1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
anon_vma_alloc(void)68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
85 }
86
anon_vma_free(struct anon_vma * anon_vma)87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90
91 /*
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 *
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() rwsem_is_locked()
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
108 might_sleep();
109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 anon_vma_lock_write(anon_vma);
111 anon_vma_unlock_write(anon_vma);
112 }
113
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116
anon_vma_chain_alloc(gfp_t gfp)117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130 {
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136
137 /**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
anon_vma_prepare(struct vm_area_struct * vma)164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 struct anon_vma *anon_vma = vma->anon_vma;
167 struct anon_vma_chain *avc;
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
172 struct anon_vma *allocated;
173
174 avc = anon_vma_chain_alloc(GFP_KERNEL);
175 if (!avc)
176 goto out_enomem;
177
178 anon_vma = find_mergeable_anon_vma(vma);
179 allocated = NULL;
180 if (!anon_vma) {
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
183 goto out_enomem_free_avc;
184 allocated = anon_vma;
185 }
186
187 anon_vma_lock_write(anon_vma);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
192 anon_vma_chain_link(vma, avc, anon_vma);
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
195 allocated = NULL;
196 avc = NULL;
197 }
198 spin_unlock(&mm->page_table_lock);
199 anon_vma_unlock_write(anon_vma);
200
201 if (unlikely(allocated))
202 put_anon_vma(allocated);
203 if (unlikely(avc))
204 anon_vma_chain_free(avc);
205 }
206 return 0;
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
212 }
213
214 /*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
227 up_write(&root->rwsem);
228 root = new_root;
229 down_write(&root->rwsem);
230 }
231 return root;
232 }
233
unlock_anon_vma_root(struct anon_vma * root)234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 if (root)
237 up_write(&root->rwsem);
238 }
239
240 /*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
251 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 struct anon_vma_chain *avc, *pavc;
255 struct anon_vma *root = NULL;
256
257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 struct anon_vma *anon_vma;
259
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
283 }
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
286 unlock_anon_vma_root(root);
287 return 0;
288
289 enomem_failure:
290 /*
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
295 */
296 dst->anon_vma = NULL;
297 unlink_anon_vmas(dst);
298 return -ENOMEM;
299 }
300
301 /*
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
305 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)306 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
307 {
308 struct anon_vma_chain *avc;
309 struct anon_vma *anon_vma;
310 int error;
311
312 /* Don't bother if the parent process has no anon_vma here. */
313 if (!pvma->anon_vma)
314 return 0;
315
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma->anon_vma = NULL;
318
319 /*
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
322 */
323 error = anon_vma_clone(vma, pvma);
324 if (error)
325 return error;
326
327 /* An existing anon_vma has been reused, all done then. */
328 if (vma->anon_vma)
329 return 0;
330
331 /* Then add our own anon_vma. */
332 anon_vma = anon_vma_alloc();
333 if (!anon_vma)
334 goto out_error;
335 avc = anon_vma_chain_alloc(GFP_KERNEL);
336 if (!avc)
337 goto out_error_free_anon_vma;
338
339 /*
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
342 */
343 anon_vma->root = pvma->anon_vma->root;
344 anon_vma->parent = pvma->anon_vma;
345 /*
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
349 */
350 get_anon_vma(anon_vma->root);
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma->anon_vma = anon_vma;
353 anon_vma_lock_write(anon_vma);
354 anon_vma_chain_link(vma, avc, anon_vma);
355 anon_vma->parent->degree++;
356 anon_vma_unlock_write(anon_vma);
357
358 return 0;
359
360 out_error_free_anon_vma:
361 put_anon_vma(anon_vma);
362 out_error:
363 unlink_anon_vmas(vma);
364 return -ENOMEM;
365 }
366
unlink_anon_vmas(struct vm_area_struct * vma)367 void unlink_anon_vmas(struct vm_area_struct *vma)
368 {
369 struct anon_vma_chain *avc, *next;
370 struct anon_vma *root = NULL;
371
372 /*
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
375 */
376 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
377 struct anon_vma *anon_vma = avc->anon_vma;
378
379 root = lock_anon_vma_root(root, anon_vma);
380 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
381
382 /*
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
385 */
386 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387 anon_vma->parent->degree--;
388 continue;
389 }
390
391 list_del(&avc->same_vma);
392 anon_vma_chain_free(avc);
393 }
394 if (vma->anon_vma)
395 vma->anon_vma->degree--;
396 unlock_anon_vma_root(root);
397
398 /*
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to write-acquire the anon_vma->root->rwsem.
402 */
403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 struct anon_vma *anon_vma = avc->anon_vma;
405
406 BUG_ON(anon_vma->degree);
407 put_anon_vma(anon_vma);
408
409 list_del(&avc->same_vma);
410 anon_vma_chain_free(avc);
411 }
412 }
413
anon_vma_ctor(void * data)414 static void anon_vma_ctor(void *data)
415 {
416 struct anon_vma *anon_vma = data;
417
418 init_rwsem(&anon_vma->rwsem);
419 atomic_set(&anon_vma->refcount, 0);
420 anon_vma->rb_root = RB_ROOT;
421 }
422
anon_vma_init(void)423 void __init anon_vma_init(void)
424 {
425 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
426 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
427 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
428 }
429
430 /*
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
432 *
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
436 *
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
439 *
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
444 *
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
448 *
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
452 */
page_get_anon_vma(struct page * page)453 struct anon_vma *page_get_anon_vma(struct page *page)
454 {
455 struct anon_vma *anon_vma = NULL;
456 unsigned long anon_mapping;
457
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467 anon_vma = NULL;
468 goto out;
469 }
470
471 /*
472 * If this page is still mapped, then its anon_vma cannot have been
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
477 */
478 if (!page_mapped(page)) {
479 rcu_read_unlock();
480 put_anon_vma(anon_vma);
481 return NULL;
482 }
483 out:
484 rcu_read_unlock();
485
486 return anon_vma;
487 }
488
489 /*
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
491 *
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
495 */
page_lock_anon_vma_read(struct page * page)496 struct anon_vma *page_lock_anon_vma_read(struct page *page)
497 {
498 struct anon_vma *anon_vma = NULL;
499 struct anon_vma *root_anon_vma;
500 unsigned long anon_mapping;
501
502 rcu_read_lock();
503 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
504 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505 goto out;
506 if (!page_mapped(page))
507 goto out;
508
509 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
510 root_anon_vma = ACCESS_ONCE(anon_vma->root);
511 if (down_read_trylock(&root_anon_vma->rwsem)) {
512 /*
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
515 * not go away, see anon_vma_free().
516 */
517 if (!page_mapped(page)) {
518 up_read(&root_anon_vma->rwsem);
519 anon_vma = NULL;
520 }
521 goto out;
522 }
523
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526 anon_vma = NULL;
527 goto out;
528 }
529
530 if (!page_mapped(page)) {
531 rcu_read_unlock();
532 put_anon_vma(anon_vma);
533 return NULL;
534 }
535
536 /* we pinned the anon_vma, its safe to sleep */
537 rcu_read_unlock();
538 anon_vma_lock_read(anon_vma);
539
540 if (atomic_dec_and_test(&anon_vma->refcount)) {
541 /*
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
544 * we'll deadlock on the anon_vma_lock_write() recursion.
545 */
546 anon_vma_unlock_read(anon_vma);
547 __put_anon_vma(anon_vma);
548 anon_vma = NULL;
549 }
550
551 return anon_vma;
552
553 out:
554 rcu_read_unlock();
555 return anon_vma;
556 }
557
page_unlock_anon_vma_read(struct anon_vma * anon_vma)558 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
559 {
560 anon_vma_unlock_read(anon_vma);
561 }
562
563 /*
564 * At what user virtual address is page expected in @vma?
565 */
566 static inline unsigned long
__vma_address(struct page * page,struct vm_area_struct * vma)567 __vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 pgoff_t pgoff = page_to_pgoff(page);
570 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
571 }
572
573 inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)574 vma_address(struct page *page, struct vm_area_struct *vma)
575 {
576 unsigned long address = __vma_address(page, vma);
577
578 /* page should be within @vma mapping range */
579 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
580
581 return address;
582 }
583
584 /*
585 * At what user virtual address is page expected in vma?
586 * Caller should check the page is actually part of the vma.
587 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)588 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
589 {
590 unsigned long address;
591 if (PageAnon(page)) {
592 struct anon_vma *page__anon_vma = page_anon_vma(page);
593 /*
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
596 */
597 if (!vma->anon_vma || !page__anon_vma ||
598 vma->anon_vma->root != page__anon_vma->root)
599 return -EFAULT;
600 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
601 if (!vma->vm_file ||
602 vma->vm_file->f_mapping != page->mapping)
603 return -EFAULT;
604 } else
605 return -EFAULT;
606 address = __vma_address(page, vma);
607 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
608 return -EFAULT;
609 return address;
610 }
611
mm_find_pmd(struct mm_struct * mm,unsigned long address)612 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
613 {
614 pgd_t *pgd;
615 pud_t *pud;
616 pmd_t *pmd = NULL;
617 pmd_t pmde;
618
619 pgd = pgd_offset(mm, address);
620 if (!pgd_present(*pgd))
621 goto out;
622
623 pud = pud_offset(pgd, address);
624 if (!pud_present(*pud))
625 goto out;
626
627 pmd = pmd_offset(pud, address);
628 /*
629 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
630 * without holding anon_vma lock for write. So when looking for a
631 * genuine pmde (in which to find pte), test present and !THP together.
632 */
633 pmde = ACCESS_ONCE(*pmd);
634 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
635 pmd = NULL;
636 out:
637 return pmd;
638 }
639
640 /*
641 * Check that @page is mapped at @address into @mm.
642 *
643 * If @sync is false, page_check_address may perform a racy check to avoid
644 * the page table lock when the pte is not present (helpful when reclaiming
645 * highly shared pages).
646 *
647 * On success returns with pte mapped and locked.
648 */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)649 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
650 unsigned long address, spinlock_t **ptlp, int sync)
651 {
652 pmd_t *pmd;
653 pte_t *pte;
654 spinlock_t *ptl;
655
656 if (unlikely(PageHuge(page))) {
657 /* when pud is not present, pte will be NULL */
658 pte = huge_pte_offset(mm, address);
659 if (!pte)
660 return NULL;
661
662 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
663 goto check;
664 }
665
666 pmd = mm_find_pmd(mm, address);
667 if (!pmd)
668 return NULL;
669
670 pte = pte_offset_map(pmd, address);
671 /* Make a quick check before getting the lock */
672 if (!sync && !pte_present(*pte)) {
673 pte_unmap(pte);
674 return NULL;
675 }
676
677 ptl = pte_lockptr(mm, pmd);
678 check:
679 spin_lock(ptl);
680 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
681 *ptlp = ptl;
682 return pte;
683 }
684 pte_unmap_unlock(pte, ptl);
685 return NULL;
686 }
687
688 /**
689 * page_mapped_in_vma - check whether a page is really mapped in a VMA
690 * @page: the page to test
691 * @vma: the VMA to test
692 *
693 * Returns 1 if the page is mapped into the page tables of the VMA, 0
694 * if the page is not mapped into the page tables of this VMA. Only
695 * valid for normal file or anonymous VMAs.
696 */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)697 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
698 {
699 unsigned long address;
700 pte_t *pte;
701 spinlock_t *ptl;
702
703 address = __vma_address(page, vma);
704 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
705 return 0;
706 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
707 if (!pte) /* the page is not in this mm */
708 return 0;
709 pte_unmap_unlock(pte, ptl);
710
711 return 1;
712 }
713
714 struct page_referenced_arg {
715 int mapcount;
716 int referenced;
717 unsigned long vm_flags;
718 struct mem_cgroup *memcg;
719 };
720 /*
721 * arg: page_referenced_arg will be passed
722 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)723 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
724 unsigned long address, void *arg)
725 {
726 struct mm_struct *mm = vma->vm_mm;
727 spinlock_t *ptl;
728 int referenced = 0;
729 struct page_referenced_arg *pra = arg;
730
731 if (unlikely(PageTransHuge(page))) {
732 pmd_t *pmd;
733
734 /*
735 * rmap might return false positives; we must filter
736 * these out using page_check_address_pmd().
737 */
738 pmd = page_check_address_pmd(page, mm, address,
739 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
740 if (!pmd)
741 return SWAP_AGAIN;
742
743 if (vma->vm_flags & VM_LOCKED) {
744 spin_unlock(ptl);
745 pra->vm_flags |= VM_LOCKED;
746 return SWAP_FAIL; /* To break the loop */
747 }
748
749 /* go ahead even if the pmd is pmd_trans_splitting() */
750 if (pmdp_clear_flush_young_notify(vma, address, pmd))
751 referenced++;
752 spin_unlock(ptl);
753 } else {
754 pte_t *pte;
755
756 /*
757 * rmap might return false positives; we must filter
758 * these out using page_check_address().
759 */
760 pte = page_check_address(page, mm, address, &ptl, 0);
761 if (!pte)
762 return SWAP_AGAIN;
763
764 if (vma->vm_flags & VM_LOCKED) {
765 pte_unmap_unlock(pte, ptl);
766 pra->vm_flags |= VM_LOCKED;
767 return SWAP_FAIL; /* To break the loop */
768 }
769
770 if (ptep_clear_flush_young_notify(vma, address, pte)) {
771 /*
772 * Don't treat a reference through a sequentially read
773 * mapping as such. If the page has been used in
774 * another mapping, we will catch it; if this other
775 * mapping is already gone, the unmap path will have
776 * set PG_referenced or activated the page.
777 */
778 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
779 referenced++;
780 }
781 pte_unmap_unlock(pte, ptl);
782 }
783
784 if (referenced) {
785 pra->referenced++;
786 pra->vm_flags |= vma->vm_flags;
787 }
788
789 pra->mapcount--;
790 if (!pra->mapcount)
791 return SWAP_SUCCESS; /* To break the loop */
792
793 return SWAP_AGAIN;
794 }
795
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)796 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
797 {
798 struct page_referenced_arg *pra = arg;
799 struct mem_cgroup *memcg = pra->memcg;
800
801 if (!mm_match_cgroup(vma->vm_mm, memcg))
802 return true;
803
804 return false;
805 }
806
807 /**
808 * page_referenced - test if the page was referenced
809 * @page: the page to test
810 * @is_locked: caller holds lock on the page
811 * @memcg: target memory cgroup
812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813 *
814 * Quick test_and_clear_referenced for all mappings to a page,
815 * returns the number of ptes which referenced the page.
816 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)817 int page_referenced(struct page *page,
818 int is_locked,
819 struct mem_cgroup *memcg,
820 unsigned long *vm_flags)
821 {
822 int ret;
823 int we_locked = 0;
824 struct page_referenced_arg pra = {
825 .mapcount = page_mapcount(page),
826 .memcg = memcg,
827 };
828 struct rmap_walk_control rwc = {
829 .rmap_one = page_referenced_one,
830 .arg = (void *)&pra,
831 .anon_lock = page_lock_anon_vma_read,
832 };
833
834 *vm_flags = 0;
835 if (!page_mapped(page))
836 return 0;
837
838 if (!page_rmapping(page))
839 return 0;
840
841 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
842 we_locked = trylock_page(page);
843 if (!we_locked)
844 return 1;
845 }
846
847 /*
848 * If we are reclaiming on behalf of a cgroup, skip
849 * counting on behalf of references from different
850 * cgroups
851 */
852 if (memcg) {
853 rwc.invalid_vma = invalid_page_referenced_vma;
854 }
855
856 ret = rmap_walk(page, &rwc);
857 *vm_flags = pra.vm_flags;
858
859 if (we_locked)
860 unlock_page(page);
861
862 return pra.referenced;
863 }
864
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)865 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
866 unsigned long address, void *arg)
867 {
868 struct mm_struct *mm = vma->vm_mm;
869 pte_t *pte;
870 spinlock_t *ptl;
871 int ret = 0;
872 int *cleaned = arg;
873
874 pte = page_check_address(page, mm, address, &ptl, 1);
875 if (!pte)
876 goto out;
877
878 if (pte_dirty(*pte) || pte_write(*pte)) {
879 pte_t entry;
880
881 flush_cache_page(vma, address, pte_pfn(*pte));
882 entry = ptep_clear_flush(vma, address, pte);
883 entry = pte_wrprotect(entry);
884 entry = pte_mkclean(entry);
885 set_pte_at(mm, address, pte, entry);
886 ret = 1;
887 }
888
889 pte_unmap_unlock(pte, ptl);
890
891 if (ret) {
892 mmu_notifier_invalidate_page(mm, address);
893 (*cleaned)++;
894 }
895 out:
896 return SWAP_AGAIN;
897 }
898
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)899 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
900 {
901 if (vma->vm_flags & VM_SHARED)
902 return false;
903
904 return true;
905 }
906
page_mkclean(struct page * page)907 int page_mkclean(struct page *page)
908 {
909 int cleaned = 0;
910 struct address_space *mapping;
911 struct rmap_walk_control rwc = {
912 .arg = (void *)&cleaned,
913 .rmap_one = page_mkclean_one,
914 .invalid_vma = invalid_mkclean_vma,
915 };
916
917 BUG_ON(!PageLocked(page));
918
919 if (!page_mapped(page))
920 return 0;
921
922 mapping = page_mapping(page);
923 if (!mapping)
924 return 0;
925
926 rmap_walk(page, &rwc);
927
928 return cleaned;
929 }
930 EXPORT_SYMBOL_GPL(page_mkclean);
931
932 /**
933 * page_move_anon_rmap - move a page to our anon_vma
934 * @page: the page to move to our anon_vma
935 * @vma: the vma the page belongs to
936 * @address: the user virtual address mapped
937 *
938 * When a page belongs exclusively to one process after a COW event,
939 * that page can be moved into the anon_vma that belongs to just that
940 * process, so the rmap code will not search the parent or sibling
941 * processes.
942 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)943 void page_move_anon_rmap(struct page *page,
944 struct vm_area_struct *vma, unsigned long address)
945 {
946 struct anon_vma *anon_vma = vma->anon_vma;
947
948 VM_BUG_ON_PAGE(!PageLocked(page), page);
949 VM_BUG_ON_VMA(!anon_vma, vma);
950 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
951
952 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
953 page->mapping = (struct address_space *) anon_vma;
954 }
955
956 /**
957 * __page_set_anon_rmap - set up new anonymous rmap
958 * @page: Page to add to rmap
959 * @vma: VM area to add page to.
960 * @address: User virtual address of the mapping
961 * @exclusive: the page is exclusively owned by the current process
962 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)963 static void __page_set_anon_rmap(struct page *page,
964 struct vm_area_struct *vma, unsigned long address, int exclusive)
965 {
966 struct anon_vma *anon_vma = vma->anon_vma;
967
968 BUG_ON(!anon_vma);
969
970 if (PageAnon(page))
971 return;
972
973 /*
974 * If the page isn't exclusively mapped into this vma,
975 * we must use the _oldest_ possible anon_vma for the
976 * page mapping!
977 */
978 if (!exclusive)
979 anon_vma = anon_vma->root;
980
981 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
982 page->mapping = (struct address_space *) anon_vma;
983 page->index = linear_page_index(vma, address);
984 }
985
986 /**
987 * __page_check_anon_rmap - sanity check anonymous rmap addition
988 * @page: the page to add the mapping to
989 * @vma: the vm area in which the mapping is added
990 * @address: the user virtual address mapped
991 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)992 static void __page_check_anon_rmap(struct page *page,
993 struct vm_area_struct *vma, unsigned long address)
994 {
995 #ifdef CONFIG_DEBUG_VM
996 /*
997 * The page's anon-rmap details (mapping and index) are guaranteed to
998 * be set up correctly at this point.
999 *
1000 * We have exclusion against page_add_anon_rmap because the caller
1001 * always holds the page locked, except if called from page_dup_rmap,
1002 * in which case the page is already known to be setup.
1003 *
1004 * We have exclusion against page_add_new_anon_rmap because those pages
1005 * are initially only visible via the pagetables, and the pte is locked
1006 * over the call to page_add_new_anon_rmap.
1007 */
1008 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1009 BUG_ON(page->index != linear_page_index(vma, address));
1010 #endif
1011 }
1012
1013 /**
1014 * page_add_anon_rmap - add pte mapping to an anonymous page
1015 * @page: the page to add the mapping to
1016 * @vma: the vm area in which the mapping is added
1017 * @address: the user virtual address mapped
1018 *
1019 * The caller needs to hold the pte lock, and the page must be locked in
1020 * the anon_vma case: to serialize mapping,index checking after setting,
1021 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1022 * (but PageKsm is never downgraded to PageAnon).
1023 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1024 void page_add_anon_rmap(struct page *page,
1025 struct vm_area_struct *vma, unsigned long address)
1026 {
1027 do_page_add_anon_rmap(page, vma, address, 0);
1028 }
1029
1030 /*
1031 * Special version of the above for do_swap_page, which often runs
1032 * into pages that are exclusively owned by the current process.
1033 * Everybody else should continue to use page_add_anon_rmap above.
1034 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1035 void do_page_add_anon_rmap(struct page *page,
1036 struct vm_area_struct *vma, unsigned long address, int exclusive)
1037 {
1038 int first = atomic_inc_and_test(&page->_mapcount);
1039 if (first) {
1040 /*
1041 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1042 * these counters are not modified in interrupt context, and
1043 * pte lock(a spinlock) is held, which implies preemption
1044 * disabled.
1045 */
1046 if (PageTransHuge(page))
1047 __inc_zone_page_state(page,
1048 NR_ANON_TRANSPARENT_HUGEPAGES);
1049 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1050 hpage_nr_pages(page));
1051 }
1052 if (unlikely(PageKsm(page)))
1053 return;
1054
1055 VM_BUG_ON_PAGE(!PageLocked(page), page);
1056 /* address might be in next vma when migration races vma_adjust */
1057 if (first)
1058 __page_set_anon_rmap(page, vma, address, exclusive);
1059 else
1060 __page_check_anon_rmap(page, vma, address);
1061 }
1062
1063 /**
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1068 *
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
1071 * Page does not have to be locked.
1072 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1073 void page_add_new_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address)
1075 {
1076 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1077 SetPageSwapBacked(page);
1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079 if (PageTransHuge(page))
1080 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1081 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1082 hpage_nr_pages(page));
1083 __page_set_anon_rmap(page, vma, address, 1);
1084 }
1085
1086 /**
1087 * page_add_file_rmap - add pte mapping to a file page
1088 * @page: the page to add the mapping to
1089 *
1090 * The caller needs to hold the pte lock.
1091 */
page_add_file_rmap(struct page * page)1092 void page_add_file_rmap(struct page *page)
1093 {
1094 struct mem_cgroup *memcg;
1095 unsigned long flags;
1096 bool locked;
1097
1098 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1099 if (atomic_inc_and_test(&page->_mapcount)) {
1100 __inc_zone_page_state(page, NR_FILE_MAPPED);
1101 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1102 }
1103 mem_cgroup_end_page_stat(memcg, locked, flags);
1104 }
1105
page_remove_file_rmap(struct page * page)1106 static void page_remove_file_rmap(struct page *page)
1107 {
1108 struct mem_cgroup *memcg;
1109 unsigned long flags;
1110 bool locked;
1111
1112 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1113
1114 /* page still mapped by someone else? */
1115 if (!atomic_add_negative(-1, &page->_mapcount))
1116 goto out;
1117
1118 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1119 if (unlikely(PageHuge(page)))
1120 goto out;
1121
1122 /*
1123 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1124 * these counters are not modified in interrupt context, and
1125 * pte lock(a spinlock) is held, which implies preemption disabled.
1126 */
1127 __dec_zone_page_state(page, NR_FILE_MAPPED);
1128 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1129
1130 if (unlikely(PageMlocked(page)))
1131 clear_page_mlock(page);
1132 out:
1133 mem_cgroup_end_page_stat(memcg, locked, flags);
1134 }
1135
1136 /**
1137 * page_remove_rmap - take down pte mapping from a page
1138 * @page: page to remove mapping from
1139 *
1140 * The caller needs to hold the pte lock.
1141 */
page_remove_rmap(struct page * page)1142 void page_remove_rmap(struct page *page)
1143 {
1144 if (!PageAnon(page)) {
1145 page_remove_file_rmap(page);
1146 return;
1147 }
1148
1149 /* page still mapped by someone else? */
1150 if (!atomic_add_negative(-1, &page->_mapcount))
1151 return;
1152
1153 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1154 if (unlikely(PageHuge(page)))
1155 return;
1156
1157 /*
1158 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1159 * these counters are not modified in interrupt context, and
1160 * pte lock(a spinlock) is held, which implies preemption disabled.
1161 */
1162 if (PageTransHuge(page))
1163 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1164
1165 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1166 -hpage_nr_pages(page));
1167
1168 if (unlikely(PageMlocked(page)))
1169 clear_page_mlock(page);
1170
1171 /*
1172 * It would be tidy to reset the PageAnon mapping here,
1173 * but that might overwrite a racing page_add_anon_rmap
1174 * which increments mapcount after us but sets mapping
1175 * before us: so leave the reset to free_hot_cold_page,
1176 * and remember that it's only reliable while mapped.
1177 * Leaving it set also helps swapoff to reinstate ptes
1178 * faster for those pages still in swapcache.
1179 */
1180 }
1181
1182 /*
1183 * @arg: enum ttu_flags will be passed to this argument
1184 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1185 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1186 unsigned long address, void *arg)
1187 {
1188 struct mm_struct *mm = vma->vm_mm;
1189 pte_t *pte;
1190 pte_t pteval;
1191 spinlock_t *ptl;
1192 int ret = SWAP_AGAIN;
1193 enum ttu_flags flags = (enum ttu_flags)arg;
1194
1195 pte = page_check_address(page, mm, address, &ptl, 0);
1196 if (!pte)
1197 goto out;
1198
1199 /*
1200 * If the page is mlock()d, we cannot swap it out.
1201 * If it's recently referenced (perhaps page_referenced
1202 * skipped over this mm) then we should reactivate it.
1203 */
1204 if (!(flags & TTU_IGNORE_MLOCK)) {
1205 if (vma->vm_flags & VM_LOCKED)
1206 goto out_mlock;
1207
1208 if (flags & TTU_MUNLOCK)
1209 goto out_unmap;
1210 }
1211 if (!(flags & TTU_IGNORE_ACCESS)) {
1212 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1213 ret = SWAP_FAIL;
1214 goto out_unmap;
1215 }
1216 }
1217
1218 /* Nuke the page table entry. */
1219 flush_cache_page(vma, address, page_to_pfn(page));
1220 pteval = ptep_clear_flush(vma, address, pte);
1221
1222 /* Move the dirty bit to the physical page now the pte is gone. */
1223 if (pte_dirty(pteval))
1224 set_page_dirty(page);
1225
1226 /* Update high watermark before we lower rss */
1227 update_hiwater_rss(mm);
1228
1229 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1230 if (!PageHuge(page)) {
1231 if (PageAnon(page))
1232 dec_mm_counter(mm, MM_ANONPAGES);
1233 else
1234 dec_mm_counter(mm, MM_FILEPAGES);
1235 }
1236 set_pte_at(mm, address, pte,
1237 swp_entry_to_pte(make_hwpoison_entry(page)));
1238 } else if (pte_unused(pteval)) {
1239 /*
1240 * The guest indicated that the page content is of no
1241 * interest anymore. Simply discard the pte, vmscan
1242 * will take care of the rest.
1243 */
1244 if (PageAnon(page))
1245 dec_mm_counter(mm, MM_ANONPAGES);
1246 else
1247 dec_mm_counter(mm, MM_FILEPAGES);
1248 } else if (PageAnon(page)) {
1249 swp_entry_t entry = { .val = page_private(page) };
1250 pte_t swp_pte;
1251
1252 if (PageSwapCache(page)) {
1253 /*
1254 * Store the swap location in the pte.
1255 * See handle_pte_fault() ...
1256 */
1257 if (swap_duplicate(entry) < 0) {
1258 set_pte_at(mm, address, pte, pteval);
1259 ret = SWAP_FAIL;
1260 goto out_unmap;
1261 }
1262 if (list_empty(&mm->mmlist)) {
1263 spin_lock(&mmlist_lock);
1264 if (list_empty(&mm->mmlist))
1265 list_add(&mm->mmlist, &init_mm.mmlist);
1266 spin_unlock(&mmlist_lock);
1267 }
1268 dec_mm_counter(mm, MM_ANONPAGES);
1269 inc_mm_counter(mm, MM_SWAPENTS);
1270 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1271 /*
1272 * Store the pfn of the page in a special migration
1273 * pte. do_swap_page() will wait until the migration
1274 * pte is removed and then restart fault handling.
1275 */
1276 BUG_ON(!(flags & TTU_MIGRATION));
1277 entry = make_migration_entry(page, pte_write(pteval));
1278 }
1279 swp_pte = swp_entry_to_pte(entry);
1280 if (pte_soft_dirty(pteval))
1281 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1282 set_pte_at(mm, address, pte, swp_pte);
1283 BUG_ON(pte_file(*pte));
1284 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1285 (flags & TTU_MIGRATION)) {
1286 /* Establish migration entry for a file page */
1287 swp_entry_t entry;
1288 entry = make_migration_entry(page, pte_write(pteval));
1289 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1290 } else
1291 dec_mm_counter(mm, MM_FILEPAGES);
1292
1293 page_remove_rmap(page);
1294 page_cache_release(page);
1295
1296 out_unmap:
1297 pte_unmap_unlock(pte, ptl);
1298 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1299 mmu_notifier_invalidate_page(mm, address);
1300 out:
1301 return ret;
1302
1303 out_mlock:
1304 pte_unmap_unlock(pte, ptl);
1305
1306
1307 /*
1308 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1309 * unstable result and race. Plus, We can't wait here because
1310 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1311 * if trylock failed, the page remain in evictable lru and later
1312 * vmscan could retry to move the page to unevictable lru if the
1313 * page is actually mlocked.
1314 */
1315 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1316 if (vma->vm_flags & VM_LOCKED) {
1317 mlock_vma_page(page);
1318 ret = SWAP_MLOCK;
1319 }
1320 up_read(&vma->vm_mm->mmap_sem);
1321 }
1322 return ret;
1323 }
1324
1325 /*
1326 * objrmap doesn't work for nonlinear VMAs because the assumption that
1327 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1328 * Consequently, given a particular page and its ->index, we cannot locate the
1329 * ptes which are mapping that page without an exhaustive linear search.
1330 *
1331 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1332 * maps the file to which the target page belongs. The ->vm_private_data field
1333 * holds the current cursor into that scan. Successive searches will circulate
1334 * around the vma's virtual address space.
1335 *
1336 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1337 * more scanning pressure is placed against them as well. Eventually pages
1338 * will become fully unmapped and are eligible for eviction.
1339 *
1340 * For very sparsely populated VMAs this is a little inefficient - chances are
1341 * there there won't be many ptes located within the scan cluster. In this case
1342 * maybe we could scan further - to the end of the pte page, perhaps.
1343 *
1344 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1345 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1346 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1347 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1348 */
1349 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1350 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1351
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)1352 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1353 struct vm_area_struct *vma, struct page *check_page)
1354 {
1355 struct mm_struct *mm = vma->vm_mm;
1356 pmd_t *pmd;
1357 pte_t *pte;
1358 pte_t pteval;
1359 spinlock_t *ptl;
1360 struct page *page;
1361 unsigned long address;
1362 unsigned long mmun_start; /* For mmu_notifiers */
1363 unsigned long mmun_end; /* For mmu_notifiers */
1364 unsigned long end;
1365 int ret = SWAP_AGAIN;
1366 int locked_vma = 0;
1367
1368 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1369 end = address + CLUSTER_SIZE;
1370 if (address < vma->vm_start)
1371 address = vma->vm_start;
1372 if (end > vma->vm_end)
1373 end = vma->vm_end;
1374
1375 pmd = mm_find_pmd(mm, address);
1376 if (!pmd)
1377 return ret;
1378
1379 mmun_start = address;
1380 mmun_end = end;
1381 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1382
1383 /*
1384 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1385 * keep the sem while scanning the cluster for mlocking pages.
1386 */
1387 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1388 locked_vma = (vma->vm_flags & VM_LOCKED);
1389 if (!locked_vma)
1390 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1391 }
1392
1393 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1394
1395 /* Update high watermark before we lower rss */
1396 update_hiwater_rss(mm);
1397
1398 for (; address < end; pte++, address += PAGE_SIZE) {
1399 if (!pte_present(*pte))
1400 continue;
1401 page = vm_normal_page(vma, address, *pte);
1402 BUG_ON(!page || PageAnon(page));
1403
1404 if (locked_vma) {
1405 if (page == check_page) {
1406 /* we know we have check_page locked */
1407 mlock_vma_page(page);
1408 ret = SWAP_MLOCK;
1409 } else if (trylock_page(page)) {
1410 /*
1411 * If we can lock the page, perform mlock.
1412 * Otherwise leave the page alone, it will be
1413 * eventually encountered again later.
1414 */
1415 mlock_vma_page(page);
1416 unlock_page(page);
1417 }
1418 continue; /* don't unmap */
1419 }
1420
1421 /*
1422 * No need for _notify because we're within an
1423 * mmu_notifier_invalidate_range_ {start|end} scope.
1424 */
1425 if (ptep_clear_flush_young(vma, address, pte))
1426 continue;
1427
1428 /* Nuke the page table entry. */
1429 flush_cache_page(vma, address, pte_pfn(*pte));
1430 pteval = ptep_clear_flush(vma, address, pte);
1431
1432 /* If nonlinear, store the file page offset in the pte. */
1433 if (page->index != linear_page_index(vma, address)) {
1434 pte_t ptfile = pgoff_to_pte(page->index);
1435 if (pte_soft_dirty(pteval))
1436 ptfile = pte_file_mksoft_dirty(ptfile);
1437 set_pte_at(mm, address, pte, ptfile);
1438 }
1439
1440 /* Move the dirty bit to the physical page now the pte is gone. */
1441 if (pte_dirty(pteval))
1442 set_page_dirty(page);
1443
1444 page_remove_rmap(page);
1445 page_cache_release(page);
1446 dec_mm_counter(mm, MM_FILEPAGES);
1447 (*mapcount)--;
1448 }
1449 pte_unmap_unlock(pte - 1, ptl);
1450 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1451 if (locked_vma)
1452 up_read(&vma->vm_mm->mmap_sem);
1453 return ret;
1454 }
1455
try_to_unmap_nonlinear(struct page * page,struct address_space * mapping,void * arg)1456 static int try_to_unmap_nonlinear(struct page *page,
1457 struct address_space *mapping, void *arg)
1458 {
1459 struct vm_area_struct *vma;
1460 int ret = SWAP_AGAIN;
1461 unsigned long cursor;
1462 unsigned long max_nl_cursor = 0;
1463 unsigned long max_nl_size = 0;
1464 unsigned int mapcount;
1465
1466 list_for_each_entry(vma,
1467 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1468
1469 cursor = (unsigned long) vma->vm_private_data;
1470 if (cursor > max_nl_cursor)
1471 max_nl_cursor = cursor;
1472 cursor = vma->vm_end - vma->vm_start;
1473 if (cursor > max_nl_size)
1474 max_nl_size = cursor;
1475 }
1476
1477 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1478 return SWAP_FAIL;
1479 }
1480
1481 /*
1482 * We don't try to search for this page in the nonlinear vmas,
1483 * and page_referenced wouldn't have found it anyway. Instead
1484 * just walk the nonlinear vmas trying to age and unmap some.
1485 * The mapcount of the page we came in with is irrelevant,
1486 * but even so use it as a guide to how hard we should try?
1487 */
1488 mapcount = page_mapcount(page);
1489 if (!mapcount)
1490 return ret;
1491
1492 cond_resched();
1493
1494 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1495 if (max_nl_cursor == 0)
1496 max_nl_cursor = CLUSTER_SIZE;
1497
1498 do {
1499 list_for_each_entry(vma,
1500 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1501
1502 cursor = (unsigned long) vma->vm_private_data;
1503 while (cursor < max_nl_cursor &&
1504 cursor < vma->vm_end - vma->vm_start) {
1505 if (try_to_unmap_cluster(cursor, &mapcount,
1506 vma, page) == SWAP_MLOCK)
1507 ret = SWAP_MLOCK;
1508 cursor += CLUSTER_SIZE;
1509 vma->vm_private_data = (void *) cursor;
1510 if ((int)mapcount <= 0)
1511 return ret;
1512 }
1513 vma->vm_private_data = (void *) max_nl_cursor;
1514 }
1515 cond_resched();
1516 max_nl_cursor += CLUSTER_SIZE;
1517 } while (max_nl_cursor <= max_nl_size);
1518
1519 /*
1520 * Don't loop forever (perhaps all the remaining pages are
1521 * in locked vmas). Reset cursor on all unreserved nonlinear
1522 * vmas, now forgetting on which ones it had fallen behind.
1523 */
1524 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1525 vma->vm_private_data = NULL;
1526
1527 return ret;
1528 }
1529
is_vma_temporary_stack(struct vm_area_struct * vma)1530 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1531 {
1532 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1533
1534 if (!maybe_stack)
1535 return false;
1536
1537 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1538 VM_STACK_INCOMPLETE_SETUP)
1539 return true;
1540
1541 return false;
1542 }
1543
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1544 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1545 {
1546 return is_vma_temporary_stack(vma);
1547 }
1548
page_not_mapped(struct page * page)1549 static int page_not_mapped(struct page *page)
1550 {
1551 return !page_mapped(page);
1552 };
1553
1554 /**
1555 * try_to_unmap - try to remove all page table mappings to a page
1556 * @page: the page to get unmapped
1557 * @flags: action and flags
1558 *
1559 * Tries to remove all the page table entries which are mapping this
1560 * page, used in the pageout path. Caller must hold the page lock.
1561 * Return values are:
1562 *
1563 * SWAP_SUCCESS - we succeeded in removing all mappings
1564 * SWAP_AGAIN - we missed a mapping, try again later
1565 * SWAP_FAIL - the page is unswappable
1566 * SWAP_MLOCK - page is mlocked.
1567 */
try_to_unmap(struct page * page,enum ttu_flags flags)1568 int try_to_unmap(struct page *page, enum ttu_flags flags)
1569 {
1570 int ret;
1571 struct rmap_walk_control rwc = {
1572 .rmap_one = try_to_unmap_one,
1573 .arg = (void *)flags,
1574 .done = page_not_mapped,
1575 .file_nonlinear = try_to_unmap_nonlinear,
1576 .anon_lock = page_lock_anon_vma_read,
1577 };
1578
1579 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1580
1581 /*
1582 * During exec, a temporary VMA is setup and later moved.
1583 * The VMA is moved under the anon_vma lock but not the
1584 * page tables leading to a race where migration cannot
1585 * find the migration ptes. Rather than increasing the
1586 * locking requirements of exec(), migration skips
1587 * temporary VMAs until after exec() completes.
1588 */
1589 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1590 rwc.invalid_vma = invalid_migration_vma;
1591
1592 ret = rmap_walk(page, &rwc);
1593
1594 if (ret != SWAP_MLOCK && !page_mapped(page))
1595 ret = SWAP_SUCCESS;
1596 return ret;
1597 }
1598
1599 /**
1600 * try_to_munlock - try to munlock a page
1601 * @page: the page to be munlocked
1602 *
1603 * Called from munlock code. Checks all of the VMAs mapping the page
1604 * to make sure nobody else has this page mlocked. The page will be
1605 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1606 *
1607 * Return values are:
1608 *
1609 * SWAP_AGAIN - no vma is holding page mlocked, or,
1610 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1611 * SWAP_FAIL - page cannot be located at present
1612 * SWAP_MLOCK - page is now mlocked.
1613 */
try_to_munlock(struct page * page)1614 int try_to_munlock(struct page *page)
1615 {
1616 int ret;
1617 struct rmap_walk_control rwc = {
1618 .rmap_one = try_to_unmap_one,
1619 .arg = (void *)TTU_MUNLOCK,
1620 .done = page_not_mapped,
1621 /*
1622 * We don't bother to try to find the munlocked page in
1623 * nonlinears. It's costly. Instead, later, page reclaim logic
1624 * may call try_to_unmap() and recover PG_mlocked lazily.
1625 */
1626 .file_nonlinear = NULL,
1627 .anon_lock = page_lock_anon_vma_read,
1628
1629 };
1630
1631 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1632
1633 ret = rmap_walk(page, &rwc);
1634 return ret;
1635 }
1636
__put_anon_vma(struct anon_vma * anon_vma)1637 void __put_anon_vma(struct anon_vma *anon_vma)
1638 {
1639 struct anon_vma *root = anon_vma->root;
1640
1641 anon_vma_free(anon_vma);
1642 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1643 anon_vma_free(root);
1644 }
1645
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1646 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1647 struct rmap_walk_control *rwc)
1648 {
1649 struct anon_vma *anon_vma;
1650
1651 if (rwc->anon_lock)
1652 return rwc->anon_lock(page);
1653
1654 /*
1655 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1656 * because that depends on page_mapped(); but not all its usages
1657 * are holding mmap_sem. Users without mmap_sem are required to
1658 * take a reference count to prevent the anon_vma disappearing
1659 */
1660 anon_vma = page_anon_vma(page);
1661 if (!anon_vma)
1662 return NULL;
1663
1664 anon_vma_lock_read(anon_vma);
1665 return anon_vma;
1666 }
1667
1668 /*
1669 * rmap_walk_anon - do something to anonymous page using the object-based
1670 * rmap method
1671 * @page: the page to be handled
1672 * @rwc: control variable according to each walk type
1673 *
1674 * Find all the mappings of a page using the mapping pointer and the vma chains
1675 * contained in the anon_vma struct it points to.
1676 *
1677 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1678 * where the page was found will be held for write. So, we won't recheck
1679 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1680 * LOCKED.
1681 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc)1682 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1683 {
1684 struct anon_vma *anon_vma;
1685 pgoff_t pgoff = page_to_pgoff(page);
1686 struct anon_vma_chain *avc;
1687 int ret = SWAP_AGAIN;
1688
1689 anon_vma = rmap_walk_anon_lock(page, rwc);
1690 if (!anon_vma)
1691 return ret;
1692
1693 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1694 struct vm_area_struct *vma = avc->vma;
1695 unsigned long address = vma_address(page, vma);
1696
1697 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1698 continue;
1699
1700 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1701 if (ret != SWAP_AGAIN)
1702 break;
1703 if (rwc->done && rwc->done(page))
1704 break;
1705 }
1706 anon_vma_unlock_read(anon_vma);
1707 return ret;
1708 }
1709
1710 /*
1711 * rmap_walk_file - do something to file page using the object-based rmap method
1712 * @page: the page to be handled
1713 * @rwc: control variable according to each walk type
1714 *
1715 * Find all the mappings of a page using the mapping pointer and the vma chains
1716 * contained in the address_space struct it points to.
1717 *
1718 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1719 * where the page was found will be held for write. So, we won't recheck
1720 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1721 * LOCKED.
1722 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc)1723 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1724 {
1725 struct address_space *mapping = page->mapping;
1726 pgoff_t pgoff = page_to_pgoff(page);
1727 struct vm_area_struct *vma;
1728 int ret = SWAP_AGAIN;
1729
1730 /*
1731 * The page lock not only makes sure that page->mapping cannot
1732 * suddenly be NULLified by truncation, it makes sure that the
1733 * structure at mapping cannot be freed and reused yet,
1734 * so we can safely take mapping->i_mmap_mutex.
1735 */
1736 VM_BUG_ON_PAGE(!PageLocked(page), page);
1737
1738 if (!mapping)
1739 return ret;
1740 mutex_lock(&mapping->i_mmap_mutex);
1741 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1742 unsigned long address = vma_address(page, vma);
1743
1744 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1745 continue;
1746
1747 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1748 if (ret != SWAP_AGAIN)
1749 goto done;
1750 if (rwc->done && rwc->done(page))
1751 goto done;
1752 }
1753
1754 if (!rwc->file_nonlinear)
1755 goto done;
1756
1757 if (list_empty(&mapping->i_mmap_nonlinear))
1758 goto done;
1759
1760 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1761
1762 done:
1763 mutex_unlock(&mapping->i_mmap_mutex);
1764 return ret;
1765 }
1766
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1767 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1768 {
1769 if (unlikely(PageKsm(page)))
1770 return rmap_walk_ksm(page, rwc);
1771 else if (PageAnon(page))
1772 return rmap_walk_anon(page, rwc);
1773 else
1774 return rmap_walk_file(page, rwc);
1775 }
1776
1777 #ifdef CONFIG_HUGETLB_PAGE
1778 /*
1779 * The following three functions are for anonymous (private mapped) hugepages.
1780 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1781 * and no lru code, because we handle hugepages differently from common pages.
1782 */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1783 static void __hugepage_set_anon_rmap(struct page *page,
1784 struct vm_area_struct *vma, unsigned long address, int exclusive)
1785 {
1786 struct anon_vma *anon_vma = vma->anon_vma;
1787
1788 BUG_ON(!anon_vma);
1789
1790 if (PageAnon(page))
1791 return;
1792 if (!exclusive)
1793 anon_vma = anon_vma->root;
1794
1795 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1796 page->mapping = (struct address_space *) anon_vma;
1797 page->index = linear_page_index(vma, address);
1798 }
1799
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1800 void hugepage_add_anon_rmap(struct page *page,
1801 struct vm_area_struct *vma, unsigned long address)
1802 {
1803 struct anon_vma *anon_vma = vma->anon_vma;
1804 int first;
1805
1806 BUG_ON(!PageLocked(page));
1807 BUG_ON(!anon_vma);
1808 /* address might be in next vma when migration races vma_adjust */
1809 first = atomic_inc_and_test(&page->_mapcount);
1810 if (first)
1811 __hugepage_set_anon_rmap(page, vma, address, 0);
1812 }
1813
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1814 void hugepage_add_new_anon_rmap(struct page *page,
1815 struct vm_area_struct *vma, unsigned long address)
1816 {
1817 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1818 atomic_set(&page->_mapcount, 0);
1819 __hugepage_set_anon_rmap(page, vma, address, 1);
1820 }
1821 #endif /* CONFIG_HUGETLB_PAGE */
1822