• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25 
26 /*
27  * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28  * uses for EPT without A/D paging type.
29  */
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31 	       __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32 
33 #if PTTYPE == 64
34 	#define pt_element_t u64
35 	#define guest_walker guest_walker64
36 	#define FNAME(name) paging##64_##name
37 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
42 	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46 	#ifdef CONFIG_X86_64
47 	#define PT_MAX_FULL_LEVELS 4
48 	#define CMPXCHG cmpxchg
49 	#else
50 	#define CMPXCHG cmpxchg64
51 	#define PT_MAX_FULL_LEVELS 2
52 	#endif
53 #elif PTTYPE == 32
54 	#define pt_element_t u32
55 	#define guest_walker guest_walker32
56 	#define FNAME(name) paging##32_##name
57 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
62 	#define PT_MAX_FULL_LEVELS 2
63 	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 	#define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 	#define pt_element_t u64
70 	#define guest_walker guest_walkerEPT
71 	#define FNAME(name) ept_##name
72 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
77 	#define PT_GUEST_ACCESSED_MASK 0
78 	#define PT_GUEST_DIRTY_MASK 0
79 	#define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 	#define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 	#define CMPXCHG cmpxchg64
82 	#define PT_MAX_FULL_LEVELS 4
83 #else
84 	#error Invalid PTTYPE value
85 #endif
86 
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
89 
90 /*
91  * The guest_walker structure emulates the behavior of the hardware page
92  * table walker.
93  */
94 struct guest_walker {
95 	int level;
96 	unsigned max_level;
97 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
99 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102 	bool pte_writable[PT_MAX_FULL_LEVELS];
103 	unsigned pt_access;
104 	unsigned pte_access;
105 	gfn_t gfn;
106 	struct x86_exception fault;
107 };
108 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
110 {
111 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
112 }
113 
FNAME(protect_clean_gpte)114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
115 {
116 	unsigned mask;
117 
118 	/* dirty bit is not supported, so no need to track it */
119 	if (!PT_GUEST_DIRTY_MASK)
120 		return;
121 
122 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
123 
124 	mask = (unsigned)~ACC_WRITE_MASK;
125 	/* Allow write access to dirty gptes */
126 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127 		PT_WRITABLE_MASK;
128 	*access &= mask;
129 }
130 
FNAME(is_rsvd_bits_set)131 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
132 {
133 	int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
134 
135 	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
136 		((mmu->bad_mt_xwr & (1ull << low6)) != 0);
137 }
138 
FNAME(is_present_gpte)139 static inline int FNAME(is_present_gpte)(unsigned long pte)
140 {
141 #if PTTYPE != PTTYPE_EPT
142 	return is_present_gpte(pte);
143 #else
144 	return pte & 7;
145 #endif
146 }
147 
FNAME(cmpxchg_gpte)148 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
149 			       pt_element_t __user *ptep_user, unsigned index,
150 			       pt_element_t orig_pte, pt_element_t new_pte)
151 {
152 	int npages;
153 	pt_element_t ret;
154 	pt_element_t *table;
155 	struct page *page;
156 
157 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
158 	/* Check if the user is doing something meaningless. */
159 	if (unlikely(npages != 1))
160 		return -EFAULT;
161 
162 	table = kmap_atomic(page);
163 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
164 	kunmap_atomic(table);
165 
166 	kvm_release_page_dirty(page);
167 
168 	return (ret != orig_pte);
169 }
170 
FNAME(prefetch_invalid_gpte)171 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
172 				  struct kvm_mmu_page *sp, u64 *spte,
173 				  u64 gpte)
174 {
175 	if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
176 		goto no_present;
177 
178 	if (!FNAME(is_present_gpte)(gpte))
179 		goto no_present;
180 
181 	/* if accessed bit is not supported prefetch non accessed gpte */
182 	if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
183 		goto no_present;
184 
185 	return false;
186 
187 no_present:
188 	drop_spte(vcpu->kvm, spte);
189 	return true;
190 }
191 
FNAME(gpte_access)192 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
193 {
194 	unsigned access;
195 #if PTTYPE == PTTYPE_EPT
196 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
197 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
198 		ACC_USER_MASK;
199 #else
200 	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
201 	access &= ~(gpte >> PT64_NX_SHIFT);
202 #endif
203 
204 	return access;
205 }
206 
FNAME(update_accessed_dirty_bits)207 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
208 					     struct kvm_mmu *mmu,
209 					     struct guest_walker *walker,
210 					     int write_fault)
211 {
212 	unsigned level, index;
213 	pt_element_t pte, orig_pte;
214 	pt_element_t __user *ptep_user;
215 	gfn_t table_gfn;
216 	int ret;
217 
218 	/* dirty/accessed bits are not supported, so no need to update them */
219 	if (!PT_GUEST_DIRTY_MASK)
220 		return 0;
221 
222 	for (level = walker->max_level; level >= walker->level; --level) {
223 		pte = orig_pte = walker->ptes[level - 1];
224 		table_gfn = walker->table_gfn[level - 1];
225 		ptep_user = walker->ptep_user[level - 1];
226 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
227 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
228 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
229 			pte |= PT_GUEST_ACCESSED_MASK;
230 		}
231 		if (level == walker->level && write_fault &&
232 				!(pte & PT_GUEST_DIRTY_MASK)) {
233 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
234 			pte |= PT_GUEST_DIRTY_MASK;
235 		}
236 		if (pte == orig_pte)
237 			continue;
238 
239 		/*
240 		 * If the slot is read-only, simply do not process the accessed
241 		 * and dirty bits.  This is the correct thing to do if the slot
242 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 		 * are only supported if the accessed and dirty bits are already
244 		 * set in the ROM (so that MMIO writes are never needed).
245 		 *
246 		 * Note that NPT does not allow this at all and faults, since
247 		 * it always wants nested page table entries for the guest
248 		 * page tables to be writable.  And EPT works but will simply
249 		 * overwrite the read-only memory to set the accessed and dirty
250 		 * bits.
251 		 */
252 		if (unlikely(!walker->pte_writable[level - 1]))
253 			continue;
254 
255 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256 		if (ret)
257 			return ret;
258 
259 		mark_page_dirty(vcpu->kvm, table_gfn);
260 		walker->ptes[level - 1] = pte;
261 	}
262 	return 0;
263 }
264 
265 /*
266  * Fetch a guest pte for a guest virtual address
267  */
FNAME(walk_addr_generic)268 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
269 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
270 				    gva_t addr, u32 access)
271 {
272 	int ret;
273 	pt_element_t pte;
274 	pt_element_t __user *uninitialized_var(ptep_user);
275 	gfn_t table_gfn;
276 	unsigned index, pt_access, pte_access, accessed_dirty;
277 	gpa_t pte_gpa;
278 	int offset;
279 	const int write_fault = access & PFERR_WRITE_MASK;
280 	const int user_fault  = access & PFERR_USER_MASK;
281 	const int fetch_fault = access & PFERR_FETCH_MASK;
282 	u16 errcode = 0;
283 	gpa_t real_gpa;
284 	gfn_t gfn;
285 
286 	trace_kvm_mmu_pagetable_walk(addr, access);
287 retry_walk:
288 	walker->level = mmu->root_level;
289 	pte           = mmu->get_cr3(vcpu);
290 
291 #if PTTYPE == 64
292 	if (walker->level == PT32E_ROOT_LEVEL) {
293 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
294 		trace_kvm_mmu_paging_element(pte, walker->level);
295 		if (!FNAME(is_present_gpte)(pte))
296 			goto error;
297 		--walker->level;
298 	}
299 #endif
300 	walker->max_level = walker->level;
301 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
302 
303 	accessed_dirty = PT_GUEST_ACCESSED_MASK;
304 	pt_access = pte_access = ACC_ALL;
305 	++walker->level;
306 
307 	do {
308 		gfn_t real_gfn;
309 		unsigned long host_addr;
310 
311 		pt_access &= pte_access;
312 		--walker->level;
313 
314 		index = PT_INDEX(addr, walker->level);
315 
316 		table_gfn = gpte_to_gfn(pte);
317 		offset    = index * sizeof(pt_element_t);
318 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
319 		walker->table_gfn[walker->level - 1] = table_gfn;
320 		walker->pte_gpa[walker->level - 1] = pte_gpa;
321 
322 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
323 					      PFERR_USER_MASK|PFERR_WRITE_MASK,
324 					      &walker->fault);
325 
326 		/*
327 		 * FIXME: This can happen if emulation (for of an INS/OUTS
328 		 * instruction) triggers a nested page fault.  The exit
329 		 * qualification / exit info field will incorrectly have
330 		 * "guest page access" as the nested page fault's cause,
331 		 * instead of "guest page structure access".  To fix this,
332 		 * the x86_exception struct should be augmented with enough
333 		 * information to fix the exit_qualification or exit_info_1
334 		 * fields.
335 		 */
336 		if (unlikely(real_gfn == UNMAPPED_GVA))
337 			return 0;
338 
339 		real_gfn = gpa_to_gfn(real_gfn);
340 
341 		host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn,
342 					    &walker->pte_writable[walker->level - 1]);
343 		if (unlikely(kvm_is_error_hva(host_addr)))
344 			goto error;
345 
346 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
347 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
348 			goto error;
349 		walker->ptep_user[walker->level - 1] = ptep_user;
350 
351 		trace_kvm_mmu_paging_element(pte, walker->level);
352 
353 		if (unlikely(!FNAME(is_present_gpte)(pte)))
354 			goto error;
355 
356 		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
357 					             walker->level))) {
358 			errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
359 			goto error;
360 		}
361 
362 		accessed_dirty &= pte;
363 		pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
364 
365 		walker->ptes[walker->level - 1] = pte;
366 	} while (!is_last_gpte(mmu, walker->level, pte));
367 
368 	if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) {
369 		errcode |= PFERR_PRESENT_MASK;
370 		goto error;
371 	}
372 
373 	gfn = gpte_to_gfn_lvl(pte, walker->level);
374 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
375 
376 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
377 		gfn += pse36_gfn_delta(pte);
378 
379 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
380 	if (real_gpa == UNMAPPED_GVA)
381 		return 0;
382 
383 	walker->gfn = real_gpa >> PAGE_SHIFT;
384 
385 	if (!write_fault)
386 		FNAME(protect_clean_gpte)(&pte_access, pte);
387 	else
388 		/*
389 		 * On a write fault, fold the dirty bit into accessed_dirty.
390 		 * For modes without A/D bits support accessed_dirty will be
391 		 * always clear.
392 		 */
393 		accessed_dirty &= pte >>
394 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
395 
396 	if (unlikely(!accessed_dirty)) {
397 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
398 		if (unlikely(ret < 0))
399 			goto error;
400 		else if (ret)
401 			goto retry_walk;
402 	}
403 
404 	walker->pt_access = pt_access;
405 	walker->pte_access = pte_access;
406 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
407 		 __func__, (u64)pte, pte_access, pt_access);
408 	return 1;
409 
410 error:
411 	errcode |= write_fault | user_fault;
412 	if (fetch_fault && (mmu->nx ||
413 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
414 		errcode |= PFERR_FETCH_MASK;
415 
416 	walker->fault.vector = PF_VECTOR;
417 	walker->fault.error_code_valid = true;
418 	walker->fault.error_code = errcode;
419 
420 #if PTTYPE == PTTYPE_EPT
421 	/*
422 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
423 	 * misconfiguration requires to be injected. The detection is
424 	 * done by is_rsvd_bits_set() above.
425 	 *
426 	 * We set up the value of exit_qualification to inject:
427 	 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
428 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
429 	 * [7:8] - Derived from [7:8] of real exit_qualification
430 	 *
431 	 * The other bits are set to 0.
432 	 */
433 	if (!(errcode & PFERR_RSVD_MASK)) {
434 		vcpu->arch.exit_qualification &= 0x187;
435 		vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
436 	}
437 #endif
438 	walker->fault.address = addr;
439 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
440 
441 	trace_kvm_mmu_walker_error(walker->fault.error_code);
442 	return 0;
443 }
444 
FNAME(walk_addr)445 static int FNAME(walk_addr)(struct guest_walker *walker,
446 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
447 {
448 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
449 					access);
450 }
451 
452 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)453 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
454 				   struct kvm_vcpu *vcpu, gva_t addr,
455 				   u32 access)
456 {
457 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
458 					addr, access);
459 }
460 #endif
461 
462 static bool
FNAME(prefetch_gpte)463 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
464 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
465 {
466 	unsigned pte_access;
467 	gfn_t gfn;
468 	pfn_t pfn;
469 
470 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
471 		return false;
472 
473 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
474 
475 	gfn = gpte_to_gfn(gpte);
476 	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
477 	FNAME(protect_clean_gpte)(&pte_access, gpte);
478 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
479 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
480 	if (is_error_pfn(pfn))
481 		return false;
482 
483 	/*
484 	 * we call mmu_set_spte() with host_writable = true because
485 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
486 	 */
487 	mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
488 		     gfn, pfn, true, true);
489 
490 	return true;
491 }
492 
FNAME(update_pte)493 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
494 			      u64 *spte, const void *pte)
495 {
496 	pt_element_t gpte = *(const pt_element_t *)pte;
497 
498 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
499 }
500 
FNAME(gpte_changed)501 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
502 				struct guest_walker *gw, int level)
503 {
504 	pt_element_t curr_pte;
505 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
506 	u64 mask;
507 	int r, index;
508 
509 	if (level == PT_PAGE_TABLE_LEVEL) {
510 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
511 		base_gpa = pte_gpa & ~mask;
512 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
513 
514 		r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
515 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
516 		curr_pte = gw->prefetch_ptes[index];
517 	} else
518 		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
519 				  &curr_pte, sizeof(curr_pte));
520 
521 	return r || curr_pte != gw->ptes[level - 1];
522 }
523 
FNAME(pte_prefetch)524 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
525 				u64 *sptep)
526 {
527 	struct kvm_mmu_page *sp;
528 	pt_element_t *gptep = gw->prefetch_ptes;
529 	u64 *spte;
530 	int i;
531 
532 	sp = page_header(__pa(sptep));
533 
534 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
535 		return;
536 
537 	if (sp->role.direct)
538 		return __direct_pte_prefetch(vcpu, sp, sptep);
539 
540 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
541 	spte = sp->spt + i;
542 
543 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
544 		if (spte == sptep)
545 			continue;
546 
547 		if (is_shadow_present_pte(*spte))
548 			continue;
549 
550 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
551 			break;
552 	}
553 }
554 
555 /*
556  * Fetch a shadow pte for a specific level in the paging hierarchy.
557  * If the guest tries to write a write-protected page, we need to
558  * emulate this operation, return 1 to indicate this case.
559  */
FNAME(fetch)560 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
561 			 struct guest_walker *gw,
562 			 int write_fault, int hlevel,
563 			 pfn_t pfn, bool map_writable, bool prefault)
564 {
565 	struct kvm_mmu_page *sp = NULL;
566 	struct kvm_shadow_walk_iterator it;
567 	unsigned direct_access, access = gw->pt_access;
568 	int top_level, emulate = 0;
569 
570 	direct_access = gw->pte_access;
571 
572 	top_level = vcpu->arch.mmu.root_level;
573 	if (top_level == PT32E_ROOT_LEVEL)
574 		top_level = PT32_ROOT_LEVEL;
575 	/*
576 	 * Verify that the top-level gpte is still there.  Since the page
577 	 * is a root page, it is either write protected (and cannot be
578 	 * changed from now on) or it is invalid (in which case, we don't
579 	 * really care if it changes underneath us after this point).
580 	 */
581 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
582 		goto out_gpte_changed;
583 
584 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
585 		goto out_gpte_changed;
586 
587 	for (shadow_walk_init(&it, vcpu, addr);
588 	     shadow_walk_okay(&it) && it.level > gw->level;
589 	     shadow_walk_next(&it)) {
590 		gfn_t table_gfn;
591 
592 		clear_sp_write_flooding_count(it.sptep);
593 		drop_large_spte(vcpu, it.sptep);
594 
595 		sp = NULL;
596 		if (!is_shadow_present_pte(*it.sptep)) {
597 			table_gfn = gw->table_gfn[it.level - 2];
598 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
599 					      false, access, it.sptep);
600 		}
601 
602 		/*
603 		 * Verify that the gpte in the page we've just write
604 		 * protected is still there.
605 		 */
606 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
607 			goto out_gpte_changed;
608 
609 		if (sp)
610 			link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
611 	}
612 
613 	for (;
614 	     shadow_walk_okay(&it) && it.level > hlevel;
615 	     shadow_walk_next(&it)) {
616 		gfn_t direct_gfn;
617 
618 		clear_sp_write_flooding_count(it.sptep);
619 		validate_direct_spte(vcpu, it.sptep, direct_access);
620 
621 		drop_large_spte(vcpu, it.sptep);
622 
623 		if (is_shadow_present_pte(*it.sptep))
624 			continue;
625 
626 		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
627 
628 		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
629 				      true, direct_access, it.sptep);
630 		link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
631 	}
632 
633 	clear_sp_write_flooding_count(it.sptep);
634 	mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
635 		     it.level, gw->gfn, pfn, prefault, map_writable);
636 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
637 
638 	return emulate;
639 
640 out_gpte_changed:
641 	if (sp)
642 		kvm_mmu_put_page(sp, it.sptep);
643 	kvm_release_pfn_clean(pfn);
644 	return 0;
645 }
646 
647  /*
648  * To see whether the mapped gfn can write its page table in the current
649  * mapping.
650  *
651  * It is the helper function of FNAME(page_fault). When guest uses large page
652  * size to map the writable gfn which is used as current page table, we should
653  * force kvm to use small page size to map it because new shadow page will be
654  * created when kvm establishes shadow page table that stop kvm using large
655  * page size. Do it early can avoid unnecessary #PF and emulation.
656  *
657  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
658  * currently used as its page table.
659  *
660  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
661  * since the PDPT is always shadowed, that means, we can not use large page
662  * size to map the gfn which is used as PDPT.
663  */
664 static bool
FNAME(is_self_change_mapping)665 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
666 			      struct guest_walker *walker, int user_fault,
667 			      bool *write_fault_to_shadow_pgtable)
668 {
669 	int level;
670 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
671 	bool self_changed = false;
672 
673 	if (!(walker->pte_access & ACC_WRITE_MASK ||
674 	      (!is_write_protection(vcpu) && !user_fault)))
675 		return false;
676 
677 	for (level = walker->level; level <= walker->max_level; level++) {
678 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
679 
680 		self_changed |= !(gfn & mask);
681 		*write_fault_to_shadow_pgtable |= !gfn;
682 	}
683 
684 	return self_changed;
685 }
686 
687 /*
688  * Page fault handler.  There are several causes for a page fault:
689  *   - there is no shadow pte for the guest pte
690  *   - write access through a shadow pte marked read only so that we can set
691  *     the dirty bit
692  *   - write access to a shadow pte marked read only so we can update the page
693  *     dirty bitmap, when userspace requests it
694  *   - mmio access; in this case we will never install a present shadow pte
695  *   - normal guest page fault due to the guest pte marked not present, not
696  *     writable, or not executable
697  *
698  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
699  *           a negative value on error.
700  */
FNAME(page_fault)701 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
702 			     bool prefault)
703 {
704 	int write_fault = error_code & PFERR_WRITE_MASK;
705 	int user_fault = error_code & PFERR_USER_MASK;
706 	struct guest_walker walker;
707 	int r;
708 	pfn_t pfn;
709 	int level = PT_PAGE_TABLE_LEVEL;
710 	int force_pt_level;
711 	unsigned long mmu_seq;
712 	bool map_writable, is_self_change_mapping;
713 
714 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
715 
716 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
717 		r = handle_mmio_page_fault(vcpu, addr, error_code,
718 					      mmu_is_nested(vcpu));
719 		if (likely(r != RET_MMIO_PF_INVALID))
720 			return r;
721 
722 		/*
723 		 * page fault with PFEC.RSVD  = 1 is caused by shadow
724 		 * page fault, should not be used to walk guest page
725 		 * table.
726 		 */
727 		error_code &= ~PFERR_RSVD_MASK;
728 	};
729 
730 	r = mmu_topup_memory_caches(vcpu);
731 	if (r)
732 		return r;
733 
734 	/*
735 	 * Look up the guest pte for the faulting address.
736 	 */
737 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
738 
739 	/*
740 	 * The page is not mapped by the guest.  Let the guest handle it.
741 	 */
742 	if (!r) {
743 		pgprintk("%s: guest page fault\n", __func__);
744 		if (!prefault)
745 			inject_page_fault(vcpu, &walker.fault);
746 
747 		return 0;
748 	}
749 
750 	vcpu->arch.write_fault_to_shadow_pgtable = false;
751 
752 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
753 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
754 
755 	if (walker.level >= PT_DIRECTORY_LEVEL)
756 		force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
757 		   || is_self_change_mapping;
758 	else
759 		force_pt_level = 1;
760 	if (!force_pt_level) {
761 		level = min(walker.level, mapping_level(vcpu, walker.gfn));
762 		walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
763 	}
764 
765 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
766 	smp_rmb();
767 
768 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
769 			 &map_writable))
770 		return 0;
771 
772 	if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
773 				walker.gfn, pfn, walker.pte_access, &r))
774 		return r;
775 
776 	/*
777 	 * Do not change pte_access if the pfn is a mmio page, otherwise
778 	 * we will cache the incorrect access into mmio spte.
779 	 */
780 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
781 	     !is_write_protection(vcpu) && !user_fault &&
782 	      !is_noslot_pfn(pfn)) {
783 		walker.pte_access |= ACC_WRITE_MASK;
784 		walker.pte_access &= ~ACC_USER_MASK;
785 
786 		/*
787 		 * If we converted a user page to a kernel page,
788 		 * so that the kernel can write to it when cr0.wp=0,
789 		 * then we should prevent the kernel from executing it
790 		 * if SMEP is enabled.
791 		 */
792 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
793 			walker.pte_access &= ~ACC_EXEC_MASK;
794 	}
795 
796 	spin_lock(&vcpu->kvm->mmu_lock);
797 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
798 		goto out_unlock;
799 
800 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
801 	make_mmu_pages_available(vcpu);
802 	if (!force_pt_level)
803 		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
804 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
805 			 level, pfn, map_writable, prefault);
806 	++vcpu->stat.pf_fixed;
807 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
808 	spin_unlock(&vcpu->kvm->mmu_lock);
809 
810 	return r;
811 
812 out_unlock:
813 	spin_unlock(&vcpu->kvm->mmu_lock);
814 	kvm_release_pfn_clean(pfn);
815 	return 0;
816 }
817 
FNAME(get_level1_sp_gpa)818 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
819 {
820 	int offset = 0;
821 
822 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
823 
824 	if (PTTYPE == 32)
825 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
826 
827 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
828 }
829 
FNAME(invlpg)830 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
831 {
832 	struct kvm_shadow_walk_iterator iterator;
833 	struct kvm_mmu_page *sp;
834 	int level;
835 	u64 *sptep;
836 
837 	vcpu_clear_mmio_info(vcpu, gva);
838 
839 	/*
840 	 * No need to check return value here, rmap_can_add() can
841 	 * help us to skip pte prefetch later.
842 	 */
843 	mmu_topup_memory_caches(vcpu);
844 
845 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
846 		WARN_ON(1);
847 		return;
848 	}
849 
850 	spin_lock(&vcpu->kvm->mmu_lock);
851 	for_each_shadow_entry(vcpu, gva, iterator) {
852 		level = iterator.level;
853 		sptep = iterator.sptep;
854 
855 		sp = page_header(__pa(sptep));
856 		if (is_last_spte(*sptep, level)) {
857 			pt_element_t gpte;
858 			gpa_t pte_gpa;
859 
860 			if (!sp->unsync)
861 				break;
862 
863 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
864 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
865 
866 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
867 				kvm_flush_remote_tlbs(vcpu->kvm);
868 
869 			if (!rmap_can_add(vcpu))
870 				break;
871 
872 			if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
873 						  sizeof(pt_element_t)))
874 				break;
875 
876 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
877 		}
878 
879 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
880 			break;
881 	}
882 	spin_unlock(&vcpu->kvm->mmu_lock);
883 }
884 
FNAME(gva_to_gpa)885 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
886 			       struct x86_exception *exception)
887 {
888 	struct guest_walker walker;
889 	gpa_t gpa = UNMAPPED_GVA;
890 	int r;
891 
892 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
893 
894 	if (r) {
895 		gpa = gfn_to_gpa(walker.gfn);
896 		gpa |= vaddr & ~PAGE_MASK;
897 	} else if (exception)
898 		*exception = walker.fault;
899 
900 	return gpa;
901 }
902 
903 #if PTTYPE != PTTYPE_EPT
FNAME(gva_to_gpa_nested)904 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
905 				      u32 access,
906 				      struct x86_exception *exception)
907 {
908 	struct guest_walker walker;
909 	gpa_t gpa = UNMAPPED_GVA;
910 	int r;
911 
912 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
913 
914 	if (r) {
915 		gpa = gfn_to_gpa(walker.gfn);
916 		gpa |= vaddr & ~PAGE_MASK;
917 	} else if (exception)
918 		*exception = walker.fault;
919 
920 	return gpa;
921 }
922 #endif
923 
924 /*
925  * Using the cached information from sp->gfns is safe because:
926  * - The spte has a reference to the struct page, so the pfn for a given gfn
927  *   can't change unless all sptes pointing to it are nuked first.
928  *
929  * Note:
930  *   We should flush all tlbs if spte is dropped even though guest is
931  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
932  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
933  *   used by guest then tlbs are not flushed, so guest is allowed to access the
934  *   freed pages.
935  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
936  */
FNAME(sync_page)937 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
938 {
939 	int i, nr_present = 0;
940 	bool host_writable;
941 	gpa_t first_pte_gpa;
942 
943 	/* direct kvm_mmu_page can not be unsync. */
944 	BUG_ON(sp->role.direct);
945 
946 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
947 
948 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
949 		unsigned pte_access;
950 		pt_element_t gpte;
951 		gpa_t pte_gpa;
952 		gfn_t gfn;
953 
954 		if (!sp->spt[i])
955 			continue;
956 
957 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
958 
959 		if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
960 					  sizeof(pt_element_t)))
961 			return -EINVAL;
962 
963 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
964 			vcpu->kvm->tlbs_dirty++;
965 			continue;
966 		}
967 
968 		gfn = gpte_to_gfn(gpte);
969 		pte_access = sp->role.access;
970 		pte_access &= FNAME(gpte_access)(vcpu, gpte);
971 		FNAME(protect_clean_gpte)(&pte_access, gpte);
972 
973 		if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
974 		      &nr_present))
975 			continue;
976 
977 		if (gfn != sp->gfns[i]) {
978 			drop_spte(vcpu->kvm, &sp->spt[i]);
979 			vcpu->kvm->tlbs_dirty++;
980 			continue;
981 		}
982 
983 		nr_present++;
984 
985 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
986 
987 		set_spte(vcpu, &sp->spt[i], pte_access,
988 			 PT_PAGE_TABLE_LEVEL, gfn,
989 			 spte_to_pfn(sp->spt[i]), true, false,
990 			 host_writable);
991 	}
992 
993 	return !nr_present;
994 }
995 
996 #undef pt_element_t
997 #undef guest_walker
998 #undef FNAME
999 #undef PT_BASE_ADDR_MASK
1000 #undef PT_INDEX
1001 #undef PT_LVL_ADDR_MASK
1002 #undef PT_LVL_OFFSET_MASK
1003 #undef PT_LEVEL_BITS
1004 #undef PT_MAX_FULL_LEVELS
1005 #undef gpte_to_gfn
1006 #undef gpte_to_gfn_lvl
1007 #undef CMPXCHG
1008 #undef PT_GUEST_ACCESSED_MASK
1009 #undef PT_GUEST_DIRTY_MASK
1010 #undef PT_GUEST_DIRTY_SHIFT
1011 #undef PT_GUEST_ACCESSED_SHIFT
1012