• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _UAPI_HYPERV_H
26 #define _UAPI_HYPERV_H
27 
28 #include <linux/uuid.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 #define UTIL_FW_MINOR  0
34 
35 #define UTIL_WS2K8_FW_MAJOR  1
36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 #define UTIL_FW_MAJOR  3
39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40 
41 
42 /*
43  * Implementation of host controlled snapshot of the guest.
44  */
45 
46 #define VSS_OP_REGISTER 128
47 
48 enum hv_vss_op {
49 	VSS_OP_CREATE = 0,
50 	VSS_OP_DELETE,
51 	VSS_OP_HOT_BACKUP,
52 	VSS_OP_GET_DM_INFO,
53 	VSS_OP_BU_COMPLETE,
54 	/*
55 	 * Following operations are only supported with IC version >= 5.0
56 	 */
57 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 	VSS_OP_THAW, /* Unfreeze the file systems */
59 	VSS_OP_AUTO_RECOVER,
60 	VSS_OP_COUNT /* Number of operations, must be last */
61 };
62 
63 
64 /*
65  * Header for all VSS messages.
66  */
67 struct hv_vss_hdr {
68 	__u8 operation;
69 	__u8 reserved[7];
70 } __attribute__((packed));
71 
72 
73 /*
74  * Flag values for the hv_vss_check_feature. Linux supports only
75  * one value.
76  */
77 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
78 
79 struct hv_vss_check_feature {
80 	__u32 flags;
81 } __attribute__((packed));
82 
83 struct hv_vss_check_dm_info {
84 	__u32 flags;
85 } __attribute__((packed));
86 
87 struct hv_vss_msg {
88 	union {
89 		struct hv_vss_hdr vss_hdr;
90 		int error;
91 	};
92 	union {
93 		struct hv_vss_check_feature vss_cf;
94 		struct hv_vss_check_dm_info dm_info;
95 	};
96 } __attribute__((packed));
97 
98 /*
99  * Implementation of a host to guest copy facility.
100  */
101 
102 #define FCOPY_VERSION_0 0
103 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_0
104 #define W_MAX_PATH 260
105 
106 enum hv_fcopy_op {
107 	START_FILE_COPY = 0,
108 	WRITE_TO_FILE,
109 	COMPLETE_FCOPY,
110 	CANCEL_FCOPY,
111 };
112 
113 struct hv_fcopy_hdr {
114 	__u32 operation;
115 	uuid_le service_id0; /* currently unused */
116 	uuid_le service_id1; /* currently unused */
117 } __attribute__((packed));
118 
119 #define OVER_WRITE	0x1
120 #define CREATE_PATH	0x2
121 
122 struct hv_start_fcopy {
123 	struct hv_fcopy_hdr hdr;
124 	__u16 file_name[W_MAX_PATH];
125 	__u16 path_name[W_MAX_PATH];
126 	__u32 copy_flags;
127 	__u64 file_size;
128 } __attribute__((packed));
129 
130 /*
131  * The file is chunked into fragments.
132  */
133 #define DATA_FRAGMENT	(6 * 1024)
134 
135 struct hv_do_fcopy {
136 	struct hv_fcopy_hdr hdr;
137 	__u32   pad;
138 	__u64	offset;
139 	__u32	size;
140 	__u8	data[DATA_FRAGMENT];
141 } __attribute__((packed));
142 
143 /*
144  * An implementation of HyperV key value pair (KVP) functionality for Linux.
145  *
146  *
147  * Copyright (C) 2010, Novell, Inc.
148  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
149  *
150  */
151 
152 /*
153  * Maximum value size - used for both key names and value data, and includes
154  * any applicable NULL terminators.
155  *
156  * Note:  This limit is somewhat arbitrary, but falls easily within what is
157  * supported for all native guests (back to Win 2000) and what is reasonable
158  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
159  * limited to 255 character key names.
160  *
161  * MSDN recommends not storing data values larger than 2048 bytes in the
162  * registry.
163  *
164  * Note:  This value is used in defining the KVP exchange message - this value
165  * cannot be modified without affecting the message size and compatibility.
166  */
167 
168 /*
169  * bytes, including any null terminators
170  */
171 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
172 
173 
174 /*
175  * Maximum key size - the registry limit for the length of an entry name
176  * is 256 characters, including the null terminator
177  */
178 
179 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
180 
181 /*
182  * In Linux, we implement the KVP functionality in two components:
183  * 1) The kernel component which is packaged as part of the hv_utils driver
184  * is responsible for communicating with the host and responsible for
185  * implementing the host/guest protocol. 2) A user level daemon that is
186  * responsible for data gathering.
187  *
188  * Host/Guest Protocol: The host iterates over an index and expects the guest
189  * to assign a key name to the index and also return the value corresponding to
190  * the key. The host will have atmost one KVP transaction outstanding at any
191  * given point in time. The host side iteration stops when the guest returns
192  * an error. Microsoft has specified the following mapping of key names to
193  * host specified index:
194  *
195  *	Index		Key Name
196  *	0		FullyQualifiedDomainName
197  *	1		IntegrationServicesVersion
198  *	2		NetworkAddressIPv4
199  *	3		NetworkAddressIPv6
200  *	4		OSBuildNumber
201  *	5		OSName
202  *	6		OSMajorVersion
203  *	7		OSMinorVersion
204  *	8		OSVersion
205  *	9		ProcessorArchitecture
206  *
207  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
208  *
209  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
210  * data gathering functionality in a user mode daemon. The user level daemon
211  * is also responsible for binding the key name to the index as well. The
212  * kernel and user-level daemon communicate using a connector channel.
213  *
214  * The user mode component first registers with the
215  * the kernel component. Subsequently, the kernel component requests, data
216  * for the specified keys. In response to this message the user mode component
217  * fills in the value corresponding to the specified key. We overload the
218  * sequence field in the cn_msg header to define our KVP message types.
219  *
220  *
221  * The kernel component simply acts as a conduit for communication between the
222  * Windows host and the user-level daemon. The kernel component passes up the
223  * index received from the Host to the user-level daemon. If the index is
224  * valid (supported), the corresponding key as well as its
225  * value (both are strings) is returned. If the index is invalid
226  * (not supported), a NULL key string is returned.
227  */
228 
229 
230 /*
231  * Registry value types.
232  */
233 
234 #define REG_SZ 1
235 #define REG_U32 4
236 #define REG_U64 8
237 
238 /*
239  * As we look at expanding the KVP functionality to include
240  * IP injection functionality, we need to maintain binary
241  * compatibility with older daemons.
242  *
243  * The KVP opcodes are defined by the host and it was unfortunate
244  * that I chose to treat the registration operation as part of the
245  * KVP operations defined by the host.
246  * Here is the level of compatibility
247  * (between the user level daemon and the kernel KVP driver) that we
248  * will implement:
249  *
250  * An older daemon will always be supported on a newer driver.
251  * A given user level daemon will require a minimal version of the
252  * kernel driver.
253  * If we cannot handle the version differences, we will fail gracefully
254  * (this can happen when we have a user level daemon that is more
255  * advanced than the KVP driver.
256  *
257  * We will use values used in this handshake for determining if we have
258  * workable user level daemon and the kernel driver. We begin by taking the
259  * registration opcode out of the KVP opcode namespace. We will however,
260  * maintain compatibility with the existing user-level daemon code.
261  */
262 
263 /*
264  * Daemon code not supporting IP injection (legacy daemon).
265  */
266 
267 #define KVP_OP_REGISTER	4
268 
269 /*
270  * Daemon code supporting IP injection.
271  * The KVP opcode field is used to communicate the
272  * registration information; so define a namespace that
273  * will be distinct from the host defined KVP opcode.
274  */
275 
276 #define KVP_OP_REGISTER1 100
277 
278 enum hv_kvp_exchg_op {
279 	KVP_OP_GET = 0,
280 	KVP_OP_SET,
281 	KVP_OP_DELETE,
282 	KVP_OP_ENUMERATE,
283 	KVP_OP_GET_IP_INFO,
284 	KVP_OP_SET_IP_INFO,
285 	KVP_OP_COUNT /* Number of operations, must be last. */
286 };
287 
288 enum hv_kvp_exchg_pool {
289 	KVP_POOL_EXTERNAL = 0,
290 	KVP_POOL_GUEST,
291 	KVP_POOL_AUTO,
292 	KVP_POOL_AUTO_EXTERNAL,
293 	KVP_POOL_AUTO_INTERNAL,
294 	KVP_POOL_COUNT /* Number of pools, must be last. */
295 };
296 
297 /*
298  * Some Hyper-V status codes.
299  */
300 
301 #define HV_S_OK				0x00000000
302 #define HV_E_FAIL			0x80004005
303 #define HV_S_CONT			0x80070103
304 #define HV_ERROR_NOT_SUPPORTED		0x80070032
305 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
306 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
307 #define HV_INVALIDARG			0x80070057
308 #define HV_GUID_NOTFOUND		0x80041002
309 #define HV_ERROR_ALREADY_EXISTS		0x80070050
310 
311 #define ADDR_FAMILY_NONE	0x00
312 #define ADDR_FAMILY_IPV4	0x01
313 #define ADDR_FAMILY_IPV6	0x02
314 
315 #define MAX_ADAPTER_ID_SIZE	128
316 #define MAX_IP_ADDR_SIZE	1024
317 #define MAX_GATEWAY_SIZE	512
318 
319 
320 struct hv_kvp_ipaddr_value {
321 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
322 	__u8	addr_family;
323 	__u8	dhcp_enabled;
324 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
325 	__u16	sub_net[MAX_IP_ADDR_SIZE];
326 	__u16	gate_way[MAX_GATEWAY_SIZE];
327 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
328 } __attribute__((packed));
329 
330 
331 struct hv_kvp_hdr {
332 	__u8 operation;
333 	__u8 pool;
334 	__u16 pad;
335 } __attribute__((packed));
336 
337 struct hv_kvp_exchg_msg_value {
338 	__u32 value_type;
339 	__u32 key_size;
340 	__u32 value_size;
341 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
342 	union {
343 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
344 		__u32 value_u32;
345 		__u64 value_u64;
346 	};
347 } __attribute__((packed));
348 
349 struct hv_kvp_msg_enumerate {
350 	__u32 index;
351 	struct hv_kvp_exchg_msg_value data;
352 } __attribute__((packed));
353 
354 struct hv_kvp_msg_get {
355 	struct hv_kvp_exchg_msg_value data;
356 };
357 
358 struct hv_kvp_msg_set {
359 	struct hv_kvp_exchg_msg_value data;
360 };
361 
362 struct hv_kvp_msg_delete {
363 	__u32 key_size;
364 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
365 };
366 
367 struct hv_kvp_register {
368 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
369 };
370 
371 struct hv_kvp_msg {
372 	union {
373 		struct hv_kvp_hdr	kvp_hdr;
374 		int error;
375 	};
376 	union {
377 		struct hv_kvp_msg_get		kvp_get;
378 		struct hv_kvp_msg_set		kvp_set;
379 		struct hv_kvp_msg_delete	kvp_delete;
380 		struct hv_kvp_msg_enumerate	kvp_enum_data;
381 		struct hv_kvp_ipaddr_value      kvp_ip_val;
382 		struct hv_kvp_register		kvp_register;
383 	} body;
384 } __attribute__((packed));
385 
386 struct hv_kvp_ip_msg {
387 	__u8 operation;
388 	__u8 pool;
389 	struct hv_kvp_ipaddr_value      kvp_ip_val;
390 } __attribute__((packed));
391 
392 #endif /* _UAPI_HYPERV_H */
393