 	if (!mm_match_cgroup(vma->vm_mm, memcg))
802 		return true;
803 
804 	return false;
805 }
806 
807 /**
808  * page_referenced - test if the page was referenced
809  * @page: the page to test
810  * @is_locked: caller holds lock on the page
811  * @memcg: target memory cgroup
812  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813  *
814  * Quick test_and_clear_referenced for all mappings to a page,
815  * returns the number of ptes which referenced the page.
816  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)817 int page_referenced(struct page *page,
818 		    int is_locked,
819 		    struct mem_cgroup *memcg,
820 		    unsigned long *vm_flags)
821 {
822 	int ret;
823 	int we_locked = 0;
824 	struct page_referenced_arg pra = {
825 		.mapcount = page_mapcount(page),
826 		.memcg = memcg,
827 	};
828 	struct rmap_walk_control rwc = {
829 		.rmap_one = page_referenced_one,
830 		.arg = (void *)&pra,
831 		.anon_lock = page_lock_anon_vma_read,
832 	};
833 
834 	*vm_flags = 0;
835 	if (!page_mapped(page))
836 		return 0;
837 
838 	if (!page_rmapping(page))
839 		return 0;
840 
841 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
842 		we_locked = trylock_page(page);
843 		if (!we_locked)
844 			return 1;
845 	}
846 
847 	/*
848 	 * If we are reclaiming on behalf of a cgroup, skip
849 	 * counting on behalf of references from different
850 	 * cgroups
851 	 */
852 	if (memcg) {
853 		rwc.invalid_vma = invalid_page_referenced_vma;
854 	}
855 
856 	ret = rmap_walk(page, &rwc);
857 	*vm_flags = pra.vm_flags;
858 
859 	if (we_locked)
860 		unlock_page(page);
861 
862 	return pra.referenced;
863 }
864 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)865 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
866 			    unsigned long address, void *arg)
867 {
868 	struct mm_struct *mm = vma->vm_mm;
869 	pte_t *pte;
870 	spinlock_t *ptl;
871 	int ret = 0;
872 	int *cleaned = arg;
873 
874 	pte = page_check_address(page, mm, address, &ptl, 1);
875 	if (!pte)
876 		goto out;
877 
878 	if (pte_dirty(*pte) || pte_write(*pte)) {
879 		pte_t entry;
880 
881 		flush_cache_page(vma, address, pte_pfn(*pte));
882 		entry = ptep_clear_flush(vma, address, pte);
883 		entry = pte_wrprotect(entry);
884 		entry = pte_mkclean(entry);
885 		set_pte_at(mm, address, pte, entry);
886 		ret = 1;
887 	}
888 
889 	pte_unmap_unlock(pte, ptl);
890 
891 	if (ret) {
892 		mmu_notifier_invalidate_page(mm, address);
893 		(*cleaned)++;
894 	}
895 out:
896 	return SWAP_AGAIN;
897 }
898 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)899 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
900 {
901 	if (vma->vm_flags & VM_SHARED)
902 		return false;
903 
904 	return true;
905 }
906 
page_mkclean(struct page * page)907 int page_mkclean(struct page *page)
908 {
909 	int cleaned = 0;
910 	struct address_space *mapping;
911 	struct rmap_walk_control rwc = {
912 		.arg = (void *)&cleaned,
913 		.rmap_one = page_mkclean_one,
914 		.invalid_vma = invalid_mkclean_vma,
915 	};
916 
917 	BUG_ON(!PageLocked(page));
918 
919 	if (!page_mapped(page))
920 		return 0;
921 
922 	mapping = page_mapping(page);
923 	if (!mapping)
924 		return 0;
925 
926 	rmap_walk(page, &rwc);
927 
928 	return cleaned;
929 }
930 EXPORT_SYMBOL_GPL(page_mkclean);
931 
932 /**
933  * page_move_anon_rmap - move a page to our anon_vma
934  * @page:	the page to move to our anon_vma
935  * @vma:	the vma the page belongs to
936  * @address:	the user virtual address mapped
937  *
938  * When a page belongs exclusively to one process after a COW event,
939  * that page can be moved into the anon_vma that belongs to just that
940  * process, so the rmap code will not search the parent or sibling
941  * processes.
942  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)943 void page_move_anon_rmap(struct page *page,
944 	struct vm_area_struct *vma, unsigned long address)
945 {
946 	struct anon_vma *anon_vma = vma->anon_vma;
947 
948 	VM_BUG_ON_PAGE(!PageLocked(page), page);
949 	VM_BUG_ON_VMA(!anon_vma, vma);
950 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
951 
952 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
953 	page->mapping = (struct address_space *) anon_vma;
954 }
955 
956 /**
957  * __page_set_anon_rmap - set up new anonymous rmap
958  * @page:	Page to add to rmap
959  * @vma:	VM area to add page to.
960  * @address:	User virtual address of the mapping
961  * @exclusive:	the page is exclusively owned by the current process
962  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)963 static void __page_set_anon_rmap(struct page *page,
964 	struct vm_area_struct *vma, unsigned long address, int exclusive)
965 {
966 	struct anon_vma *anon_vma = vma->anon_vma;
967 
968 	BUG_ON(!anon_vma);
969 
970 	if (PageAnon(page))
971 		return;
972 
973 	/*
974 	 * If the page isn't exclusively mapped into this vma,
975 	 * we must use the _oldest_ possible anon_vma for the
976 	 * page mapping!
977 	 */
978 	if (!exclusive)
979 		anon_vma = anon_vma->root;
980 
981 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
982 	page->mapping = (struct address_space *) anon_vma;
983 	page->index = linear_page_index(vma, address);
984 }
985 
986 /**
987  * __page_check_anon_rmap - sanity check anonymous rmap addition
988  * @page:	the page to add the mapping to
989  * @vma:	the vm area in which the mapping is added
990  * @address:	the user virtual address mapped
991  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)992 static void __page_check_anon_rmap(struct page *page,
993 	struct vm_area_struct *vma, unsigned long address)
994 {
995 #ifdef CONFIG_DEBUG_VM
996 	/*
997 	 * The page's anon-rmap details (mapping and index) are guaranteed to
998 	 * be set up correctly at this point.
999 	 *
1000 	 * We have exclusion against page_add_anon_rmap because the caller
1001 	 * always holds the page locked, except if called from page_dup_rmap,
1002 	 * in which case the page is already known to be setup.
1003 	 *
1004 	 * We have exclusion against page_add_new_anon_rmap because those pages
1005 	 * are initially only visible via the pagetables, and the pte is locked
1006 	 * over the call to page_add_new_anon_rmap.
1007 	 */
1008 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1009 	BUG_ON(page->index != linear_page_index(vma, address));
1010 #endif
1011 }
1012 
1013 /**
1014  * page_add_anon_rmap - add pte mapping to an anonymous page
1015  * @page:	the page to add the mapping to
1016  * @vma:	the vm area in which the mapping is added
1017  * @address:	the user virtual address mapped
1018  *
1019  * The caller needs to hold the pte lock, and the page must be locked in
1020  * the anon_vma case: to serialize mapping,index checking after setting,
1021  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1022  * (but PageKsm is never downgraded to PageAnon).
1023  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1024 void page_add_anon_rmap(struct page *page,
1025 	struct vm_area_struct *vma, unsigned long address)
1026 {
1027 	do_page_add_anon_rmap(page, vma, address, 0);
1028 }
1029 
1030 /*
1031  * Special version of the above for do_swap_page, which often runs
1032  * into pages that are exclusively owned by the current process.
1033  * Everybody else should continue to use page_add_anon_rmap above.
1034  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1035 void do_page_add_anon_rmap(struct page *page,
1036 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1037 {
1038 	int first = atomic_inc_and_test(&page->_mapcount);
1039 	if (first) {
1040 		/*
1041 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1042 		 * these counters are not modified in interrupt context, and
1043 		 * pte lock(a spinlock) is held, which implies preemption
1044 		 * disabled.
1045 		 */
1046 		if (PageTransHuge(page))
1047 			__inc_zone_page_state(page,
1048 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1049 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1050 				hpage_nr_pages(page));
1051 	}
1052 	if (unlikely(PageKsm(page)))
1053 		return;
1054 
1055 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1056 	/* address might be in next vma when migration races vma_adjust */
1057 	if (first)
1058 		__page_set_anon_rmap(page, vma, address, exclusive);
1059 	else
1060 		__page_check_anon_rmap(page, vma, address);
1061 }
1062 
1063 /**
1064  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065  * @page:	the page to add the mapping to
1066  * @vma:	the vm area in which the mapping is added
1067  * @address:	the user virtual address mapped
1068  *
1069  * Same as page_add_anon_rmap but must only be called on *new* pages.
1070  * This means the inc-and-test can be bypassed.
1071  * Page does not have to be locked.
1072  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1073 void page_add_new_anon_rmap(struct page *page,
1074 	struct vm_area_struct *vma, unsigned long address)
1075 {
1076 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1077 	SetPageSwapBacked(page);
1078 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079 	if (PageTransHuge(page))
1080 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1081 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1082 			hpage_nr_pages(page));
1083 	__page_set_anon_rmap(page, vma, address, 1);
1084 }
1085 
1086 /**
1087  * page_add_file_rmap - add pte mapping to a file page
1088  * @page: the page to add the mapping to
1089  *
1090  * The caller needs to hold the pte lock.
1091  */
page_add_file_rmap(struct page * page)1092 void page_add_file_rmap(struct page *page)
1093 {
1094 	struct mem_cgroup *memcg;
1095 	unsigned long flags;
1096 	bool locked;
1097 
1098 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1099 	if (atomic_inc_and_test(&page->_mapcount)) {
1100 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1101 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1102 	}
1103 	mem_cgroup_end_page_stat(memcg, locked, flags);
1104 }
1105 
page_remove_file_rmap(struct page * page)1106 static void page_remove_file_rmap(struct page *page)
1107 {
1108 	struct mem_cgroup *memcg;
1109 	unsigned long flags;
1110 	bool locked;
1111 
1112 	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1113 
1114 	/* page still mapped by someone else? */
1115 	if (!atomic_add_negative(-1, &page->_mapcount))
1116 		goto out;
1117 
1118 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1119 	if (unlikely(PageHuge(page)))
1120 		goto out;
1121 
1122 	/*
1123 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1124 	 * these counters are not modified in interrupt context, and
1125 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1126 	 */
1127 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1128 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1129 
1130 	if (unlikely(PageMlocked(page)))
1131 		clear_page_mlock(page);
1132 out:
1133 	mem_cgroup_end_page_stat(memcg, locked, flags);
1134 }
1135 
1136 /**
1137  * page_remove_rmap - take down pte mapping from a page
1138  * @page: page to remove mapping from
1139  *
1140  * The caller needs to hold the pte lock.
1141  */
page_remove_rmap(struct page * page)1142 void page_remove_rmap(struct page *page)
1143 {
1144 	if (!PageAnon(page)) {
1145 		page_remove_file_rmap(page);
1146 		return;
1147 	}
1148 
1149 	/* page still mapped by someone else? */
1150 	if (!atomic_add_negative(-1, &page->_mapcount))
1151 		return;
1152 
1153 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1154 	if (unlikely(PageHuge(page)))
1155 		return;
1156 
1157 	/*
1158 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1159 	 * these counters are not modified in interrupt context, and
1160 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1161 	 */
1162 	if (PageTransHuge(page))
1163 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1164 
1165 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1166 			      -hpage_nr_pages(page));
1167 
1168 	if (unlikely(PageMlocked(page)))
1169 		clear_page_mlock(page);
1170 
1171 	/*
1172 	 * It would be tidy to reset the PageAnon mapping here,
1173 	 * but that might overwrite a racing page_add_anon_rmap
1174 	 * which increments mapcount after us but sets mapping
1175 	 * before us: so leave the reset to free_hot_cold_page,
1176 	 * and remember that it's only reliable while mapped.
1177 	 * Leaving it set also helps swapoff to reinstate ptes
1178 	 * faster for those pages still in swapcache.
1179 	 */
1180 }
1181 
1182 /*
1183  * @arg: enum ttu_flags will be passed to this argument
1184  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1185 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1186 		     unsigned long address, void *arg)
1187 {
1188 	struct mm_struct *mm = vma->vm_mm;
1189 	pte_t *pte;
1190 	pte_t pteval;
1191 	spinlock_t *ptl;
1192 	int ret = SWAP_AGAIN;
1193 	enum ttu_flags flags = (enum ttu_flags)arg;
1194 
1195 	pte = page_check_address(page, mm, address, &ptl, 0);
1196 	if (!pte)
1197 		goto out;
1198 
1199 	/*
1200 	 * If the page is mlock()d, we cannot swap it out.
1201 	 * If it's recently referenced (perhaps page_referenced
1202 	 * skipped over this mm) then we should reactivate it.
1203 	 */
1204 	if (!(flags & TTU_IGNORE_MLOCK)) {
1205 		if (vma->vm_flags & VM_LOCKED)
1206 			goto out_mlock;
1207 
1208 		if (flags & TTU_MUNLOCK)
1209 			goto out_unmap;
1210 	}
1211 	if (!(flags & TTU_IGNORE_ACCESS)) {
1212 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1213 			ret = SWAP_FAIL;
1214 			goto out_unmap;
1215 		}
1216   	}
1217 
1218 	/* Nuke the page table entry. */
1219 	flush_cache_page(vma, address, page_to_pfn(page));
1220 	pteval = ptep_clear_flush(vma, address, pte);
1221 
1222 	/* Move the dirty bit to the physical page now the pte is gone. */
1223 	if (pte_dirty(pteval))
1224 		set_page_dirty(page);
1225 
1226 	/* Update high watermark before we lower rss */
1227 	update_hiwater_rss(mm);
1228 
1229 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1230 		if (!PageHuge(page)) {
1231 			if (PageAnon(page))
1232 				dec_mm_counter(mm, MM_ANONPAGES);
1233 			else
1234 				dec_mm_counter(mm, MM_FILEPAGES);
1235 		}
1236 		set_pte_at(mm, address, pte,
1237 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1238 	} else if (pte_unused(pteval)) {
1239 		/*
1240 		 * The guest indicated that the page content is of no
1241 		 * interest anymore. Simply discard the pte, vmscan
1242 		 * will take care of the rest.
1243 		 */
1244 		if (PageAnon(page))
1245 			dec_mm_counter(mm, MM_ANONPAGES);
1246 		else
1247 			dec_mm_counter(mm, MM_FILEPAGES);
1248 	} else if (PageAnon(page)) {
1249 		swp_entry_t entry = { .val = page_private(page) };
1250 		pte_t swp_pte;
1251 
1252 		if (PageSwapCache(page)) {
1253 			/*
1254 			 * Store the swap location in the pte.
1255 			 * See handle_pte_fault() ...
1256 			 */
1257 			if (swap_duplicate(entry) < 0) {
1258 				set_pte_at(mm, address, pte, pteval);
1259 				ret = SWAP_FAIL;
1260 				goto out_unmap;
1261 			}
1262 			if (list_empty(&mm->mmlist)) {
1263 				spin_lock(&mmlist_lock);
1264 				if (list_empty(&mm->mmlist))
1265 					list_add(&mm->mmlist, &init_mm.mmlist);
1266 				spin_unlock(&mmlist_lock);
1267 			}
1268 			dec_mm_counter(mm, MM_ANONPAGES);
1269 			inc_mm_counter(mm, MM_SWAPENTS);
1270 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1271 			/*
1272 			 * Store the pfn of the page in a special migration
1273 			 * pte. do_swap_page() will wait until the migration
1274 			 * pte is removed and then restart fault handling.
1275 			 */
1276 			BUG_ON(!(flags & TTU_MIGRATION));
1277 			entry = make_migration_entry(page, pte_write(pteval));
1278 		}
1279 		swp_pte = swp_entry_to_pte(entry);
1280 		if (pte_soft_dirty(pteval))
1281 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1282 		set_pte_at(mm, address, pte, swp_pte);
1283 		BUG_ON(pte_file(*pte));
1284 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1285 		   (flags & TTU_MIGRATION)) {
1286 		/* Establish migration entry for a file page */
1287 		swp_entry_t entry;
1288 		entry = make_migration_entry(page, pte_write(pteval));
1289 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1290 	} else
1291 		dec_mm_counter(mm, MM_FILEPAGES);
1292 
1293 	page_remove_rmap(page);
1294 	page_cache_release(page);
1295 
1296 out_unmap:
1297 	pte_unmap_unlock(pte, ptl);
1298 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1299 		mmu_notifier_invalidate_page(mm, address);
1300 out:
1301 	return ret;
1302 
1303 out_mlock:
1304 	pte_unmap_unlock(pte, ptl);
1305 
1306 
1307 	/*
1308 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1309 	 * unstable result and race. Plus, We can't wait here because
1310 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1311 	 * if trylock failed, the page remain in evictable lru and later
1312 	 * vmscan could retry to move the page to unevictable lru if the
1313 	 * page is actually mlocked.
1314 	 */
1315 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1316 		if (vma->vm_flags & VM_LOCKED) {
1317 			mlock_vma_page(page);
1318 			ret = SWAP_MLOCK;
1319 		}
1320 		up_read(&vma->vm_mm->mmap_sem);
1321 	}
1322 	return ret;
1323 }
1324 
1325 /*
1326  * objrmap doesn't work for nonlinear VMAs because the assumption that
1327  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1328  * Consequently, given a particular page and its ->index, we cannot locate the
1329  * ptes which are mapping that page without an exhaustive linear search.
1330  *
1331  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1332  * maps the file to which the target page belongs.  The ->vm_private_data field
1333  * holds the current cursor into that scan.  Successive searches will circulate
1334  * around the vma's virtual address space.
1335  *
1336  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1337  * more scanning pressure is placed against them as well.   Eventually pages
1338  * will become fully unmapped and are eligible for eviction.
1339  *
1340  * For very sparsely populated VMAs this is a little inefficient - chances are
1341  * there there won't be many ptes located within the scan cluster.  In this case
1342  * maybe we could scan further - to the end of the pte page, perhaps.
1343  *
1344  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1345  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1346  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1347  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1348  */
1349 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1350 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1351 
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)1352 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1353 		struct vm_area_struct *vma, struct page *check_page)
1354 {
1355 	struct mm_struct *mm = vma->vm_mm;
1356 	pmd_t *pmd;
1357 	pte_t *pte;
1358 	pte_t pteval;
1359 	spinlock_t *ptl;
1360 	struct page *page;
1361 	unsigned long address;
1362 	unsigned long mmun_start;	/* For mmu_notifiers */
1363 	unsigned long mmun_end;		/* For mmu_notifiers */
1364 	unsigned long end;
1365 	int ret = SWAP_AGAIN;
1366 	int locked_vma = 0;
1367 
1368 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1369 	end = address + CLUSTER_SIZE;
1370 	if (address < vma->vm_start)
1371 		address = vma->vm_start;
1372 	if (end > vma->vm_end)
1373 		end = vma->vm_end;
1374 
1375 	pmd = mm_find_pmd(mm, address);
1376 	if (!pmd)
1377 		return ret;
1378 
1379 	mmun_start = address;
1380 	mmun_end   = end;
1381 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1382 
1383 	/*
1384 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1385 	 * keep the sem while scanning the cluster for mlocking pages.
1386 	 */
1387 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1388 		locked_vma = (vma->vm_flags & VM_LOCKED);
1389 		if (!locked_vma)
1390 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1391 	}
1392 
1393 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1394 
1395 	/* Update high watermark before we lower rss */
1396 	update_hiwater_rss(mm);
1397 
1398 	for (; address < end; pte++, address += PAGE_SIZE) {
1399 		if (!pte_present(*pte))
1400 			continue;
1401 		page = vm_normal_page(vma, address, *pte);
1402 		BUG_ON(!page || PageAnon(page));
1403 
1404 		if (locked_vma) {
1405 			if (page == check_page) {
1406 				/* we know we have check_page locked */
1407 				mlock_vma_page(page);
1408 				ret = SWAP_MLOCK;
1409 			} else if (trylock_page(page)) {
1410 				/*
1411 				 * If we can lock the page, perform mlock.
1412 				 * Otherwise leave the page alone, it will be
1413 				 * eventually encountered again later.
1414 				 */
1415 				mlock_vma_page(page);
1416 				unlock_page(page);
1417 			}
1418 			continue;	/* don't unmap */
1419 		}
1420 
1421 		/*
1422 		 * No need for _notify because we're within an
1423 		 * mmu_notifier_invalidate_range_ {start|end} scope.
1424 		 */
1425 		if (ptep_clear_flush_young(vma, address, pte))
1426 			continue;
1427 
1428 		/* Nuke the page table entry. */
1429 		flush_cache_page(vma, address, pte_pfn(*pte));
1430 		pteval = ptep_clear_flush(vma, address, pte);
1431 
1432 		/* If nonlinear, store the file page offset in the pte. */
1433 		if (page->index != linear_page_index(vma, address)) {
1434 			pte_t ptfile = pgoff_to_pte(page->index);
1435 			if (pte_soft_dirty(pteval))
1436 				ptfile = pte_file_mksoft_dirty(ptfile);
1437 			set_pte_at(mm, address, pte, ptfile);
1438 		}
1439 
1440 		/* Move the dirty bit to the physical page now the pte is gone. */
1441 		if (pte_dirty(pteval))
1442 			set_page_dirty(page);
1443 
1444 		page_remove_rmap(page);
1445 		page_cache_release(page);
1446 		dec_mm_counter(mm, MM_FILEPAGES);
1447 		(*mapcount)--;
1448 	}
1449 	pte_unmap_unlock(pte - 1, ptl);
1450 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1451 	if (locked_vma)
1452 		up_read(&vma->vm_mm->mmap_sem);
1453 	return ret;
1454 }
1455 
try_to_unmap_nonlinear(struct page * page,struct address_space * mapping,void * arg)1456 static int try_to_unmap_nonlinear(struct page *page,
1457 		struct address_space *mapping, void *arg)
1458 {
1459 	struct vm_area_struct *vma;
1460 	int ret = SWAP_AGAIN;
1461 	unsigned long cursor;
1462 	unsigned long max_nl_cursor = 0;
1463 	unsigned long max_nl_size = 0;
1464 	unsigned int mapcount;
1465 
1466 	list_for_each_entry(vma,
1467 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1468 
1469 		cursor = (unsigned long) vma->vm_private_data;
1470 		if (cursor > max_nl_cursor)
1471 			max_nl_cursor = cursor;
1472 		cursor = vma->vm_end - vma->vm_start;
1473 		if (cursor > max_nl_size)
1474 			max_nl_size = cursor;
1475 	}
1476 
1477 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1478 		return SWAP_FAIL;
1479 	}
1480 
1481 	/*
1482 	 * We don't try to search for this page in the nonlinear vmas,
1483 	 * and page_referenced wouldn't have found it anyway.  Instead
1484 	 * just walk the nonlinear vmas trying to age and unmap some.
1485 	 * The mapcount of the page we came in with is irrelevant,
1486 	 * but even so use it as a guide to how hard we should try?
1487 	 */
1488 	mapcount = page_mapcount(page);
1489 	if (!mapcount)
1490 		return ret;
1491 
1492 	cond_resched();
1493 
1494 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1495 	if (max_nl_cursor == 0)
1496 		max_nl_cursor = CLUSTER_SIZE;
1497 
1498 	do {
1499 		list_for_each_entry(vma,
1500 			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1501 
1502 			cursor = (unsigned long) vma->vm_private_data;
1503 			while (cursor < max_nl_cursor &&
1504 				cursor < vma->vm_end - vma->vm_start) {
1505 				if (try_to_unmap_cluster(cursor, &mapcount,
1506 						vma, page) == SWAP_MLOCK)
1507 					ret = SWAP_MLOCK;
1508 				cursor += CLUSTER_SIZE;
1509 				vma->vm_private_data = (void *) cursor;
1510 				if ((int)mapcount <= 0)
1511 					return ret;
1512 			}
1513 			vma->vm_private_data = (void *) max_nl_cursor;
1514 		}
1515 		cond_resched();
1516 		max_nl_cursor += CLUSTER_SIZE;
1517 	} while (max_nl_cursor <= max_nl_size);
1518 
1519 	/*
1520 	 * Don't loop forever (perhaps all the remaining pages are
1521 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1522 	 * vmas, now forgetting on which ones it had fallen behind.
1523 	 */
1524 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1525 		vma->vm_private_data = NULL;
1526 
1527 	return ret;
1528 }
1529 
is_vma_temporary_stack(struct vm_area_struct * vma)1530 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1531 {
1532 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1533 
1534 	if (!maybe_stack)
1535 		return false;
1536 
1537 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1538 						VM_STACK_INCOMPLETE_SETUP)
1539 		return true;
1540 
1541 	return false;
1542 }
1543 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1544 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1545 {
1546 	return is_vma_temporary_stack(vma);
1547 }
1548 
page_not_mapped(struct page * page)1549 static int page_not_mapped(struct page *page)
1550 {
1551 	return !page_mapped(page);
1552 };
1553 
1554 /**
1555  * try_to_unmap - try to remove all page table mappings to a page
1556  * @page: the page to get unmapped
1557  * @flags: action and flags
1558  *
1559  * Tries to remove all the page table entries which are mapping this
1560  * page, used in the pageout path.  Caller must hold the page lock.
1561  * Return values are:
1562  *
1563  * SWAP_SUCCESS	- we succeeded in removing all mappings
1564  * SWAP_AGAIN	- we missed a mapping, try again later
1565  * SWAP_FAIL	- the page is unswappable
1566  * SWAP_MLOCK	- page is mlocked.
1567  */
try_to_unmap(struct page * page,enum ttu_flags flags)1568 int try_to_unmap(struct page *page, enum ttu_flags flags)
1569 {
1570 	int ret;
1571 	struct rmap_walk_control rwc = {
1572 		.rmap_one = try_to_unmap_one,
1573 		.arg = (void *)flags,
1574 		.done = page_not_mapped,
1575 		.file_nonlinear = try_to_unmap_nonlinear,
1576 		.anon_lock = page_lock_anon_vma_read,
1577 	};
1578 
1579 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1580 
1581 	/*
1582 	 * During exec, a temporary VMA is setup and later moved.
1583 	 * The VMA is moved under the anon_vma lock but not the
1584 	 * page tables leading to a race where migration cannot
1585 	 * find the migration ptes. Rather than increasing the
1586 	 * locking requirements of exec(), migration skips
1587 	 * temporary VMAs until after exec() completes.
1588 	 */
1589 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1590 		rwc.invalid_vma = invalid_migration_vma;
1591 
1592 	ret = rmap_walk(page, &rwc);
1593 
1594 	if (ret != SWAP_MLOCK && !page_mapped(page))
1595 		ret = SWAP_SUCCESS;
1596 	return ret;
1597 }
1598 
1599 /**
1600  * try_to_munlock - try to munlock a page
1601  * @page: the page to be munlocked
1602  *
1603  * Called from munlock code.  Checks all of the VMAs mapping the page
1604  * to make sure nobody else has this page mlocked. The page will be
1605  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1606  *
1607  * Return values are:
1608  *
1609  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1610  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1611  * SWAP_FAIL	- page cannot be located at present
1612  * SWAP_MLOCK	- page is now mlocked.
1613  */
try_to_munlock(struct page * page)1614 int try_to_munlock(struct page *page)
1615 {
1616 	int ret;
1617 	struct rmap_walk_control rwc = {
1618 		.rmap_one = try_to_unmap_one,
1619 		.arg = (void *)TTU_MUNLOCK,
1620 		.done = page_not_mapped,
1621 		/*
1622 		 * We don't bother to try to find the munlocked page in
1623 		 * nonlinears. It's costly. Instead, later, page reclaim logic
1624 		 * may call try_to_unmap() and recover PG_mlocked lazily.
1625 		 */
1626 		.file_nonlinear = NULL,
1627 		.anon_lock = page_lock_anon_vma_read,
1628 
1629 	};
1630 
1631 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1632 
1633 	ret = rmap_walk(page, &rwc);
1634 	return ret;
1635 }
1636 
__put_anon_vma(struct anon_vma * anon_vma)1637 void __put_anon_vma(struct anon_vma *anon_vma)
1638 {
1639 	struct anon_vma *root = anon_vma->root;
1640 
1641 	anon_vma_free(anon_vma);
1642 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1643 		anon_vma_free(root);
1644 }
1645 
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1646 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1647 					struct rmap_walk_control *rwc)
1648 {
1649 	struct anon_vma *anon_vma;
1650 
1651 	if (rwc->anon_lock)
1652 		return rwc->anon_lock(page);
1653 
1654 	/*
1655 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1656 	 * because that depends on page_mapped(); but not all its usages
1657 	 * are holding mmap_sem. Users without mmap_sem are required to
1658 	 * take a reference count to prevent the anon_vma disappearing
1659 	 */
1660 	anon_vma = page_anon_vma(page);
1661 	if (!anon_vma)
1662 		return NULL;
1663 
1664 	anon_vma_lock_read(anon_vma);
1665 	return anon_vma;
1666 }
1667 
1668 /*
1669  * rmap_walk_anon - do something to anonymous page using the object-based
1670  * rmap method
1671  * @page: the page to be handled
1672  * @rwc: control variable according to each walk type
1673  *
1674  * Find all the mappings of a page using the mapping pointer and the vma chains
1675  * contained in the anon_vma struct it points to.
1676  *
1677  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1678  * where the page was found will be held for write.  So, we won't recheck
1679  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1680  * LOCKED.
1681  */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc)1682 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1683 {
1684 	struct anon_vma *anon_vma;
1685 	pgoff_t pgoff = page_to_pgoff(page);
1686 	struct anon_vma_chain *avc;
1687 	int ret = SWAP_AGAIN;
1688 
1689 	anon_vma = rmap_walk_anon_lock(page, rwc);
1690 	if (!anon_vma)
1691 		return ret;
1692 
1693 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1694 		struct vm_area_struct *vma = avc->vma;
1695 		unsigned long address = vma_address(page, vma);
1696 
1697 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1698 			continue;
1699 
1700 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1701 		if (ret != SWAP_AGAIN)
1702 			break;
1703 		if (rwc->done && rwc->done(page))
1704 			break;
1705 	}
1706 	anon_vma_unlock_read(anon_vma);
1707 	return ret;
1708 }
1709 
1710 /*
1711  * rmap_walk_file - do something to file page using the object-based rmap method
1712  * @page: the page to be handled
1713  * @rwc: control variable according to each walk type
1714  *
1715  * Find all the mappings of a page using the mapping pointer and the vma chains
1716  * contained in the address_space struct it points to.
1717  *
1718  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1719  * where the page was found will be held for write.  So, we won't recheck
1720  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1721  * LOCKED.
1722  */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc)1723 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1724 {
1725 	struct address_space *mapping = page->mapping;
1726 	pgoff_t pgoff = page_to_pgoff(page);
1727 	struct vm_area_struct *vma;
1728 	int ret = SWAP_AGAIN;
1729 
1730 	/*
1731 	 * The page lock not only makes sure that page->mapping cannot
1732 	 * suddenly be NULLified by truncation, it makes sure that the
1733 	 * structure at mapping cannot be freed and reused yet,
1734 	 * so we can safely take mapping->i_mmap_mutex.
1735 	 */
1736 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1737 
1738 	if (!mapping)
1739 		return ret;
1740 	mutex_lock(&mapping->i_mmap_mutex);
1741 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1742 		unsigned long address = vma_address(page, vma);
1743 
1744 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1745 			continue;
1746 
1747 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1748 		if (ret != SWAP_AGAIN)
1749 			goto done;
1750 		if (rwc->done && rwc->done(page))
1751 			goto done;
1752 	}
1753 
1754 	if (!rwc->file_nonlinear)
1755 		goto done;
1756 
1757 	if (list_empty(&mapping->i_mmap_nonlinear))
1758 		goto done;
1759 
1760 	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1761 
1762 done:
1763 	mutex_unlock(&mapping->i_mmap_mutex);
1764 	return ret;
1765 }
1766 
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1767 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1768 {
1769 	if (unlikely(PageKsm(page)))
1770 		return rmap_walk_ksm(page, rwc);
1771 	else if (PageAnon(page))
1772 		return rmap_walk_anon(page, rwc);
1773 	else
1774 		return rmap_walk_file(page, rwc);
1775 }
1776 
1777 #ifdef CONFIG_HUGETLB_PAGE
1778 /*
1779  * The following three functions are for anonymous (private mapped) hugepages.
1780  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1781  * and no lru code, because we handle hugepages differently from common pages.
1782  */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1783 static void __hugepage_set_anon_rmap(struct page *page,
1784 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1785 {
1786 	struct anon_vma *anon_vma = vma->anon_vma;
1787 
1788 	BUG_ON(!anon_vma);
1789 
1790 	if (PageAnon(page))
1791 		return;
1792 	if (!exclusive)
1793 		anon_vma = anon_vma->root;
1794 
1795 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1796 	page->mapping = (struct address_space *) anon_vma;
1797 	page->index = linear_page_index(vma, address);
1798 }
1799 
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1800 void hugepage_add_anon_rmap(struct page *page,
1801 			    struct vm_area_struct *vma, unsigned long address)
1802 {
1803 	struct anon_vma *anon_vma = vma->anon_vma;
1804 	int first;
1805 
1806 	BUG_ON(!PageLocked(page));
1807 	BUG_ON(!anon_vma);
1808 	/* address might be in next vma when migration races vma_adjust */
1809 	first = atomic_inc_and_test(&page->_mapcount);
1810 	if (first)
1811 		__hugepage_set_anon_rmap(page, vma, address, 0);
1812 }
1813 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1814 void hugepage_add_new_anon_rmap(struct page *page,
1815 			struct vm_area_struct *vma, unsigned long address)
1816 {
1817 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1818 	atomic_set(&page->_mapcount, 0);
1819 	__hugepage_set_anon_rmap(page, vma, address, 1);
1820 }
1821 #endif /* CONFIG_HUGETLB_PAGE */
1822