• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19 
20 /*
21  * tunables
22  */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37 
38 /*
39  * offset from end of service tree
40  */
41 #define CFQ_IDLE_DELAY		(HZ / 5)
42 
43 /*
44  * below this threshold, we consider thinktime immediate
45  */
46 #define CFQ_MIN_TT		(2)
47 
48 #define CFQ_SLICE_SCALE		(5)
49 #define CFQ_HW_QUEUE_MIN	(5)
50 #define CFQ_SERVICE_SHIFT       12
51 
52 #define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56 
57 #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60 
61 static struct kmem_cache *cfq_pool;
62 
63 #define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66 
67 #define sample_valid(samples)	((samples) > 80)
68 #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69 
70 struct cfq_ttime {
71 	unsigned long last_end_request;
72 
73 	unsigned long ttime_total;
74 	unsigned long ttime_samples;
75 	unsigned long ttime_mean;
76 };
77 
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85 	struct rb_root rb;
86 	struct rb_node *left;
87 	unsigned count;
88 	u64 min_vdisktime;
89 	struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
92 			.ttime = {.last_end_request = jiffies,},}
93 
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98 	/* reference count */
99 	int ref;
100 	/* various state flags, see below */
101 	unsigned int flags;
102 	/* parent cfq_data */
103 	struct cfq_data *cfqd;
104 	/* service_tree member */
105 	struct rb_node rb_node;
106 	/* service_tree key */
107 	unsigned long rb_key;
108 	/* prio tree member */
109 	struct rb_node p_node;
110 	/* prio tree root we belong to, if any */
111 	struct rb_root *p_root;
112 	/* sorted list of pending requests */
113 	struct rb_root sort_list;
114 	/* if fifo isn't expired, next request to serve */
115 	struct request *next_rq;
116 	/* requests queued in sort_list */
117 	int queued[2];
118 	/* currently allocated requests */
119 	int allocated[2];
120 	/* fifo list of requests in sort_list */
121 	struct list_head fifo;
122 
123 	/* time when queue got scheduled in to dispatch first request. */
124 	unsigned long dispatch_start;
125 	unsigned int allocated_slice;
126 	unsigned int slice_dispatch;
127 	/* time when first request from queue completed and slice started. */
128 	unsigned long slice_start;
129 	unsigned long slice_end;
130 	long slice_resid;
131 
132 	/* pending priority requests */
133 	int prio_pending;
134 	/* number of requests that are on the dispatch list or inside driver */
135 	int dispatched;
136 
137 	/* io prio of this group */
138 	unsigned short ioprio, org_ioprio;
139 	unsigned short ioprio_class;
140 
141 	pid_t pid;
142 
143 	u32 seek_history;
144 	sector_t last_request_pos;
145 
146 	struct cfq_rb_root *service_tree;
147 	struct cfq_queue *new_cfqq;
148 	struct cfq_group *cfqg;
149 	/* Number of sectors dispatched from queue in single dispatch round */
150 	unsigned long nr_sectors;
151 };
152 
153 /*
154  * First index in the service_trees.
155  * IDLE is handled separately, so it has negative index
156  */
157 enum wl_class_t {
158 	BE_WORKLOAD = 0,
159 	RT_WORKLOAD = 1,
160 	IDLE_WORKLOAD = 2,
161 	CFQ_PRIO_NR,
162 };
163 
164 /*
165  * Second index in the service_trees.
166  */
167 enum wl_type_t {
168 	ASYNC_WORKLOAD = 0,
169 	SYNC_NOIDLE_WORKLOAD = 1,
170 	SYNC_WORKLOAD = 2
171 };
172 
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 	/* total bytes transferred */
176 	struct blkg_rwstat		service_bytes;
177 	/* total IOs serviced, post merge */
178 	struct blkg_rwstat		serviced;
179 	/* number of ios merged */
180 	struct blkg_rwstat		merged;
181 	/* total time spent on device in ns, may not be accurate w/ queueing */
182 	struct blkg_rwstat		service_time;
183 	/* total time spent waiting in scheduler queue in ns */
184 	struct blkg_rwstat		wait_time;
185 	/* number of IOs queued up */
186 	struct blkg_rwstat		queued;
187 	/* total sectors transferred */
188 	struct blkg_stat		sectors;
189 	/* total disk time and nr sectors dispatched by this group */
190 	struct blkg_stat		time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 	/* time not charged to this cgroup */
193 	struct blkg_stat		unaccounted_time;
194 	/* sum of number of ios queued across all samples */
195 	struct blkg_stat		avg_queue_size_sum;
196 	/* count of samples taken for average */
197 	struct blkg_stat		avg_queue_size_samples;
198 	/* how many times this group has been removed from service tree */
199 	struct blkg_stat		dequeue;
200 	/* total time spent waiting for it to be assigned a timeslice. */
201 	struct blkg_stat		group_wait_time;
202 	/* time spent idling for this blkcg_gq */
203 	struct blkg_stat		idle_time;
204 	/* total time with empty current active q with other requests queued */
205 	struct blkg_stat		empty_time;
206 	/* fields after this shouldn't be cleared on stat reset */
207 	uint64_t			start_group_wait_time;
208 	uint64_t			start_idle_time;
209 	uint64_t			start_empty_time;
210 	uint16_t			flags;
211 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
212 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214 
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 	/* must be the first member */
218 	struct blkg_policy_data pd;
219 
220 	/* group service_tree member */
221 	struct rb_node rb_node;
222 
223 	/* group service_tree key */
224 	u64 vdisktime;
225 
226 	/*
227 	 * The number of active cfqgs and sum of their weights under this
228 	 * cfqg.  This covers this cfqg's leaf_weight and all children's
229 	 * weights, but does not cover weights of further descendants.
230 	 *
231 	 * If a cfqg is on the service tree, it's active.  An active cfqg
232 	 * also activates its parent and contributes to the children_weight
233 	 * of the parent.
234 	 */
235 	int nr_active;
236 	unsigned int children_weight;
237 
238 	/*
239 	 * vfraction is the fraction of vdisktime that the tasks in this
240 	 * cfqg are entitled to.  This is determined by compounding the
241 	 * ratios walking up from this cfqg to the root.
242 	 *
243 	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 	 * vfractions on a service tree is approximately 1.  The sum may
245 	 * deviate a bit due to rounding errors and fluctuations caused by
246 	 * cfqgs entering and leaving the service tree.
247 	 */
248 	unsigned int vfraction;
249 
250 	/*
251 	 * There are two weights - (internal) weight is the weight of this
252 	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
253 	 * this cfqg against the child cfqgs.  For the root cfqg, both
254 	 * weights are kept in sync for backward compatibility.
255 	 */
256 	unsigned int weight;
257 	unsigned int new_weight;
258 	unsigned int dev_weight;
259 
260 	unsigned int leaf_weight;
261 	unsigned int new_leaf_weight;
262 	unsigned int dev_leaf_weight;
263 
264 	/* number of cfqq currently on this group */
265 	int nr_cfqq;
266 
267 	/*
268 	 * Per group busy queues average. Useful for workload slice calc. We
269 	 * create the array for each prio class but at run time it is used
270 	 * only for RT and BE class and slot for IDLE class remains unused.
271 	 * This is primarily done to avoid confusion and a gcc warning.
272 	 */
273 	unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 	/*
275 	 * rr lists of queues with requests. We maintain service trees for
276 	 * RT and BE classes. These trees are subdivided in subclasses
277 	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 	 * class there is no subclassification and all the cfq queues go on
279 	 * a single tree service_tree_idle.
280 	 * Counts are embedded in the cfq_rb_root
281 	 */
282 	struct cfq_rb_root service_trees[2][3];
283 	struct cfq_rb_root service_tree_idle;
284 
285 	unsigned long saved_wl_slice;
286 	enum wl_type_t saved_wl_type;
287 	enum wl_class_t saved_wl_class;
288 
289 	/* number of requests that are on the dispatch list or inside driver */
290 	int dispatched;
291 	struct cfq_ttime ttime;
292 	struct cfqg_stats stats;	/* stats for this cfqg */
293 	struct cfqg_stats dead_stats;	/* stats pushed from dead children */
294 };
295 
296 struct cfq_io_cq {
297 	struct io_cq		icq;		/* must be the first member */
298 	struct cfq_queue	*cfqq[2];
299 	struct cfq_ttime	ttime;
300 	int			ioprio;		/* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 	uint64_t		blkcg_serial_nr; /* the current blkcg serial */
303 #endif
304 };
305 
306 /*
307  * Per block device queue structure
308  */
309 struct cfq_data {
310 	struct request_queue *queue;
311 	/* Root service tree for cfq_groups */
312 	struct cfq_rb_root grp_service_tree;
313 	struct cfq_group *root_group;
314 
315 	/*
316 	 * The priority currently being served
317 	 */
318 	enum wl_class_t serving_wl_class;
319 	enum wl_type_t serving_wl_type;
320 	unsigned long workload_expires;
321 	struct cfq_group *serving_group;
322 
323 	/*
324 	 * Each priority tree is sorted by next_request position.  These
325 	 * trees are used when determining if two or more queues are
326 	 * interleaving requests (see cfq_close_cooperator).
327 	 */
328 	struct rb_root prio_trees[CFQ_PRIO_LISTS];
329 
330 	unsigned int busy_queues;
331 	unsigned int busy_sync_queues;
332 
333 	int rq_in_driver;
334 	int rq_in_flight[2];
335 
336 	/*
337 	 * queue-depth detection
338 	 */
339 	int rq_queued;
340 	int hw_tag;
341 	/*
342 	 * hw_tag can be
343 	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 	 *  0 => no NCQ
346 	 */
347 	int hw_tag_est_depth;
348 	unsigned int hw_tag_samples;
349 
350 	/*
351 	 * idle window management
352 	 */
353 	struct timer_list idle_slice_timer;
354 	struct work_struct unplug_work;
355 
356 	struct cfq_queue *active_queue;
357 	struct cfq_io_cq *active_cic;
358 
359 	/*
360 	 * async queue for each priority case
361 	 */
362 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 	struct cfq_queue *async_idle_cfqq;
364 
365 	sector_t last_position;
366 
367 	/*
368 	 * tunables, see top of file
369 	 */
370 	unsigned int cfq_quantum;
371 	unsigned int cfq_fifo_expire[2];
372 	unsigned int cfq_back_penalty;
373 	unsigned int cfq_back_max;
374 	unsigned int cfq_slice[2];
375 	unsigned int cfq_slice_async_rq;
376 	unsigned int cfq_slice_idle;
377 	unsigned int cfq_group_idle;
378 	unsigned int cfq_latency;
379 	unsigned int cfq_target_latency;
380 
381 	/*
382 	 * Fallback dummy cfqq for extreme OOM conditions
383 	 */
384 	struct cfq_queue oom_cfqq;
385 
386 	unsigned long last_delayed_sync;
387 };
388 
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390 
st_for(struct cfq_group * cfqg,enum wl_class_t class,enum wl_type_t type)391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 					    enum wl_class_t class,
393 					    enum wl_type_t type)
394 {
395 	if (!cfqg)
396 		return NULL;
397 
398 	if (class == IDLE_WORKLOAD)
399 		return &cfqg->service_tree_idle;
400 
401 	return &cfqg->service_trees[class][type];
402 }
403 
404 enum cfqq_state_flags {
405 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
406 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
407 	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
408 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
409 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
410 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
411 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
412 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
413 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
414 	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
415 	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
416 	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
417 	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
418 };
419 
420 #define CFQ_CFQQ_FNS(name)						\
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
422 {									\
423 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
424 }									\
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
426 {									\
427 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
428 }									\
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
430 {									\
431 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
432 }
433 
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448 
pd_to_cfqg(struct blkg_policy_data * pd)449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453 
cfqg_to_blkg(struct cfq_group * cfqg)454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 	return pd_to_blkg(&cfqg->pd);
457 }
458 
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460 
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 	CFQG_stats_waiting = 0,
464 	CFQG_stats_idling,
465 	CFQG_stats_empty,
466 };
467 
468 #define CFQG_FLAG_FNS(name)						\
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
470 {									\
471 	stats->flags |= (1 << CFQG_stats_##name);			\
472 }									\
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
474 {									\
475 	stats->flags &= ~(1 << CFQG_stats_##name);			\
476 }									\
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
478 {									\
479 	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
480 }									\
481 
482 CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486 
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 	unsigned long long now;
491 
492 	if (!cfqg_stats_waiting(stats))
493 		return;
494 
495 	now = sched_clock();
496 	if (time_after64(now, stats->start_group_wait_time))
497 		blkg_stat_add(&stats->group_wait_time,
498 			      now - stats->start_group_wait_time);
499 	cfqg_stats_clear_waiting(stats);
500 }
501 
502 /* This should be called with the queue_lock held. */
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 						 struct cfq_group *curr_cfqg)
505 {
506 	struct cfqg_stats *stats = &cfqg->stats;
507 
508 	if (cfqg_stats_waiting(stats))
509 		return;
510 	if (cfqg == curr_cfqg)
511 		return;
512 	stats->start_group_wait_time = sched_clock();
513 	cfqg_stats_mark_waiting(stats);
514 }
515 
516 /* This should be called with the queue_lock held. */
cfqg_stats_end_empty_time(struct cfqg_stats * stats)517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 	unsigned long long now;
520 
521 	if (!cfqg_stats_empty(stats))
522 		return;
523 
524 	now = sched_clock();
525 	if (time_after64(now, stats->start_empty_time))
526 		blkg_stat_add(&stats->empty_time,
527 			      now - stats->start_empty_time);
528 	cfqg_stats_clear_empty(stats);
529 }
530 
cfqg_stats_update_dequeue(struct cfq_group * cfqg)531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 	blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535 
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 	struct cfqg_stats *stats = &cfqg->stats;
539 
540 	if (blkg_rwstat_total(&stats->queued))
541 		return;
542 
543 	/*
544 	 * group is already marked empty. This can happen if cfqq got new
545 	 * request in parent group and moved to this group while being added
546 	 * to service tree. Just ignore the event and move on.
547 	 */
548 	if (cfqg_stats_empty(stats))
549 		return;
550 
551 	stats->start_empty_time = sched_clock();
552 	cfqg_stats_mark_empty(stats);
553 }
554 
cfqg_stats_update_idle_time(struct cfq_group * cfqg)555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 	struct cfqg_stats *stats = &cfqg->stats;
558 
559 	if (cfqg_stats_idling(stats)) {
560 		unsigned long long now = sched_clock();
561 
562 		if (time_after64(now, stats->start_idle_time))
563 			blkg_stat_add(&stats->idle_time,
564 				      now - stats->start_idle_time);
565 		cfqg_stats_clear_idling(stats);
566 	}
567 }
568 
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 	struct cfqg_stats *stats = &cfqg->stats;
572 
573 	BUG_ON(cfqg_stats_idling(stats));
574 
575 	stats->start_idle_time = sched_clock();
576 	cfqg_stats_mark_idling(stats);
577 }
578 
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 	struct cfqg_stats *stats = &cfqg->stats;
582 
583 	blkg_stat_add(&stats->avg_queue_size_sum,
584 		      blkg_rwstat_total(&stats->queued));
585 	blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 	cfqg_stats_update_group_wait_time(stats);
587 }
588 
589 #else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590 
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
cfqg_stats_end_empty_time(struct cfqg_stats * stats)592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
cfqg_stats_update_dequeue(struct cfq_group * cfqg)593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
cfqg_stats_update_idle_time(struct cfq_group * cfqg)595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598 
599 #endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600 
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602 
603 static struct blkcg_policy blkcg_policy_cfq;
604 
blkg_to_cfqg(struct blkcg_gq * blkg)605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609 
cfqg_parent(struct cfq_group * cfqg)610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613 
614 	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616 
cfqg_get(struct cfq_group * cfqg)617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 	return blkg_get(cfqg_to_blkg(cfqg));
620 }
621 
cfqg_put(struct cfq_group * cfqg)622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 	return blkg_put(cfqg_to_blkg(cfqg));
625 }
626 
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
628 	char __pbuf[128];						\
629 									\
630 	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
631 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
633 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 			  __pbuf, ##args);				\
635 } while (0)
636 
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
638 	char __pbuf[128];						\
639 									\
640 	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
641 	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
642 } while (0)
643 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 					    struct cfq_group *curr_cfqg, int rw)
646 {
647 	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 	cfqg_stats_end_empty_time(&cfqg->stats);
649 	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651 
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 			unsigned long time, unsigned long unaccounted_time)
654 {
655 	blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660 
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665 
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670 
cfqg_stats_update_dispatch(struct cfq_group * cfqg,uint64_t bytes,int rw)671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 					      uint64_t bytes, int rw)
673 {
674 	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678 
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 			uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 	struct cfqg_stats *stats = &cfqg->stats;
683 	unsigned long long now = sched_clock();
684 
685 	if (time_after64(now, io_start_time))
686 		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 	if (time_after64(io_start_time, start_time))
688 		blkg_rwstat_add(&stats->wait_time, rw,
689 				io_start_time - start_time);
690 }
691 
692 /* @stats = 0 */
cfqg_stats_reset(struct cfqg_stats * stats)693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 	/* queued stats shouldn't be cleared */
696 	blkg_rwstat_reset(&stats->service_bytes);
697 	blkg_rwstat_reset(&stats->serviced);
698 	blkg_rwstat_reset(&stats->merged);
699 	blkg_rwstat_reset(&stats->service_time);
700 	blkg_rwstat_reset(&stats->wait_time);
701 	blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 	blkg_stat_reset(&stats->unaccounted_time);
704 	blkg_stat_reset(&stats->avg_queue_size_sum);
705 	blkg_stat_reset(&stats->avg_queue_size_samples);
706 	blkg_stat_reset(&stats->dequeue);
707 	blkg_stat_reset(&stats->group_wait_time);
708 	blkg_stat_reset(&stats->idle_time);
709 	blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712 
713 /* @to += @from */
cfqg_stats_merge(struct cfqg_stats * to,struct cfqg_stats * from)714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 	/* queued stats shouldn't be cleared */
717 	blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 	blkg_rwstat_merge(&to->serviced, &from->serviced);
719 	blkg_rwstat_merge(&to->merged, &from->merged);
720 	blkg_rwstat_merge(&to->service_time, &from->service_time);
721 	blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 	blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 	blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 	blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 	blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 	blkg_stat_merge(&to->dequeue, &from->dequeue);
728 	blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 	blkg_stat_merge(&to->idle_time, &from->idle_time);
730 	blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733 
734 /*
735  * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736  * recursive stats can still account for the amount used by this cfqg after
737  * it's gone.
738  */
cfqg_stats_xfer_dead(struct cfq_group * cfqg)739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 	struct cfq_group *parent = cfqg_parent(cfqg);
742 
743 	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744 
745 	if (unlikely(!parent))
746 		return;
747 
748 	cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 	cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 	cfqg_stats_reset(&cfqg->stats);
751 	cfqg_stats_reset(&cfqg->dead_stats);
752 }
753 
754 #else	/* CONFIG_CFQ_GROUP_IOSCHED */
755 
cfqg_parent(struct cfq_group * cfqg)756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
cfqg_get(struct cfq_group * cfqg)757 static inline void cfqg_get(struct cfq_group *cfqg) { }
cfqg_put(struct cfq_group * cfqg)758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759 
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
761 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
762 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
763 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 				##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
766 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 			struct cfq_group *curr_cfqg, int rw) { }
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 			unsigned long time, unsigned long unaccounted_time) { }
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_dispatch(struct cfq_group * cfqg,uint64_t bytes,int rw)773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 					      uint64_t bytes, int rw) { }
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 			uint64_t start_time, uint64_t io_start_time, int rw) { }
777 
778 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
779 
780 #define cfq_log(cfqd, fmt, args...)	\
781 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782 
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 	for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 			: &cfqg->service_tree_idle; \
788 			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 			(i == IDLE_WORKLOAD && j == 0); \
790 			j++, st = i < IDLE_WORKLOAD ? \
791 			&cfqg->service_trees[i][j]: NULL) \
792 
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 	struct cfq_ttime *ttime, bool group_idle)
795 {
796 	unsigned long slice;
797 	if (!sample_valid(ttime->ttime_samples))
798 		return false;
799 	if (group_idle)
800 		slice = cfqd->cfq_group_idle;
801 	else
802 		slice = cfqd->cfq_slice_idle;
803 	return ttime->ttime_mean > slice;
804 }
805 
iops_mode(struct cfq_data * cfqd)806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 	/*
809 	 * If we are not idling on queues and it is a NCQ drive, parallel
810 	 * execution of requests is on and measuring time is not possible
811 	 * in most of the cases until and unless we drive shallower queue
812 	 * depths and that becomes a performance bottleneck. In such cases
813 	 * switch to start providing fairness in terms of number of IOs.
814 	 */
815 	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 		return true;
817 	else
818 		return false;
819 }
820 
cfqq_class(struct cfq_queue * cfqq)821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 	if (cfq_class_idle(cfqq))
824 		return IDLE_WORKLOAD;
825 	if (cfq_class_rt(cfqq))
826 		return RT_WORKLOAD;
827 	return BE_WORKLOAD;
828 }
829 
830 
cfqq_type(struct cfq_queue * cfqq)831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 	if (!cfq_cfqq_sync(cfqq))
834 		return ASYNC_WORKLOAD;
835 	if (!cfq_cfqq_idle_window(cfqq))
836 		return SYNC_NOIDLE_WORKLOAD;
837 	return SYNC_WORKLOAD;
838 }
839 
cfq_group_busy_queues_wl(enum wl_class_t wl_class,struct cfq_data * cfqd,struct cfq_group * cfqg)840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 					struct cfq_data *cfqd,
842 					struct cfq_group *cfqg)
843 {
844 	if (wl_class == IDLE_WORKLOAD)
845 		return cfqg->service_tree_idle.count;
846 
847 	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851 
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 					struct cfq_group *cfqg)
854 {
855 	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858 
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 				       struct cfq_io_cq *cic, struct bio *bio,
862 				       gfp_t gfp_mask);
863 
icq_to_cic(struct io_cq * icq)864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 	/* cic->icq is the first member, %NULL will convert to %NULL */
867 	return container_of(icq, struct cfq_io_cq, icq);
868 }
869 
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 					       struct io_context *ioc)
872 {
873 	if (ioc)
874 		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 	return NULL;
876 }
877 
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 	return cic->cfqq[is_sync];
881 }
882 
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 				bool is_sync)
885 {
886 	cic->cfqq[is_sync] = cfqq;
887 }
888 
cic_to_cfqd(struct cfq_io_cq * cic)889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 	return cic->icq.q->elevator->elevator_data;
892 }
893 
894 /*
895  * We regard a request as SYNC, if it's either a read or has the SYNC bit
896  * set (in which case it could also be direct WRITE).
897  */
cfq_bio_sync(struct bio * bio)898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902 
903 /*
904  * scheduler run of queue, if there are requests pending and no one in the
905  * driver that will restart queueing
906  */
cfq_schedule_dispatch(struct cfq_data * cfqd)907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 	if (cfqd->busy_queues) {
910 		cfq_log(cfqd, "schedule dispatch");
911 		kblockd_schedule_work(&cfqd->unplug_work);
912 	}
913 }
914 
915 /*
916  * Scale schedule slice based on io priority. Use the sync time slice only
917  * if a queue is marked sync and has sync io queued. A sync queue with async
918  * io only, should not get full sync slice length.
919  */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 				 unsigned short prio)
922 {
923 	const int base_slice = cfqd->cfq_slice[sync];
924 
925 	WARN_ON(prio >= IOPRIO_BE_NR);
926 
927 	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929 
930 static inline int
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935 
936 /**
937  * cfqg_scale_charge - scale disk time charge according to cfqg weight
938  * @charge: disk time being charged
939  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940  *
941  * Scale @charge according to @vfraction, which is in range (0, 1].  The
942  * scaling is inversely proportional.
943  *
944  * scaled = charge / vfraction
945  *
946  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947  */
cfqg_scale_charge(unsigned long charge,unsigned int vfraction)948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 				    unsigned int vfraction)
950 {
951 	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
952 
953 	/* charge / vfraction */
954 	c <<= CFQ_SERVICE_SHIFT;
955 	do_div(c, vfraction);
956 	return c;
957 }
958 
max_vdisktime(u64 min_vdisktime,u64 vdisktime)959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 	s64 delta = (s64)(vdisktime - min_vdisktime);
962 	if (delta > 0)
963 		min_vdisktime = vdisktime;
964 
965 	return min_vdisktime;
966 }
967 
min_vdisktime(u64 min_vdisktime,u64 vdisktime)968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 	s64 delta = (s64)(vdisktime - min_vdisktime);
971 	if (delta < 0)
972 		min_vdisktime = vdisktime;
973 
974 	return min_vdisktime;
975 }
976 
update_min_vdisktime(struct cfq_rb_root * st)977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 	struct cfq_group *cfqg;
980 
981 	if (st->left) {
982 		cfqg = rb_entry_cfqg(st->left);
983 		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 						  cfqg->vdisktime);
985 	}
986 }
987 
988 /*
989  * get averaged number of queues of RT/BE priority.
990  * average is updated, with a formula that gives more weight to higher numbers,
991  * to quickly follows sudden increases and decrease slowly
992  */
993 
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 					struct cfq_group *cfqg, bool rt)
996 {
997 	unsigned min_q, max_q;
998 	unsigned mult  = cfq_hist_divisor - 1;
999 	unsigned round = cfq_hist_divisor / 2;
1000 	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001 
1002 	min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 	max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 		cfq_hist_divisor;
1006 	return cfqg->busy_queues_avg[rt];
1007 }
1008 
1009 static inline unsigned
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014 
1015 static inline unsigned
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 	if (cfqd->cfq_latency) {
1020 		/*
1021 		 * interested queues (we consider only the ones with the same
1022 		 * priority class in the cfq group)
1023 		 */
1024 		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 						cfq_class_rt(cfqq));
1026 		unsigned sync_slice = cfqd->cfq_slice[1];
1027 		unsigned expect_latency = sync_slice * iq;
1028 		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029 
1030 		if (expect_latency > group_slice) {
1031 			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 			/* scale low_slice according to IO priority
1033 			 * and sync vs async */
1034 			unsigned low_slice =
1035 				min(slice, base_low_slice * slice / sync_slice);
1036 			/* the adapted slice value is scaled to fit all iqs
1037 			 * into the target latency */
1038 			slice = max(slice * group_slice / expect_latency,
1039 				    low_slice);
1040 		}
1041 	}
1042 	return slice;
1043 }
1044 
1045 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049 
1050 	cfqq->slice_start = jiffies;
1051 	cfqq->slice_end = jiffies + slice;
1052 	cfqq->allocated_slice = slice;
1053 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055 
1056 /*
1057  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058  * isn't valid until the first request from the dispatch is activated
1059  * and the slice time set.
1060  */
cfq_slice_used(struct cfq_queue * cfqq)1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 	if (cfq_cfqq_slice_new(cfqq))
1064 		return false;
1065 	if (time_before(jiffies, cfqq->slice_end))
1066 		return false;
1067 
1068 	return true;
1069 }
1070 
1071 /*
1072  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073  * We choose the request that is closest to the head right now. Distance
1074  * behind the head is penalized and only allowed to a certain extent.
1075  */
1076 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 	sector_t s1, s2, d1 = 0, d2 = 0;
1080 	unsigned long back_max;
1081 #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1083 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084 
1085 	if (rq1 == NULL || rq1 == rq2)
1086 		return rq2;
1087 	if (rq2 == NULL)
1088 		return rq1;
1089 
1090 	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 		return rq_is_sync(rq1) ? rq1 : rq2;
1092 
1093 	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095 
1096 	s1 = blk_rq_pos(rq1);
1097 	s2 = blk_rq_pos(rq2);
1098 
1099 	/*
1100 	 * by definition, 1KiB is 2 sectors
1101 	 */
1102 	back_max = cfqd->cfq_back_max * 2;
1103 
1104 	/*
1105 	 * Strict one way elevator _except_ in the case where we allow
1106 	 * short backward seeks which are biased as twice the cost of a
1107 	 * similar forward seek.
1108 	 */
1109 	if (s1 >= last)
1110 		d1 = s1 - last;
1111 	else if (s1 + back_max >= last)
1112 		d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 	else
1114 		wrap |= CFQ_RQ1_WRAP;
1115 
1116 	if (s2 >= last)
1117 		d2 = s2 - last;
1118 	else if (s2 + back_max >= last)
1119 		d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 	else
1121 		wrap |= CFQ_RQ2_WRAP;
1122 
1123 	/* Found required data */
1124 
1125 	/*
1126 	 * By doing switch() on the bit mask "wrap" we avoid having to
1127 	 * check two variables for all permutations: --> faster!
1128 	 */
1129 	switch (wrap) {
1130 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 		if (d1 < d2)
1132 			return rq1;
1133 		else if (d2 < d1)
1134 			return rq2;
1135 		else {
1136 			if (s1 >= s2)
1137 				return rq1;
1138 			else
1139 				return rq2;
1140 		}
1141 
1142 	case CFQ_RQ2_WRAP:
1143 		return rq1;
1144 	case CFQ_RQ1_WRAP:
1145 		return rq2;
1146 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 	default:
1148 		/*
1149 		 * Since both rqs are wrapped,
1150 		 * start with the one that's further behind head
1151 		 * (--> only *one* back seek required),
1152 		 * since back seek takes more time than forward.
1153 		 */
1154 		if (s1 <= s2)
1155 			return rq1;
1156 		else
1157 			return rq2;
1158 	}
1159 }
1160 
1161 /*
1162  * The below is leftmost cache rbtree addon
1163  */
cfq_rb_first(struct cfq_rb_root * root)1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 	/* Service tree is empty */
1167 	if (!root->count)
1168 		return NULL;
1169 
1170 	if (!root->left)
1171 		root->left = rb_first(&root->rb);
1172 
1173 	if (root->left)
1174 		return rb_entry(root->left, struct cfq_queue, rb_node);
1175 
1176 	return NULL;
1177 }
1178 
cfq_rb_first_group(struct cfq_rb_root * root)1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 	if (!root->left)
1182 		root->left = rb_first(&root->rb);
1183 
1184 	if (root->left)
1185 		return rb_entry_cfqg(root->left);
1186 
1187 	return NULL;
1188 }
1189 
rb_erase_init(struct rb_node * n,struct rb_root * root)1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 	rb_erase(n, root);
1193 	RB_CLEAR_NODE(n);
1194 }
1195 
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 	if (root->left == n)
1199 		root->left = NULL;
1200 	rb_erase_init(n, &root->rb);
1201 	--root->count;
1202 }
1203 
1204 /*
1205  * would be nice to take fifo expire time into account as well
1206  */
1207 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 		  struct request *last)
1210 {
1211 	struct rb_node *rbnext = rb_next(&last->rb_node);
1212 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 	struct request *next = NULL, *prev = NULL;
1214 
1215 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216 
1217 	if (rbprev)
1218 		prev = rb_entry_rq(rbprev);
1219 
1220 	if (rbnext)
1221 		next = rb_entry_rq(rbnext);
1222 	else {
1223 		rbnext = rb_first(&cfqq->sort_list);
1224 		if (rbnext && rbnext != &last->rb_node)
1225 			next = rb_entry_rq(rbnext);
1226 	}
1227 
1228 	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230 
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 				      struct cfq_queue *cfqq)
1233 {
1234 	/*
1235 	 * just an approximation, should be ok.
1236 	 */
1237 	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240 
1241 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 	return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246 
1247 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 	struct rb_node **node = &st->rb.rb_node;
1251 	struct rb_node *parent = NULL;
1252 	struct cfq_group *__cfqg;
1253 	s64 key = cfqg_key(st, cfqg);
1254 	int left = 1;
1255 
1256 	while (*node != NULL) {
1257 		parent = *node;
1258 		__cfqg = rb_entry_cfqg(parent);
1259 
1260 		if (key < cfqg_key(st, __cfqg))
1261 			node = &parent->rb_left;
1262 		else {
1263 			node = &parent->rb_right;
1264 			left = 0;
1265 		}
1266 	}
1267 
1268 	if (left)
1269 		st->left = &cfqg->rb_node;
1270 
1271 	rb_link_node(&cfqg->rb_node, parent, node);
1272 	rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274 
1275 /*
1276  * This has to be called only on activation of cfqg
1277  */
1278 static void
cfq_update_group_weight(struct cfq_group * cfqg)1279 cfq_update_group_weight(struct cfq_group *cfqg)
1280 {
1281 	if (cfqg->new_weight) {
1282 		cfqg->weight = cfqg->new_weight;
1283 		cfqg->new_weight = 0;
1284 	}
1285 }
1286 
1287 static void
cfq_update_group_leaf_weight(struct cfq_group * cfqg)1288 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1289 {
1290 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1291 
1292 	if (cfqg->new_leaf_weight) {
1293 		cfqg->leaf_weight = cfqg->new_leaf_weight;
1294 		cfqg->new_leaf_weight = 0;
1295 	}
1296 }
1297 
1298 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1299 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1300 {
1301 	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1302 	struct cfq_group *pos = cfqg;
1303 	struct cfq_group *parent;
1304 	bool propagate;
1305 
1306 	/* add to the service tree */
1307 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1308 
1309 	/*
1310 	 * Update leaf_weight.  We cannot update weight at this point
1311 	 * because cfqg might already have been activated and is
1312 	 * contributing its current weight to the parent's child_weight.
1313 	 */
1314 	cfq_update_group_leaf_weight(cfqg);
1315 	__cfq_group_service_tree_add(st, cfqg);
1316 
1317 	/*
1318 	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1319 	 * entitled to.  vfraction is calculated by walking the tree
1320 	 * towards the root calculating the fraction it has at each level.
1321 	 * The compounded ratio is how much vfraction @cfqg owns.
1322 	 *
1323 	 * Start with the proportion tasks in this cfqg has against active
1324 	 * children cfqgs - its leaf_weight against children_weight.
1325 	 */
1326 	propagate = !pos->nr_active++;
1327 	pos->children_weight += pos->leaf_weight;
1328 	vfr = vfr * pos->leaf_weight / pos->children_weight;
1329 
1330 	/*
1331 	 * Compound ->weight walking up the tree.  Both activation and
1332 	 * vfraction calculation are done in the same loop.  Propagation
1333 	 * stops once an already activated node is met.  vfraction
1334 	 * calculation should always continue to the root.
1335 	 */
1336 	while ((parent = cfqg_parent(pos))) {
1337 		if (propagate) {
1338 			cfq_update_group_weight(pos);
1339 			propagate = !parent->nr_active++;
1340 			parent->children_weight += pos->weight;
1341 		}
1342 		vfr = vfr * pos->weight / parent->children_weight;
1343 		pos = parent;
1344 	}
1345 
1346 	cfqg->vfraction = max_t(unsigned, vfr, 1);
1347 }
1348 
1349 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)1350 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1351 {
1352 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1353 	struct cfq_group *__cfqg;
1354 	struct rb_node *n;
1355 
1356 	cfqg->nr_cfqq++;
1357 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1358 		return;
1359 
1360 	/*
1361 	 * Currently put the group at the end. Later implement something
1362 	 * so that groups get lesser vtime based on their weights, so that
1363 	 * if group does not loose all if it was not continuously backlogged.
1364 	 */
1365 	n = rb_last(&st->rb);
1366 	if (n) {
1367 		__cfqg = rb_entry_cfqg(n);
1368 		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1369 	} else
1370 		cfqg->vdisktime = st->min_vdisktime;
1371 	cfq_group_service_tree_add(st, cfqg);
1372 }
1373 
1374 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)1375 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376 {
1377 	struct cfq_group *pos = cfqg;
1378 	bool propagate;
1379 
1380 	/*
1381 	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1382 	 * @cfqg and propagate deactivation upwards.
1383 	 */
1384 	propagate = !--pos->nr_active;
1385 	pos->children_weight -= pos->leaf_weight;
1386 
1387 	while (propagate) {
1388 		struct cfq_group *parent = cfqg_parent(pos);
1389 
1390 		/* @pos has 0 nr_active at this point */
1391 		WARN_ON_ONCE(pos->children_weight);
1392 		pos->vfraction = 0;
1393 
1394 		if (!parent)
1395 			break;
1396 
1397 		propagate = !--parent->nr_active;
1398 		parent->children_weight -= pos->weight;
1399 		pos = parent;
1400 	}
1401 
1402 	/* remove from the service tree */
1403 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404 		cfq_rb_erase(&cfqg->rb_node, st);
1405 }
1406 
1407 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)1408 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409 {
1410 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411 
1412 	BUG_ON(cfqg->nr_cfqq < 1);
1413 	cfqg->nr_cfqq--;
1414 
1415 	/* If there are other cfq queues under this group, don't delete it */
1416 	if (cfqg->nr_cfqq)
1417 		return;
1418 
1419 	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420 	cfq_group_service_tree_del(st, cfqg);
1421 	cfqg->saved_wl_slice = 0;
1422 	cfqg_stats_update_dequeue(cfqg);
1423 }
1424 
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,unsigned int * unaccounted_time)1425 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426 						unsigned int *unaccounted_time)
1427 {
1428 	unsigned int slice_used;
1429 
1430 	/*
1431 	 * Queue got expired before even a single request completed or
1432 	 * got expired immediately after first request completion.
1433 	 */
1434 	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1435 		/*
1436 		 * Also charge the seek time incurred to the group, otherwise
1437 		 * if there are mutiple queues in the group, each can dispatch
1438 		 * a single request on seeky media and cause lots of seek time
1439 		 * and group will never know it.
1440 		 */
1441 		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1442 					1);
1443 	} else {
1444 		slice_used = jiffies - cfqq->slice_start;
1445 		if (slice_used > cfqq->allocated_slice) {
1446 			*unaccounted_time = slice_used - cfqq->allocated_slice;
1447 			slice_used = cfqq->allocated_slice;
1448 		}
1449 		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1450 			*unaccounted_time += cfqq->slice_start -
1451 					cfqq->dispatch_start;
1452 	}
1453 
1454 	return slice_used;
1455 }
1456 
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)1457 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1458 				struct cfq_queue *cfqq)
1459 {
1460 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1461 	unsigned int used_sl, charge, unaccounted_sl = 0;
1462 	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1463 			- cfqg->service_tree_idle.count;
1464 	unsigned int vfr;
1465 
1466 	BUG_ON(nr_sync < 0);
1467 	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1468 
1469 	if (iops_mode(cfqd))
1470 		charge = cfqq->slice_dispatch;
1471 	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1472 		charge = cfqq->allocated_slice;
1473 
1474 	/*
1475 	 * Can't update vdisktime while on service tree and cfqg->vfraction
1476 	 * is valid only while on it.  Cache vfr, leave the service tree,
1477 	 * update vdisktime and go back on.  The re-addition to the tree
1478 	 * will also update the weights as necessary.
1479 	 */
1480 	vfr = cfqg->vfraction;
1481 	cfq_group_service_tree_del(st, cfqg);
1482 	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1483 	cfq_group_service_tree_add(st, cfqg);
1484 
1485 	/* This group is being expired. Save the context */
1486 	if (time_after(cfqd->workload_expires, jiffies)) {
1487 		cfqg->saved_wl_slice = cfqd->workload_expires
1488 						- jiffies;
1489 		cfqg->saved_wl_type = cfqd->serving_wl_type;
1490 		cfqg->saved_wl_class = cfqd->serving_wl_class;
1491 	} else
1492 		cfqg->saved_wl_slice = 0;
1493 
1494 	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1495 					st->min_vdisktime);
1496 	cfq_log_cfqq(cfqq->cfqd, cfqq,
1497 		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1498 		     used_sl, cfqq->slice_dispatch, charge,
1499 		     iops_mode(cfqd), cfqq->nr_sectors);
1500 	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1501 	cfqg_stats_set_start_empty_time(cfqg);
1502 }
1503 
1504 /**
1505  * cfq_init_cfqg_base - initialize base part of a cfq_group
1506  * @cfqg: cfq_group to initialize
1507  *
1508  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1509  * is enabled or not.
1510  */
cfq_init_cfqg_base(struct cfq_group * cfqg)1511 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1512 {
1513 	struct cfq_rb_root *st;
1514 	int i, j;
1515 
1516 	for_each_cfqg_st(cfqg, i, j, st)
1517 		*st = CFQ_RB_ROOT;
1518 	RB_CLEAR_NODE(&cfqg->rb_node);
1519 
1520 	cfqg->ttime.last_end_request = jiffies;
1521 }
1522 
1523 #ifdef CONFIG_CFQ_GROUP_IOSCHED
cfqg_stats_init(struct cfqg_stats * stats)1524 static void cfqg_stats_init(struct cfqg_stats *stats)
1525 {
1526 	blkg_rwstat_init(&stats->service_bytes);
1527 	blkg_rwstat_init(&stats->serviced);
1528 	blkg_rwstat_init(&stats->merged);
1529 	blkg_rwstat_init(&stats->service_time);
1530 	blkg_rwstat_init(&stats->wait_time);
1531 	blkg_rwstat_init(&stats->queued);
1532 
1533 	blkg_stat_init(&stats->sectors);
1534 	blkg_stat_init(&stats->time);
1535 
1536 #ifdef CONFIG_DEBUG_BLK_CGROUP
1537 	blkg_stat_init(&stats->unaccounted_time);
1538 	blkg_stat_init(&stats->avg_queue_size_sum);
1539 	blkg_stat_init(&stats->avg_queue_size_samples);
1540 	blkg_stat_init(&stats->dequeue);
1541 	blkg_stat_init(&stats->group_wait_time);
1542 	blkg_stat_init(&stats->idle_time);
1543 	blkg_stat_init(&stats->empty_time);
1544 #endif
1545 }
1546 
cfq_pd_init(struct blkcg_gq * blkg)1547 static void cfq_pd_init(struct blkcg_gq *blkg)
1548 {
1549 	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1550 
1551 	cfq_init_cfqg_base(cfqg);
1552 	cfqg->weight = blkg->blkcg->cfq_weight;
1553 	cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1554 	cfqg_stats_init(&cfqg->stats);
1555 	cfqg_stats_init(&cfqg->dead_stats);
1556 }
1557 
cfq_pd_offline(struct blkcg_gq * blkg)1558 static void cfq_pd_offline(struct blkcg_gq *blkg)
1559 {
1560 	/*
1561 	 * @blkg is going offline and will be ignored by
1562 	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1563 	 * that they don't get lost.  If IOs complete after this point, the
1564 	 * stats for them will be lost.  Oh well...
1565 	 */
1566 	cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1567 }
1568 
1569 /* offset delta from cfqg->stats to cfqg->dead_stats */
1570 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1571 					offsetof(struct cfq_group, stats);
1572 
1573 /* to be used by recursive prfill, sums live and dead stats recursively */
cfqg_stat_pd_recursive_sum(struct blkg_policy_data * pd,int off)1574 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1575 {
1576 	u64 sum = 0;
1577 
1578 	sum += blkg_stat_recursive_sum(pd, off);
1579 	sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1580 	return sum;
1581 }
1582 
1583 /* to be used by recursive prfill, sums live and dead rwstats recursively */
cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data * pd,int off)1584 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1585 						       int off)
1586 {
1587 	struct blkg_rwstat a, b;
1588 
1589 	a = blkg_rwstat_recursive_sum(pd, off);
1590 	b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1591 	blkg_rwstat_merge(&a, &b);
1592 	return a;
1593 }
1594 
cfq_pd_reset_stats(struct blkcg_gq * blkg)1595 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1596 {
1597 	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1598 
1599 	cfqg_stats_reset(&cfqg->stats);
1600 	cfqg_stats_reset(&cfqg->dead_stats);
1601 }
1602 
1603 /*
1604  * Search for the cfq group current task belongs to. request_queue lock must
1605  * be held.
1606  */
cfq_lookup_create_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)1607 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1608 						struct blkcg *blkcg)
1609 {
1610 	struct request_queue *q = cfqd->queue;
1611 	struct cfq_group *cfqg = NULL;
1612 
1613 	/* avoid lookup for the common case where there's no blkcg */
1614 	if (blkcg == &blkcg_root) {
1615 		cfqg = cfqd->root_group;
1616 	} else {
1617 		struct blkcg_gq *blkg;
1618 
1619 		blkg = blkg_lookup_create(blkcg, q);
1620 		if (!IS_ERR(blkg))
1621 			cfqg = blkg_to_cfqg(blkg);
1622 	}
1623 
1624 	return cfqg;
1625 }
1626 
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1627 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1628 {
1629 	/* Currently, all async queues are mapped to root group */
1630 	if (!cfq_cfqq_sync(cfqq))
1631 		cfqg = cfqq->cfqd->root_group;
1632 
1633 	cfqq->cfqg = cfqg;
1634 	/* cfqq reference on cfqg */
1635 	cfqg_get(cfqg);
1636 }
1637 
cfqg_prfill_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1638 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1639 				     struct blkg_policy_data *pd, int off)
1640 {
1641 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1642 
1643 	if (!cfqg->dev_weight)
1644 		return 0;
1645 	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1646 }
1647 
cfqg_print_weight_device(struct seq_file * sf,void * v)1648 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1649 {
1650 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1651 			  cfqg_prfill_weight_device, &blkcg_policy_cfq,
1652 			  0, false);
1653 	return 0;
1654 }
1655 
cfqg_prfill_leaf_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1656 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1657 					  struct blkg_policy_data *pd, int off)
1658 {
1659 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1660 
1661 	if (!cfqg->dev_leaf_weight)
1662 		return 0;
1663 	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1664 }
1665 
cfqg_print_leaf_weight_device(struct seq_file * sf,void * v)1666 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1667 {
1668 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1669 			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1670 			  0, false);
1671 	return 0;
1672 }
1673 
cfq_print_weight(struct seq_file * sf,void * v)1674 static int cfq_print_weight(struct seq_file *sf, void *v)
1675 {
1676 	seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1677 	return 0;
1678 }
1679 
cfq_print_leaf_weight(struct seq_file * sf,void * v)1680 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1681 {
1682 	seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1683 	return 0;
1684 }
1685 
__cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_leaf_weight)1686 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1687 					char *buf, size_t nbytes, loff_t off,
1688 					bool is_leaf_weight)
1689 {
1690 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1691 	struct blkg_conf_ctx ctx;
1692 	struct cfq_group *cfqg;
1693 	int ret;
1694 
1695 	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1696 	if (ret)
1697 		return ret;
1698 
1699 	ret = -EINVAL;
1700 	cfqg = blkg_to_cfqg(ctx.blkg);
1701 	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1702 		if (!is_leaf_weight) {
1703 			cfqg->dev_weight = ctx.v;
1704 			cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1705 		} else {
1706 			cfqg->dev_leaf_weight = ctx.v;
1707 			cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1708 		}
1709 		ret = 0;
1710 	}
1711 
1712 	blkg_conf_finish(&ctx);
1713 	return ret ?: nbytes;
1714 }
1715 
cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1716 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1717 				      char *buf, size_t nbytes, loff_t off)
1718 {
1719 	return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1720 }
1721 
cfqg_set_leaf_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1722 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1723 					   char *buf, size_t nbytes, loff_t off)
1724 {
1725 	return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1726 }
1727 
__cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val,bool is_leaf_weight)1728 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1729 			    u64 val, bool is_leaf_weight)
1730 {
1731 	struct blkcg *blkcg = css_to_blkcg(css);
1732 	struct blkcg_gq *blkg;
1733 
1734 	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1735 		return -EINVAL;
1736 
1737 	spin_lock_irq(&blkcg->lock);
1738 
1739 	if (!is_leaf_weight)
1740 		blkcg->cfq_weight = val;
1741 	else
1742 		blkcg->cfq_leaf_weight = val;
1743 
1744 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1745 		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1746 
1747 		if (!cfqg)
1748 			continue;
1749 
1750 		if (!is_leaf_weight) {
1751 			if (!cfqg->dev_weight)
1752 				cfqg->new_weight = blkcg->cfq_weight;
1753 		} else {
1754 			if (!cfqg->dev_leaf_weight)
1755 				cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1756 		}
1757 	}
1758 
1759 	spin_unlock_irq(&blkcg->lock);
1760 	return 0;
1761 }
1762 
cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1763 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1764 			  u64 val)
1765 {
1766 	return __cfq_set_weight(css, cft, val, false);
1767 }
1768 
cfq_set_leaf_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1769 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1770 			       struct cftype *cft, u64 val)
1771 {
1772 	return __cfq_set_weight(css, cft, val, true);
1773 }
1774 
cfqg_print_stat(struct seq_file * sf,void * v)1775 static int cfqg_print_stat(struct seq_file *sf, void *v)
1776 {
1777 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1778 			  &blkcg_policy_cfq, seq_cft(sf)->private, false);
1779 	return 0;
1780 }
1781 
cfqg_print_rwstat(struct seq_file * sf,void * v)1782 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1783 {
1784 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1785 			  &blkcg_policy_cfq, seq_cft(sf)->private, true);
1786 	return 0;
1787 }
1788 
cfqg_prfill_stat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1789 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1790 				      struct blkg_policy_data *pd, int off)
1791 {
1792 	u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1793 
1794 	return __blkg_prfill_u64(sf, pd, sum);
1795 }
1796 
cfqg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1797 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1798 					struct blkg_policy_data *pd, int off)
1799 {
1800 	struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1801 
1802 	return __blkg_prfill_rwstat(sf, pd, &sum);
1803 }
1804 
cfqg_print_stat_recursive(struct seq_file * sf,void * v)1805 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1806 {
1807 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1808 			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1809 			  seq_cft(sf)->private, false);
1810 	return 0;
1811 }
1812 
cfqg_print_rwstat_recursive(struct seq_file * sf,void * v)1813 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1814 {
1815 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1816 			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1817 			  seq_cft(sf)->private, true);
1818 	return 0;
1819 }
1820 
1821 #ifdef CONFIG_DEBUG_BLK_CGROUP
cfqg_prfill_avg_queue_size(struct seq_file * sf,struct blkg_policy_data * pd,int off)1822 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1823 				      struct blkg_policy_data *pd, int off)
1824 {
1825 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1826 	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1827 	u64 v = 0;
1828 
1829 	if (samples) {
1830 		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1831 		v = div64_u64(v, samples);
1832 	}
1833 	__blkg_prfill_u64(sf, pd, v);
1834 	return 0;
1835 }
1836 
1837 /* print avg_queue_size */
cfqg_print_avg_queue_size(struct seq_file * sf,void * v)1838 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1839 {
1840 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1841 			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1842 			  0, false);
1843 	return 0;
1844 }
1845 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
1846 
1847 static struct cftype cfq_blkcg_files[] = {
1848 	/* on root, weight is mapped to leaf_weight */
1849 	{
1850 		.name = "weight_device",
1851 		.flags = CFTYPE_ONLY_ON_ROOT,
1852 		.seq_show = cfqg_print_leaf_weight_device,
1853 		.write = cfqg_set_leaf_weight_device,
1854 	},
1855 	{
1856 		.name = "weight",
1857 		.flags = CFTYPE_ONLY_ON_ROOT,
1858 		.seq_show = cfq_print_leaf_weight,
1859 		.write_u64 = cfq_set_leaf_weight,
1860 	},
1861 
1862 	/* no such mapping necessary for !roots */
1863 	{
1864 		.name = "weight_device",
1865 		.flags = CFTYPE_NOT_ON_ROOT,
1866 		.seq_show = cfqg_print_weight_device,
1867 		.write = cfqg_set_weight_device,
1868 	},
1869 	{
1870 		.name = "weight",
1871 		.flags = CFTYPE_NOT_ON_ROOT,
1872 		.seq_show = cfq_print_weight,
1873 		.write_u64 = cfq_set_weight,
1874 	},
1875 
1876 	{
1877 		.name = "leaf_weight_device",
1878 		.seq_show = cfqg_print_leaf_weight_device,
1879 		.write = cfqg_set_leaf_weight_device,
1880 	},
1881 	{
1882 		.name = "leaf_weight",
1883 		.seq_show = cfq_print_leaf_weight,
1884 		.write_u64 = cfq_set_leaf_weight,
1885 	},
1886 
1887 	/* statistics, covers only the tasks in the cfqg */
1888 	{
1889 		.name = "time",
1890 		.private = offsetof(struct cfq_group, stats.time),
1891 		.seq_show = cfqg_print_stat,
1892 	},
1893 	{
1894 		.name = "sectors",
1895 		.private = offsetof(struct cfq_group, stats.sectors),
1896 		.seq_show = cfqg_print_stat,
1897 	},
1898 	{
1899 		.name = "io_service_bytes",
1900 		.private = offsetof(struct cfq_group, stats.service_bytes),
1901 		.seq_show = cfqg_print_rwstat,
1902 	},
1903 	{
1904 		.name = "io_serviced",
1905 		.private = offsetof(struct cfq_group, stats.serviced),
1906 		.seq_show = cfqg_print_rwstat,
1907 	},
1908 	{
1909 		.name = "io_service_time",
1910 		.private = offsetof(struct cfq_group, stats.service_time),
1911 		.seq_show = cfqg_print_rwstat,
1912 	},
1913 	{
1914 		.name = "io_wait_time",
1915 		.private = offsetof(struct cfq_group, stats.wait_time),
1916 		.seq_show = cfqg_print_rwstat,
1917 	},
1918 	{
1919 		.name = "io_merged",
1920 		.private = offsetof(struct cfq_group, stats.merged),
1921 		.seq_show = cfqg_print_rwstat,
1922 	},
1923 	{
1924 		.name = "io_queued",
1925 		.private = offsetof(struct cfq_group, stats.queued),
1926 		.seq_show = cfqg_print_rwstat,
1927 	},
1928 
1929 	/* the same statictics which cover the cfqg and its descendants */
1930 	{
1931 		.name = "time_recursive",
1932 		.private = offsetof(struct cfq_group, stats.time),
1933 		.seq_show = cfqg_print_stat_recursive,
1934 	},
1935 	{
1936 		.name = "sectors_recursive",
1937 		.private = offsetof(struct cfq_group, stats.sectors),
1938 		.seq_show = cfqg_print_stat_recursive,
1939 	},
1940 	{
1941 		.name = "io_service_bytes_recursive",
1942 		.private = offsetof(struct cfq_group, stats.service_bytes),
1943 		.seq_show = cfqg_print_rwstat_recursive,
1944 	},
1945 	{
1946 		.name = "io_serviced_recursive",
1947 		.private = offsetof(struct cfq_group, stats.serviced),
1948 		.seq_show = cfqg_print_rwstat_recursive,
1949 	},
1950 	{
1951 		.name = "io_service_time_recursive",
1952 		.private = offsetof(struct cfq_group, stats.service_time),
1953 		.seq_show = cfqg_print_rwstat_recursive,
1954 	},
1955 	{
1956 		.name = "io_wait_time_recursive",
1957 		.private = offsetof(struct cfq_group, stats.wait_time),
1958 		.seq_show = cfqg_print_rwstat_recursive,
1959 	},
1960 	{
1961 		.name = "io_merged_recursive",
1962 		.private = offsetof(struct cfq_group, stats.merged),
1963 		.seq_show = cfqg_print_rwstat_recursive,
1964 	},
1965 	{
1966 		.name = "io_queued_recursive",
1967 		.private = offsetof(struct cfq_group, stats.queued),
1968 		.seq_show = cfqg_print_rwstat_recursive,
1969 	},
1970 #ifdef CONFIG_DEBUG_BLK_CGROUP
1971 	{
1972 		.name = "avg_queue_size",
1973 		.seq_show = cfqg_print_avg_queue_size,
1974 	},
1975 	{
1976 		.name = "group_wait_time",
1977 		.private = offsetof(struct cfq_group, stats.group_wait_time),
1978 		.seq_show = cfqg_print_stat,
1979 	},
1980 	{
1981 		.name = "idle_time",
1982 		.private = offsetof(struct cfq_group, stats.idle_time),
1983 		.seq_show = cfqg_print_stat,
1984 	},
1985 	{
1986 		.name = "empty_time",
1987 		.private = offsetof(struct cfq_group, stats.empty_time),
1988 		.seq_show = cfqg_print_stat,
1989 	},
1990 	{
1991 		.name = "dequeue",
1992 		.private = offsetof(struct cfq_group, stats.dequeue),
1993 		.seq_show = cfqg_print_stat,
1994 	},
1995 	{
1996 		.name = "unaccounted_time",
1997 		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1998 		.seq_show = cfqg_print_stat,
1999 	},
2000 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
2001 	{ }	/* terminate */
2002 };
2003 #else /* GROUP_IOSCHED */
cfq_lookup_create_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)2004 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2005 						struct blkcg *blkcg)
2006 {
2007 	return cfqd->root_group;
2008 }
2009 
2010 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)2011 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2012 	cfqq->cfqg = cfqg;
2013 }
2014 
2015 #endif /* GROUP_IOSCHED */
2016 
2017 /*
2018  * The cfqd->service_trees holds all pending cfq_queue's that have
2019  * requests waiting to be processed. It is sorted in the order that
2020  * we will service the queues.
2021  */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)2022 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2023 				 bool add_front)
2024 {
2025 	struct rb_node **p, *parent;
2026 	struct cfq_queue *__cfqq;
2027 	unsigned long rb_key;
2028 	struct cfq_rb_root *st;
2029 	int left;
2030 	int new_cfqq = 1;
2031 
2032 	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2033 	if (cfq_class_idle(cfqq)) {
2034 		rb_key = CFQ_IDLE_DELAY;
2035 		parent = rb_last(&st->rb);
2036 		if (parent && parent != &cfqq->rb_node) {
2037 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2038 			rb_key += __cfqq->rb_key;
2039 		} else
2040 			rb_key += jiffies;
2041 	} else if (!add_front) {
2042 		/*
2043 		 * Get our rb key offset. Subtract any residual slice
2044 		 * value carried from last service. A negative resid
2045 		 * count indicates slice overrun, and this should position
2046 		 * the next service time further away in the tree.
2047 		 */
2048 		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2049 		rb_key -= cfqq->slice_resid;
2050 		cfqq->slice_resid = 0;
2051 	} else {
2052 		rb_key = -HZ;
2053 		__cfqq = cfq_rb_first(st);
2054 		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2055 	}
2056 
2057 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2058 		new_cfqq = 0;
2059 		/*
2060 		 * same position, nothing more to do
2061 		 */
2062 		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2063 			return;
2064 
2065 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2066 		cfqq->service_tree = NULL;
2067 	}
2068 
2069 	left = 1;
2070 	parent = NULL;
2071 	cfqq->service_tree = st;
2072 	p = &st->rb.rb_node;
2073 	while (*p) {
2074 		parent = *p;
2075 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2076 
2077 		/*
2078 		 * sort by key, that represents service time.
2079 		 */
2080 		if (time_before(rb_key, __cfqq->rb_key))
2081 			p = &parent->rb_left;
2082 		else {
2083 			p = &parent->rb_right;
2084 			left = 0;
2085 		}
2086 	}
2087 
2088 	if (left)
2089 		st->left = &cfqq->rb_node;
2090 
2091 	cfqq->rb_key = rb_key;
2092 	rb_link_node(&cfqq->rb_node, parent, p);
2093 	rb_insert_color(&cfqq->rb_node, &st->rb);
2094 	st->count++;
2095 	if (add_front || !new_cfqq)
2096 		return;
2097 	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2098 }
2099 
2100 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)2101 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2102 		     sector_t sector, struct rb_node **ret_parent,
2103 		     struct rb_node ***rb_link)
2104 {
2105 	struct rb_node **p, *parent;
2106 	struct cfq_queue *cfqq = NULL;
2107 
2108 	parent = NULL;
2109 	p = &root->rb_node;
2110 	while (*p) {
2111 		struct rb_node **n;
2112 
2113 		parent = *p;
2114 		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2115 
2116 		/*
2117 		 * Sort strictly based on sector.  Smallest to the left,
2118 		 * largest to the right.
2119 		 */
2120 		if (sector > blk_rq_pos(cfqq->next_rq))
2121 			n = &(*p)->rb_right;
2122 		else if (sector < blk_rq_pos(cfqq->next_rq))
2123 			n = &(*p)->rb_left;
2124 		else
2125 			break;
2126 		p = n;
2127 		cfqq = NULL;
2128 	}
2129 
2130 	*ret_parent = parent;
2131 	if (rb_link)
2132 		*rb_link = p;
2133 	return cfqq;
2134 }
2135 
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)2136 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2137 {
2138 	struct rb_node **p, *parent;
2139 	struct cfq_queue *__cfqq;
2140 
2141 	if (cfqq->p_root) {
2142 		rb_erase(&cfqq->p_node, cfqq->p_root);
2143 		cfqq->p_root = NULL;
2144 	}
2145 
2146 	if (cfq_class_idle(cfqq))
2147 		return;
2148 	if (!cfqq->next_rq)
2149 		return;
2150 
2151 	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2152 	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2153 				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2154 	if (!__cfqq) {
2155 		rb_link_node(&cfqq->p_node, parent, p);
2156 		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2157 	} else
2158 		cfqq->p_root = NULL;
2159 }
2160 
2161 /*
2162  * Update cfqq's position in the service tree.
2163  */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)2164 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2165 {
2166 	/*
2167 	 * Resorting requires the cfqq to be on the RR list already.
2168 	 */
2169 	if (cfq_cfqq_on_rr(cfqq)) {
2170 		cfq_service_tree_add(cfqd, cfqq, 0);
2171 		cfq_prio_tree_add(cfqd, cfqq);
2172 	}
2173 }
2174 
2175 /*
2176  * add to busy list of queues for service, trying to be fair in ordering
2177  * the pending list according to last request service
2178  */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2179 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2180 {
2181 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2182 	BUG_ON(cfq_cfqq_on_rr(cfqq));
2183 	cfq_mark_cfqq_on_rr(cfqq);
2184 	cfqd->busy_queues++;
2185 	if (cfq_cfqq_sync(cfqq))
2186 		cfqd->busy_sync_queues++;
2187 
2188 	cfq_resort_rr_list(cfqd, cfqq);
2189 }
2190 
2191 /*
2192  * Called when the cfqq no longer has requests pending, remove it from
2193  * the service tree.
2194  */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2195 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2196 {
2197 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2198 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2199 	cfq_clear_cfqq_on_rr(cfqq);
2200 
2201 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2202 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2203 		cfqq->service_tree = NULL;
2204 	}
2205 	if (cfqq->p_root) {
2206 		rb_erase(&cfqq->p_node, cfqq->p_root);
2207 		cfqq->p_root = NULL;
2208 	}
2209 
2210 	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2211 	BUG_ON(!cfqd->busy_queues);
2212 	cfqd->busy_queues--;
2213 	if (cfq_cfqq_sync(cfqq))
2214 		cfqd->busy_sync_queues--;
2215 }
2216 
2217 /*
2218  * rb tree support functions
2219  */
cfq_del_rq_rb(struct request * rq)2220 static void cfq_del_rq_rb(struct request *rq)
2221 {
2222 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2223 	const int sync = rq_is_sync(rq);
2224 
2225 	BUG_ON(!cfqq->queued[sync]);
2226 	cfqq->queued[sync]--;
2227 
2228 	elv_rb_del(&cfqq->sort_list, rq);
2229 
2230 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2231 		/*
2232 		 * Queue will be deleted from service tree when we actually
2233 		 * expire it later. Right now just remove it from prio tree
2234 		 * as it is empty.
2235 		 */
2236 		if (cfqq->p_root) {
2237 			rb_erase(&cfqq->p_node, cfqq->p_root);
2238 			cfqq->p_root = NULL;
2239 		}
2240 	}
2241 }
2242 
cfq_add_rq_rb(struct request * rq)2243 static void cfq_add_rq_rb(struct request *rq)
2244 {
2245 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2246 	struct cfq_data *cfqd = cfqq->cfqd;
2247 	struct request *prev;
2248 
2249 	cfqq->queued[rq_is_sync(rq)]++;
2250 
2251 	elv_rb_add(&cfqq->sort_list, rq);
2252 
2253 	if (!cfq_cfqq_on_rr(cfqq))
2254 		cfq_add_cfqq_rr(cfqd, cfqq);
2255 
2256 	/*
2257 	 * check if this request is a better next-serve candidate
2258 	 */
2259 	prev = cfqq->next_rq;
2260 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2261 
2262 	/*
2263 	 * adjust priority tree position, if ->next_rq changes
2264 	 */
2265 	if (prev != cfqq->next_rq)
2266 		cfq_prio_tree_add(cfqd, cfqq);
2267 
2268 	BUG_ON(!cfqq->next_rq);
2269 }
2270 
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)2271 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2272 {
2273 	elv_rb_del(&cfqq->sort_list, rq);
2274 	cfqq->queued[rq_is_sync(rq)]--;
2275 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2276 	cfq_add_rq_rb(rq);
2277 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2278 				 rq->cmd_flags);
2279 }
2280 
2281 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)2282 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2283 {
2284 	struct task_struct *tsk = current;
2285 	struct cfq_io_cq *cic;
2286 	struct cfq_queue *cfqq;
2287 
2288 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2289 	if (!cic)
2290 		return NULL;
2291 
2292 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2293 	if (cfqq)
2294 		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2295 
2296 	return NULL;
2297 }
2298 
cfq_activate_request(struct request_queue * q,struct request * rq)2299 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2300 {
2301 	struct cfq_data *cfqd = q->elevator->elevator_data;
2302 
2303 	cfqd->rq_in_driver++;
2304 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2305 						cfqd->rq_in_driver);
2306 
2307 	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2308 }
2309 
cfq_deactivate_request(struct request_queue * q,struct request * rq)2310 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2311 {
2312 	struct cfq_data *cfqd = q->elevator->elevator_data;
2313 
2314 	WARN_ON(!cfqd->rq_in_driver);
2315 	cfqd->rq_in_driver--;
2316 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2317 						cfqd->rq_in_driver);
2318 }
2319 
cfq_remove_request(struct request * rq)2320 static void cfq_remove_request(struct request *rq)
2321 {
2322 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2323 
2324 	if (cfqq->next_rq == rq)
2325 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2326 
2327 	list_del_init(&rq->queuelist);
2328 	cfq_del_rq_rb(rq);
2329 
2330 	cfqq->cfqd->rq_queued--;
2331 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2332 	if (rq->cmd_flags & REQ_PRIO) {
2333 		WARN_ON(!cfqq->prio_pending);
2334 		cfqq->prio_pending--;
2335 	}
2336 }
2337 
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)2338 static int cfq_merge(struct request_queue *q, struct request **req,
2339 		     struct bio *bio)
2340 {
2341 	struct cfq_data *cfqd = q->elevator->elevator_data;
2342 	struct request *__rq;
2343 
2344 	__rq = cfq_find_rq_fmerge(cfqd, bio);
2345 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
2346 		*req = __rq;
2347 		return ELEVATOR_FRONT_MERGE;
2348 	}
2349 
2350 	return ELEVATOR_NO_MERGE;
2351 }
2352 
cfq_merged_request(struct request_queue * q,struct request * req,int type)2353 static void cfq_merged_request(struct request_queue *q, struct request *req,
2354 			       int type)
2355 {
2356 	if (type == ELEVATOR_FRONT_MERGE) {
2357 		struct cfq_queue *cfqq = RQ_CFQQ(req);
2358 
2359 		cfq_reposition_rq_rb(cfqq, req);
2360 	}
2361 }
2362 
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)2363 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2364 				struct bio *bio)
2365 {
2366 	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2367 }
2368 
2369 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)2370 cfq_merged_requests(struct request_queue *q, struct request *rq,
2371 		    struct request *next)
2372 {
2373 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2374 	struct cfq_data *cfqd = q->elevator->elevator_data;
2375 
2376 	/*
2377 	 * reposition in fifo if next is older than rq
2378 	 */
2379 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2380 	    time_before(next->fifo_time, rq->fifo_time) &&
2381 	    cfqq == RQ_CFQQ(next)) {
2382 		list_move(&rq->queuelist, &next->queuelist);
2383 		rq->fifo_time = next->fifo_time;
2384 	}
2385 
2386 	if (cfqq->next_rq == next)
2387 		cfqq->next_rq = rq;
2388 	cfq_remove_request(next);
2389 	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2390 
2391 	cfqq = RQ_CFQQ(next);
2392 	/*
2393 	 * all requests of this queue are merged to other queues, delete it
2394 	 * from the service tree. If it's the active_queue,
2395 	 * cfq_dispatch_requests() will choose to expire it or do idle
2396 	 */
2397 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2398 	    cfqq != cfqd->active_queue)
2399 		cfq_del_cfqq_rr(cfqd, cfqq);
2400 }
2401 
cfq_allow_merge(struct request_queue * q,struct request * rq,struct bio * bio)2402 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2403 			   struct bio *bio)
2404 {
2405 	struct cfq_data *cfqd = q->elevator->elevator_data;
2406 	struct cfq_io_cq *cic;
2407 	struct cfq_queue *cfqq;
2408 
2409 	/*
2410 	 * Disallow merge of a sync bio into an async request.
2411 	 */
2412 	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2413 		return false;
2414 
2415 	/*
2416 	 * Lookup the cfqq that this bio will be queued with and allow
2417 	 * merge only if rq is queued there.
2418 	 */
2419 	cic = cfq_cic_lookup(cfqd, current->io_context);
2420 	if (!cic)
2421 		return false;
2422 
2423 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2424 	return cfqq == RQ_CFQQ(rq);
2425 }
2426 
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)2427 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2428 {
2429 	del_timer(&cfqd->idle_slice_timer);
2430 	cfqg_stats_update_idle_time(cfqq->cfqg);
2431 }
2432 
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2433 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2434 				   struct cfq_queue *cfqq)
2435 {
2436 	if (cfqq) {
2437 		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2438 				cfqd->serving_wl_class, cfqd->serving_wl_type);
2439 		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2440 		cfqq->slice_start = 0;
2441 		cfqq->dispatch_start = jiffies;
2442 		cfqq->allocated_slice = 0;
2443 		cfqq->slice_end = 0;
2444 		cfqq->slice_dispatch = 0;
2445 		cfqq->nr_sectors = 0;
2446 
2447 		cfq_clear_cfqq_wait_request(cfqq);
2448 		cfq_clear_cfqq_must_dispatch(cfqq);
2449 		cfq_clear_cfqq_must_alloc_slice(cfqq);
2450 		cfq_clear_cfqq_fifo_expire(cfqq);
2451 		cfq_mark_cfqq_slice_new(cfqq);
2452 
2453 		cfq_del_timer(cfqd, cfqq);
2454 	}
2455 
2456 	cfqd->active_queue = cfqq;
2457 }
2458 
2459 /*
2460  * current cfqq expired its slice (or was too idle), select new one
2461  */
2462 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)2463 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2464 		    bool timed_out)
2465 {
2466 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2467 
2468 	if (cfq_cfqq_wait_request(cfqq))
2469 		cfq_del_timer(cfqd, cfqq);
2470 
2471 	cfq_clear_cfqq_wait_request(cfqq);
2472 	cfq_clear_cfqq_wait_busy(cfqq);
2473 
2474 	/*
2475 	 * If this cfqq is shared between multiple processes, check to
2476 	 * make sure that those processes are still issuing I/Os within
2477 	 * the mean seek distance.  If not, it may be time to break the
2478 	 * queues apart again.
2479 	 */
2480 	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2481 		cfq_mark_cfqq_split_coop(cfqq);
2482 
2483 	/*
2484 	 * store what was left of this slice, if the queue idled/timed out
2485 	 */
2486 	if (timed_out) {
2487 		if (cfq_cfqq_slice_new(cfqq))
2488 			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2489 		else
2490 			cfqq->slice_resid = cfqq->slice_end - jiffies;
2491 		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2492 	}
2493 
2494 	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2495 
2496 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2497 		cfq_del_cfqq_rr(cfqd, cfqq);
2498 
2499 	cfq_resort_rr_list(cfqd, cfqq);
2500 
2501 	if (cfqq == cfqd->active_queue)
2502 		cfqd->active_queue = NULL;
2503 
2504 	if (cfqd->active_cic) {
2505 		put_io_context(cfqd->active_cic->icq.ioc);
2506 		cfqd->active_cic = NULL;
2507 	}
2508 }
2509 
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)2510 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2511 {
2512 	struct cfq_queue *cfqq = cfqd->active_queue;
2513 
2514 	if (cfqq)
2515 		__cfq_slice_expired(cfqd, cfqq, timed_out);
2516 }
2517 
2518 /*
2519  * Get next queue for service. Unless we have a queue preemption,
2520  * we'll simply select the first cfqq in the service tree.
2521  */
cfq_get_next_queue(struct cfq_data * cfqd)2522 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2523 {
2524 	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2525 			cfqd->serving_wl_class, cfqd->serving_wl_type);
2526 
2527 	if (!cfqd->rq_queued)
2528 		return NULL;
2529 
2530 	/* There is nothing to dispatch */
2531 	if (!st)
2532 		return NULL;
2533 	if (RB_EMPTY_ROOT(&st->rb))
2534 		return NULL;
2535 	return cfq_rb_first(st);
2536 }
2537 
cfq_get_next_queue_forced(struct cfq_data * cfqd)2538 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2539 {
2540 	struct cfq_group *cfqg;
2541 	struct cfq_queue *cfqq;
2542 	int i, j;
2543 	struct cfq_rb_root *st;
2544 
2545 	if (!cfqd->rq_queued)
2546 		return NULL;
2547 
2548 	cfqg = cfq_get_next_cfqg(cfqd);
2549 	if (!cfqg)
2550 		return NULL;
2551 
2552 	for_each_cfqg_st(cfqg, i, j, st)
2553 		if ((cfqq = cfq_rb_first(st)) != NULL)
2554 			return cfqq;
2555 	return NULL;
2556 }
2557 
2558 /*
2559  * Get and set a new active queue for service.
2560  */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2561 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2562 					      struct cfq_queue *cfqq)
2563 {
2564 	if (!cfqq)
2565 		cfqq = cfq_get_next_queue(cfqd);
2566 
2567 	__cfq_set_active_queue(cfqd, cfqq);
2568 	return cfqq;
2569 }
2570 
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)2571 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2572 					  struct request *rq)
2573 {
2574 	if (blk_rq_pos(rq) >= cfqd->last_position)
2575 		return blk_rq_pos(rq) - cfqd->last_position;
2576 	else
2577 		return cfqd->last_position - blk_rq_pos(rq);
2578 }
2579 
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2580 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2581 			       struct request *rq)
2582 {
2583 	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2584 }
2585 
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2586 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2587 				    struct cfq_queue *cur_cfqq)
2588 {
2589 	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2590 	struct rb_node *parent, *node;
2591 	struct cfq_queue *__cfqq;
2592 	sector_t sector = cfqd->last_position;
2593 
2594 	if (RB_EMPTY_ROOT(root))
2595 		return NULL;
2596 
2597 	/*
2598 	 * First, if we find a request starting at the end of the last
2599 	 * request, choose it.
2600 	 */
2601 	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2602 	if (__cfqq)
2603 		return __cfqq;
2604 
2605 	/*
2606 	 * If the exact sector wasn't found, the parent of the NULL leaf
2607 	 * will contain the closest sector.
2608 	 */
2609 	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2610 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2611 		return __cfqq;
2612 
2613 	if (blk_rq_pos(__cfqq->next_rq) < sector)
2614 		node = rb_next(&__cfqq->p_node);
2615 	else
2616 		node = rb_prev(&__cfqq->p_node);
2617 	if (!node)
2618 		return NULL;
2619 
2620 	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2621 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2622 		return __cfqq;
2623 
2624 	return NULL;
2625 }
2626 
2627 /*
2628  * cfqd - obvious
2629  * cur_cfqq - passed in so that we don't decide that the current queue is
2630  * 	      closely cooperating with itself.
2631  *
2632  * So, basically we're assuming that that cur_cfqq has dispatched at least
2633  * one request, and that cfqd->last_position reflects a position on the disk
2634  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2635  * assumption.
2636  */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2637 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2638 					      struct cfq_queue *cur_cfqq)
2639 {
2640 	struct cfq_queue *cfqq;
2641 
2642 	if (cfq_class_idle(cur_cfqq))
2643 		return NULL;
2644 	if (!cfq_cfqq_sync(cur_cfqq))
2645 		return NULL;
2646 	if (CFQQ_SEEKY(cur_cfqq))
2647 		return NULL;
2648 
2649 	/*
2650 	 * Don't search priority tree if it's the only queue in the group.
2651 	 */
2652 	if (cur_cfqq->cfqg->nr_cfqq == 1)
2653 		return NULL;
2654 
2655 	/*
2656 	 * We should notice if some of the queues are cooperating, eg
2657 	 * working closely on the same area of the disk. In that case,
2658 	 * we can group them together and don't waste time idling.
2659 	 */
2660 	cfqq = cfqq_close(cfqd, cur_cfqq);
2661 	if (!cfqq)
2662 		return NULL;
2663 
2664 	/* If new queue belongs to different cfq_group, don't choose it */
2665 	if (cur_cfqq->cfqg != cfqq->cfqg)
2666 		return NULL;
2667 
2668 	/*
2669 	 * It only makes sense to merge sync queues.
2670 	 */
2671 	if (!cfq_cfqq_sync(cfqq))
2672 		return NULL;
2673 	if (CFQQ_SEEKY(cfqq))
2674 		return NULL;
2675 
2676 	/*
2677 	 * Do not merge queues of different priority classes
2678 	 */
2679 	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2680 		return NULL;
2681 
2682 	return cfqq;
2683 }
2684 
2685 /*
2686  * Determine whether we should enforce idle window for this queue.
2687  */
2688 
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)2689 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2690 {
2691 	enum wl_class_t wl_class = cfqq_class(cfqq);
2692 	struct cfq_rb_root *st = cfqq->service_tree;
2693 
2694 	BUG_ON(!st);
2695 	BUG_ON(!st->count);
2696 
2697 	if (!cfqd->cfq_slice_idle)
2698 		return false;
2699 
2700 	/* We never do for idle class queues. */
2701 	if (wl_class == IDLE_WORKLOAD)
2702 		return false;
2703 
2704 	/* We do for queues that were marked with idle window flag. */
2705 	if (cfq_cfqq_idle_window(cfqq) &&
2706 	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2707 		return true;
2708 
2709 	/*
2710 	 * Otherwise, we do only if they are the last ones
2711 	 * in their service tree.
2712 	 */
2713 	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2714 	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2715 		return true;
2716 	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2717 	return false;
2718 }
2719 
cfq_arm_slice_timer(struct cfq_data * cfqd)2720 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2721 {
2722 	struct cfq_queue *cfqq = cfqd->active_queue;
2723 	struct cfq_io_cq *cic;
2724 	unsigned long sl, group_idle = 0;
2725 
2726 	/*
2727 	 * SSD device without seek penalty, disable idling. But only do so
2728 	 * for devices that support queuing, otherwise we still have a problem
2729 	 * with sync vs async workloads.
2730 	 */
2731 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2732 		return;
2733 
2734 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2735 	WARN_ON(cfq_cfqq_slice_new(cfqq));
2736 
2737 	/*
2738 	 * idle is disabled, either manually or by past process history
2739 	 */
2740 	if (!cfq_should_idle(cfqd, cfqq)) {
2741 		/* no queue idling. Check for group idling */
2742 		if (cfqd->cfq_group_idle)
2743 			group_idle = cfqd->cfq_group_idle;
2744 		else
2745 			return;
2746 	}
2747 
2748 	/*
2749 	 * still active requests from this queue, don't idle
2750 	 */
2751 	if (cfqq->dispatched)
2752 		return;
2753 
2754 	/*
2755 	 * task has exited, don't wait
2756 	 */
2757 	cic = cfqd->active_cic;
2758 	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2759 		return;
2760 
2761 	/*
2762 	 * If our average think time is larger than the remaining time
2763 	 * slice, then don't idle. This avoids overrunning the allotted
2764 	 * time slice.
2765 	 */
2766 	if (sample_valid(cic->ttime.ttime_samples) &&
2767 	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2768 		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2769 			     cic->ttime.ttime_mean);
2770 		return;
2771 	}
2772 
2773 	/* There are other queues in the group, don't do group idle */
2774 	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2775 		return;
2776 
2777 	cfq_mark_cfqq_wait_request(cfqq);
2778 
2779 	if (group_idle)
2780 		sl = cfqd->cfq_group_idle;
2781 	else
2782 		sl = cfqd->cfq_slice_idle;
2783 
2784 	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2785 	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2786 	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2787 			group_idle ? 1 : 0);
2788 }
2789 
2790 /*
2791  * Move request from internal lists to the request queue dispatch list.
2792  */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2793 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2794 {
2795 	struct cfq_data *cfqd = q->elevator->elevator_data;
2796 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2797 
2798 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2799 
2800 	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2801 	cfq_remove_request(rq);
2802 	cfqq->dispatched++;
2803 	(RQ_CFQG(rq))->dispatched++;
2804 	elv_dispatch_sort(q, rq);
2805 
2806 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2807 	cfqq->nr_sectors += blk_rq_sectors(rq);
2808 	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2809 }
2810 
2811 /*
2812  * return expired entry, or NULL to just start from scratch in rbtree
2813  */
cfq_check_fifo(struct cfq_queue * cfqq)2814 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2815 {
2816 	struct request *rq = NULL;
2817 
2818 	if (cfq_cfqq_fifo_expire(cfqq))
2819 		return NULL;
2820 
2821 	cfq_mark_cfqq_fifo_expire(cfqq);
2822 
2823 	if (list_empty(&cfqq->fifo))
2824 		return NULL;
2825 
2826 	rq = rq_entry_fifo(cfqq->fifo.next);
2827 	if (time_before(jiffies, rq->fifo_time))
2828 		rq = NULL;
2829 
2830 	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2831 	return rq;
2832 }
2833 
2834 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)2835 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2836 {
2837 	const int base_rq = cfqd->cfq_slice_async_rq;
2838 
2839 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2840 
2841 	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2842 }
2843 
2844 /*
2845  * Must be called with the queue_lock held.
2846  */
cfqq_process_refs(struct cfq_queue * cfqq)2847 static int cfqq_process_refs(struct cfq_queue *cfqq)
2848 {
2849 	int process_refs, io_refs;
2850 
2851 	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2852 	process_refs = cfqq->ref - io_refs;
2853 	BUG_ON(process_refs < 0);
2854 	return process_refs;
2855 }
2856 
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)2857 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2858 {
2859 	int process_refs, new_process_refs;
2860 	struct cfq_queue *__cfqq;
2861 
2862 	/*
2863 	 * If there are no process references on the new_cfqq, then it is
2864 	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2865 	 * chain may have dropped their last reference (not just their
2866 	 * last process reference).
2867 	 */
2868 	if (!cfqq_process_refs(new_cfqq))
2869 		return;
2870 
2871 	/* Avoid a circular list and skip interim queue merges */
2872 	while ((__cfqq = new_cfqq->new_cfqq)) {
2873 		if (__cfqq == cfqq)
2874 			return;
2875 		new_cfqq = __cfqq;
2876 	}
2877 
2878 	process_refs = cfqq_process_refs(cfqq);
2879 	new_process_refs = cfqq_process_refs(new_cfqq);
2880 	/*
2881 	 * If the process for the cfqq has gone away, there is no
2882 	 * sense in merging the queues.
2883 	 */
2884 	if (process_refs == 0 || new_process_refs == 0)
2885 		return;
2886 
2887 	/*
2888 	 * Merge in the direction of the lesser amount of work.
2889 	 */
2890 	if (new_process_refs >= process_refs) {
2891 		cfqq->new_cfqq = new_cfqq;
2892 		new_cfqq->ref += process_refs;
2893 	} else {
2894 		new_cfqq->new_cfqq = cfqq;
2895 		cfqq->ref += new_process_refs;
2896 	}
2897 }
2898 
cfq_choose_wl_type(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_class_t wl_class)2899 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2900 			struct cfq_group *cfqg, enum wl_class_t wl_class)
2901 {
2902 	struct cfq_queue *queue;
2903 	int i;
2904 	bool key_valid = false;
2905 	unsigned long lowest_key = 0;
2906 	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2907 
2908 	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2909 		/* select the one with lowest rb_key */
2910 		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2911 		if (queue &&
2912 		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2913 			lowest_key = queue->rb_key;
2914 			cur_best = i;
2915 			key_valid = true;
2916 		}
2917 	}
2918 
2919 	return cur_best;
2920 }
2921 
2922 static void
choose_wl_class_and_type(struct cfq_data * cfqd,struct cfq_group * cfqg)2923 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2924 {
2925 	unsigned slice;
2926 	unsigned count;
2927 	struct cfq_rb_root *st;
2928 	unsigned group_slice;
2929 	enum wl_class_t original_class = cfqd->serving_wl_class;
2930 
2931 	/* Choose next priority. RT > BE > IDLE */
2932 	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2933 		cfqd->serving_wl_class = RT_WORKLOAD;
2934 	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2935 		cfqd->serving_wl_class = BE_WORKLOAD;
2936 	else {
2937 		cfqd->serving_wl_class = IDLE_WORKLOAD;
2938 		cfqd->workload_expires = jiffies + 1;
2939 		return;
2940 	}
2941 
2942 	if (original_class != cfqd->serving_wl_class)
2943 		goto new_workload;
2944 
2945 	/*
2946 	 * For RT and BE, we have to choose also the type
2947 	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2948 	 * expiration time
2949 	 */
2950 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2951 	count = st->count;
2952 
2953 	/*
2954 	 * check workload expiration, and that we still have other queues ready
2955 	 */
2956 	if (count && !time_after(jiffies, cfqd->workload_expires))
2957 		return;
2958 
2959 new_workload:
2960 	/* otherwise select new workload type */
2961 	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2962 					cfqd->serving_wl_class);
2963 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2964 	count = st->count;
2965 
2966 	/*
2967 	 * the workload slice is computed as a fraction of target latency
2968 	 * proportional to the number of queues in that workload, over
2969 	 * all the queues in the same priority class
2970 	 */
2971 	group_slice = cfq_group_slice(cfqd, cfqg);
2972 
2973 	slice = group_slice * count /
2974 		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2975 		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2976 					cfqg));
2977 
2978 	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2979 		unsigned int tmp;
2980 
2981 		/*
2982 		 * Async queues are currently system wide. Just taking
2983 		 * proportion of queues with-in same group will lead to higher
2984 		 * async ratio system wide as generally root group is going
2985 		 * to have higher weight. A more accurate thing would be to
2986 		 * calculate system wide asnc/sync ratio.
2987 		 */
2988 		tmp = cfqd->cfq_target_latency *
2989 			cfqg_busy_async_queues(cfqd, cfqg);
2990 		tmp = tmp/cfqd->busy_queues;
2991 		slice = min_t(unsigned, slice, tmp);
2992 
2993 		/* async workload slice is scaled down according to
2994 		 * the sync/async slice ratio. */
2995 		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2996 	} else
2997 		/* sync workload slice is at least 2 * cfq_slice_idle */
2998 		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2999 
3000 	slice = max_t(unsigned, slice, CFQ_MIN_TT);
3001 	cfq_log(cfqd, "workload slice:%d", slice);
3002 	cfqd->workload_expires = jiffies + slice;
3003 }
3004 
cfq_get_next_cfqg(struct cfq_data * cfqd)3005 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3006 {
3007 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
3008 	struct cfq_group *cfqg;
3009 
3010 	if (RB_EMPTY_ROOT(&st->rb))
3011 		return NULL;
3012 	cfqg = cfq_rb_first_group(st);
3013 	update_min_vdisktime(st);
3014 	return cfqg;
3015 }
3016 
cfq_choose_cfqg(struct cfq_data * cfqd)3017 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3018 {
3019 	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3020 
3021 	cfqd->serving_group = cfqg;
3022 
3023 	/* Restore the workload type data */
3024 	if (cfqg->saved_wl_slice) {
3025 		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3026 		cfqd->serving_wl_type = cfqg->saved_wl_type;
3027 		cfqd->serving_wl_class = cfqg->saved_wl_class;
3028 	} else
3029 		cfqd->workload_expires = jiffies - 1;
3030 
3031 	choose_wl_class_and_type(cfqd, cfqg);
3032 }
3033 
3034 /*
3035  * Select a queue for service. If we have a current active queue,
3036  * check whether to continue servicing it, or retrieve and set a new one.
3037  */
cfq_select_queue(struct cfq_data * cfqd)3038 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3039 {
3040 	struct cfq_queue *cfqq, *new_cfqq = NULL;
3041 
3042 	cfqq = cfqd->active_queue;
3043 	if (!cfqq)
3044 		goto new_queue;
3045 
3046 	if (!cfqd->rq_queued)
3047 		return NULL;
3048 
3049 	/*
3050 	 * We were waiting for group to get backlogged. Expire the queue
3051 	 */
3052 	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3053 		goto expire;
3054 
3055 	/*
3056 	 * The active queue has run out of time, expire it and select new.
3057 	 */
3058 	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3059 		/*
3060 		 * If slice had not expired at the completion of last request
3061 		 * we might not have turned on wait_busy flag. Don't expire
3062 		 * the queue yet. Allow the group to get backlogged.
3063 		 *
3064 		 * The very fact that we have used the slice, that means we
3065 		 * have been idling all along on this queue and it should be
3066 		 * ok to wait for this request to complete.
3067 		 */
3068 		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3069 		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3070 			cfqq = NULL;
3071 			goto keep_queue;
3072 		} else
3073 			goto check_group_idle;
3074 	}
3075 
3076 	/*
3077 	 * The active queue has requests and isn't expired, allow it to
3078 	 * dispatch.
3079 	 */
3080 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3081 		goto keep_queue;
3082 
3083 	/*
3084 	 * If another queue has a request waiting within our mean seek
3085 	 * distance, let it run.  The expire code will check for close
3086 	 * cooperators and put the close queue at the front of the service
3087 	 * tree.  If possible, merge the expiring queue with the new cfqq.
3088 	 */
3089 	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3090 	if (new_cfqq) {
3091 		if (!cfqq->new_cfqq)
3092 			cfq_setup_merge(cfqq, new_cfqq);
3093 		goto expire;
3094 	}
3095 
3096 	/*
3097 	 * No requests pending. If the active queue still has requests in
3098 	 * flight or is idling for a new request, allow either of these
3099 	 * conditions to happen (or time out) before selecting a new queue.
3100 	 */
3101 	if (timer_pending(&cfqd->idle_slice_timer)) {
3102 		cfqq = NULL;
3103 		goto keep_queue;
3104 	}
3105 
3106 	/*
3107 	 * This is a deep seek queue, but the device is much faster than
3108 	 * the queue can deliver, don't idle
3109 	 **/
3110 	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3111 	    (cfq_cfqq_slice_new(cfqq) ||
3112 	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3113 		cfq_clear_cfqq_deep(cfqq);
3114 		cfq_clear_cfqq_idle_window(cfqq);
3115 	}
3116 
3117 	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3118 		cfqq = NULL;
3119 		goto keep_queue;
3120 	}
3121 
3122 	/*
3123 	 * If group idle is enabled and there are requests dispatched from
3124 	 * this group, wait for requests to complete.
3125 	 */
3126 check_group_idle:
3127 	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3128 	    cfqq->cfqg->dispatched &&
3129 	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3130 		cfqq = NULL;
3131 		goto keep_queue;
3132 	}
3133 
3134 expire:
3135 	cfq_slice_expired(cfqd, 0);
3136 new_queue:
3137 	/*
3138 	 * Current queue expired. Check if we have to switch to a new
3139 	 * service tree
3140 	 */
3141 	if (!new_cfqq)
3142 		cfq_choose_cfqg(cfqd);
3143 
3144 	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3145 keep_queue:
3146 	return cfqq;
3147 }
3148 
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)3149 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3150 {
3151 	int dispatched = 0;
3152 
3153 	while (cfqq->next_rq) {
3154 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3155 		dispatched++;
3156 	}
3157 
3158 	BUG_ON(!list_empty(&cfqq->fifo));
3159 
3160 	/* By default cfqq is not expired if it is empty. Do it explicitly */
3161 	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3162 	return dispatched;
3163 }
3164 
3165 /*
3166  * Drain our current requests. Used for barriers and when switching
3167  * io schedulers on-the-fly.
3168  */
cfq_forced_dispatch(struct cfq_data * cfqd)3169 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3170 {
3171 	struct cfq_queue *cfqq;
3172 	int dispatched = 0;
3173 
3174 	/* Expire the timeslice of the current active queue first */
3175 	cfq_slice_expired(cfqd, 0);
3176 	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3177 		__cfq_set_active_queue(cfqd, cfqq);
3178 		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3179 	}
3180 
3181 	BUG_ON(cfqd->busy_queues);
3182 
3183 	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3184 	return dispatched;
3185 }
3186 
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)3187 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3188 	struct cfq_queue *cfqq)
3189 {
3190 	/* the queue hasn't finished any request, can't estimate */
3191 	if (cfq_cfqq_slice_new(cfqq))
3192 		return true;
3193 	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3194 		cfqq->slice_end))
3195 		return true;
3196 
3197 	return false;
3198 }
3199 
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)3200 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3201 {
3202 	unsigned int max_dispatch;
3203 
3204 	/*
3205 	 * Drain async requests before we start sync IO
3206 	 */
3207 	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3208 		return false;
3209 
3210 	/*
3211 	 * If this is an async queue and we have sync IO in flight, let it wait
3212 	 */
3213 	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3214 		return false;
3215 
3216 	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3217 	if (cfq_class_idle(cfqq))
3218 		max_dispatch = 1;
3219 
3220 	/*
3221 	 * Does this cfqq already have too much IO in flight?
3222 	 */
3223 	if (cfqq->dispatched >= max_dispatch) {
3224 		bool promote_sync = false;
3225 		/*
3226 		 * idle queue must always only have a single IO in flight
3227 		 */
3228 		if (cfq_class_idle(cfqq))
3229 			return false;
3230 
3231 		/*
3232 		 * If there is only one sync queue
3233 		 * we can ignore async queue here and give the sync
3234 		 * queue no dispatch limit. The reason is a sync queue can
3235 		 * preempt async queue, limiting the sync queue doesn't make
3236 		 * sense. This is useful for aiostress test.
3237 		 */
3238 		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3239 			promote_sync = true;
3240 
3241 		/*
3242 		 * We have other queues, don't allow more IO from this one
3243 		 */
3244 		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3245 				!promote_sync)
3246 			return false;
3247 
3248 		/*
3249 		 * Sole queue user, no limit
3250 		 */
3251 		if (cfqd->busy_queues == 1 || promote_sync)
3252 			max_dispatch = -1;
3253 		else
3254 			/*
3255 			 * Normally we start throttling cfqq when cfq_quantum/2
3256 			 * requests have been dispatched. But we can drive
3257 			 * deeper queue depths at the beginning of slice
3258 			 * subjected to upper limit of cfq_quantum.
3259 			 * */
3260 			max_dispatch = cfqd->cfq_quantum;
3261 	}
3262 
3263 	/*
3264 	 * Async queues must wait a bit before being allowed dispatch.
3265 	 * We also ramp up the dispatch depth gradually for async IO,
3266 	 * based on the last sync IO we serviced
3267 	 */
3268 	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3269 		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3270 		unsigned int depth;
3271 
3272 		depth = last_sync / cfqd->cfq_slice[1];
3273 		if (!depth && !cfqq->dispatched)
3274 			depth = 1;
3275 		if (depth < max_dispatch)
3276 			max_dispatch = depth;
3277 	}
3278 
3279 	/*
3280 	 * If we're below the current max, allow a dispatch
3281 	 */
3282 	return cfqq->dispatched < max_dispatch;
3283 }
3284 
3285 /*
3286  * Dispatch a request from cfqq, moving them to the request queue
3287  * dispatch list.
3288  */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)3289 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3290 {
3291 	struct request *rq;
3292 
3293 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3294 
3295 	if (!cfq_may_dispatch(cfqd, cfqq))
3296 		return false;
3297 
3298 	/*
3299 	 * follow expired path, else get first next available
3300 	 */
3301 	rq = cfq_check_fifo(cfqq);
3302 	if (!rq)
3303 		rq = cfqq->next_rq;
3304 
3305 	/*
3306 	 * insert request into driver dispatch list
3307 	 */
3308 	cfq_dispatch_insert(cfqd->queue, rq);
3309 
3310 	if (!cfqd->active_cic) {
3311 		struct cfq_io_cq *cic = RQ_CIC(rq);
3312 
3313 		atomic_long_inc(&cic->icq.ioc->refcount);
3314 		cfqd->active_cic = cic;
3315 	}
3316 
3317 	return true;
3318 }
3319 
3320 /*
3321  * Find the cfqq that we need to service and move a request from that to the
3322  * dispatch list
3323  */
cfq_dispatch_requests(struct request_queue * q,int force)3324 static int cfq_dispatch_requests(struct request_queue *q, int force)
3325 {
3326 	struct cfq_data *cfqd = q->elevator->elevator_data;
3327 	struct cfq_queue *cfqq;
3328 
3329 	if (!cfqd->busy_queues)
3330 		return 0;
3331 
3332 	if (unlikely(force))
3333 		return cfq_forced_dispatch(cfqd);
3334 
3335 	cfqq = cfq_select_queue(cfqd);
3336 	if (!cfqq)
3337 		return 0;
3338 
3339 	/*
3340 	 * Dispatch a request from this cfqq, if it is allowed
3341 	 */
3342 	if (!cfq_dispatch_request(cfqd, cfqq))
3343 		return 0;
3344 
3345 	cfqq->slice_dispatch++;
3346 	cfq_clear_cfqq_must_dispatch(cfqq);
3347 
3348 	/*
3349 	 * expire an async queue immediately if it has used up its slice. idle
3350 	 * queue always expire after 1 dispatch round.
3351 	 */
3352 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3353 	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3354 	    cfq_class_idle(cfqq))) {
3355 		cfqq->slice_end = jiffies + 1;
3356 		cfq_slice_expired(cfqd, 0);
3357 	}
3358 
3359 	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3360 	return 1;
3361 }
3362 
3363 /*
3364  * task holds one reference to the queue, dropped when task exits. each rq
3365  * in-flight on this queue also holds a reference, dropped when rq is freed.
3366  *
3367  * Each cfq queue took a reference on the parent group. Drop it now.
3368  * queue lock must be held here.
3369  */
cfq_put_queue(struct cfq_queue * cfqq)3370 static void cfq_put_queue(struct cfq_queue *cfqq)
3371 {
3372 	struct cfq_data *cfqd = cfqq->cfqd;
3373 	struct cfq_group *cfqg;
3374 
3375 	BUG_ON(cfqq->ref <= 0);
3376 
3377 	cfqq->ref--;
3378 	if (cfqq->ref)
3379 		return;
3380 
3381 	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3382 	BUG_ON(rb_first(&cfqq->sort_list));
3383 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3384 	cfqg = cfqq->cfqg;
3385 
3386 	if (unlikely(cfqd->active_queue == cfqq)) {
3387 		__cfq_slice_expired(cfqd, cfqq, 0);
3388 		cfq_schedule_dispatch(cfqd);
3389 	}
3390 
3391 	BUG_ON(cfq_cfqq_on_rr(cfqq));
3392 	kmem_cache_free(cfq_pool, cfqq);
3393 	cfqg_put(cfqg);
3394 }
3395 
cfq_put_cooperator(struct cfq_queue * cfqq)3396 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3397 {
3398 	struct cfq_queue *__cfqq, *next;
3399 
3400 	/*
3401 	 * If this queue was scheduled to merge with another queue, be
3402 	 * sure to drop the reference taken on that queue (and others in
3403 	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3404 	 */
3405 	__cfqq = cfqq->new_cfqq;
3406 	while (__cfqq) {
3407 		if (__cfqq == cfqq) {
3408 			WARN(1, "cfqq->new_cfqq loop detected\n");
3409 			break;
3410 		}
3411 		next = __cfqq->new_cfqq;
3412 		cfq_put_queue(__cfqq);
3413 		__cfqq = next;
3414 	}
3415 }
3416 
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3417 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3418 {
3419 	if (unlikely(cfqq == cfqd->active_queue)) {
3420 		__cfq_slice_expired(cfqd, cfqq, 0);
3421 		cfq_schedule_dispatch(cfqd);
3422 	}
3423 
3424 	cfq_put_cooperator(cfqq);
3425 
3426 	cfq_put_queue(cfqq);
3427 }
3428 
cfq_init_icq(struct io_cq * icq)3429 static void cfq_init_icq(struct io_cq *icq)
3430 {
3431 	struct cfq_io_cq *cic = icq_to_cic(icq);
3432 
3433 	cic->ttime.last_end_request = jiffies;
3434 }
3435 
cfq_exit_icq(struct io_cq * icq)3436 static void cfq_exit_icq(struct io_cq *icq)
3437 {
3438 	struct cfq_io_cq *cic = icq_to_cic(icq);
3439 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3440 
3441 	if (cic->cfqq[BLK_RW_ASYNC]) {
3442 		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3443 		cic->cfqq[BLK_RW_ASYNC] = NULL;
3444 	}
3445 
3446 	if (cic->cfqq[BLK_RW_SYNC]) {
3447 		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3448 		cic->cfqq[BLK_RW_SYNC] = NULL;
3449 	}
3450 }
3451 
cfq_init_prio_data(struct cfq_queue * cfqq,struct cfq_io_cq * cic)3452 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3453 {
3454 	struct task_struct *tsk = current;
3455 	int ioprio_class;
3456 
3457 	if (!cfq_cfqq_prio_changed(cfqq))
3458 		return;
3459 
3460 	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3461 	switch (ioprio_class) {
3462 	default:
3463 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3464 	case IOPRIO_CLASS_NONE:
3465 		/*
3466 		 * no prio set, inherit CPU scheduling settings
3467 		 */
3468 		cfqq->ioprio = task_nice_ioprio(tsk);
3469 		cfqq->ioprio_class = task_nice_ioclass(tsk);
3470 		break;
3471 	case IOPRIO_CLASS_RT:
3472 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3473 		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3474 		break;
3475 	case IOPRIO_CLASS_BE:
3476 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3477 		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3478 		break;
3479 	case IOPRIO_CLASS_IDLE:
3480 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3481 		cfqq->ioprio = 7;
3482 		cfq_clear_cfqq_idle_window(cfqq);
3483 		break;
3484 	}
3485 
3486 	/*
3487 	 * keep track of original prio settings in case we have to temporarily
3488 	 * elevate the priority of this queue
3489 	 */
3490 	cfqq->org_ioprio = cfqq->ioprio;
3491 	cfq_clear_cfqq_prio_changed(cfqq);
3492 }
3493 
check_ioprio_changed(struct cfq_io_cq * cic,struct bio * bio)3494 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3495 {
3496 	int ioprio = cic->icq.ioc->ioprio;
3497 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3498 	struct cfq_queue *cfqq;
3499 
3500 	/*
3501 	 * Check whether ioprio has changed.  The condition may trigger
3502 	 * spuriously on a newly created cic but there's no harm.
3503 	 */
3504 	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3505 		return;
3506 
3507 	cfqq = cic->cfqq[BLK_RW_ASYNC];
3508 	if (cfqq) {
3509 		struct cfq_queue *new_cfqq;
3510 		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3511 					 GFP_ATOMIC);
3512 		if (new_cfqq) {
3513 			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3514 			cfq_put_queue(cfqq);
3515 		}
3516 	}
3517 
3518 	cfqq = cic->cfqq[BLK_RW_SYNC];
3519 	if (cfqq)
3520 		cfq_mark_cfqq_prio_changed(cfqq);
3521 
3522 	cic->ioprio = ioprio;
3523 }
3524 
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)3525 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3526 			  pid_t pid, bool is_sync)
3527 {
3528 	RB_CLEAR_NODE(&cfqq->rb_node);
3529 	RB_CLEAR_NODE(&cfqq->p_node);
3530 	INIT_LIST_HEAD(&cfqq->fifo);
3531 
3532 	cfqq->ref = 0;
3533 	cfqq->cfqd = cfqd;
3534 
3535 	cfq_mark_cfqq_prio_changed(cfqq);
3536 
3537 	if (is_sync) {
3538 		if (!cfq_class_idle(cfqq))
3539 			cfq_mark_cfqq_idle_window(cfqq);
3540 		cfq_mark_cfqq_sync(cfqq);
3541 	}
3542 	cfqq->pid = pid;
3543 }
3544 
3545 #ifdef CONFIG_CFQ_GROUP_IOSCHED
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3546 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3547 {
3548 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3549 	struct cfq_queue *sync_cfqq;
3550 	uint64_t serial_nr;
3551 
3552 	rcu_read_lock();
3553 	serial_nr = bio_blkcg(bio)->css.serial_nr;
3554 	rcu_read_unlock();
3555 
3556 	/*
3557 	 * Check whether blkcg has changed.  The condition may trigger
3558 	 * spuriously on a newly created cic but there's no harm.
3559 	 */
3560 	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3561 		return;
3562 
3563 	sync_cfqq = cic_to_cfqq(cic, 1);
3564 	if (sync_cfqq) {
3565 		/*
3566 		 * Drop reference to sync queue. A new sync queue will be
3567 		 * assigned in new group upon arrival of a fresh request.
3568 		 */
3569 		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3570 		cic_set_cfqq(cic, NULL, 1);
3571 		cfq_put_queue(sync_cfqq);
3572 	}
3573 
3574 	cic->blkcg_serial_nr = serial_nr;
3575 }
3576 #else
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3577 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3578 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3579 
3580 static struct cfq_queue *
cfq_find_alloc_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio,gfp_t gfp_mask)3581 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3582 		     struct bio *bio, gfp_t gfp_mask)
3583 {
3584 	struct blkcg *blkcg;
3585 	struct cfq_queue *cfqq, *new_cfqq = NULL;
3586 	struct cfq_group *cfqg;
3587 
3588 retry:
3589 	rcu_read_lock();
3590 
3591 	blkcg = bio_blkcg(bio);
3592 	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3593 	if (!cfqg) {
3594 		cfqq = &cfqd->oom_cfqq;
3595 		goto out;
3596 	}
3597 
3598 	cfqq = cic_to_cfqq(cic, is_sync);
3599 
3600 	/*
3601 	 * Always try a new alloc if we fell back to the OOM cfqq
3602 	 * originally, since it should just be a temporary situation.
3603 	 */
3604 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3605 		cfqq = NULL;
3606 		if (new_cfqq) {
3607 			cfqq = new_cfqq;
3608 			new_cfqq = NULL;
3609 		} else if (gfp_mask & __GFP_WAIT) {
3610 			rcu_read_unlock();
3611 			spin_unlock_irq(cfqd->queue->queue_lock);
3612 			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3613 					gfp_mask | __GFP_ZERO,
3614 					cfqd->queue->node);
3615 			spin_lock_irq(cfqd->queue->queue_lock);
3616 			if (new_cfqq)
3617 				goto retry;
3618 			else
3619 				return &cfqd->oom_cfqq;
3620 		} else {
3621 			cfqq = kmem_cache_alloc_node(cfq_pool,
3622 					gfp_mask | __GFP_ZERO,
3623 					cfqd->queue->node);
3624 		}
3625 
3626 		if (cfqq) {
3627 			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3628 			cfq_init_prio_data(cfqq, cic);
3629 			cfq_link_cfqq_cfqg(cfqq, cfqg);
3630 			cfq_log_cfqq(cfqd, cfqq, "alloced");
3631 		} else
3632 			cfqq = &cfqd->oom_cfqq;
3633 	}
3634 out:
3635 	if (new_cfqq)
3636 		kmem_cache_free(cfq_pool, new_cfqq);
3637 
3638 	rcu_read_unlock();
3639 	return cfqq;
3640 }
3641 
3642 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data * cfqd,int ioprio_class,int ioprio)3643 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3644 {
3645 	switch (ioprio_class) {
3646 	case IOPRIO_CLASS_RT:
3647 		return &cfqd->async_cfqq[0][ioprio];
3648 	case IOPRIO_CLASS_NONE:
3649 		ioprio = IOPRIO_NORM;
3650 		/* fall through */
3651 	case IOPRIO_CLASS_BE:
3652 		return &cfqd->async_cfqq[1][ioprio];
3653 	case IOPRIO_CLASS_IDLE:
3654 		return &cfqd->async_idle_cfqq;
3655 	default:
3656 		BUG();
3657 	}
3658 }
3659 
3660 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio,gfp_t gfp_mask)3661 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3662 	      struct bio *bio, gfp_t gfp_mask)
3663 {
3664 	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3665 	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3666 	struct cfq_queue **async_cfqq = NULL;
3667 	struct cfq_queue *cfqq = NULL;
3668 
3669 	if (!is_sync) {
3670 		if (!ioprio_valid(cic->ioprio)) {
3671 			struct task_struct *tsk = current;
3672 			ioprio = task_nice_ioprio(tsk);
3673 			ioprio_class = task_nice_ioclass(tsk);
3674 		}
3675 		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3676 		cfqq = *async_cfqq;
3677 	}
3678 
3679 	if (!cfqq)
3680 		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3681 
3682 	/*
3683 	 * pin the queue now that it's allocated, scheduler exit will prune it
3684 	 */
3685 	if (!is_sync && !(*async_cfqq)) {
3686 		cfqq->ref++;
3687 		*async_cfqq = cfqq;
3688 	}
3689 
3690 	cfqq->ref++;
3691 	return cfqq;
3692 }
3693 
3694 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,unsigned long slice_idle)3695 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3696 {
3697 	unsigned long elapsed = jiffies - ttime->last_end_request;
3698 	elapsed = min(elapsed, 2UL * slice_idle);
3699 
3700 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3701 	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3702 	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3703 }
3704 
3705 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3706 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3707 			struct cfq_io_cq *cic)
3708 {
3709 	if (cfq_cfqq_sync(cfqq)) {
3710 		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3711 		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3712 			cfqd->cfq_slice_idle);
3713 	}
3714 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3715 	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3716 #endif
3717 }
3718 
3719 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3720 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3721 		       struct request *rq)
3722 {
3723 	sector_t sdist = 0;
3724 	sector_t n_sec = blk_rq_sectors(rq);
3725 	if (cfqq->last_request_pos) {
3726 		if (cfqq->last_request_pos < blk_rq_pos(rq))
3727 			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3728 		else
3729 			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3730 	}
3731 
3732 	cfqq->seek_history <<= 1;
3733 	if (blk_queue_nonrot(cfqd->queue))
3734 		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3735 	else
3736 		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3737 }
3738 
3739 /*
3740  * Disable idle window if the process thinks too long or seeks so much that
3741  * it doesn't matter
3742  */
3743 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3744 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3745 		       struct cfq_io_cq *cic)
3746 {
3747 	int old_idle, enable_idle;
3748 
3749 	/*
3750 	 * Don't idle for async or idle io prio class
3751 	 */
3752 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3753 		return;
3754 
3755 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3756 
3757 	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3758 		cfq_mark_cfqq_deep(cfqq);
3759 
3760 	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3761 		enable_idle = 0;
3762 	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3763 		 !cfqd->cfq_slice_idle ||
3764 		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3765 		enable_idle = 0;
3766 	else if (sample_valid(cic->ttime.ttime_samples)) {
3767 		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3768 			enable_idle = 0;
3769 		else
3770 			enable_idle = 1;
3771 	}
3772 
3773 	if (old_idle != enable_idle) {
3774 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3775 		if (enable_idle)
3776 			cfq_mark_cfqq_idle_window(cfqq);
3777 		else
3778 			cfq_clear_cfqq_idle_window(cfqq);
3779 	}
3780 }
3781 
3782 /*
3783  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3784  * no or if we aren't sure, a 1 will cause a preempt.
3785  */
3786 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3787 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3788 		   struct request *rq)
3789 {
3790 	struct cfq_queue *cfqq;
3791 
3792 	cfqq = cfqd->active_queue;
3793 	if (!cfqq)
3794 		return false;
3795 
3796 	if (cfq_class_idle(new_cfqq))
3797 		return false;
3798 
3799 	if (cfq_class_idle(cfqq))
3800 		return true;
3801 
3802 	/*
3803 	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3804 	 */
3805 	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3806 		return false;
3807 
3808 	/*
3809 	 * if the new request is sync, but the currently running queue is
3810 	 * not, let the sync request have priority.
3811 	 */
3812 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3813 		return true;
3814 
3815 	if (new_cfqq->cfqg != cfqq->cfqg)
3816 		return false;
3817 
3818 	if (cfq_slice_used(cfqq))
3819 		return true;
3820 
3821 	/* Allow preemption only if we are idling on sync-noidle tree */
3822 	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3823 	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3824 	    new_cfqq->service_tree->count == 2 &&
3825 	    RB_EMPTY_ROOT(&cfqq->sort_list))
3826 		return true;
3827 
3828 	/*
3829 	 * So both queues are sync. Let the new request get disk time if
3830 	 * it's a metadata request and the current queue is doing regular IO.
3831 	 */
3832 	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3833 		return true;
3834 
3835 	/*
3836 	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3837 	 */
3838 	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3839 		return true;
3840 
3841 	/* An idle queue should not be idle now for some reason */
3842 	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3843 		return true;
3844 
3845 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3846 		return false;
3847 
3848 	/*
3849 	 * if this request is as-good as one we would expect from the
3850 	 * current cfqq, let it preempt
3851 	 */
3852 	if (cfq_rq_close(cfqd, cfqq, rq))
3853 		return true;
3854 
3855 	return false;
3856 }
3857 
3858 /*
3859  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3860  * let it have half of its nominal slice.
3861  */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)3862 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3863 {
3864 	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3865 
3866 	cfq_log_cfqq(cfqd, cfqq, "preempt");
3867 	cfq_slice_expired(cfqd, 1);
3868 
3869 	/*
3870 	 * workload type is changed, don't save slice, otherwise preempt
3871 	 * doesn't happen
3872 	 */
3873 	if (old_type != cfqq_type(cfqq))
3874 		cfqq->cfqg->saved_wl_slice = 0;
3875 
3876 	/*
3877 	 * Put the new queue at the front of the of the current list,
3878 	 * so we know that it will be selected next.
3879 	 */
3880 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3881 
3882 	cfq_service_tree_add(cfqd, cfqq, 1);
3883 
3884 	cfqq->slice_end = 0;
3885 	cfq_mark_cfqq_slice_new(cfqq);
3886 }
3887 
3888 /*
3889  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3890  * something we should do about it
3891  */
3892 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3893 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3894 		struct request *rq)
3895 {
3896 	struct cfq_io_cq *cic = RQ_CIC(rq);
3897 
3898 	cfqd->rq_queued++;
3899 	if (rq->cmd_flags & REQ_PRIO)
3900 		cfqq->prio_pending++;
3901 
3902 	cfq_update_io_thinktime(cfqd, cfqq, cic);
3903 	cfq_update_io_seektime(cfqd, cfqq, rq);
3904 	cfq_update_idle_window(cfqd, cfqq, cic);
3905 
3906 	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3907 
3908 	if (cfqq == cfqd->active_queue) {
3909 		/*
3910 		 * Remember that we saw a request from this process, but
3911 		 * don't start queuing just yet. Otherwise we risk seeing lots
3912 		 * of tiny requests, because we disrupt the normal plugging
3913 		 * and merging. If the request is already larger than a single
3914 		 * page, let it rip immediately. For that case we assume that
3915 		 * merging is already done. Ditto for a busy system that
3916 		 * has other work pending, don't risk delaying until the
3917 		 * idle timer unplug to continue working.
3918 		 */
3919 		if (cfq_cfqq_wait_request(cfqq)) {
3920 			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3921 			    cfqd->busy_queues > 1) {
3922 				cfq_del_timer(cfqd, cfqq);
3923 				cfq_clear_cfqq_wait_request(cfqq);
3924 				__blk_run_queue(cfqd->queue);
3925 			} else {
3926 				cfqg_stats_update_idle_time(cfqq->cfqg);
3927 				cfq_mark_cfqq_must_dispatch(cfqq);
3928 			}
3929 		}
3930 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3931 		/*
3932 		 * not the active queue - expire current slice if it is
3933 		 * idle and has expired it's mean thinktime or this new queue
3934 		 * has some old slice time left and is of higher priority or
3935 		 * this new queue is RT and the current one is BE
3936 		 */
3937 		cfq_preempt_queue(cfqd, cfqq);
3938 		__blk_run_queue(cfqd->queue);
3939 	}
3940 }
3941 
cfq_insert_request(struct request_queue * q,struct request * rq)3942 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3943 {
3944 	struct cfq_data *cfqd = q->elevator->elevator_data;
3945 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3946 
3947 	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3948 	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3949 
3950 	rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3951 	list_add_tail(&rq->queuelist, &cfqq->fifo);
3952 	cfq_add_rq_rb(rq);
3953 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3954 				 rq->cmd_flags);
3955 	cfq_rq_enqueued(cfqd, cfqq, rq);
3956 }
3957 
3958 /*
3959  * Update hw_tag based on peak queue depth over 50 samples under
3960  * sufficient load.
3961  */
cfq_update_hw_tag(struct cfq_data * cfqd)3962 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3963 {
3964 	struct cfq_queue *cfqq = cfqd->active_queue;
3965 
3966 	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3967 		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3968 
3969 	if (cfqd->hw_tag == 1)
3970 		return;
3971 
3972 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3973 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3974 		return;
3975 
3976 	/*
3977 	 * If active queue hasn't enough requests and can idle, cfq might not
3978 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3979 	 * case
3980 	 */
3981 	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3982 	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3983 	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3984 		return;
3985 
3986 	if (cfqd->hw_tag_samples++ < 50)
3987 		return;
3988 
3989 	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3990 		cfqd->hw_tag = 1;
3991 	else
3992 		cfqd->hw_tag = 0;
3993 }
3994 
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)3995 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3996 {
3997 	struct cfq_io_cq *cic = cfqd->active_cic;
3998 
3999 	/* If the queue already has requests, don't wait */
4000 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4001 		return false;
4002 
4003 	/* If there are other queues in the group, don't wait */
4004 	if (cfqq->cfqg->nr_cfqq > 1)
4005 		return false;
4006 
4007 	/* the only queue in the group, but think time is big */
4008 	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4009 		return false;
4010 
4011 	if (cfq_slice_used(cfqq))
4012 		return true;
4013 
4014 	/* if slice left is less than think time, wait busy */
4015 	if (cic && sample_valid(cic->ttime.ttime_samples)
4016 	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4017 		return true;
4018 
4019 	/*
4020 	 * If think times is less than a jiffy than ttime_mean=0 and above
4021 	 * will not be true. It might happen that slice has not expired yet
4022 	 * but will expire soon (4-5 ns) during select_queue(). To cover the
4023 	 * case where think time is less than a jiffy, mark the queue wait
4024 	 * busy if only 1 jiffy is left in the slice.
4025 	 */
4026 	if (cfqq->slice_end - jiffies == 1)
4027 		return true;
4028 
4029 	return false;
4030 }
4031 
cfq_completed_request(struct request_queue * q,struct request * rq)4032 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4033 {
4034 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4035 	struct cfq_data *cfqd = cfqq->cfqd;
4036 	const int sync = rq_is_sync(rq);
4037 	unsigned long now;
4038 
4039 	now = jiffies;
4040 	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4041 		     !!(rq->cmd_flags & REQ_NOIDLE));
4042 
4043 	cfq_update_hw_tag(cfqd);
4044 
4045 	WARN_ON(!cfqd->rq_in_driver);
4046 	WARN_ON(!cfqq->dispatched);
4047 	cfqd->rq_in_driver--;
4048 	cfqq->dispatched--;
4049 	(RQ_CFQG(rq))->dispatched--;
4050 	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4051 				     rq_io_start_time_ns(rq), rq->cmd_flags);
4052 
4053 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4054 
4055 	if (sync) {
4056 		struct cfq_rb_root *st;
4057 
4058 		RQ_CIC(rq)->ttime.last_end_request = now;
4059 
4060 		if (cfq_cfqq_on_rr(cfqq))
4061 			st = cfqq->service_tree;
4062 		else
4063 			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4064 					cfqq_type(cfqq));
4065 
4066 		st->ttime.last_end_request = now;
4067 		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4068 			cfqd->last_delayed_sync = now;
4069 	}
4070 
4071 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4072 	cfqq->cfqg->ttime.last_end_request = now;
4073 #endif
4074 
4075 	/*
4076 	 * If this is the active queue, check if it needs to be expired,
4077 	 * or if we want to idle in case it has no pending requests.
4078 	 */
4079 	if (cfqd->active_queue == cfqq) {
4080 		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4081 
4082 		if (cfq_cfqq_slice_new(cfqq)) {
4083 			cfq_set_prio_slice(cfqd, cfqq);
4084 			cfq_clear_cfqq_slice_new(cfqq);
4085 		}
4086 
4087 		/*
4088 		 * Should we wait for next request to come in before we expire
4089 		 * the queue.
4090 		 */
4091 		if (cfq_should_wait_busy(cfqd, cfqq)) {
4092 			unsigned long extend_sl = cfqd->cfq_slice_idle;
4093 			if (!cfqd->cfq_slice_idle)
4094 				extend_sl = cfqd->cfq_group_idle;
4095 			cfqq->slice_end = jiffies + extend_sl;
4096 			cfq_mark_cfqq_wait_busy(cfqq);
4097 			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4098 		}
4099 
4100 		/*
4101 		 * Idling is not enabled on:
4102 		 * - expired queues
4103 		 * - idle-priority queues
4104 		 * - async queues
4105 		 * - queues with still some requests queued
4106 		 * - when there is a close cooperator
4107 		 */
4108 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4109 			cfq_slice_expired(cfqd, 1);
4110 		else if (sync && cfqq_empty &&
4111 			 !cfq_close_cooperator(cfqd, cfqq)) {
4112 			cfq_arm_slice_timer(cfqd);
4113 		}
4114 	}
4115 
4116 	if (!cfqd->rq_in_driver)
4117 		cfq_schedule_dispatch(cfqd);
4118 }
4119 
__cfq_may_queue(struct cfq_queue * cfqq)4120 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4121 {
4122 	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4123 		cfq_mark_cfqq_must_alloc_slice(cfqq);
4124 		return ELV_MQUEUE_MUST;
4125 	}
4126 
4127 	return ELV_MQUEUE_MAY;
4128 }
4129 
cfq_may_queue(struct request_queue * q,int rw)4130 static int cfq_may_queue(struct request_queue *q, int rw)
4131 {
4132 	struct cfq_data *cfqd = q->elevator->elevator_data;
4133 	struct task_struct *tsk = current;
4134 	struct cfq_io_cq *cic;
4135 	struct cfq_queue *cfqq;
4136 
4137 	/*
4138 	 * don't force setup of a queue from here, as a call to may_queue
4139 	 * does not necessarily imply that a request actually will be queued.
4140 	 * so just lookup a possibly existing queue, or return 'may queue'
4141 	 * if that fails
4142 	 */
4143 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4144 	if (!cic)
4145 		return ELV_MQUEUE_MAY;
4146 
4147 	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4148 	if (cfqq) {
4149 		cfq_init_prio_data(cfqq, cic);
4150 
4151 		return __cfq_may_queue(cfqq);
4152 	}
4153 
4154 	return ELV_MQUEUE_MAY;
4155 }
4156 
4157 /*
4158  * queue lock held here
4159  */
cfq_put_request(struct request * rq)4160 static void cfq_put_request(struct request *rq)
4161 {
4162 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4163 
4164 	if (cfqq) {
4165 		const int rw = rq_data_dir(rq);
4166 
4167 		BUG_ON(!cfqq->allocated[rw]);
4168 		cfqq->allocated[rw]--;
4169 
4170 		/* Put down rq reference on cfqg */
4171 		cfqg_put(RQ_CFQG(rq));
4172 		rq->elv.priv[0] = NULL;
4173 		rq->elv.priv[1] = NULL;
4174 
4175 		cfq_put_queue(cfqq);
4176 	}
4177 }
4178 
4179 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)4180 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4181 		struct cfq_queue *cfqq)
4182 {
4183 	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4184 	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4185 	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4186 	cfq_put_queue(cfqq);
4187 	return cic_to_cfqq(cic, 1);
4188 }
4189 
4190 /*
4191  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4192  * was the last process referring to said cfqq.
4193  */
4194 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)4195 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4196 {
4197 	if (cfqq_process_refs(cfqq) == 1) {
4198 		cfqq->pid = current->pid;
4199 		cfq_clear_cfqq_coop(cfqq);
4200 		cfq_clear_cfqq_split_coop(cfqq);
4201 		return cfqq;
4202 	}
4203 
4204 	cic_set_cfqq(cic, NULL, 1);
4205 
4206 	cfq_put_cooperator(cfqq);
4207 
4208 	cfq_put_queue(cfqq);
4209 	return NULL;
4210 }
4211 /*
4212  * Allocate cfq data structures associated with this request.
4213  */
4214 static int
cfq_set_request(struct request_queue * q,struct request * rq,struct bio * bio,gfp_t gfp_mask)4215 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4216 		gfp_t gfp_mask)
4217 {
4218 	struct cfq_data *cfqd = q->elevator->elevator_data;
4219 	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4220 	const int rw = rq_data_dir(rq);
4221 	const bool is_sync = rq_is_sync(rq);
4222 	struct cfq_queue *cfqq;
4223 
4224 	might_sleep_if(gfp_mask & __GFP_WAIT);
4225 
4226 	spin_lock_irq(q->queue_lock);
4227 
4228 	check_ioprio_changed(cic, bio);
4229 	check_blkcg_changed(cic, bio);
4230 new_queue:
4231 	cfqq = cic_to_cfqq(cic, is_sync);
4232 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4233 		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4234 		cic_set_cfqq(cic, cfqq, is_sync);
4235 	} else {
4236 		/*
4237 		 * If the queue was seeky for too long, break it apart.
4238 		 */
4239 		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4240 			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4241 			cfqq = split_cfqq(cic, cfqq);
4242 			if (!cfqq)
4243 				goto new_queue;
4244 		}
4245 
4246 		/*
4247 		 * Check to see if this queue is scheduled to merge with
4248 		 * another, closely cooperating queue.  The merging of
4249 		 * queues happens here as it must be done in process context.
4250 		 * The reference on new_cfqq was taken in merge_cfqqs.
4251 		 */
4252 		if (cfqq->new_cfqq)
4253 			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4254 	}
4255 
4256 	cfqq->allocated[rw]++;
4257 
4258 	cfqq->ref++;
4259 	cfqg_get(cfqq->cfqg);
4260 	rq->elv.priv[0] = cfqq;
4261 	rq->elv.priv[1] = cfqq->cfqg;
4262 	spin_unlock_irq(q->queue_lock);
4263 	return 0;
4264 }
4265 
cfq_kick_queue(struct work_struct * work)4266 static void cfq_kick_queue(struct work_struct *work)
4267 {
4268 	struct cfq_data *cfqd =
4269 		container_of(work, struct cfq_data, unplug_work);
4270 	struct request_queue *q = cfqd->queue;
4271 
4272 	spin_lock_irq(q->queue_lock);
4273 	__blk_run_queue(cfqd->queue);
4274 	spin_unlock_irq(q->queue_lock);
4275 }
4276 
4277 /*
4278  * Timer running if the active_queue is currently idling inside its time slice
4279  */
cfq_idle_slice_timer(unsigned long data)4280 static void cfq_idle_slice_timer(unsigned long data)
4281 {
4282 	struct cfq_data *cfqd = (struct cfq_data *) data;
4283 	struct cfq_queue *cfqq;
4284 	unsigned long flags;
4285 	int timed_out = 1;
4286 
4287 	cfq_log(cfqd, "idle timer fired");
4288 
4289 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4290 
4291 	cfqq = cfqd->active_queue;
4292 	if (cfqq) {
4293 		timed_out = 0;
4294 
4295 		/*
4296 		 * We saw a request before the queue expired, let it through
4297 		 */
4298 		if (cfq_cfqq_must_dispatch(cfqq))
4299 			goto out_kick;
4300 
4301 		/*
4302 		 * expired
4303 		 */
4304 		if (cfq_slice_used(cfqq))
4305 			goto expire;
4306 
4307 		/*
4308 		 * only expire and reinvoke request handler, if there are
4309 		 * other queues with pending requests
4310 		 */
4311 		if (!cfqd->busy_queues)
4312 			goto out_cont;
4313 
4314 		/*
4315 		 * not expired and it has a request pending, let it dispatch
4316 		 */
4317 		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4318 			goto out_kick;
4319 
4320 		/*
4321 		 * Queue depth flag is reset only when the idle didn't succeed
4322 		 */
4323 		cfq_clear_cfqq_deep(cfqq);
4324 	}
4325 expire:
4326 	cfq_slice_expired(cfqd, timed_out);
4327 out_kick:
4328 	cfq_schedule_dispatch(cfqd);
4329 out_cont:
4330 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4331 }
4332 
cfq_shutdown_timer_wq(struct cfq_data * cfqd)4333 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4334 {
4335 	del_timer_sync(&cfqd->idle_slice_timer);
4336 	cancel_work_sync(&cfqd->unplug_work);
4337 }
4338 
cfq_put_async_queues(struct cfq_data * cfqd)4339 static void cfq_put_async_queues(struct cfq_data *cfqd)
4340 {
4341 	int i;
4342 
4343 	for (i = 0; i < IOPRIO_BE_NR; i++) {
4344 		if (cfqd->async_cfqq[0][i])
4345 			cfq_put_queue(cfqd->async_cfqq[0][i]);
4346 		if (cfqd->async_cfqq[1][i])
4347 			cfq_put_queue(cfqd->async_cfqq[1][i]);
4348 	}
4349 
4350 	if (cfqd->async_idle_cfqq)
4351 		cfq_put_queue(cfqd->async_idle_cfqq);
4352 }
4353 
cfq_exit_queue(struct elevator_queue * e)4354 static void cfq_exit_queue(struct elevator_queue *e)
4355 {
4356 	struct cfq_data *cfqd = e->elevator_data;
4357 	struct request_queue *q = cfqd->queue;
4358 
4359 	cfq_shutdown_timer_wq(cfqd);
4360 
4361 	spin_lock_irq(q->queue_lock);
4362 
4363 	if (cfqd->active_queue)
4364 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4365 
4366 	cfq_put_async_queues(cfqd);
4367 
4368 	spin_unlock_irq(q->queue_lock);
4369 
4370 	cfq_shutdown_timer_wq(cfqd);
4371 
4372 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4373 	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4374 #else
4375 	kfree(cfqd->root_group);
4376 #endif
4377 	kfree(cfqd);
4378 }
4379 
cfq_init_queue(struct request_queue * q,struct elevator_type * e)4380 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4381 {
4382 	struct cfq_data *cfqd;
4383 	struct blkcg_gq *blkg __maybe_unused;
4384 	int i, ret;
4385 	struct elevator_queue *eq;
4386 
4387 	eq = elevator_alloc(q, e);
4388 	if (!eq)
4389 		return -ENOMEM;
4390 
4391 	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4392 	if (!cfqd) {
4393 		kobject_put(&eq->kobj);
4394 		return -ENOMEM;
4395 	}
4396 	eq->elevator_data = cfqd;
4397 
4398 	cfqd->queue = q;
4399 	spin_lock_irq(q->queue_lock);
4400 	q->elevator = eq;
4401 	spin_unlock_irq(q->queue_lock);
4402 
4403 	/* Init root service tree */
4404 	cfqd->grp_service_tree = CFQ_RB_ROOT;
4405 
4406 	/* Init root group and prefer root group over other groups by default */
4407 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4408 	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4409 	if (ret)
4410 		goto out_free;
4411 
4412 	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4413 #else
4414 	ret = -ENOMEM;
4415 	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4416 					GFP_KERNEL, cfqd->queue->node);
4417 	if (!cfqd->root_group)
4418 		goto out_free;
4419 
4420 	cfq_init_cfqg_base(cfqd->root_group);
4421 #endif
4422 	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4423 	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4424 
4425 	/*
4426 	 * Not strictly needed (since RB_ROOT just clears the node and we
4427 	 * zeroed cfqd on alloc), but better be safe in case someone decides
4428 	 * to add magic to the rb code
4429 	 */
4430 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4431 		cfqd->prio_trees[i] = RB_ROOT;
4432 
4433 	/*
4434 	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4435 	 * Grab a permanent reference to it, so that the normal code flow
4436 	 * will not attempt to free it.  oom_cfqq is linked to root_group
4437 	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4438 	 * the reference from linking right away.
4439 	 */
4440 	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4441 	cfqd->oom_cfqq.ref++;
4442 
4443 	spin_lock_irq(q->queue_lock);
4444 	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4445 	cfqg_put(cfqd->root_group);
4446 	spin_unlock_irq(q->queue_lock);
4447 
4448 	init_timer(&cfqd->idle_slice_timer);
4449 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4450 	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4451 
4452 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4453 
4454 	cfqd->cfq_quantum = cfq_quantum;
4455 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4456 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4457 	cfqd->cfq_back_max = cfq_back_max;
4458 	cfqd->cfq_back_penalty = cfq_back_penalty;
4459 	cfqd->cfq_slice[0] = cfq_slice_async;
4460 	cfqd->cfq_slice[1] = cfq_slice_sync;
4461 	cfqd->cfq_target_latency = cfq_target_latency;
4462 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4463 	cfqd->cfq_slice_idle = cfq_slice_idle;
4464 	cfqd->cfq_group_idle = cfq_group_idle;
4465 	cfqd->cfq_latency = 1;
4466 	cfqd->hw_tag = -1;
4467 	/*
4468 	 * we optimistically start assuming sync ops weren't delayed in last
4469 	 * second, in order to have larger depth for async operations.
4470 	 */
4471 	cfqd->last_delayed_sync = jiffies - HZ;
4472 	return 0;
4473 
4474 out_free:
4475 	kfree(cfqd);
4476 	kobject_put(&eq->kobj);
4477 	return ret;
4478 }
4479 
4480 /*
4481  * sysfs parts below -->
4482  */
4483 static ssize_t
cfq_var_show(unsigned int var,char * page)4484 cfq_var_show(unsigned int var, char *page)
4485 {
4486 	return sprintf(page, "%u\n", var);
4487 }
4488 
4489 static ssize_t
cfq_var_store(unsigned int * var,const char * page,size_t count)4490 cfq_var_store(unsigned int *var, const char *page, size_t count)
4491 {
4492 	char *p = (char *) page;
4493 
4494 	*var = simple_strtoul(p, &p, 10);
4495 	return count;
4496 }
4497 
4498 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4499 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4500 {									\
4501 	struct cfq_data *cfqd = e->elevator_data;			\
4502 	unsigned int __data = __VAR;					\
4503 	if (__CONV)							\
4504 		__data = jiffies_to_msecs(__data);			\
4505 	return cfq_var_show(__data, (page));				\
4506 }
4507 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4508 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4509 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4510 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4511 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4512 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4513 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4514 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4515 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4516 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4517 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4518 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4519 #undef SHOW_FUNCTION
4520 
4521 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4522 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4523 {									\
4524 	struct cfq_data *cfqd = e->elevator_data;			\
4525 	unsigned int __data;						\
4526 	int ret = cfq_var_store(&__data, (page), count);		\
4527 	if (__data < (MIN))						\
4528 		__data = (MIN);						\
4529 	else if (__data > (MAX))					\
4530 		__data = (MAX);						\
4531 	if (__CONV)							\
4532 		*(__PTR) = msecs_to_jiffies(__data);			\
4533 	else								\
4534 		*(__PTR) = __data;					\
4535 	return ret;							\
4536 }
4537 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4538 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4539 		UINT_MAX, 1);
4540 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4541 		UINT_MAX, 1);
4542 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4543 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4544 		UINT_MAX, 0);
4545 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4546 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4547 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4548 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4549 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4550 		UINT_MAX, 0);
4551 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4552 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4553 #undef STORE_FUNCTION
4554 
4555 #define CFQ_ATTR(name) \
4556 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4557 
4558 static struct elv_fs_entry cfq_attrs[] = {
4559 	CFQ_ATTR(quantum),
4560 	CFQ_ATTR(fifo_expire_sync),
4561 	CFQ_ATTR(fifo_expire_async),
4562 	CFQ_ATTR(back_seek_max),
4563 	CFQ_ATTR(back_seek_penalty),
4564 	CFQ_ATTR(slice_sync),
4565 	CFQ_ATTR(slice_async),
4566 	CFQ_ATTR(slice_async_rq),
4567 	CFQ_ATTR(slice_idle),
4568 	CFQ_ATTR(group_idle),
4569 	CFQ_ATTR(low_latency),
4570 	CFQ_ATTR(target_latency),
4571 	__ATTR_NULL
4572 };
4573 
4574 static struct elevator_type iosched_cfq = {
4575 	.ops = {
4576 		.elevator_merge_fn = 		cfq_merge,
4577 		.elevator_merged_fn =		cfq_merged_request,
4578 		.elevator_merge_req_fn =	cfq_merged_requests,
4579 		.elevator_allow_merge_fn =	cfq_allow_merge,
4580 		.elevator_bio_merged_fn =	cfq_bio_merged,
4581 		.elevator_dispatch_fn =		cfq_dispatch_requests,
4582 		.elevator_add_req_fn =		cfq_insert_request,
4583 		.elevator_activate_req_fn =	cfq_activate_request,
4584 		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4585 		.elevator_completed_req_fn =	cfq_completed_request,
4586 		.elevator_former_req_fn =	elv_rb_former_request,
4587 		.elevator_latter_req_fn =	elv_rb_latter_request,
4588 		.elevator_init_icq_fn =		cfq_init_icq,
4589 		.elevator_exit_icq_fn =		cfq_exit_icq,
4590 		.elevator_set_req_fn =		cfq_set_request,
4591 		.elevator_put_req_fn =		cfq_put_request,
4592 		.elevator_may_queue_fn =	cfq_may_queue,
4593 		.elevator_init_fn =		cfq_init_queue,
4594 		.elevator_exit_fn =		cfq_exit_queue,
4595 	},
4596 	.icq_size	=	sizeof(struct cfq_io_cq),
4597 	.icq_align	=	__alignof__(struct cfq_io_cq),
4598 	.elevator_attrs =	cfq_attrs,
4599 	.elevator_name	=	"cfq",
4600 	.elevator_owner =	THIS_MODULE,
4601 };
4602 
4603 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4604 static struct blkcg_policy blkcg_policy_cfq = {
4605 	.pd_size		= sizeof(struct cfq_group),
4606 	.cftypes		= cfq_blkcg_files,
4607 
4608 	.pd_init_fn		= cfq_pd_init,
4609 	.pd_offline_fn		= cfq_pd_offline,
4610 	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4611 };
4612 #endif
4613 
cfq_init(void)4614 static int __init cfq_init(void)
4615 {
4616 	int ret;
4617 
4618 	/*
4619 	 * could be 0 on HZ < 1000 setups
4620 	 */
4621 	if (!cfq_slice_async)
4622 		cfq_slice_async = 1;
4623 	if (!cfq_slice_idle)
4624 		cfq_slice_idle = 1;
4625 
4626 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4627 	if (!cfq_group_idle)
4628 		cfq_group_idle = 1;
4629 
4630 	ret = blkcg_policy_register(&blkcg_policy_cfq);
4631 	if (ret)
4632 		return ret;
4633 #else
4634 	cfq_group_idle = 0;
4635 #endif
4636 
4637 	ret = -ENOMEM;
4638 	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4639 	if (!cfq_pool)
4640 		goto err_pol_unreg;
4641 
4642 	ret = elv_register(&iosched_cfq);
4643 	if (ret)
4644 		goto err_free_pool;
4645 
4646 	return 0;
4647 
4648 err_free_pool:
4649 	kmem_cache_destroy(cfq_pool);
4650 err_pol_unreg:
4651 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4652 	blkcg_policy_unregister(&blkcg_policy_cfq);
4653 #endif
4654 	return ret;
4655 }
4656 
cfq_exit(void)4657 static void __exit cfq_exit(void)
4658 {
4659 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4660 	blkcg_policy_unregister(&blkcg_policy_cfq);
4661 #endif
4662 	elv_unregister(&iosched_cfq);
4663 	kmem_cache_destroy(cfq_pool);
4664 }
4665 
4666 module_init(cfq_init);
4667 module_exit(cfq_exit);
4668 
4669 MODULE_AUTHOR("Jens Axboe");
4670 MODULE_LICENSE("GPL");
4671 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4672