1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
294 };
295
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_serial_nr; /* the current blkcg serial */
303 #endif
304 };
305
306 /*
307 * Per block device queue structure
308 */
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387 };
388
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
st_for(struct cfq_group * cfqg,enum wl_class_t class,enum wl_type_t type)391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394 {
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402 }
403
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418 };
419
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422 { \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424 } \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426 { \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428 } \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430 { \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432 }
433
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448
pd_to_cfqg(struct blkg_policy_data * pd)449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453
cfqg_to_blkg(struct cfq_group * cfqg)454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 return pd_to_blkg(&cfqg->pd);
457 }
458
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466 };
467
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 { \
471 stats->flags |= (1 << CFQG_stats_##name); \
472 } \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476 } \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 { \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 } \
481
482 CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500 }
501
502 /* This should be called with the queue_lock held. */
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505 {
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514 }
515
516 /* This should be called with the queue_lock held. */
cfqg_stats_end_empty_time(struct cfqg_stats * stats)517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529 }
530
cfqg_stats_update_dequeue(struct cfq_group * cfqg)531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_total(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553 }
554
cfqg_stats_update_idle_time(struct cfq_group * cfqg)555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567 }
568
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577 }
578
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587 }
588
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
cfqg_stats_end_empty_time(struct cfqg_stats * stats)592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
cfqg_stats_update_dequeue(struct cfq_group * cfqg)593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
cfqg_stats_update_idle_time(struct cfq_group * cfqg)595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603 static struct blkcg_policy blkcg_policy_cfq;
604
blkg_to_cfqg(struct blkcg_gq * blkg)605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609
cfqg_parent(struct cfq_group * cfqg)610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616
cfqg_get(struct cfq_group * cfqg)617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 return blkg_get(cfqg_to_blkg(cfqg));
620 }
621
cfqg_put(struct cfq_group * cfqg)622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 return blkg_put(cfqg_to_blkg(cfqg));
625 }
626
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
629 \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
636
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
639 \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
643
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
646 {
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
654 {
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670
cfqg_stats_update_dispatch(struct cfq_group * cfqg,uint64_t bytes,int rw)671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
673 {
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
684
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
690 }
691
692 /* @stats = 0 */
cfqg_stats_reset(struct cfqg_stats * stats)693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712
713 /* @to += @from */
cfqg_stats_merge(struct cfqg_stats * to,struct cfqg_stats * from)714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733
734 /*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
cfqg_stats_xfer_dead(struct cfq_group * cfqg)739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 struct cfq_group *parent = cfqg_parent(cfqg);
742
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745 if (unlikely(!parent))
746 return;
747
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
752 }
753
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
755
cfqg_parent(struct cfq_group * cfqg)756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
cfqg_get(struct cfq_group * cfqg)757 static inline void cfqg_get(struct cfq_group *cfqg) { }
cfqg_put(struct cfq_group * cfqg)758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,int rw)767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,unsigned long time,unsigned long unaccounted_time)769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
cfqg_stats_update_io_remove(struct cfq_group * cfqg,int rw)771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_io_merged(struct cfq_group * cfqg,int rw)772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
cfqg_stats_update_dispatch(struct cfq_group * cfqg,uint64_t bytes,int rw)773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
cfqg_stats_update_completion(struct cfq_group * cfqg,uint64_t start_time,uint64_t io_start_time,int rw)775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
792
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
795 {
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
804 }
805
iops_mode(struct cfq_data * cfqd)806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 /*
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
814 */
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
819 }
820
cfqq_class(struct cfq_queue * cfqq)821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
828 }
829
830
cfqq_type(struct cfq_queue * cfqq)831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
838 }
839
cfq_group_busy_queues_wl(enum wl_class_t wl_class,struct cfq_data * cfqd,struct cfq_group * cfqg)840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
843 {
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
846
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
854 {
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
863
icq_to_cic(struct io_cq * icq)864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
868 }
869
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
872 {
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
876 }
877
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 return cic->cfqq[is_sync];
881 }
882
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
885 {
886 cic->cfqq[is_sync] = cfqq;
887 }
888
cic_to_cfqd(struct cfq_io_cq * cic)889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 return cic->icq.q->elevator->elevator_data;
892 }
893
894 /*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
cfq_bio_sync(struct bio * bio)898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902
903 /*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
cfq_schedule_dispatch(struct cfq_data * cfqd)907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(&cfqd->unplug_work);
912 }
913 }
914
915 /*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
922 {
923 const int base_slice = cfqd->cfq_slice[sync];
924
925 WARN_ON(prio >= IOPRIO_BE_NR);
926
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929
930 static inline int
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935
936 /**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
cfqg_scale_charge(unsigned long charge,unsigned int vfraction)948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
950 {
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
957 }
958
max_vdisktime(u64 min_vdisktime,u64 vdisktime)959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
964
965 return min_vdisktime;
966 }
967
min_vdisktime(u64 min_vdisktime,u64 vdisktime)968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
973
974 return min_vdisktime;
975 }
976
update_min_vdisktime(struct cfq_rb_root * st)977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 struct cfq_group *cfqg;
980
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
985 }
986 }
987
988 /*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
996 {
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1007 }
1008
1009 static inline unsigned
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014
1015 static inline unsigned
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1020 /*
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1023 */
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1040 }
1041 }
1042 return slice;
1043 }
1044
1045 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055
1056 /*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
cfq_slice_used(struct cfq_queue * cfqq)1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1089
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1098
1099 /*
1100 * by definition, 1KiB is 2 sectors
1101 */
1102 back_max = cfqd->cfq_back_max * 2;
1103
1104 /*
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1108 */
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1115
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1122
1123 /* Found required data */
1124
1125 /*
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1128 */
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1140 }
1141
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1148 /*
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1153 */
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1158 }
1159 }
1160
1161 /*
1162 * The below is leftmost cache rbtree addon
1163 */
cfq_rb_first(struct cfq_rb_root * root)1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1169
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1172
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176 return NULL;
1177 }
1178
cfq_rb_first_group(struct cfq_rb_root * root)1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1183
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1186
1187 return NULL;
1188 }
1189
rb_erase_init(struct rb_node * n,struct rb_root * root)1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1194 }
1195
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1202 }
1203
1204 /*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1210 {
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1214
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1219
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1226 }
1227
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1233 {
1234 /*
1235 * just an approximation, should be ok.
1236 */
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240
1241 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246
1247 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1255
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1259
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1265 }
1266 }
1267
1268 if (left)
1269 st->left = &cfqg->rb_node;
1270
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274
1275 /*
1276 * This has to be called only on activation of cfqg
1277 */
1278 static void
cfq_update_group_weight(struct cfq_group * cfqg)1279 cfq_update_group_weight(struct cfq_group *cfqg)
1280 {
1281 if (cfqg->new_weight) {
1282 cfqg->weight = cfqg->new_weight;
1283 cfqg->new_weight = 0;
1284 }
1285 }
1286
1287 static void
cfq_update_group_leaf_weight(struct cfq_group * cfqg)1288 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1289 {
1290 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1291
1292 if (cfqg->new_leaf_weight) {
1293 cfqg->leaf_weight = cfqg->new_leaf_weight;
1294 cfqg->new_leaf_weight = 0;
1295 }
1296 }
1297
1298 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1299 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1300 {
1301 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1302 struct cfq_group *pos = cfqg;
1303 struct cfq_group *parent;
1304 bool propagate;
1305
1306 /* add to the service tree */
1307 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1308
1309 /*
1310 * Update leaf_weight. We cannot update weight at this point
1311 * because cfqg might already have been activated and is
1312 * contributing its current weight to the parent's child_weight.
1313 */
1314 cfq_update_group_leaf_weight(cfqg);
1315 __cfq_group_service_tree_add(st, cfqg);
1316
1317 /*
1318 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1319 * entitled to. vfraction is calculated by walking the tree
1320 * towards the root calculating the fraction it has at each level.
1321 * The compounded ratio is how much vfraction @cfqg owns.
1322 *
1323 * Start with the proportion tasks in this cfqg has against active
1324 * children cfqgs - its leaf_weight against children_weight.
1325 */
1326 propagate = !pos->nr_active++;
1327 pos->children_weight += pos->leaf_weight;
1328 vfr = vfr * pos->leaf_weight / pos->children_weight;
1329
1330 /*
1331 * Compound ->weight walking up the tree. Both activation and
1332 * vfraction calculation are done in the same loop. Propagation
1333 * stops once an already activated node is met. vfraction
1334 * calculation should always continue to the root.
1335 */
1336 while ((parent = cfqg_parent(pos))) {
1337 if (propagate) {
1338 cfq_update_group_weight(pos);
1339 propagate = !parent->nr_active++;
1340 parent->children_weight += pos->weight;
1341 }
1342 vfr = vfr * pos->weight / parent->children_weight;
1343 pos = parent;
1344 }
1345
1346 cfqg->vfraction = max_t(unsigned, vfr, 1);
1347 }
1348
1349 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)1350 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1351 {
1352 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1353 struct cfq_group *__cfqg;
1354 struct rb_node *n;
1355
1356 cfqg->nr_cfqq++;
1357 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1358 return;
1359
1360 /*
1361 * Currently put the group at the end. Later implement something
1362 * so that groups get lesser vtime based on their weights, so that
1363 * if group does not loose all if it was not continuously backlogged.
1364 */
1365 n = rb_last(&st->rb);
1366 if (n) {
1367 __cfqg = rb_entry_cfqg(n);
1368 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1369 } else
1370 cfqg->vdisktime = st->min_vdisktime;
1371 cfq_group_service_tree_add(st, cfqg);
1372 }
1373
1374 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)1375 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376 {
1377 struct cfq_group *pos = cfqg;
1378 bool propagate;
1379
1380 /*
1381 * Undo activation from cfq_group_service_tree_add(). Deactivate
1382 * @cfqg and propagate deactivation upwards.
1383 */
1384 propagate = !--pos->nr_active;
1385 pos->children_weight -= pos->leaf_weight;
1386
1387 while (propagate) {
1388 struct cfq_group *parent = cfqg_parent(pos);
1389
1390 /* @pos has 0 nr_active at this point */
1391 WARN_ON_ONCE(pos->children_weight);
1392 pos->vfraction = 0;
1393
1394 if (!parent)
1395 break;
1396
1397 propagate = !--parent->nr_active;
1398 parent->children_weight -= pos->weight;
1399 pos = parent;
1400 }
1401
1402 /* remove from the service tree */
1403 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404 cfq_rb_erase(&cfqg->rb_node, st);
1405 }
1406
1407 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)1408 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409 {
1410 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411
1412 BUG_ON(cfqg->nr_cfqq < 1);
1413 cfqg->nr_cfqq--;
1414
1415 /* If there are other cfq queues under this group, don't delete it */
1416 if (cfqg->nr_cfqq)
1417 return;
1418
1419 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420 cfq_group_service_tree_del(st, cfqg);
1421 cfqg->saved_wl_slice = 0;
1422 cfqg_stats_update_dequeue(cfqg);
1423 }
1424
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,unsigned int * unaccounted_time)1425 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426 unsigned int *unaccounted_time)
1427 {
1428 unsigned int slice_used;
1429
1430 /*
1431 * Queue got expired before even a single request completed or
1432 * got expired immediately after first request completion.
1433 */
1434 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1435 /*
1436 * Also charge the seek time incurred to the group, otherwise
1437 * if there are mutiple queues in the group, each can dispatch
1438 * a single request on seeky media and cause lots of seek time
1439 * and group will never know it.
1440 */
1441 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1442 1);
1443 } else {
1444 slice_used = jiffies - cfqq->slice_start;
1445 if (slice_used > cfqq->allocated_slice) {
1446 *unaccounted_time = slice_used - cfqq->allocated_slice;
1447 slice_used = cfqq->allocated_slice;
1448 }
1449 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1450 *unaccounted_time += cfqq->slice_start -
1451 cfqq->dispatch_start;
1452 }
1453
1454 return slice_used;
1455 }
1456
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)1457 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1458 struct cfq_queue *cfqq)
1459 {
1460 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1461 unsigned int used_sl, charge, unaccounted_sl = 0;
1462 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1463 - cfqg->service_tree_idle.count;
1464 unsigned int vfr;
1465
1466 BUG_ON(nr_sync < 0);
1467 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1468
1469 if (iops_mode(cfqd))
1470 charge = cfqq->slice_dispatch;
1471 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1472 charge = cfqq->allocated_slice;
1473
1474 /*
1475 * Can't update vdisktime while on service tree and cfqg->vfraction
1476 * is valid only while on it. Cache vfr, leave the service tree,
1477 * update vdisktime and go back on. The re-addition to the tree
1478 * will also update the weights as necessary.
1479 */
1480 vfr = cfqg->vfraction;
1481 cfq_group_service_tree_del(st, cfqg);
1482 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1483 cfq_group_service_tree_add(st, cfqg);
1484
1485 /* This group is being expired. Save the context */
1486 if (time_after(cfqd->workload_expires, jiffies)) {
1487 cfqg->saved_wl_slice = cfqd->workload_expires
1488 - jiffies;
1489 cfqg->saved_wl_type = cfqd->serving_wl_type;
1490 cfqg->saved_wl_class = cfqd->serving_wl_class;
1491 } else
1492 cfqg->saved_wl_slice = 0;
1493
1494 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1495 st->min_vdisktime);
1496 cfq_log_cfqq(cfqq->cfqd, cfqq,
1497 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1498 used_sl, cfqq->slice_dispatch, charge,
1499 iops_mode(cfqd), cfqq->nr_sectors);
1500 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1501 cfqg_stats_set_start_empty_time(cfqg);
1502 }
1503
1504 /**
1505 * cfq_init_cfqg_base - initialize base part of a cfq_group
1506 * @cfqg: cfq_group to initialize
1507 *
1508 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1509 * is enabled or not.
1510 */
cfq_init_cfqg_base(struct cfq_group * cfqg)1511 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1512 {
1513 struct cfq_rb_root *st;
1514 int i, j;
1515
1516 for_each_cfqg_st(cfqg, i, j, st)
1517 *st = CFQ_RB_ROOT;
1518 RB_CLEAR_NODE(&cfqg->rb_node);
1519
1520 cfqg->ttime.last_end_request = jiffies;
1521 }
1522
1523 #ifdef CONFIG_CFQ_GROUP_IOSCHED
cfqg_stats_init(struct cfqg_stats * stats)1524 static void cfqg_stats_init(struct cfqg_stats *stats)
1525 {
1526 blkg_rwstat_init(&stats->service_bytes);
1527 blkg_rwstat_init(&stats->serviced);
1528 blkg_rwstat_init(&stats->merged);
1529 blkg_rwstat_init(&stats->service_time);
1530 blkg_rwstat_init(&stats->wait_time);
1531 blkg_rwstat_init(&stats->queued);
1532
1533 blkg_stat_init(&stats->sectors);
1534 blkg_stat_init(&stats->time);
1535
1536 #ifdef CONFIG_DEBUG_BLK_CGROUP
1537 blkg_stat_init(&stats->unaccounted_time);
1538 blkg_stat_init(&stats->avg_queue_size_sum);
1539 blkg_stat_init(&stats->avg_queue_size_samples);
1540 blkg_stat_init(&stats->dequeue);
1541 blkg_stat_init(&stats->group_wait_time);
1542 blkg_stat_init(&stats->idle_time);
1543 blkg_stat_init(&stats->empty_time);
1544 #endif
1545 }
1546
cfq_pd_init(struct blkcg_gq * blkg)1547 static void cfq_pd_init(struct blkcg_gq *blkg)
1548 {
1549 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1550
1551 cfq_init_cfqg_base(cfqg);
1552 cfqg->weight = blkg->blkcg->cfq_weight;
1553 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1554 cfqg_stats_init(&cfqg->stats);
1555 cfqg_stats_init(&cfqg->dead_stats);
1556 }
1557
cfq_pd_offline(struct blkcg_gq * blkg)1558 static void cfq_pd_offline(struct blkcg_gq *blkg)
1559 {
1560 /*
1561 * @blkg is going offline and will be ignored by
1562 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1563 * that they don't get lost. If IOs complete after this point, the
1564 * stats for them will be lost. Oh well...
1565 */
1566 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1567 }
1568
1569 /* offset delta from cfqg->stats to cfqg->dead_stats */
1570 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1571 offsetof(struct cfq_group, stats);
1572
1573 /* to be used by recursive prfill, sums live and dead stats recursively */
cfqg_stat_pd_recursive_sum(struct blkg_policy_data * pd,int off)1574 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1575 {
1576 u64 sum = 0;
1577
1578 sum += blkg_stat_recursive_sum(pd, off);
1579 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1580 return sum;
1581 }
1582
1583 /* to be used by recursive prfill, sums live and dead rwstats recursively */
cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data * pd,int off)1584 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1585 int off)
1586 {
1587 struct blkg_rwstat a, b;
1588
1589 a = blkg_rwstat_recursive_sum(pd, off);
1590 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1591 blkg_rwstat_merge(&a, &b);
1592 return a;
1593 }
1594
cfq_pd_reset_stats(struct blkcg_gq * blkg)1595 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1596 {
1597 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1598
1599 cfqg_stats_reset(&cfqg->stats);
1600 cfqg_stats_reset(&cfqg->dead_stats);
1601 }
1602
1603 /*
1604 * Search for the cfq group current task belongs to. request_queue lock must
1605 * be held.
1606 */
cfq_lookup_create_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)1607 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1608 struct blkcg *blkcg)
1609 {
1610 struct request_queue *q = cfqd->queue;
1611 struct cfq_group *cfqg = NULL;
1612
1613 /* avoid lookup for the common case where there's no blkcg */
1614 if (blkcg == &blkcg_root) {
1615 cfqg = cfqd->root_group;
1616 } else {
1617 struct blkcg_gq *blkg;
1618
1619 blkg = blkg_lookup_create(blkcg, q);
1620 if (!IS_ERR(blkg))
1621 cfqg = blkg_to_cfqg(blkg);
1622 }
1623
1624 return cfqg;
1625 }
1626
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1627 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1628 {
1629 /* Currently, all async queues are mapped to root group */
1630 if (!cfq_cfqq_sync(cfqq))
1631 cfqg = cfqq->cfqd->root_group;
1632
1633 cfqq->cfqg = cfqg;
1634 /* cfqq reference on cfqg */
1635 cfqg_get(cfqg);
1636 }
1637
cfqg_prfill_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1638 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1639 struct blkg_policy_data *pd, int off)
1640 {
1641 struct cfq_group *cfqg = pd_to_cfqg(pd);
1642
1643 if (!cfqg->dev_weight)
1644 return 0;
1645 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1646 }
1647
cfqg_print_weight_device(struct seq_file * sf,void * v)1648 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1649 {
1650 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1651 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1652 0, false);
1653 return 0;
1654 }
1655
cfqg_prfill_leaf_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1656 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1657 struct blkg_policy_data *pd, int off)
1658 {
1659 struct cfq_group *cfqg = pd_to_cfqg(pd);
1660
1661 if (!cfqg->dev_leaf_weight)
1662 return 0;
1663 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1664 }
1665
cfqg_print_leaf_weight_device(struct seq_file * sf,void * v)1666 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1667 {
1668 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1669 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1670 0, false);
1671 return 0;
1672 }
1673
cfq_print_weight(struct seq_file * sf,void * v)1674 static int cfq_print_weight(struct seq_file *sf, void *v)
1675 {
1676 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1677 return 0;
1678 }
1679
cfq_print_leaf_weight(struct seq_file * sf,void * v)1680 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1681 {
1682 seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1683 return 0;
1684 }
1685
__cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_leaf_weight)1686 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1687 char *buf, size_t nbytes, loff_t off,
1688 bool is_leaf_weight)
1689 {
1690 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1691 struct blkg_conf_ctx ctx;
1692 struct cfq_group *cfqg;
1693 int ret;
1694
1695 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1696 if (ret)
1697 return ret;
1698
1699 ret = -EINVAL;
1700 cfqg = blkg_to_cfqg(ctx.blkg);
1701 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1702 if (!is_leaf_weight) {
1703 cfqg->dev_weight = ctx.v;
1704 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1705 } else {
1706 cfqg->dev_leaf_weight = ctx.v;
1707 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1708 }
1709 ret = 0;
1710 }
1711
1712 blkg_conf_finish(&ctx);
1713 return ret ?: nbytes;
1714 }
1715
cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1716 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1717 char *buf, size_t nbytes, loff_t off)
1718 {
1719 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1720 }
1721
cfqg_set_leaf_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1722 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1723 char *buf, size_t nbytes, loff_t off)
1724 {
1725 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1726 }
1727
__cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val,bool is_leaf_weight)1728 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1729 u64 val, bool is_leaf_weight)
1730 {
1731 struct blkcg *blkcg = css_to_blkcg(css);
1732 struct blkcg_gq *blkg;
1733
1734 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1735 return -EINVAL;
1736
1737 spin_lock_irq(&blkcg->lock);
1738
1739 if (!is_leaf_weight)
1740 blkcg->cfq_weight = val;
1741 else
1742 blkcg->cfq_leaf_weight = val;
1743
1744 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1745 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1746
1747 if (!cfqg)
1748 continue;
1749
1750 if (!is_leaf_weight) {
1751 if (!cfqg->dev_weight)
1752 cfqg->new_weight = blkcg->cfq_weight;
1753 } else {
1754 if (!cfqg->dev_leaf_weight)
1755 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1756 }
1757 }
1758
1759 spin_unlock_irq(&blkcg->lock);
1760 return 0;
1761 }
1762
cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1763 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1764 u64 val)
1765 {
1766 return __cfq_set_weight(css, cft, val, false);
1767 }
1768
cfq_set_leaf_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1769 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1770 struct cftype *cft, u64 val)
1771 {
1772 return __cfq_set_weight(css, cft, val, true);
1773 }
1774
cfqg_print_stat(struct seq_file * sf,void * v)1775 static int cfqg_print_stat(struct seq_file *sf, void *v)
1776 {
1777 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1778 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1779 return 0;
1780 }
1781
cfqg_print_rwstat(struct seq_file * sf,void * v)1782 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1783 {
1784 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1785 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1786 return 0;
1787 }
1788
cfqg_prfill_stat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1789 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1790 struct blkg_policy_data *pd, int off)
1791 {
1792 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1793
1794 return __blkg_prfill_u64(sf, pd, sum);
1795 }
1796
cfqg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1797 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1798 struct blkg_policy_data *pd, int off)
1799 {
1800 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1801
1802 return __blkg_prfill_rwstat(sf, pd, &sum);
1803 }
1804
cfqg_print_stat_recursive(struct seq_file * sf,void * v)1805 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1806 {
1807 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1808 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1809 seq_cft(sf)->private, false);
1810 return 0;
1811 }
1812
cfqg_print_rwstat_recursive(struct seq_file * sf,void * v)1813 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1814 {
1815 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1816 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1817 seq_cft(sf)->private, true);
1818 return 0;
1819 }
1820
1821 #ifdef CONFIG_DEBUG_BLK_CGROUP
cfqg_prfill_avg_queue_size(struct seq_file * sf,struct blkg_policy_data * pd,int off)1822 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1823 struct blkg_policy_data *pd, int off)
1824 {
1825 struct cfq_group *cfqg = pd_to_cfqg(pd);
1826 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1827 u64 v = 0;
1828
1829 if (samples) {
1830 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1831 v = div64_u64(v, samples);
1832 }
1833 __blkg_prfill_u64(sf, pd, v);
1834 return 0;
1835 }
1836
1837 /* print avg_queue_size */
cfqg_print_avg_queue_size(struct seq_file * sf,void * v)1838 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1839 {
1840 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1841 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1842 0, false);
1843 return 0;
1844 }
1845 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1846
1847 static struct cftype cfq_blkcg_files[] = {
1848 /* on root, weight is mapped to leaf_weight */
1849 {
1850 .name = "weight_device",
1851 .flags = CFTYPE_ONLY_ON_ROOT,
1852 .seq_show = cfqg_print_leaf_weight_device,
1853 .write = cfqg_set_leaf_weight_device,
1854 },
1855 {
1856 .name = "weight",
1857 .flags = CFTYPE_ONLY_ON_ROOT,
1858 .seq_show = cfq_print_leaf_weight,
1859 .write_u64 = cfq_set_leaf_weight,
1860 },
1861
1862 /* no such mapping necessary for !roots */
1863 {
1864 .name = "weight_device",
1865 .flags = CFTYPE_NOT_ON_ROOT,
1866 .seq_show = cfqg_print_weight_device,
1867 .write = cfqg_set_weight_device,
1868 },
1869 {
1870 .name = "weight",
1871 .flags = CFTYPE_NOT_ON_ROOT,
1872 .seq_show = cfq_print_weight,
1873 .write_u64 = cfq_set_weight,
1874 },
1875
1876 {
1877 .name = "leaf_weight_device",
1878 .seq_show = cfqg_print_leaf_weight_device,
1879 .write = cfqg_set_leaf_weight_device,
1880 },
1881 {
1882 .name = "leaf_weight",
1883 .seq_show = cfq_print_leaf_weight,
1884 .write_u64 = cfq_set_leaf_weight,
1885 },
1886
1887 /* statistics, covers only the tasks in the cfqg */
1888 {
1889 .name = "time",
1890 .private = offsetof(struct cfq_group, stats.time),
1891 .seq_show = cfqg_print_stat,
1892 },
1893 {
1894 .name = "sectors",
1895 .private = offsetof(struct cfq_group, stats.sectors),
1896 .seq_show = cfqg_print_stat,
1897 },
1898 {
1899 .name = "io_service_bytes",
1900 .private = offsetof(struct cfq_group, stats.service_bytes),
1901 .seq_show = cfqg_print_rwstat,
1902 },
1903 {
1904 .name = "io_serviced",
1905 .private = offsetof(struct cfq_group, stats.serviced),
1906 .seq_show = cfqg_print_rwstat,
1907 },
1908 {
1909 .name = "io_service_time",
1910 .private = offsetof(struct cfq_group, stats.service_time),
1911 .seq_show = cfqg_print_rwstat,
1912 },
1913 {
1914 .name = "io_wait_time",
1915 .private = offsetof(struct cfq_group, stats.wait_time),
1916 .seq_show = cfqg_print_rwstat,
1917 },
1918 {
1919 .name = "io_merged",
1920 .private = offsetof(struct cfq_group, stats.merged),
1921 .seq_show = cfqg_print_rwstat,
1922 },
1923 {
1924 .name = "io_queued",
1925 .private = offsetof(struct cfq_group, stats.queued),
1926 .seq_show = cfqg_print_rwstat,
1927 },
1928
1929 /* the same statictics which cover the cfqg and its descendants */
1930 {
1931 .name = "time_recursive",
1932 .private = offsetof(struct cfq_group, stats.time),
1933 .seq_show = cfqg_print_stat_recursive,
1934 },
1935 {
1936 .name = "sectors_recursive",
1937 .private = offsetof(struct cfq_group, stats.sectors),
1938 .seq_show = cfqg_print_stat_recursive,
1939 },
1940 {
1941 .name = "io_service_bytes_recursive",
1942 .private = offsetof(struct cfq_group, stats.service_bytes),
1943 .seq_show = cfqg_print_rwstat_recursive,
1944 },
1945 {
1946 .name = "io_serviced_recursive",
1947 .private = offsetof(struct cfq_group, stats.serviced),
1948 .seq_show = cfqg_print_rwstat_recursive,
1949 },
1950 {
1951 .name = "io_service_time_recursive",
1952 .private = offsetof(struct cfq_group, stats.service_time),
1953 .seq_show = cfqg_print_rwstat_recursive,
1954 },
1955 {
1956 .name = "io_wait_time_recursive",
1957 .private = offsetof(struct cfq_group, stats.wait_time),
1958 .seq_show = cfqg_print_rwstat_recursive,
1959 },
1960 {
1961 .name = "io_merged_recursive",
1962 .private = offsetof(struct cfq_group, stats.merged),
1963 .seq_show = cfqg_print_rwstat_recursive,
1964 },
1965 {
1966 .name = "io_queued_recursive",
1967 .private = offsetof(struct cfq_group, stats.queued),
1968 .seq_show = cfqg_print_rwstat_recursive,
1969 },
1970 #ifdef CONFIG_DEBUG_BLK_CGROUP
1971 {
1972 .name = "avg_queue_size",
1973 .seq_show = cfqg_print_avg_queue_size,
1974 },
1975 {
1976 .name = "group_wait_time",
1977 .private = offsetof(struct cfq_group, stats.group_wait_time),
1978 .seq_show = cfqg_print_stat,
1979 },
1980 {
1981 .name = "idle_time",
1982 .private = offsetof(struct cfq_group, stats.idle_time),
1983 .seq_show = cfqg_print_stat,
1984 },
1985 {
1986 .name = "empty_time",
1987 .private = offsetof(struct cfq_group, stats.empty_time),
1988 .seq_show = cfqg_print_stat,
1989 },
1990 {
1991 .name = "dequeue",
1992 .private = offsetof(struct cfq_group, stats.dequeue),
1993 .seq_show = cfqg_print_stat,
1994 },
1995 {
1996 .name = "unaccounted_time",
1997 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1998 .seq_show = cfqg_print_stat,
1999 },
2000 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2001 { } /* terminate */
2002 };
2003 #else /* GROUP_IOSCHED */
cfq_lookup_create_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)2004 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2005 struct blkcg *blkcg)
2006 {
2007 return cfqd->root_group;
2008 }
2009
2010 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)2011 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2012 cfqq->cfqg = cfqg;
2013 }
2014
2015 #endif /* GROUP_IOSCHED */
2016
2017 /*
2018 * The cfqd->service_trees holds all pending cfq_queue's that have
2019 * requests waiting to be processed. It is sorted in the order that
2020 * we will service the queues.
2021 */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)2022 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2023 bool add_front)
2024 {
2025 struct rb_node **p, *parent;
2026 struct cfq_queue *__cfqq;
2027 unsigned long rb_key;
2028 struct cfq_rb_root *st;
2029 int left;
2030 int new_cfqq = 1;
2031
2032 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2033 if (cfq_class_idle(cfqq)) {
2034 rb_key = CFQ_IDLE_DELAY;
2035 parent = rb_last(&st->rb);
2036 if (parent && parent != &cfqq->rb_node) {
2037 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2038 rb_key += __cfqq->rb_key;
2039 } else
2040 rb_key += jiffies;
2041 } else if (!add_front) {
2042 /*
2043 * Get our rb key offset. Subtract any residual slice
2044 * value carried from last service. A negative resid
2045 * count indicates slice overrun, and this should position
2046 * the next service time further away in the tree.
2047 */
2048 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2049 rb_key -= cfqq->slice_resid;
2050 cfqq->slice_resid = 0;
2051 } else {
2052 rb_key = -HZ;
2053 __cfqq = cfq_rb_first(st);
2054 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2055 }
2056
2057 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2058 new_cfqq = 0;
2059 /*
2060 * same position, nothing more to do
2061 */
2062 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2063 return;
2064
2065 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2066 cfqq->service_tree = NULL;
2067 }
2068
2069 left = 1;
2070 parent = NULL;
2071 cfqq->service_tree = st;
2072 p = &st->rb.rb_node;
2073 while (*p) {
2074 parent = *p;
2075 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2076
2077 /*
2078 * sort by key, that represents service time.
2079 */
2080 if (time_before(rb_key, __cfqq->rb_key))
2081 p = &parent->rb_left;
2082 else {
2083 p = &parent->rb_right;
2084 left = 0;
2085 }
2086 }
2087
2088 if (left)
2089 st->left = &cfqq->rb_node;
2090
2091 cfqq->rb_key = rb_key;
2092 rb_link_node(&cfqq->rb_node, parent, p);
2093 rb_insert_color(&cfqq->rb_node, &st->rb);
2094 st->count++;
2095 if (add_front || !new_cfqq)
2096 return;
2097 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2098 }
2099
2100 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)2101 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2102 sector_t sector, struct rb_node **ret_parent,
2103 struct rb_node ***rb_link)
2104 {
2105 struct rb_node **p, *parent;
2106 struct cfq_queue *cfqq = NULL;
2107
2108 parent = NULL;
2109 p = &root->rb_node;
2110 while (*p) {
2111 struct rb_node **n;
2112
2113 parent = *p;
2114 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2115
2116 /*
2117 * Sort strictly based on sector. Smallest to the left,
2118 * largest to the right.
2119 */
2120 if (sector > blk_rq_pos(cfqq->next_rq))
2121 n = &(*p)->rb_right;
2122 else if (sector < blk_rq_pos(cfqq->next_rq))
2123 n = &(*p)->rb_left;
2124 else
2125 break;
2126 p = n;
2127 cfqq = NULL;
2128 }
2129
2130 *ret_parent = parent;
2131 if (rb_link)
2132 *rb_link = p;
2133 return cfqq;
2134 }
2135
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)2136 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2137 {
2138 struct rb_node **p, *parent;
2139 struct cfq_queue *__cfqq;
2140
2141 if (cfqq->p_root) {
2142 rb_erase(&cfqq->p_node, cfqq->p_root);
2143 cfqq->p_root = NULL;
2144 }
2145
2146 if (cfq_class_idle(cfqq))
2147 return;
2148 if (!cfqq->next_rq)
2149 return;
2150
2151 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2152 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2153 blk_rq_pos(cfqq->next_rq), &parent, &p);
2154 if (!__cfqq) {
2155 rb_link_node(&cfqq->p_node, parent, p);
2156 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2157 } else
2158 cfqq->p_root = NULL;
2159 }
2160
2161 /*
2162 * Update cfqq's position in the service tree.
2163 */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)2164 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2165 {
2166 /*
2167 * Resorting requires the cfqq to be on the RR list already.
2168 */
2169 if (cfq_cfqq_on_rr(cfqq)) {
2170 cfq_service_tree_add(cfqd, cfqq, 0);
2171 cfq_prio_tree_add(cfqd, cfqq);
2172 }
2173 }
2174
2175 /*
2176 * add to busy list of queues for service, trying to be fair in ordering
2177 * the pending list according to last request service
2178 */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2179 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2180 {
2181 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2182 BUG_ON(cfq_cfqq_on_rr(cfqq));
2183 cfq_mark_cfqq_on_rr(cfqq);
2184 cfqd->busy_queues++;
2185 if (cfq_cfqq_sync(cfqq))
2186 cfqd->busy_sync_queues++;
2187
2188 cfq_resort_rr_list(cfqd, cfqq);
2189 }
2190
2191 /*
2192 * Called when the cfqq no longer has requests pending, remove it from
2193 * the service tree.
2194 */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2195 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2196 {
2197 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2198 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2199 cfq_clear_cfqq_on_rr(cfqq);
2200
2201 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2202 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2203 cfqq->service_tree = NULL;
2204 }
2205 if (cfqq->p_root) {
2206 rb_erase(&cfqq->p_node, cfqq->p_root);
2207 cfqq->p_root = NULL;
2208 }
2209
2210 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2211 BUG_ON(!cfqd->busy_queues);
2212 cfqd->busy_queues--;
2213 if (cfq_cfqq_sync(cfqq))
2214 cfqd->busy_sync_queues--;
2215 }
2216
2217 /*
2218 * rb tree support functions
2219 */
cfq_del_rq_rb(struct request * rq)2220 static void cfq_del_rq_rb(struct request *rq)
2221 {
2222 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2223 const int sync = rq_is_sync(rq);
2224
2225 BUG_ON(!cfqq->queued[sync]);
2226 cfqq->queued[sync]--;
2227
2228 elv_rb_del(&cfqq->sort_list, rq);
2229
2230 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2231 /*
2232 * Queue will be deleted from service tree when we actually
2233 * expire it later. Right now just remove it from prio tree
2234 * as it is empty.
2235 */
2236 if (cfqq->p_root) {
2237 rb_erase(&cfqq->p_node, cfqq->p_root);
2238 cfqq->p_root = NULL;
2239 }
2240 }
2241 }
2242
cfq_add_rq_rb(struct request * rq)2243 static void cfq_add_rq_rb(struct request *rq)
2244 {
2245 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2246 struct cfq_data *cfqd = cfqq->cfqd;
2247 struct request *prev;
2248
2249 cfqq->queued[rq_is_sync(rq)]++;
2250
2251 elv_rb_add(&cfqq->sort_list, rq);
2252
2253 if (!cfq_cfqq_on_rr(cfqq))
2254 cfq_add_cfqq_rr(cfqd, cfqq);
2255
2256 /*
2257 * check if this request is a better next-serve candidate
2258 */
2259 prev = cfqq->next_rq;
2260 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2261
2262 /*
2263 * adjust priority tree position, if ->next_rq changes
2264 */
2265 if (prev != cfqq->next_rq)
2266 cfq_prio_tree_add(cfqd, cfqq);
2267
2268 BUG_ON(!cfqq->next_rq);
2269 }
2270
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)2271 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2272 {
2273 elv_rb_del(&cfqq->sort_list, rq);
2274 cfqq->queued[rq_is_sync(rq)]--;
2275 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2276 cfq_add_rq_rb(rq);
2277 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2278 rq->cmd_flags);
2279 }
2280
2281 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)2282 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2283 {
2284 struct task_struct *tsk = current;
2285 struct cfq_io_cq *cic;
2286 struct cfq_queue *cfqq;
2287
2288 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2289 if (!cic)
2290 return NULL;
2291
2292 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2293 if (cfqq)
2294 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2295
2296 return NULL;
2297 }
2298
cfq_activate_request(struct request_queue * q,struct request * rq)2299 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2300 {
2301 struct cfq_data *cfqd = q->elevator->elevator_data;
2302
2303 cfqd->rq_in_driver++;
2304 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2305 cfqd->rq_in_driver);
2306
2307 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2308 }
2309
cfq_deactivate_request(struct request_queue * q,struct request * rq)2310 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2311 {
2312 struct cfq_data *cfqd = q->elevator->elevator_data;
2313
2314 WARN_ON(!cfqd->rq_in_driver);
2315 cfqd->rq_in_driver--;
2316 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2317 cfqd->rq_in_driver);
2318 }
2319
cfq_remove_request(struct request * rq)2320 static void cfq_remove_request(struct request *rq)
2321 {
2322 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2323
2324 if (cfqq->next_rq == rq)
2325 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2326
2327 list_del_init(&rq->queuelist);
2328 cfq_del_rq_rb(rq);
2329
2330 cfqq->cfqd->rq_queued--;
2331 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2332 if (rq->cmd_flags & REQ_PRIO) {
2333 WARN_ON(!cfqq->prio_pending);
2334 cfqq->prio_pending--;
2335 }
2336 }
2337
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)2338 static int cfq_merge(struct request_queue *q, struct request **req,
2339 struct bio *bio)
2340 {
2341 struct cfq_data *cfqd = q->elevator->elevator_data;
2342 struct request *__rq;
2343
2344 __rq = cfq_find_rq_fmerge(cfqd, bio);
2345 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2346 *req = __rq;
2347 return ELEVATOR_FRONT_MERGE;
2348 }
2349
2350 return ELEVATOR_NO_MERGE;
2351 }
2352
cfq_merged_request(struct request_queue * q,struct request * req,int type)2353 static void cfq_merged_request(struct request_queue *q, struct request *req,
2354 int type)
2355 {
2356 if (type == ELEVATOR_FRONT_MERGE) {
2357 struct cfq_queue *cfqq = RQ_CFQQ(req);
2358
2359 cfq_reposition_rq_rb(cfqq, req);
2360 }
2361 }
2362
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)2363 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2364 struct bio *bio)
2365 {
2366 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2367 }
2368
2369 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)2370 cfq_merged_requests(struct request_queue *q, struct request *rq,
2371 struct request *next)
2372 {
2373 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2374 struct cfq_data *cfqd = q->elevator->elevator_data;
2375
2376 /*
2377 * reposition in fifo if next is older than rq
2378 */
2379 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2380 time_before(next->fifo_time, rq->fifo_time) &&
2381 cfqq == RQ_CFQQ(next)) {
2382 list_move(&rq->queuelist, &next->queuelist);
2383 rq->fifo_time = next->fifo_time;
2384 }
2385
2386 if (cfqq->next_rq == next)
2387 cfqq->next_rq = rq;
2388 cfq_remove_request(next);
2389 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2390
2391 cfqq = RQ_CFQQ(next);
2392 /*
2393 * all requests of this queue are merged to other queues, delete it
2394 * from the service tree. If it's the active_queue,
2395 * cfq_dispatch_requests() will choose to expire it or do idle
2396 */
2397 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2398 cfqq != cfqd->active_queue)
2399 cfq_del_cfqq_rr(cfqd, cfqq);
2400 }
2401
cfq_allow_merge(struct request_queue * q,struct request * rq,struct bio * bio)2402 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2403 struct bio *bio)
2404 {
2405 struct cfq_data *cfqd = q->elevator->elevator_data;
2406 struct cfq_io_cq *cic;
2407 struct cfq_queue *cfqq;
2408
2409 /*
2410 * Disallow merge of a sync bio into an async request.
2411 */
2412 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2413 return false;
2414
2415 /*
2416 * Lookup the cfqq that this bio will be queued with and allow
2417 * merge only if rq is queued there.
2418 */
2419 cic = cfq_cic_lookup(cfqd, current->io_context);
2420 if (!cic)
2421 return false;
2422
2423 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2424 return cfqq == RQ_CFQQ(rq);
2425 }
2426
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)2427 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2428 {
2429 del_timer(&cfqd->idle_slice_timer);
2430 cfqg_stats_update_idle_time(cfqq->cfqg);
2431 }
2432
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2433 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2434 struct cfq_queue *cfqq)
2435 {
2436 if (cfqq) {
2437 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2438 cfqd->serving_wl_class, cfqd->serving_wl_type);
2439 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2440 cfqq->slice_start = 0;
2441 cfqq->dispatch_start = jiffies;
2442 cfqq->allocated_slice = 0;
2443 cfqq->slice_end = 0;
2444 cfqq->slice_dispatch = 0;
2445 cfqq->nr_sectors = 0;
2446
2447 cfq_clear_cfqq_wait_request(cfqq);
2448 cfq_clear_cfqq_must_dispatch(cfqq);
2449 cfq_clear_cfqq_must_alloc_slice(cfqq);
2450 cfq_clear_cfqq_fifo_expire(cfqq);
2451 cfq_mark_cfqq_slice_new(cfqq);
2452
2453 cfq_del_timer(cfqd, cfqq);
2454 }
2455
2456 cfqd->active_queue = cfqq;
2457 }
2458
2459 /*
2460 * current cfqq expired its slice (or was too idle), select new one
2461 */
2462 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)2463 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2464 bool timed_out)
2465 {
2466 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2467
2468 if (cfq_cfqq_wait_request(cfqq))
2469 cfq_del_timer(cfqd, cfqq);
2470
2471 cfq_clear_cfqq_wait_request(cfqq);
2472 cfq_clear_cfqq_wait_busy(cfqq);
2473
2474 /*
2475 * If this cfqq is shared between multiple processes, check to
2476 * make sure that those processes are still issuing I/Os within
2477 * the mean seek distance. If not, it may be time to break the
2478 * queues apart again.
2479 */
2480 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2481 cfq_mark_cfqq_split_coop(cfqq);
2482
2483 /*
2484 * store what was left of this slice, if the queue idled/timed out
2485 */
2486 if (timed_out) {
2487 if (cfq_cfqq_slice_new(cfqq))
2488 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2489 else
2490 cfqq->slice_resid = cfqq->slice_end - jiffies;
2491 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2492 }
2493
2494 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2495
2496 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2497 cfq_del_cfqq_rr(cfqd, cfqq);
2498
2499 cfq_resort_rr_list(cfqd, cfqq);
2500
2501 if (cfqq == cfqd->active_queue)
2502 cfqd->active_queue = NULL;
2503
2504 if (cfqd->active_cic) {
2505 put_io_context(cfqd->active_cic->icq.ioc);
2506 cfqd->active_cic = NULL;
2507 }
2508 }
2509
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)2510 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2511 {
2512 struct cfq_queue *cfqq = cfqd->active_queue;
2513
2514 if (cfqq)
2515 __cfq_slice_expired(cfqd, cfqq, timed_out);
2516 }
2517
2518 /*
2519 * Get next queue for service. Unless we have a queue preemption,
2520 * we'll simply select the first cfqq in the service tree.
2521 */
cfq_get_next_queue(struct cfq_data * cfqd)2522 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2523 {
2524 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2525 cfqd->serving_wl_class, cfqd->serving_wl_type);
2526
2527 if (!cfqd->rq_queued)
2528 return NULL;
2529
2530 /* There is nothing to dispatch */
2531 if (!st)
2532 return NULL;
2533 if (RB_EMPTY_ROOT(&st->rb))
2534 return NULL;
2535 return cfq_rb_first(st);
2536 }
2537
cfq_get_next_queue_forced(struct cfq_data * cfqd)2538 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2539 {
2540 struct cfq_group *cfqg;
2541 struct cfq_queue *cfqq;
2542 int i, j;
2543 struct cfq_rb_root *st;
2544
2545 if (!cfqd->rq_queued)
2546 return NULL;
2547
2548 cfqg = cfq_get_next_cfqg(cfqd);
2549 if (!cfqg)
2550 return NULL;
2551
2552 for_each_cfqg_st(cfqg, i, j, st)
2553 if ((cfqq = cfq_rb_first(st)) != NULL)
2554 return cfqq;
2555 return NULL;
2556 }
2557
2558 /*
2559 * Get and set a new active queue for service.
2560 */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2561 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2562 struct cfq_queue *cfqq)
2563 {
2564 if (!cfqq)
2565 cfqq = cfq_get_next_queue(cfqd);
2566
2567 __cfq_set_active_queue(cfqd, cfqq);
2568 return cfqq;
2569 }
2570
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)2571 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2572 struct request *rq)
2573 {
2574 if (blk_rq_pos(rq) >= cfqd->last_position)
2575 return blk_rq_pos(rq) - cfqd->last_position;
2576 else
2577 return cfqd->last_position - blk_rq_pos(rq);
2578 }
2579
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2580 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2581 struct request *rq)
2582 {
2583 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2584 }
2585
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2586 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2587 struct cfq_queue *cur_cfqq)
2588 {
2589 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2590 struct rb_node *parent, *node;
2591 struct cfq_queue *__cfqq;
2592 sector_t sector = cfqd->last_position;
2593
2594 if (RB_EMPTY_ROOT(root))
2595 return NULL;
2596
2597 /*
2598 * First, if we find a request starting at the end of the last
2599 * request, choose it.
2600 */
2601 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2602 if (__cfqq)
2603 return __cfqq;
2604
2605 /*
2606 * If the exact sector wasn't found, the parent of the NULL leaf
2607 * will contain the closest sector.
2608 */
2609 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2610 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2611 return __cfqq;
2612
2613 if (blk_rq_pos(__cfqq->next_rq) < sector)
2614 node = rb_next(&__cfqq->p_node);
2615 else
2616 node = rb_prev(&__cfqq->p_node);
2617 if (!node)
2618 return NULL;
2619
2620 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2621 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2622 return __cfqq;
2623
2624 return NULL;
2625 }
2626
2627 /*
2628 * cfqd - obvious
2629 * cur_cfqq - passed in so that we don't decide that the current queue is
2630 * closely cooperating with itself.
2631 *
2632 * So, basically we're assuming that that cur_cfqq has dispatched at least
2633 * one request, and that cfqd->last_position reflects a position on the disk
2634 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2635 * assumption.
2636 */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2637 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2638 struct cfq_queue *cur_cfqq)
2639 {
2640 struct cfq_queue *cfqq;
2641
2642 if (cfq_class_idle(cur_cfqq))
2643 return NULL;
2644 if (!cfq_cfqq_sync(cur_cfqq))
2645 return NULL;
2646 if (CFQQ_SEEKY(cur_cfqq))
2647 return NULL;
2648
2649 /*
2650 * Don't search priority tree if it's the only queue in the group.
2651 */
2652 if (cur_cfqq->cfqg->nr_cfqq == 1)
2653 return NULL;
2654
2655 /*
2656 * We should notice if some of the queues are cooperating, eg
2657 * working closely on the same area of the disk. In that case,
2658 * we can group them together and don't waste time idling.
2659 */
2660 cfqq = cfqq_close(cfqd, cur_cfqq);
2661 if (!cfqq)
2662 return NULL;
2663
2664 /* If new queue belongs to different cfq_group, don't choose it */
2665 if (cur_cfqq->cfqg != cfqq->cfqg)
2666 return NULL;
2667
2668 /*
2669 * It only makes sense to merge sync queues.
2670 */
2671 if (!cfq_cfqq_sync(cfqq))
2672 return NULL;
2673 if (CFQQ_SEEKY(cfqq))
2674 return NULL;
2675
2676 /*
2677 * Do not merge queues of different priority classes
2678 */
2679 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2680 return NULL;
2681
2682 return cfqq;
2683 }
2684
2685 /*
2686 * Determine whether we should enforce idle window for this queue.
2687 */
2688
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)2689 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2690 {
2691 enum wl_class_t wl_class = cfqq_class(cfqq);
2692 struct cfq_rb_root *st = cfqq->service_tree;
2693
2694 BUG_ON(!st);
2695 BUG_ON(!st->count);
2696
2697 if (!cfqd->cfq_slice_idle)
2698 return false;
2699
2700 /* We never do for idle class queues. */
2701 if (wl_class == IDLE_WORKLOAD)
2702 return false;
2703
2704 /* We do for queues that were marked with idle window flag. */
2705 if (cfq_cfqq_idle_window(cfqq) &&
2706 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2707 return true;
2708
2709 /*
2710 * Otherwise, we do only if they are the last ones
2711 * in their service tree.
2712 */
2713 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2714 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2715 return true;
2716 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2717 return false;
2718 }
2719
cfq_arm_slice_timer(struct cfq_data * cfqd)2720 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2721 {
2722 struct cfq_queue *cfqq = cfqd->active_queue;
2723 struct cfq_io_cq *cic;
2724 unsigned long sl, group_idle = 0;
2725
2726 /*
2727 * SSD device without seek penalty, disable idling. But only do so
2728 * for devices that support queuing, otherwise we still have a problem
2729 * with sync vs async workloads.
2730 */
2731 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2732 return;
2733
2734 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2735 WARN_ON(cfq_cfqq_slice_new(cfqq));
2736
2737 /*
2738 * idle is disabled, either manually or by past process history
2739 */
2740 if (!cfq_should_idle(cfqd, cfqq)) {
2741 /* no queue idling. Check for group idling */
2742 if (cfqd->cfq_group_idle)
2743 group_idle = cfqd->cfq_group_idle;
2744 else
2745 return;
2746 }
2747
2748 /*
2749 * still active requests from this queue, don't idle
2750 */
2751 if (cfqq->dispatched)
2752 return;
2753
2754 /*
2755 * task has exited, don't wait
2756 */
2757 cic = cfqd->active_cic;
2758 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2759 return;
2760
2761 /*
2762 * If our average think time is larger than the remaining time
2763 * slice, then don't idle. This avoids overrunning the allotted
2764 * time slice.
2765 */
2766 if (sample_valid(cic->ttime.ttime_samples) &&
2767 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2768 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2769 cic->ttime.ttime_mean);
2770 return;
2771 }
2772
2773 /* There are other queues in the group, don't do group idle */
2774 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2775 return;
2776
2777 cfq_mark_cfqq_wait_request(cfqq);
2778
2779 if (group_idle)
2780 sl = cfqd->cfq_group_idle;
2781 else
2782 sl = cfqd->cfq_slice_idle;
2783
2784 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2785 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2786 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2787 group_idle ? 1 : 0);
2788 }
2789
2790 /*
2791 * Move request from internal lists to the request queue dispatch list.
2792 */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2793 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2794 {
2795 struct cfq_data *cfqd = q->elevator->elevator_data;
2796 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2797
2798 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2799
2800 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2801 cfq_remove_request(rq);
2802 cfqq->dispatched++;
2803 (RQ_CFQG(rq))->dispatched++;
2804 elv_dispatch_sort(q, rq);
2805
2806 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2807 cfqq->nr_sectors += blk_rq_sectors(rq);
2808 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2809 }
2810
2811 /*
2812 * return expired entry, or NULL to just start from scratch in rbtree
2813 */
cfq_check_fifo(struct cfq_queue * cfqq)2814 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2815 {
2816 struct request *rq = NULL;
2817
2818 if (cfq_cfqq_fifo_expire(cfqq))
2819 return NULL;
2820
2821 cfq_mark_cfqq_fifo_expire(cfqq);
2822
2823 if (list_empty(&cfqq->fifo))
2824 return NULL;
2825
2826 rq = rq_entry_fifo(cfqq->fifo.next);
2827 if (time_before(jiffies, rq->fifo_time))
2828 rq = NULL;
2829
2830 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2831 return rq;
2832 }
2833
2834 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)2835 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2836 {
2837 const int base_rq = cfqd->cfq_slice_async_rq;
2838
2839 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2840
2841 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2842 }
2843
2844 /*
2845 * Must be called with the queue_lock held.
2846 */
cfqq_process_refs(struct cfq_queue * cfqq)2847 static int cfqq_process_refs(struct cfq_queue *cfqq)
2848 {
2849 int process_refs, io_refs;
2850
2851 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2852 process_refs = cfqq->ref - io_refs;
2853 BUG_ON(process_refs < 0);
2854 return process_refs;
2855 }
2856
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)2857 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2858 {
2859 int process_refs, new_process_refs;
2860 struct cfq_queue *__cfqq;
2861
2862 /*
2863 * If there are no process references on the new_cfqq, then it is
2864 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2865 * chain may have dropped their last reference (not just their
2866 * last process reference).
2867 */
2868 if (!cfqq_process_refs(new_cfqq))
2869 return;
2870
2871 /* Avoid a circular list and skip interim queue merges */
2872 while ((__cfqq = new_cfqq->new_cfqq)) {
2873 if (__cfqq == cfqq)
2874 return;
2875 new_cfqq = __cfqq;
2876 }
2877
2878 process_refs = cfqq_process_refs(cfqq);
2879 new_process_refs = cfqq_process_refs(new_cfqq);
2880 /*
2881 * If the process for the cfqq has gone away, there is no
2882 * sense in merging the queues.
2883 */
2884 if (process_refs == 0 || new_process_refs == 0)
2885 return;
2886
2887 /*
2888 * Merge in the direction of the lesser amount of work.
2889 */
2890 if (new_process_refs >= process_refs) {
2891 cfqq->new_cfqq = new_cfqq;
2892 new_cfqq->ref += process_refs;
2893 } else {
2894 new_cfqq->new_cfqq = cfqq;
2895 cfqq->ref += new_process_refs;
2896 }
2897 }
2898
cfq_choose_wl_type(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_class_t wl_class)2899 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2900 struct cfq_group *cfqg, enum wl_class_t wl_class)
2901 {
2902 struct cfq_queue *queue;
2903 int i;
2904 bool key_valid = false;
2905 unsigned long lowest_key = 0;
2906 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2907
2908 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2909 /* select the one with lowest rb_key */
2910 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2911 if (queue &&
2912 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2913 lowest_key = queue->rb_key;
2914 cur_best = i;
2915 key_valid = true;
2916 }
2917 }
2918
2919 return cur_best;
2920 }
2921
2922 static void
choose_wl_class_and_type(struct cfq_data * cfqd,struct cfq_group * cfqg)2923 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2924 {
2925 unsigned slice;
2926 unsigned count;
2927 struct cfq_rb_root *st;
2928 unsigned group_slice;
2929 enum wl_class_t original_class = cfqd->serving_wl_class;
2930
2931 /* Choose next priority. RT > BE > IDLE */
2932 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2933 cfqd->serving_wl_class = RT_WORKLOAD;
2934 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2935 cfqd->serving_wl_class = BE_WORKLOAD;
2936 else {
2937 cfqd->serving_wl_class = IDLE_WORKLOAD;
2938 cfqd->workload_expires = jiffies + 1;
2939 return;
2940 }
2941
2942 if (original_class != cfqd->serving_wl_class)
2943 goto new_workload;
2944
2945 /*
2946 * For RT and BE, we have to choose also the type
2947 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2948 * expiration time
2949 */
2950 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2951 count = st->count;
2952
2953 /*
2954 * check workload expiration, and that we still have other queues ready
2955 */
2956 if (count && !time_after(jiffies, cfqd->workload_expires))
2957 return;
2958
2959 new_workload:
2960 /* otherwise select new workload type */
2961 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2962 cfqd->serving_wl_class);
2963 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2964 count = st->count;
2965
2966 /*
2967 * the workload slice is computed as a fraction of target latency
2968 * proportional to the number of queues in that workload, over
2969 * all the queues in the same priority class
2970 */
2971 group_slice = cfq_group_slice(cfqd, cfqg);
2972
2973 slice = group_slice * count /
2974 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2975 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2976 cfqg));
2977
2978 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2979 unsigned int tmp;
2980
2981 /*
2982 * Async queues are currently system wide. Just taking
2983 * proportion of queues with-in same group will lead to higher
2984 * async ratio system wide as generally root group is going
2985 * to have higher weight. A more accurate thing would be to
2986 * calculate system wide asnc/sync ratio.
2987 */
2988 tmp = cfqd->cfq_target_latency *
2989 cfqg_busy_async_queues(cfqd, cfqg);
2990 tmp = tmp/cfqd->busy_queues;
2991 slice = min_t(unsigned, slice, tmp);
2992
2993 /* async workload slice is scaled down according to
2994 * the sync/async slice ratio. */
2995 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2996 } else
2997 /* sync workload slice is at least 2 * cfq_slice_idle */
2998 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2999
3000 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3001 cfq_log(cfqd, "workload slice:%d", slice);
3002 cfqd->workload_expires = jiffies + slice;
3003 }
3004
cfq_get_next_cfqg(struct cfq_data * cfqd)3005 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3006 {
3007 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3008 struct cfq_group *cfqg;
3009
3010 if (RB_EMPTY_ROOT(&st->rb))
3011 return NULL;
3012 cfqg = cfq_rb_first_group(st);
3013 update_min_vdisktime(st);
3014 return cfqg;
3015 }
3016
cfq_choose_cfqg(struct cfq_data * cfqd)3017 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3018 {
3019 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3020
3021 cfqd->serving_group = cfqg;
3022
3023 /* Restore the workload type data */
3024 if (cfqg->saved_wl_slice) {
3025 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3026 cfqd->serving_wl_type = cfqg->saved_wl_type;
3027 cfqd->serving_wl_class = cfqg->saved_wl_class;
3028 } else
3029 cfqd->workload_expires = jiffies - 1;
3030
3031 choose_wl_class_and_type(cfqd, cfqg);
3032 }
3033
3034 /*
3035 * Select a queue for service. If we have a current active queue,
3036 * check whether to continue servicing it, or retrieve and set a new one.
3037 */
cfq_select_queue(struct cfq_data * cfqd)3038 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3039 {
3040 struct cfq_queue *cfqq, *new_cfqq = NULL;
3041
3042 cfqq = cfqd->active_queue;
3043 if (!cfqq)
3044 goto new_queue;
3045
3046 if (!cfqd->rq_queued)
3047 return NULL;
3048
3049 /*
3050 * We were waiting for group to get backlogged. Expire the queue
3051 */
3052 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3053 goto expire;
3054
3055 /*
3056 * The active queue has run out of time, expire it and select new.
3057 */
3058 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3059 /*
3060 * If slice had not expired at the completion of last request
3061 * we might not have turned on wait_busy flag. Don't expire
3062 * the queue yet. Allow the group to get backlogged.
3063 *
3064 * The very fact that we have used the slice, that means we
3065 * have been idling all along on this queue and it should be
3066 * ok to wait for this request to complete.
3067 */
3068 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3069 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3070 cfqq = NULL;
3071 goto keep_queue;
3072 } else
3073 goto check_group_idle;
3074 }
3075
3076 /*
3077 * The active queue has requests and isn't expired, allow it to
3078 * dispatch.
3079 */
3080 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3081 goto keep_queue;
3082
3083 /*
3084 * If another queue has a request waiting within our mean seek
3085 * distance, let it run. The expire code will check for close
3086 * cooperators and put the close queue at the front of the service
3087 * tree. If possible, merge the expiring queue with the new cfqq.
3088 */
3089 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3090 if (new_cfqq) {
3091 if (!cfqq->new_cfqq)
3092 cfq_setup_merge(cfqq, new_cfqq);
3093 goto expire;
3094 }
3095
3096 /*
3097 * No requests pending. If the active queue still has requests in
3098 * flight or is idling for a new request, allow either of these
3099 * conditions to happen (or time out) before selecting a new queue.
3100 */
3101 if (timer_pending(&cfqd->idle_slice_timer)) {
3102 cfqq = NULL;
3103 goto keep_queue;
3104 }
3105
3106 /*
3107 * This is a deep seek queue, but the device is much faster than
3108 * the queue can deliver, don't idle
3109 **/
3110 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3111 (cfq_cfqq_slice_new(cfqq) ||
3112 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3113 cfq_clear_cfqq_deep(cfqq);
3114 cfq_clear_cfqq_idle_window(cfqq);
3115 }
3116
3117 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3118 cfqq = NULL;
3119 goto keep_queue;
3120 }
3121
3122 /*
3123 * If group idle is enabled and there are requests dispatched from
3124 * this group, wait for requests to complete.
3125 */
3126 check_group_idle:
3127 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3128 cfqq->cfqg->dispatched &&
3129 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3130 cfqq = NULL;
3131 goto keep_queue;
3132 }
3133
3134 expire:
3135 cfq_slice_expired(cfqd, 0);
3136 new_queue:
3137 /*
3138 * Current queue expired. Check if we have to switch to a new
3139 * service tree
3140 */
3141 if (!new_cfqq)
3142 cfq_choose_cfqg(cfqd);
3143
3144 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3145 keep_queue:
3146 return cfqq;
3147 }
3148
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)3149 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3150 {
3151 int dispatched = 0;
3152
3153 while (cfqq->next_rq) {
3154 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3155 dispatched++;
3156 }
3157
3158 BUG_ON(!list_empty(&cfqq->fifo));
3159
3160 /* By default cfqq is not expired if it is empty. Do it explicitly */
3161 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3162 return dispatched;
3163 }
3164
3165 /*
3166 * Drain our current requests. Used for barriers and when switching
3167 * io schedulers on-the-fly.
3168 */
cfq_forced_dispatch(struct cfq_data * cfqd)3169 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3170 {
3171 struct cfq_queue *cfqq;
3172 int dispatched = 0;
3173
3174 /* Expire the timeslice of the current active queue first */
3175 cfq_slice_expired(cfqd, 0);
3176 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3177 __cfq_set_active_queue(cfqd, cfqq);
3178 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3179 }
3180
3181 BUG_ON(cfqd->busy_queues);
3182
3183 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3184 return dispatched;
3185 }
3186
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)3187 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3188 struct cfq_queue *cfqq)
3189 {
3190 /* the queue hasn't finished any request, can't estimate */
3191 if (cfq_cfqq_slice_new(cfqq))
3192 return true;
3193 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3194 cfqq->slice_end))
3195 return true;
3196
3197 return false;
3198 }
3199
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)3200 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3201 {
3202 unsigned int max_dispatch;
3203
3204 /*
3205 * Drain async requests before we start sync IO
3206 */
3207 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3208 return false;
3209
3210 /*
3211 * If this is an async queue and we have sync IO in flight, let it wait
3212 */
3213 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3214 return false;
3215
3216 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3217 if (cfq_class_idle(cfqq))
3218 max_dispatch = 1;
3219
3220 /*
3221 * Does this cfqq already have too much IO in flight?
3222 */
3223 if (cfqq->dispatched >= max_dispatch) {
3224 bool promote_sync = false;
3225 /*
3226 * idle queue must always only have a single IO in flight
3227 */
3228 if (cfq_class_idle(cfqq))
3229 return false;
3230
3231 /*
3232 * If there is only one sync queue
3233 * we can ignore async queue here and give the sync
3234 * queue no dispatch limit. The reason is a sync queue can
3235 * preempt async queue, limiting the sync queue doesn't make
3236 * sense. This is useful for aiostress test.
3237 */
3238 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3239 promote_sync = true;
3240
3241 /*
3242 * We have other queues, don't allow more IO from this one
3243 */
3244 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3245 !promote_sync)
3246 return false;
3247
3248 /*
3249 * Sole queue user, no limit
3250 */
3251 if (cfqd->busy_queues == 1 || promote_sync)
3252 max_dispatch = -1;
3253 else
3254 /*
3255 * Normally we start throttling cfqq when cfq_quantum/2
3256 * requests have been dispatched. But we can drive
3257 * deeper queue depths at the beginning of slice
3258 * subjected to upper limit of cfq_quantum.
3259 * */
3260 max_dispatch = cfqd->cfq_quantum;
3261 }
3262
3263 /*
3264 * Async queues must wait a bit before being allowed dispatch.
3265 * We also ramp up the dispatch depth gradually for async IO,
3266 * based on the last sync IO we serviced
3267 */
3268 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3269 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3270 unsigned int depth;
3271
3272 depth = last_sync / cfqd->cfq_slice[1];
3273 if (!depth && !cfqq->dispatched)
3274 depth = 1;
3275 if (depth < max_dispatch)
3276 max_dispatch = depth;
3277 }
3278
3279 /*
3280 * If we're below the current max, allow a dispatch
3281 */
3282 return cfqq->dispatched < max_dispatch;
3283 }
3284
3285 /*
3286 * Dispatch a request from cfqq, moving them to the request queue
3287 * dispatch list.
3288 */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)3289 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3290 {
3291 struct request *rq;
3292
3293 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3294
3295 if (!cfq_may_dispatch(cfqd, cfqq))
3296 return false;
3297
3298 /*
3299 * follow expired path, else get first next available
3300 */
3301 rq = cfq_check_fifo(cfqq);
3302 if (!rq)
3303 rq = cfqq->next_rq;
3304
3305 /*
3306 * insert request into driver dispatch list
3307 */
3308 cfq_dispatch_insert(cfqd->queue, rq);
3309
3310 if (!cfqd->active_cic) {
3311 struct cfq_io_cq *cic = RQ_CIC(rq);
3312
3313 atomic_long_inc(&cic->icq.ioc->refcount);
3314 cfqd->active_cic = cic;
3315 }
3316
3317 return true;
3318 }
3319
3320 /*
3321 * Find the cfqq that we need to service and move a request from that to the
3322 * dispatch list
3323 */
cfq_dispatch_requests(struct request_queue * q,int force)3324 static int cfq_dispatch_requests(struct request_queue *q, int force)
3325 {
3326 struct cfq_data *cfqd = q->elevator->elevator_data;
3327 struct cfq_queue *cfqq;
3328
3329 if (!cfqd->busy_queues)
3330 return 0;
3331
3332 if (unlikely(force))
3333 return cfq_forced_dispatch(cfqd);
3334
3335 cfqq = cfq_select_queue(cfqd);
3336 if (!cfqq)
3337 return 0;
3338
3339 /*
3340 * Dispatch a request from this cfqq, if it is allowed
3341 */
3342 if (!cfq_dispatch_request(cfqd, cfqq))
3343 return 0;
3344
3345 cfqq->slice_dispatch++;
3346 cfq_clear_cfqq_must_dispatch(cfqq);
3347
3348 /*
3349 * expire an async queue immediately if it has used up its slice. idle
3350 * queue always expire after 1 dispatch round.
3351 */
3352 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3353 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3354 cfq_class_idle(cfqq))) {
3355 cfqq->slice_end = jiffies + 1;
3356 cfq_slice_expired(cfqd, 0);
3357 }
3358
3359 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3360 return 1;
3361 }
3362
3363 /*
3364 * task holds one reference to the queue, dropped when task exits. each rq
3365 * in-flight on this queue also holds a reference, dropped when rq is freed.
3366 *
3367 * Each cfq queue took a reference on the parent group. Drop it now.
3368 * queue lock must be held here.
3369 */
cfq_put_queue(struct cfq_queue * cfqq)3370 static void cfq_put_queue(struct cfq_queue *cfqq)
3371 {
3372 struct cfq_data *cfqd = cfqq->cfqd;
3373 struct cfq_group *cfqg;
3374
3375 BUG_ON(cfqq->ref <= 0);
3376
3377 cfqq->ref--;
3378 if (cfqq->ref)
3379 return;
3380
3381 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3382 BUG_ON(rb_first(&cfqq->sort_list));
3383 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3384 cfqg = cfqq->cfqg;
3385
3386 if (unlikely(cfqd->active_queue == cfqq)) {
3387 __cfq_slice_expired(cfqd, cfqq, 0);
3388 cfq_schedule_dispatch(cfqd);
3389 }
3390
3391 BUG_ON(cfq_cfqq_on_rr(cfqq));
3392 kmem_cache_free(cfq_pool, cfqq);
3393 cfqg_put(cfqg);
3394 }
3395
cfq_put_cooperator(struct cfq_queue * cfqq)3396 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3397 {
3398 struct cfq_queue *__cfqq, *next;
3399
3400 /*
3401 * If this queue was scheduled to merge with another queue, be
3402 * sure to drop the reference taken on that queue (and others in
3403 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3404 */
3405 __cfqq = cfqq->new_cfqq;
3406 while (__cfqq) {
3407 if (__cfqq == cfqq) {
3408 WARN(1, "cfqq->new_cfqq loop detected\n");
3409 break;
3410 }
3411 next = __cfqq->new_cfqq;
3412 cfq_put_queue(__cfqq);
3413 __cfqq = next;
3414 }
3415 }
3416
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3417 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3418 {
3419 if (unlikely(cfqq == cfqd->active_queue)) {
3420 __cfq_slice_expired(cfqd, cfqq, 0);
3421 cfq_schedule_dispatch(cfqd);
3422 }
3423
3424 cfq_put_cooperator(cfqq);
3425
3426 cfq_put_queue(cfqq);
3427 }
3428
cfq_init_icq(struct io_cq * icq)3429 static void cfq_init_icq(struct io_cq *icq)
3430 {
3431 struct cfq_io_cq *cic = icq_to_cic(icq);
3432
3433 cic->ttime.last_end_request = jiffies;
3434 }
3435
cfq_exit_icq(struct io_cq * icq)3436 static void cfq_exit_icq(struct io_cq *icq)
3437 {
3438 struct cfq_io_cq *cic = icq_to_cic(icq);
3439 struct cfq_data *cfqd = cic_to_cfqd(cic);
3440
3441 if (cic->cfqq[BLK_RW_ASYNC]) {
3442 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3443 cic->cfqq[BLK_RW_ASYNC] = NULL;
3444 }
3445
3446 if (cic->cfqq[BLK_RW_SYNC]) {
3447 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3448 cic->cfqq[BLK_RW_SYNC] = NULL;
3449 }
3450 }
3451
cfq_init_prio_data(struct cfq_queue * cfqq,struct cfq_io_cq * cic)3452 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3453 {
3454 struct task_struct *tsk = current;
3455 int ioprio_class;
3456
3457 if (!cfq_cfqq_prio_changed(cfqq))
3458 return;
3459
3460 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3461 switch (ioprio_class) {
3462 default:
3463 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3464 case IOPRIO_CLASS_NONE:
3465 /*
3466 * no prio set, inherit CPU scheduling settings
3467 */
3468 cfqq->ioprio = task_nice_ioprio(tsk);
3469 cfqq->ioprio_class = task_nice_ioclass(tsk);
3470 break;
3471 case IOPRIO_CLASS_RT:
3472 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3473 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3474 break;
3475 case IOPRIO_CLASS_BE:
3476 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3477 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3478 break;
3479 case IOPRIO_CLASS_IDLE:
3480 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3481 cfqq->ioprio = 7;
3482 cfq_clear_cfqq_idle_window(cfqq);
3483 break;
3484 }
3485
3486 /*
3487 * keep track of original prio settings in case we have to temporarily
3488 * elevate the priority of this queue
3489 */
3490 cfqq->org_ioprio = cfqq->ioprio;
3491 cfq_clear_cfqq_prio_changed(cfqq);
3492 }
3493
check_ioprio_changed(struct cfq_io_cq * cic,struct bio * bio)3494 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3495 {
3496 int ioprio = cic->icq.ioc->ioprio;
3497 struct cfq_data *cfqd = cic_to_cfqd(cic);
3498 struct cfq_queue *cfqq;
3499
3500 /*
3501 * Check whether ioprio has changed. The condition may trigger
3502 * spuriously on a newly created cic but there's no harm.
3503 */
3504 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3505 return;
3506
3507 cfqq = cic->cfqq[BLK_RW_ASYNC];
3508 if (cfqq) {
3509 struct cfq_queue *new_cfqq;
3510 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3511 GFP_ATOMIC);
3512 if (new_cfqq) {
3513 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3514 cfq_put_queue(cfqq);
3515 }
3516 }
3517
3518 cfqq = cic->cfqq[BLK_RW_SYNC];
3519 if (cfqq)
3520 cfq_mark_cfqq_prio_changed(cfqq);
3521
3522 cic->ioprio = ioprio;
3523 }
3524
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)3525 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3526 pid_t pid, bool is_sync)
3527 {
3528 RB_CLEAR_NODE(&cfqq->rb_node);
3529 RB_CLEAR_NODE(&cfqq->p_node);
3530 INIT_LIST_HEAD(&cfqq->fifo);
3531
3532 cfqq->ref = 0;
3533 cfqq->cfqd = cfqd;
3534
3535 cfq_mark_cfqq_prio_changed(cfqq);
3536
3537 if (is_sync) {
3538 if (!cfq_class_idle(cfqq))
3539 cfq_mark_cfqq_idle_window(cfqq);
3540 cfq_mark_cfqq_sync(cfqq);
3541 }
3542 cfqq->pid = pid;
3543 }
3544
3545 #ifdef CONFIG_CFQ_GROUP_IOSCHED
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3546 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3547 {
3548 struct cfq_data *cfqd = cic_to_cfqd(cic);
3549 struct cfq_queue *sync_cfqq;
3550 uint64_t serial_nr;
3551
3552 rcu_read_lock();
3553 serial_nr = bio_blkcg(bio)->css.serial_nr;
3554 rcu_read_unlock();
3555
3556 /*
3557 * Check whether blkcg has changed. The condition may trigger
3558 * spuriously on a newly created cic but there's no harm.
3559 */
3560 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3561 return;
3562
3563 sync_cfqq = cic_to_cfqq(cic, 1);
3564 if (sync_cfqq) {
3565 /*
3566 * Drop reference to sync queue. A new sync queue will be
3567 * assigned in new group upon arrival of a fresh request.
3568 */
3569 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3570 cic_set_cfqq(cic, NULL, 1);
3571 cfq_put_queue(sync_cfqq);
3572 }
3573
3574 cic->blkcg_serial_nr = serial_nr;
3575 }
3576 #else
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3577 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3578 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3579
3580 static struct cfq_queue *
cfq_find_alloc_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio,gfp_t gfp_mask)3581 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3582 struct bio *bio, gfp_t gfp_mask)
3583 {
3584 struct blkcg *blkcg;
3585 struct cfq_queue *cfqq, *new_cfqq = NULL;
3586 struct cfq_group *cfqg;
3587
3588 retry:
3589 rcu_read_lock();
3590
3591 blkcg = bio_blkcg(bio);
3592 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3593 if (!cfqg) {
3594 cfqq = &cfqd->oom_cfqq;
3595 goto out;
3596 }
3597
3598 cfqq = cic_to_cfqq(cic, is_sync);
3599
3600 /*
3601 * Always try a new alloc if we fell back to the OOM cfqq
3602 * originally, since it should just be a temporary situation.
3603 */
3604 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3605 cfqq = NULL;
3606 if (new_cfqq) {
3607 cfqq = new_cfqq;
3608 new_cfqq = NULL;
3609 } else if (gfp_mask & __GFP_WAIT) {
3610 rcu_read_unlock();
3611 spin_unlock_irq(cfqd->queue->queue_lock);
3612 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3613 gfp_mask | __GFP_ZERO,
3614 cfqd->queue->node);
3615 spin_lock_irq(cfqd->queue->queue_lock);
3616 if (new_cfqq)
3617 goto retry;
3618 else
3619 return &cfqd->oom_cfqq;
3620 } else {
3621 cfqq = kmem_cache_alloc_node(cfq_pool,
3622 gfp_mask | __GFP_ZERO,
3623 cfqd->queue->node);
3624 }
3625
3626 if (cfqq) {
3627 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3628 cfq_init_prio_data(cfqq, cic);
3629 cfq_link_cfqq_cfqg(cfqq, cfqg);
3630 cfq_log_cfqq(cfqd, cfqq, "alloced");
3631 } else
3632 cfqq = &cfqd->oom_cfqq;
3633 }
3634 out:
3635 if (new_cfqq)
3636 kmem_cache_free(cfq_pool, new_cfqq);
3637
3638 rcu_read_unlock();
3639 return cfqq;
3640 }
3641
3642 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data * cfqd,int ioprio_class,int ioprio)3643 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3644 {
3645 switch (ioprio_class) {
3646 case IOPRIO_CLASS_RT:
3647 return &cfqd->async_cfqq[0][ioprio];
3648 case IOPRIO_CLASS_NONE:
3649 ioprio = IOPRIO_NORM;
3650 /* fall through */
3651 case IOPRIO_CLASS_BE:
3652 return &cfqd->async_cfqq[1][ioprio];
3653 case IOPRIO_CLASS_IDLE:
3654 return &cfqd->async_idle_cfqq;
3655 default:
3656 BUG();
3657 }
3658 }
3659
3660 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio,gfp_t gfp_mask)3661 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3662 struct bio *bio, gfp_t gfp_mask)
3663 {
3664 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3665 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3666 struct cfq_queue **async_cfqq = NULL;
3667 struct cfq_queue *cfqq = NULL;
3668
3669 if (!is_sync) {
3670 if (!ioprio_valid(cic->ioprio)) {
3671 struct task_struct *tsk = current;
3672 ioprio = task_nice_ioprio(tsk);
3673 ioprio_class = task_nice_ioclass(tsk);
3674 }
3675 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3676 cfqq = *async_cfqq;
3677 }
3678
3679 if (!cfqq)
3680 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3681
3682 /*
3683 * pin the queue now that it's allocated, scheduler exit will prune it
3684 */
3685 if (!is_sync && !(*async_cfqq)) {
3686 cfqq->ref++;
3687 *async_cfqq = cfqq;
3688 }
3689
3690 cfqq->ref++;
3691 return cfqq;
3692 }
3693
3694 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,unsigned long slice_idle)3695 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3696 {
3697 unsigned long elapsed = jiffies - ttime->last_end_request;
3698 elapsed = min(elapsed, 2UL * slice_idle);
3699
3700 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3701 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3702 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3703 }
3704
3705 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3706 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3707 struct cfq_io_cq *cic)
3708 {
3709 if (cfq_cfqq_sync(cfqq)) {
3710 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3711 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3712 cfqd->cfq_slice_idle);
3713 }
3714 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3715 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3716 #endif
3717 }
3718
3719 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3720 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3721 struct request *rq)
3722 {
3723 sector_t sdist = 0;
3724 sector_t n_sec = blk_rq_sectors(rq);
3725 if (cfqq->last_request_pos) {
3726 if (cfqq->last_request_pos < blk_rq_pos(rq))
3727 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3728 else
3729 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3730 }
3731
3732 cfqq->seek_history <<= 1;
3733 if (blk_queue_nonrot(cfqd->queue))
3734 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3735 else
3736 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3737 }
3738
3739 /*
3740 * Disable idle window if the process thinks too long or seeks so much that
3741 * it doesn't matter
3742 */
3743 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3744 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3745 struct cfq_io_cq *cic)
3746 {
3747 int old_idle, enable_idle;
3748
3749 /*
3750 * Don't idle for async or idle io prio class
3751 */
3752 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3753 return;
3754
3755 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3756
3757 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3758 cfq_mark_cfqq_deep(cfqq);
3759
3760 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3761 enable_idle = 0;
3762 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3763 !cfqd->cfq_slice_idle ||
3764 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3765 enable_idle = 0;
3766 else if (sample_valid(cic->ttime.ttime_samples)) {
3767 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3768 enable_idle = 0;
3769 else
3770 enable_idle = 1;
3771 }
3772
3773 if (old_idle != enable_idle) {
3774 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3775 if (enable_idle)
3776 cfq_mark_cfqq_idle_window(cfqq);
3777 else
3778 cfq_clear_cfqq_idle_window(cfqq);
3779 }
3780 }
3781
3782 /*
3783 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3784 * no or if we aren't sure, a 1 will cause a preempt.
3785 */
3786 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3787 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3788 struct request *rq)
3789 {
3790 struct cfq_queue *cfqq;
3791
3792 cfqq = cfqd->active_queue;
3793 if (!cfqq)
3794 return false;
3795
3796 if (cfq_class_idle(new_cfqq))
3797 return false;
3798
3799 if (cfq_class_idle(cfqq))
3800 return true;
3801
3802 /*
3803 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3804 */
3805 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3806 return false;
3807
3808 /*
3809 * if the new request is sync, but the currently running queue is
3810 * not, let the sync request have priority.
3811 */
3812 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3813 return true;
3814
3815 if (new_cfqq->cfqg != cfqq->cfqg)
3816 return false;
3817
3818 if (cfq_slice_used(cfqq))
3819 return true;
3820
3821 /* Allow preemption only if we are idling on sync-noidle tree */
3822 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3823 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3824 new_cfqq->service_tree->count == 2 &&
3825 RB_EMPTY_ROOT(&cfqq->sort_list))
3826 return true;
3827
3828 /*
3829 * So both queues are sync. Let the new request get disk time if
3830 * it's a metadata request and the current queue is doing regular IO.
3831 */
3832 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3833 return true;
3834
3835 /*
3836 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3837 */
3838 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3839 return true;
3840
3841 /* An idle queue should not be idle now for some reason */
3842 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3843 return true;
3844
3845 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3846 return false;
3847
3848 /*
3849 * if this request is as-good as one we would expect from the
3850 * current cfqq, let it preempt
3851 */
3852 if (cfq_rq_close(cfqd, cfqq, rq))
3853 return true;
3854
3855 return false;
3856 }
3857
3858 /*
3859 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3860 * let it have half of its nominal slice.
3861 */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)3862 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3863 {
3864 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3865
3866 cfq_log_cfqq(cfqd, cfqq, "preempt");
3867 cfq_slice_expired(cfqd, 1);
3868
3869 /*
3870 * workload type is changed, don't save slice, otherwise preempt
3871 * doesn't happen
3872 */
3873 if (old_type != cfqq_type(cfqq))
3874 cfqq->cfqg->saved_wl_slice = 0;
3875
3876 /*
3877 * Put the new queue at the front of the of the current list,
3878 * so we know that it will be selected next.
3879 */
3880 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3881
3882 cfq_service_tree_add(cfqd, cfqq, 1);
3883
3884 cfqq->slice_end = 0;
3885 cfq_mark_cfqq_slice_new(cfqq);
3886 }
3887
3888 /*
3889 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3890 * something we should do about it
3891 */
3892 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3893 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3894 struct request *rq)
3895 {
3896 struct cfq_io_cq *cic = RQ_CIC(rq);
3897
3898 cfqd->rq_queued++;
3899 if (rq->cmd_flags & REQ_PRIO)
3900 cfqq->prio_pending++;
3901
3902 cfq_update_io_thinktime(cfqd, cfqq, cic);
3903 cfq_update_io_seektime(cfqd, cfqq, rq);
3904 cfq_update_idle_window(cfqd, cfqq, cic);
3905
3906 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3907
3908 if (cfqq == cfqd->active_queue) {
3909 /*
3910 * Remember that we saw a request from this process, but
3911 * don't start queuing just yet. Otherwise we risk seeing lots
3912 * of tiny requests, because we disrupt the normal plugging
3913 * and merging. If the request is already larger than a single
3914 * page, let it rip immediately. For that case we assume that
3915 * merging is already done. Ditto for a busy system that
3916 * has other work pending, don't risk delaying until the
3917 * idle timer unplug to continue working.
3918 */
3919 if (cfq_cfqq_wait_request(cfqq)) {
3920 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3921 cfqd->busy_queues > 1) {
3922 cfq_del_timer(cfqd, cfqq);
3923 cfq_clear_cfqq_wait_request(cfqq);
3924 __blk_run_queue(cfqd->queue);
3925 } else {
3926 cfqg_stats_update_idle_time(cfqq->cfqg);
3927 cfq_mark_cfqq_must_dispatch(cfqq);
3928 }
3929 }
3930 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3931 /*
3932 * not the active queue - expire current slice if it is
3933 * idle and has expired it's mean thinktime or this new queue
3934 * has some old slice time left and is of higher priority or
3935 * this new queue is RT and the current one is BE
3936 */
3937 cfq_preempt_queue(cfqd, cfqq);
3938 __blk_run_queue(cfqd->queue);
3939 }
3940 }
3941
cfq_insert_request(struct request_queue * q,struct request * rq)3942 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3943 {
3944 struct cfq_data *cfqd = q->elevator->elevator_data;
3945 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3946
3947 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3948 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3949
3950 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3951 list_add_tail(&rq->queuelist, &cfqq->fifo);
3952 cfq_add_rq_rb(rq);
3953 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3954 rq->cmd_flags);
3955 cfq_rq_enqueued(cfqd, cfqq, rq);
3956 }
3957
3958 /*
3959 * Update hw_tag based on peak queue depth over 50 samples under
3960 * sufficient load.
3961 */
cfq_update_hw_tag(struct cfq_data * cfqd)3962 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3963 {
3964 struct cfq_queue *cfqq = cfqd->active_queue;
3965
3966 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3967 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3968
3969 if (cfqd->hw_tag == 1)
3970 return;
3971
3972 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3973 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3974 return;
3975
3976 /*
3977 * If active queue hasn't enough requests and can idle, cfq might not
3978 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3979 * case
3980 */
3981 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3982 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3983 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3984 return;
3985
3986 if (cfqd->hw_tag_samples++ < 50)
3987 return;
3988
3989 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3990 cfqd->hw_tag = 1;
3991 else
3992 cfqd->hw_tag = 0;
3993 }
3994
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)3995 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3996 {
3997 struct cfq_io_cq *cic = cfqd->active_cic;
3998
3999 /* If the queue already has requests, don't wait */
4000 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4001 return false;
4002
4003 /* If there are other queues in the group, don't wait */
4004 if (cfqq->cfqg->nr_cfqq > 1)
4005 return false;
4006
4007 /* the only queue in the group, but think time is big */
4008 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4009 return false;
4010
4011 if (cfq_slice_used(cfqq))
4012 return true;
4013
4014 /* if slice left is less than think time, wait busy */
4015 if (cic && sample_valid(cic->ttime.ttime_samples)
4016 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4017 return true;
4018
4019 /*
4020 * If think times is less than a jiffy than ttime_mean=0 and above
4021 * will not be true. It might happen that slice has not expired yet
4022 * but will expire soon (4-5 ns) during select_queue(). To cover the
4023 * case where think time is less than a jiffy, mark the queue wait
4024 * busy if only 1 jiffy is left in the slice.
4025 */
4026 if (cfqq->slice_end - jiffies == 1)
4027 return true;
4028
4029 return false;
4030 }
4031
cfq_completed_request(struct request_queue * q,struct request * rq)4032 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4033 {
4034 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4035 struct cfq_data *cfqd = cfqq->cfqd;
4036 const int sync = rq_is_sync(rq);
4037 unsigned long now;
4038
4039 now = jiffies;
4040 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4041 !!(rq->cmd_flags & REQ_NOIDLE));
4042
4043 cfq_update_hw_tag(cfqd);
4044
4045 WARN_ON(!cfqd->rq_in_driver);
4046 WARN_ON(!cfqq->dispatched);
4047 cfqd->rq_in_driver--;
4048 cfqq->dispatched--;
4049 (RQ_CFQG(rq))->dispatched--;
4050 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4051 rq_io_start_time_ns(rq), rq->cmd_flags);
4052
4053 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4054
4055 if (sync) {
4056 struct cfq_rb_root *st;
4057
4058 RQ_CIC(rq)->ttime.last_end_request = now;
4059
4060 if (cfq_cfqq_on_rr(cfqq))
4061 st = cfqq->service_tree;
4062 else
4063 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4064 cfqq_type(cfqq));
4065
4066 st->ttime.last_end_request = now;
4067 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4068 cfqd->last_delayed_sync = now;
4069 }
4070
4071 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4072 cfqq->cfqg->ttime.last_end_request = now;
4073 #endif
4074
4075 /*
4076 * If this is the active queue, check if it needs to be expired,
4077 * or if we want to idle in case it has no pending requests.
4078 */
4079 if (cfqd->active_queue == cfqq) {
4080 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4081
4082 if (cfq_cfqq_slice_new(cfqq)) {
4083 cfq_set_prio_slice(cfqd, cfqq);
4084 cfq_clear_cfqq_slice_new(cfqq);
4085 }
4086
4087 /*
4088 * Should we wait for next request to come in before we expire
4089 * the queue.
4090 */
4091 if (cfq_should_wait_busy(cfqd, cfqq)) {
4092 unsigned long extend_sl = cfqd->cfq_slice_idle;
4093 if (!cfqd->cfq_slice_idle)
4094 extend_sl = cfqd->cfq_group_idle;
4095 cfqq->slice_end = jiffies + extend_sl;
4096 cfq_mark_cfqq_wait_busy(cfqq);
4097 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4098 }
4099
4100 /*
4101 * Idling is not enabled on:
4102 * - expired queues
4103 * - idle-priority queues
4104 * - async queues
4105 * - queues with still some requests queued
4106 * - when there is a close cooperator
4107 */
4108 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4109 cfq_slice_expired(cfqd, 1);
4110 else if (sync && cfqq_empty &&
4111 !cfq_close_cooperator(cfqd, cfqq)) {
4112 cfq_arm_slice_timer(cfqd);
4113 }
4114 }
4115
4116 if (!cfqd->rq_in_driver)
4117 cfq_schedule_dispatch(cfqd);
4118 }
4119
__cfq_may_queue(struct cfq_queue * cfqq)4120 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4121 {
4122 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4123 cfq_mark_cfqq_must_alloc_slice(cfqq);
4124 return ELV_MQUEUE_MUST;
4125 }
4126
4127 return ELV_MQUEUE_MAY;
4128 }
4129
cfq_may_queue(struct request_queue * q,int rw)4130 static int cfq_may_queue(struct request_queue *q, int rw)
4131 {
4132 struct cfq_data *cfqd = q->elevator->elevator_data;
4133 struct task_struct *tsk = current;
4134 struct cfq_io_cq *cic;
4135 struct cfq_queue *cfqq;
4136
4137 /*
4138 * don't force setup of a queue from here, as a call to may_queue
4139 * does not necessarily imply that a request actually will be queued.
4140 * so just lookup a possibly existing queue, or return 'may queue'
4141 * if that fails
4142 */
4143 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4144 if (!cic)
4145 return ELV_MQUEUE_MAY;
4146
4147 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4148 if (cfqq) {
4149 cfq_init_prio_data(cfqq, cic);
4150
4151 return __cfq_may_queue(cfqq);
4152 }
4153
4154 return ELV_MQUEUE_MAY;
4155 }
4156
4157 /*
4158 * queue lock held here
4159 */
cfq_put_request(struct request * rq)4160 static void cfq_put_request(struct request *rq)
4161 {
4162 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4163
4164 if (cfqq) {
4165 const int rw = rq_data_dir(rq);
4166
4167 BUG_ON(!cfqq->allocated[rw]);
4168 cfqq->allocated[rw]--;
4169
4170 /* Put down rq reference on cfqg */
4171 cfqg_put(RQ_CFQG(rq));
4172 rq->elv.priv[0] = NULL;
4173 rq->elv.priv[1] = NULL;
4174
4175 cfq_put_queue(cfqq);
4176 }
4177 }
4178
4179 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)4180 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4181 struct cfq_queue *cfqq)
4182 {
4183 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4184 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4185 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4186 cfq_put_queue(cfqq);
4187 return cic_to_cfqq(cic, 1);
4188 }
4189
4190 /*
4191 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4192 * was the last process referring to said cfqq.
4193 */
4194 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)4195 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4196 {
4197 if (cfqq_process_refs(cfqq) == 1) {
4198 cfqq->pid = current->pid;
4199 cfq_clear_cfqq_coop(cfqq);
4200 cfq_clear_cfqq_split_coop(cfqq);
4201 return cfqq;
4202 }
4203
4204 cic_set_cfqq(cic, NULL, 1);
4205
4206 cfq_put_cooperator(cfqq);
4207
4208 cfq_put_queue(cfqq);
4209 return NULL;
4210 }
4211 /*
4212 * Allocate cfq data structures associated with this request.
4213 */
4214 static int
cfq_set_request(struct request_queue * q,struct request * rq,struct bio * bio,gfp_t gfp_mask)4215 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4216 gfp_t gfp_mask)
4217 {
4218 struct cfq_data *cfqd = q->elevator->elevator_data;
4219 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4220 const int rw = rq_data_dir(rq);
4221 const bool is_sync = rq_is_sync(rq);
4222 struct cfq_queue *cfqq;
4223
4224 might_sleep_if(gfp_mask & __GFP_WAIT);
4225
4226 spin_lock_irq(q->queue_lock);
4227
4228 check_ioprio_changed(cic, bio);
4229 check_blkcg_changed(cic, bio);
4230 new_queue:
4231 cfqq = cic_to_cfqq(cic, is_sync);
4232 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4233 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4234 cic_set_cfqq(cic, cfqq, is_sync);
4235 } else {
4236 /*
4237 * If the queue was seeky for too long, break it apart.
4238 */
4239 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4240 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4241 cfqq = split_cfqq(cic, cfqq);
4242 if (!cfqq)
4243 goto new_queue;
4244 }
4245
4246 /*
4247 * Check to see if this queue is scheduled to merge with
4248 * another, closely cooperating queue. The merging of
4249 * queues happens here as it must be done in process context.
4250 * The reference on new_cfqq was taken in merge_cfqqs.
4251 */
4252 if (cfqq->new_cfqq)
4253 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4254 }
4255
4256 cfqq->allocated[rw]++;
4257
4258 cfqq->ref++;
4259 cfqg_get(cfqq->cfqg);
4260 rq->elv.priv[0] = cfqq;
4261 rq->elv.priv[1] = cfqq->cfqg;
4262 spin_unlock_irq(q->queue_lock);
4263 return 0;
4264 }
4265
cfq_kick_queue(struct work_struct * work)4266 static void cfq_kick_queue(struct work_struct *work)
4267 {
4268 struct cfq_data *cfqd =
4269 container_of(work, struct cfq_data, unplug_work);
4270 struct request_queue *q = cfqd->queue;
4271
4272 spin_lock_irq(q->queue_lock);
4273 __blk_run_queue(cfqd->queue);
4274 spin_unlock_irq(q->queue_lock);
4275 }
4276
4277 /*
4278 * Timer running if the active_queue is currently idling inside its time slice
4279 */
cfq_idle_slice_timer(unsigned long data)4280 static void cfq_idle_slice_timer(unsigned long data)
4281 {
4282 struct cfq_data *cfqd = (struct cfq_data *) data;
4283 struct cfq_queue *cfqq;
4284 unsigned long flags;
4285 int timed_out = 1;
4286
4287 cfq_log(cfqd, "idle timer fired");
4288
4289 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4290
4291 cfqq = cfqd->active_queue;
4292 if (cfqq) {
4293 timed_out = 0;
4294
4295 /*
4296 * We saw a request before the queue expired, let it through
4297 */
4298 if (cfq_cfqq_must_dispatch(cfqq))
4299 goto out_kick;
4300
4301 /*
4302 * expired
4303 */
4304 if (cfq_slice_used(cfqq))
4305 goto expire;
4306
4307 /*
4308 * only expire and reinvoke request handler, if there are
4309 * other queues with pending requests
4310 */
4311 if (!cfqd->busy_queues)
4312 goto out_cont;
4313
4314 /*
4315 * not expired and it has a request pending, let it dispatch
4316 */
4317 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4318 goto out_kick;
4319
4320 /*
4321 * Queue depth flag is reset only when the idle didn't succeed
4322 */
4323 cfq_clear_cfqq_deep(cfqq);
4324 }
4325 expire:
4326 cfq_slice_expired(cfqd, timed_out);
4327 out_kick:
4328 cfq_schedule_dispatch(cfqd);
4329 out_cont:
4330 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4331 }
4332
cfq_shutdown_timer_wq(struct cfq_data * cfqd)4333 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4334 {
4335 del_timer_sync(&cfqd->idle_slice_timer);
4336 cancel_work_sync(&cfqd->unplug_work);
4337 }
4338
cfq_put_async_queues(struct cfq_data * cfqd)4339 static void cfq_put_async_queues(struct cfq_data *cfqd)
4340 {
4341 int i;
4342
4343 for (i = 0; i < IOPRIO_BE_NR; i++) {
4344 if (cfqd->async_cfqq[0][i])
4345 cfq_put_queue(cfqd->async_cfqq[0][i]);
4346 if (cfqd->async_cfqq[1][i])
4347 cfq_put_queue(cfqd->async_cfqq[1][i]);
4348 }
4349
4350 if (cfqd->async_idle_cfqq)
4351 cfq_put_queue(cfqd->async_idle_cfqq);
4352 }
4353
cfq_exit_queue(struct elevator_queue * e)4354 static void cfq_exit_queue(struct elevator_queue *e)
4355 {
4356 struct cfq_data *cfqd = e->elevator_data;
4357 struct request_queue *q = cfqd->queue;
4358
4359 cfq_shutdown_timer_wq(cfqd);
4360
4361 spin_lock_irq(q->queue_lock);
4362
4363 if (cfqd->active_queue)
4364 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4365
4366 cfq_put_async_queues(cfqd);
4367
4368 spin_unlock_irq(q->queue_lock);
4369
4370 cfq_shutdown_timer_wq(cfqd);
4371
4372 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4373 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4374 #else
4375 kfree(cfqd->root_group);
4376 #endif
4377 kfree(cfqd);
4378 }
4379
cfq_init_queue(struct request_queue * q,struct elevator_type * e)4380 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4381 {
4382 struct cfq_data *cfqd;
4383 struct blkcg_gq *blkg __maybe_unused;
4384 int i, ret;
4385 struct elevator_queue *eq;
4386
4387 eq = elevator_alloc(q, e);
4388 if (!eq)
4389 return -ENOMEM;
4390
4391 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4392 if (!cfqd) {
4393 kobject_put(&eq->kobj);
4394 return -ENOMEM;
4395 }
4396 eq->elevator_data = cfqd;
4397
4398 cfqd->queue = q;
4399 spin_lock_irq(q->queue_lock);
4400 q->elevator = eq;
4401 spin_unlock_irq(q->queue_lock);
4402
4403 /* Init root service tree */
4404 cfqd->grp_service_tree = CFQ_RB_ROOT;
4405
4406 /* Init root group and prefer root group over other groups by default */
4407 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4408 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4409 if (ret)
4410 goto out_free;
4411
4412 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4413 #else
4414 ret = -ENOMEM;
4415 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4416 GFP_KERNEL, cfqd->queue->node);
4417 if (!cfqd->root_group)
4418 goto out_free;
4419
4420 cfq_init_cfqg_base(cfqd->root_group);
4421 #endif
4422 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4423 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4424
4425 /*
4426 * Not strictly needed (since RB_ROOT just clears the node and we
4427 * zeroed cfqd on alloc), but better be safe in case someone decides
4428 * to add magic to the rb code
4429 */
4430 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4431 cfqd->prio_trees[i] = RB_ROOT;
4432
4433 /*
4434 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4435 * Grab a permanent reference to it, so that the normal code flow
4436 * will not attempt to free it. oom_cfqq is linked to root_group
4437 * but shouldn't hold a reference as it'll never be unlinked. Lose
4438 * the reference from linking right away.
4439 */
4440 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4441 cfqd->oom_cfqq.ref++;
4442
4443 spin_lock_irq(q->queue_lock);
4444 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4445 cfqg_put(cfqd->root_group);
4446 spin_unlock_irq(q->queue_lock);
4447
4448 init_timer(&cfqd->idle_slice_timer);
4449 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4450 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4451
4452 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4453
4454 cfqd->cfq_quantum = cfq_quantum;
4455 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4456 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4457 cfqd->cfq_back_max = cfq_back_max;
4458 cfqd->cfq_back_penalty = cfq_back_penalty;
4459 cfqd->cfq_slice[0] = cfq_slice_async;
4460 cfqd->cfq_slice[1] = cfq_slice_sync;
4461 cfqd->cfq_target_latency = cfq_target_latency;
4462 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4463 cfqd->cfq_slice_idle = cfq_slice_idle;
4464 cfqd->cfq_group_idle = cfq_group_idle;
4465 cfqd->cfq_latency = 1;
4466 cfqd->hw_tag = -1;
4467 /*
4468 * we optimistically start assuming sync ops weren't delayed in last
4469 * second, in order to have larger depth for async operations.
4470 */
4471 cfqd->last_delayed_sync = jiffies - HZ;
4472 return 0;
4473
4474 out_free:
4475 kfree(cfqd);
4476 kobject_put(&eq->kobj);
4477 return ret;
4478 }
4479
4480 /*
4481 * sysfs parts below -->
4482 */
4483 static ssize_t
cfq_var_show(unsigned int var,char * page)4484 cfq_var_show(unsigned int var, char *page)
4485 {
4486 return sprintf(page, "%u\n", var);
4487 }
4488
4489 static ssize_t
cfq_var_store(unsigned int * var,const char * page,size_t count)4490 cfq_var_store(unsigned int *var, const char *page, size_t count)
4491 {
4492 char *p = (char *) page;
4493
4494 *var = simple_strtoul(p, &p, 10);
4495 return count;
4496 }
4497
4498 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4499 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4500 { \
4501 struct cfq_data *cfqd = e->elevator_data; \
4502 unsigned int __data = __VAR; \
4503 if (__CONV) \
4504 __data = jiffies_to_msecs(__data); \
4505 return cfq_var_show(__data, (page)); \
4506 }
4507 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4508 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4509 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4510 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4511 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4512 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4513 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4514 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4515 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4516 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4517 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4518 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4519 #undef SHOW_FUNCTION
4520
4521 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4522 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4523 { \
4524 struct cfq_data *cfqd = e->elevator_data; \
4525 unsigned int __data; \
4526 int ret = cfq_var_store(&__data, (page), count); \
4527 if (__data < (MIN)) \
4528 __data = (MIN); \
4529 else if (__data > (MAX)) \
4530 __data = (MAX); \
4531 if (__CONV) \
4532 *(__PTR) = msecs_to_jiffies(__data); \
4533 else \
4534 *(__PTR) = __data; \
4535 return ret; \
4536 }
4537 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4538 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4539 UINT_MAX, 1);
4540 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4541 UINT_MAX, 1);
4542 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4543 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4544 UINT_MAX, 0);
4545 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4546 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4547 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4548 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4549 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4550 UINT_MAX, 0);
4551 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4552 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4553 #undef STORE_FUNCTION
4554
4555 #define CFQ_ATTR(name) \
4556 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4557
4558 static struct elv_fs_entry cfq_attrs[] = {
4559 CFQ_ATTR(quantum),
4560 CFQ_ATTR(fifo_expire_sync),
4561 CFQ_ATTR(fifo_expire_async),
4562 CFQ_ATTR(back_seek_max),
4563 CFQ_ATTR(back_seek_penalty),
4564 CFQ_ATTR(slice_sync),
4565 CFQ_ATTR(slice_async),
4566 CFQ_ATTR(slice_async_rq),
4567 CFQ_ATTR(slice_idle),
4568 CFQ_ATTR(group_idle),
4569 CFQ_ATTR(low_latency),
4570 CFQ_ATTR(target_latency),
4571 __ATTR_NULL
4572 };
4573
4574 static struct elevator_type iosched_cfq = {
4575 .ops = {
4576 .elevator_merge_fn = cfq_merge,
4577 .elevator_merged_fn = cfq_merged_request,
4578 .elevator_merge_req_fn = cfq_merged_requests,
4579 .elevator_allow_merge_fn = cfq_allow_merge,
4580 .elevator_bio_merged_fn = cfq_bio_merged,
4581 .elevator_dispatch_fn = cfq_dispatch_requests,
4582 .elevator_add_req_fn = cfq_insert_request,
4583 .elevator_activate_req_fn = cfq_activate_request,
4584 .elevator_deactivate_req_fn = cfq_deactivate_request,
4585 .elevator_completed_req_fn = cfq_completed_request,
4586 .elevator_former_req_fn = elv_rb_former_request,
4587 .elevator_latter_req_fn = elv_rb_latter_request,
4588 .elevator_init_icq_fn = cfq_init_icq,
4589 .elevator_exit_icq_fn = cfq_exit_icq,
4590 .elevator_set_req_fn = cfq_set_request,
4591 .elevator_put_req_fn = cfq_put_request,
4592 .elevator_may_queue_fn = cfq_may_queue,
4593 .elevator_init_fn = cfq_init_queue,
4594 .elevator_exit_fn = cfq_exit_queue,
4595 },
4596 .icq_size = sizeof(struct cfq_io_cq),
4597 .icq_align = __alignof__(struct cfq_io_cq),
4598 .elevator_attrs = cfq_attrs,
4599 .elevator_name = "cfq",
4600 .elevator_owner = THIS_MODULE,
4601 };
4602
4603 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4604 static struct blkcg_policy blkcg_policy_cfq = {
4605 .pd_size = sizeof(struct cfq_group),
4606 .cftypes = cfq_blkcg_files,
4607
4608 .pd_init_fn = cfq_pd_init,
4609 .pd_offline_fn = cfq_pd_offline,
4610 .pd_reset_stats_fn = cfq_pd_reset_stats,
4611 };
4612 #endif
4613
cfq_init(void)4614 static int __init cfq_init(void)
4615 {
4616 int ret;
4617
4618 /*
4619 * could be 0 on HZ < 1000 setups
4620 */
4621 if (!cfq_slice_async)
4622 cfq_slice_async = 1;
4623 if (!cfq_slice_idle)
4624 cfq_slice_idle = 1;
4625
4626 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4627 if (!cfq_group_idle)
4628 cfq_group_idle = 1;
4629
4630 ret = blkcg_policy_register(&blkcg_policy_cfq);
4631 if (ret)
4632 return ret;
4633 #else
4634 cfq_group_idle = 0;
4635 #endif
4636
4637 ret = -ENOMEM;
4638 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4639 if (!cfq_pool)
4640 goto err_pol_unreg;
4641
4642 ret = elv_register(&iosched_cfq);
4643 if (ret)
4644 goto err_free_pool;
4645
4646 return 0;
4647
4648 err_free_pool:
4649 kmem_cache_destroy(cfq_pool);
4650 err_pol_unreg:
4651 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4652 blkcg_policy_unregister(&blkcg_policy_cfq);
4653 #endif
4654 return ret;
4655 }
4656
cfq_exit(void)4657 static void __exit cfq_exit(void)
4658 {
4659 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4660 blkcg_policy_unregister(&blkcg_policy_cfq);
4661 #endif
4662 elv_unregister(&iosched_cfq);
4663 kmem_cache_destroy(cfq_pool);
4664 }
4665
4666 module_init(cfq_init);
4667 module_exit(cfq_exit);
4668
4669 MODULE_AUTHOR("Jens Axboe");
4670 MODULE_LICENSE("GPL");
4671 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4672