1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descripter */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descripter */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descripter bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descripter bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[0]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 struct phy_device *phy_dev;
409 int duplex;
410 int speed;
411 int link;
412 struct work_struct restart_work;
413
414 /*
415 * Transmitting: Batch Mode.
416 * 1 BD in 1 TxFD.
417 * Receiving: Non-Packing Mode.
418 * 1 circular FD for Free Buffer List.
419 * RX_BUF_NUM BD in Free Buffer FD.
420 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
421 */
422 void *fd_buf; /* for TxFD, RxFD, FrFD */
423 dma_addr_t fd_buf_dma;
424 struct TxFD *tfd_base;
425 unsigned int tfd_start;
426 unsigned int tfd_end;
427 struct RxFD *rfd_base;
428 struct RxFD *rfd_limit;
429 struct RxFD *rfd_cur;
430 struct FrFD *fbl_ptr;
431 unsigned int fbl_count;
432 struct {
433 struct sk_buff *skb;
434 dma_addr_t skb_dma;
435 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436 u32 msg_enable;
437 enum tc35815_chiptype chiptype;
438 };
439
fd_virt_to_bus(struct tc35815_local * lp,void * virt)440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441 {
442 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443 }
444 #ifdef DEBUG
fd_bus_to_virt(struct tc35815_local * lp,dma_addr_t bus)445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446 {
447 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448 }
449 #endif
alloc_rxbuf_skb(struct net_device * dev,struct pci_dev * hwdev,dma_addr_t * dma_handle)450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451 struct pci_dev *hwdev,
452 dma_addr_t *dma_handle)
453 {
454 struct sk_buff *skb;
455 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
456 if (!skb)
457 return NULL;
458 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459 PCI_DMA_FROMDEVICE);
460 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461 dev_kfree_skb_any(skb);
462 return NULL;
463 }
464 skb_reserve(skb, 2); /* make IP header 4byte aligned */
465 return skb;
466 }
467
free_rxbuf_skb(struct pci_dev * hwdev,struct sk_buff * skb,dma_addr_t dma_handle)468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469 {
470 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471 PCI_DMA_FROMDEVICE);
472 dev_kfree_skb_any(skb);
473 }
474
475 /* Index to functions, as function prototypes. */
476
477 static int tc35815_open(struct net_device *dev);
478 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
480 static int tc35815_rx(struct net_device *dev, int limit);
481 static int tc35815_poll(struct napi_struct *napi, int budget);
482 static void tc35815_txdone(struct net_device *dev);
483 static int tc35815_close(struct net_device *dev);
484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void tc35815_set_multicast_list(struct net_device *dev);
486 static void tc35815_tx_timeout(struct net_device *dev);
487 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488 #ifdef CONFIG_NET_POLL_CONTROLLER
489 static void tc35815_poll_controller(struct net_device *dev);
490 #endif
491 static const struct ethtool_ops tc35815_ethtool_ops;
492
493 /* Example routines you must write ;->. */
494 static void tc35815_chip_reset(struct net_device *dev);
495 static void tc35815_chip_init(struct net_device *dev);
496
497 #ifdef DEBUG
498 static void panic_queues(struct net_device *dev);
499 #endif
500
501 static void tc35815_restart_work(struct work_struct *work);
502
tc_mdio_read(struct mii_bus * bus,int mii_id,int regnum)503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504 {
505 struct net_device *dev = bus->priv;
506 struct tc35815_regs __iomem *tr =
507 (struct tc35815_regs __iomem *)dev->base_addr;
508 unsigned long timeout = jiffies + HZ;
509
510 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511 udelay(12); /* it takes 32 x 400ns at least */
512 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513 if (time_after(jiffies, timeout))
514 return -EIO;
515 cpu_relax();
516 }
517 return tc_readl(&tr->MD_Data) & 0xffff;
518 }
519
tc_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 val)520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521 {
522 struct net_device *dev = bus->priv;
523 struct tc35815_regs __iomem *tr =
524 (struct tc35815_regs __iomem *)dev->base_addr;
525 unsigned long timeout = jiffies + HZ;
526
527 tc_writel(val, &tr->MD_Data);
528 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529 &tr->MD_CA);
530 udelay(12); /* it takes 32 x 400ns at least */
531 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532 if (time_after(jiffies, timeout))
533 return -EIO;
534 cpu_relax();
535 }
536 return 0;
537 }
538
tc_handle_link_change(struct net_device * dev)539 static void tc_handle_link_change(struct net_device *dev)
540 {
541 struct tc35815_local *lp = netdev_priv(dev);
542 struct phy_device *phydev = lp->phy_dev;
543 unsigned long flags;
544 int status_change = 0;
545
546 spin_lock_irqsave(&lp->lock, flags);
547 if (phydev->link &&
548 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549 struct tc35815_regs __iomem *tr =
550 (struct tc35815_regs __iomem *)dev->base_addr;
551 u32 reg;
552
553 reg = tc_readl(&tr->MAC_Ctl);
554 reg |= MAC_HaltReq;
555 tc_writel(reg, &tr->MAC_Ctl);
556 if (phydev->duplex == DUPLEX_FULL)
557 reg |= MAC_FullDup;
558 else
559 reg &= ~MAC_FullDup;
560 tc_writel(reg, &tr->MAC_Ctl);
561 reg &= ~MAC_HaltReq;
562 tc_writel(reg, &tr->MAC_Ctl);
563
564 /*
565 * TX4939 PCFG.SPEEDn bit will be changed on
566 * NETDEV_CHANGE event.
567 */
568 /*
569 * WORKAROUND: enable LostCrS only if half duplex
570 * operation.
571 * (TX4939 does not have EnLCarr)
572 */
573 if (phydev->duplex == DUPLEX_HALF &&
574 lp->chiptype != TC35815_TX4939)
575 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576 &tr->Tx_Ctl);
577
578 lp->speed = phydev->speed;
579 lp->duplex = phydev->duplex;
580 status_change = 1;
581 }
582
583 if (phydev->link != lp->link) {
584 if (phydev->link) {
585 /* delayed promiscuous enabling */
586 if (dev->flags & IFF_PROMISC)
587 tc35815_set_multicast_list(dev);
588 } else {
589 lp->speed = 0;
590 lp->duplex = -1;
591 }
592 lp->link = phydev->link;
593
594 status_change = 1;
595 }
596 spin_unlock_irqrestore(&lp->lock, flags);
597
598 if (status_change && netif_msg_link(lp)) {
599 phy_print_status(phydev);
600 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601 dev->name,
602 phy_read(phydev, MII_BMCR),
603 phy_read(phydev, MII_BMSR),
604 phy_read(phydev, MII_LPA));
605 }
606 }
607
tc_mii_probe(struct net_device * dev)608 static int tc_mii_probe(struct net_device *dev)
609 {
610 struct tc35815_local *lp = netdev_priv(dev);
611 struct phy_device *phydev = NULL;
612 int phy_addr;
613 u32 dropmask;
614
615 /* find the first phy */
616 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
617 if (lp->mii_bus->phy_map[phy_addr]) {
618 if (phydev) {
619 printk(KERN_ERR "%s: multiple PHYs found\n",
620 dev->name);
621 return -EINVAL;
622 }
623 phydev = lp->mii_bus->phy_map[phy_addr];
624 break;
625 }
626 }
627
628 if (!phydev) {
629 printk(KERN_ERR "%s: no PHY found\n", dev->name);
630 return -ENODEV;
631 }
632
633 /* attach the mac to the phy */
634 phydev = phy_connect(dev, dev_name(&phydev->dev),
635 &tc_handle_link_change,
636 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
637 if (IS_ERR(phydev)) {
638 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
639 return PTR_ERR(phydev);
640 }
641 printk(KERN_INFO "%s: attached PHY driver [%s] "
642 "(mii_bus:phy_addr=%s, id=%x)\n",
643 dev->name, phydev->drv->name, dev_name(&phydev->dev),
644 phydev->phy_id);
645
646 /* mask with MAC supported features */
647 phydev->supported &= PHY_BASIC_FEATURES;
648 dropmask = 0;
649 if (options.speed == 10)
650 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
651 else if (options.speed == 100)
652 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
653 if (options.duplex == 1)
654 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
655 else if (options.duplex == 2)
656 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
657 phydev->supported &= ~dropmask;
658 phydev->advertising = phydev->supported;
659
660 lp->link = 0;
661 lp->speed = 0;
662 lp->duplex = -1;
663 lp->phy_dev = phydev;
664
665 return 0;
666 }
667
tc_mii_init(struct net_device * dev)668 static int tc_mii_init(struct net_device *dev)
669 {
670 struct tc35815_local *lp = netdev_priv(dev);
671 int err;
672 int i;
673
674 lp->mii_bus = mdiobus_alloc();
675 if (lp->mii_bus == NULL) {
676 err = -ENOMEM;
677 goto err_out;
678 }
679
680 lp->mii_bus->name = "tc35815_mii_bus";
681 lp->mii_bus->read = tc_mdio_read;
682 lp->mii_bus->write = tc_mdio_write;
683 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
684 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
685 lp->mii_bus->priv = dev;
686 lp->mii_bus->parent = &lp->pci_dev->dev;
687 lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
688 if (!lp->mii_bus->irq) {
689 err = -ENOMEM;
690 goto err_out_free_mii_bus;
691 }
692
693 for (i = 0; i < PHY_MAX_ADDR; i++)
694 lp->mii_bus->irq[i] = PHY_POLL;
695
696 err = mdiobus_register(lp->mii_bus);
697 if (err)
698 goto err_out_free_mdio_irq;
699 err = tc_mii_probe(dev);
700 if (err)
701 goto err_out_unregister_bus;
702 return 0;
703
704 err_out_unregister_bus:
705 mdiobus_unregister(lp->mii_bus);
706 err_out_free_mdio_irq:
707 kfree(lp->mii_bus->irq);
708 err_out_free_mii_bus:
709 mdiobus_free(lp->mii_bus);
710 err_out:
711 return err;
712 }
713
714 #ifdef CONFIG_CPU_TX49XX
715 /*
716 * Find a platform_device providing a MAC address. The platform code
717 * should provide a "tc35815-mac" device with a MAC address in its
718 * platform_data.
719 */
tc35815_mac_match(struct device * dev,void * data)720 static int tc35815_mac_match(struct device *dev, void *data)
721 {
722 struct platform_device *plat_dev = to_platform_device(dev);
723 struct pci_dev *pci_dev = data;
724 unsigned int id = pci_dev->irq;
725 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
726 }
727
tc35815_read_plat_dev_addr(struct net_device * dev)728 static int tc35815_read_plat_dev_addr(struct net_device *dev)
729 {
730 struct tc35815_local *lp = netdev_priv(dev);
731 struct device *pd = bus_find_device(&platform_bus_type, NULL,
732 lp->pci_dev, tc35815_mac_match);
733 if (pd) {
734 if (pd->platform_data)
735 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
736 put_device(pd);
737 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
738 }
739 return -ENODEV;
740 }
741 #else
tc35815_read_plat_dev_addr(struct net_device * dev)742 static int tc35815_read_plat_dev_addr(struct net_device *dev)
743 {
744 return -ENODEV;
745 }
746 #endif
747
tc35815_init_dev_addr(struct net_device * dev)748 static int tc35815_init_dev_addr(struct net_device *dev)
749 {
750 struct tc35815_regs __iomem *tr =
751 (struct tc35815_regs __iomem *)dev->base_addr;
752 int i;
753
754 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
755 ;
756 for (i = 0; i < 6; i += 2) {
757 unsigned short data;
758 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
759 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
760 ;
761 data = tc_readl(&tr->PROM_Data);
762 dev->dev_addr[i] = data & 0xff;
763 dev->dev_addr[i+1] = data >> 8;
764 }
765 if (!is_valid_ether_addr(dev->dev_addr))
766 return tc35815_read_plat_dev_addr(dev);
767 return 0;
768 }
769
770 static const struct net_device_ops tc35815_netdev_ops = {
771 .ndo_open = tc35815_open,
772 .ndo_stop = tc35815_close,
773 .ndo_start_xmit = tc35815_send_packet,
774 .ndo_get_stats = tc35815_get_stats,
775 .ndo_set_rx_mode = tc35815_set_multicast_list,
776 .ndo_tx_timeout = tc35815_tx_timeout,
777 .ndo_do_ioctl = tc35815_ioctl,
778 .ndo_validate_addr = eth_validate_addr,
779 .ndo_change_mtu = eth_change_mtu,
780 .ndo_set_mac_address = eth_mac_addr,
781 #ifdef CONFIG_NET_POLL_CONTROLLER
782 .ndo_poll_controller = tc35815_poll_controller,
783 #endif
784 };
785
tc35815_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)786 static int tc35815_init_one(struct pci_dev *pdev,
787 const struct pci_device_id *ent)
788 {
789 void __iomem *ioaddr = NULL;
790 struct net_device *dev;
791 struct tc35815_local *lp;
792 int rc;
793
794 static int printed_version;
795 if (!printed_version++) {
796 printk(version);
797 dev_printk(KERN_DEBUG, &pdev->dev,
798 "speed:%d duplex:%d\n",
799 options.speed, options.duplex);
800 }
801
802 if (!pdev->irq) {
803 dev_warn(&pdev->dev, "no IRQ assigned.\n");
804 return -ENODEV;
805 }
806
807 /* dev zeroed in alloc_etherdev */
808 dev = alloc_etherdev(sizeof(*lp));
809 if (dev == NULL)
810 return -ENOMEM;
811
812 SET_NETDEV_DEV(dev, &pdev->dev);
813 lp = netdev_priv(dev);
814 lp->dev = dev;
815
816 /* enable device (incl. PCI PM wakeup), and bus-mastering */
817 rc = pcim_enable_device(pdev);
818 if (rc)
819 goto err_out;
820 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
821 if (rc)
822 goto err_out;
823 pci_set_master(pdev);
824 ioaddr = pcim_iomap_table(pdev)[1];
825
826 /* Initialize the device structure. */
827 dev->netdev_ops = &tc35815_netdev_ops;
828 dev->ethtool_ops = &tc35815_ethtool_ops;
829 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
830 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
831
832 dev->irq = pdev->irq;
833 dev->base_addr = (unsigned long)ioaddr;
834
835 INIT_WORK(&lp->restart_work, tc35815_restart_work);
836 spin_lock_init(&lp->lock);
837 spin_lock_init(&lp->rx_lock);
838 lp->pci_dev = pdev;
839 lp->chiptype = ent->driver_data;
840
841 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
842 pci_set_drvdata(pdev, dev);
843
844 /* Soft reset the chip. */
845 tc35815_chip_reset(dev);
846
847 /* Retrieve the ethernet address. */
848 if (tc35815_init_dev_addr(dev)) {
849 dev_warn(&pdev->dev, "not valid ether addr\n");
850 eth_hw_addr_random(dev);
851 }
852
853 rc = register_netdev(dev);
854 if (rc)
855 goto err_out;
856
857 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
858 dev->name,
859 chip_info[ent->driver_data].name,
860 dev->base_addr,
861 dev->dev_addr,
862 dev->irq);
863
864 rc = tc_mii_init(dev);
865 if (rc)
866 goto err_out_unregister;
867
868 return 0;
869
870 err_out_unregister:
871 unregister_netdev(dev);
872 err_out:
873 free_netdev(dev);
874 return rc;
875 }
876
877
tc35815_remove_one(struct pci_dev * pdev)878 static void tc35815_remove_one(struct pci_dev *pdev)
879 {
880 struct net_device *dev = pci_get_drvdata(pdev);
881 struct tc35815_local *lp = netdev_priv(dev);
882
883 phy_disconnect(lp->phy_dev);
884 mdiobus_unregister(lp->mii_bus);
885 kfree(lp->mii_bus->irq);
886 mdiobus_free(lp->mii_bus);
887 unregister_netdev(dev);
888 free_netdev(dev);
889 }
890
891 static int
tc35815_init_queues(struct net_device * dev)892 tc35815_init_queues(struct net_device *dev)
893 {
894 struct tc35815_local *lp = netdev_priv(dev);
895 int i;
896 unsigned long fd_addr;
897
898 if (!lp->fd_buf) {
899 BUG_ON(sizeof(struct FDesc) +
900 sizeof(struct BDesc) * RX_BUF_NUM +
901 sizeof(struct FDesc) * RX_FD_NUM +
902 sizeof(struct TxFD) * TX_FD_NUM >
903 PAGE_SIZE * FD_PAGE_NUM);
904
905 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
906 PAGE_SIZE * FD_PAGE_NUM,
907 &lp->fd_buf_dma);
908 if (!lp->fd_buf)
909 return -ENOMEM;
910 for (i = 0; i < RX_BUF_NUM; i++) {
911 lp->rx_skbs[i].skb =
912 alloc_rxbuf_skb(dev, lp->pci_dev,
913 &lp->rx_skbs[i].skb_dma);
914 if (!lp->rx_skbs[i].skb) {
915 while (--i >= 0) {
916 free_rxbuf_skb(lp->pci_dev,
917 lp->rx_skbs[i].skb,
918 lp->rx_skbs[i].skb_dma);
919 lp->rx_skbs[i].skb = NULL;
920 }
921 pci_free_consistent(lp->pci_dev,
922 PAGE_SIZE * FD_PAGE_NUM,
923 lp->fd_buf,
924 lp->fd_buf_dma);
925 lp->fd_buf = NULL;
926 return -ENOMEM;
927 }
928 }
929 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
930 dev->name, lp->fd_buf);
931 printk("\n");
932 } else {
933 for (i = 0; i < FD_PAGE_NUM; i++)
934 clear_page((void *)((unsigned long)lp->fd_buf +
935 i * PAGE_SIZE));
936 }
937 fd_addr = (unsigned long)lp->fd_buf;
938
939 /* Free Descriptors (for Receive) */
940 lp->rfd_base = (struct RxFD *)fd_addr;
941 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
942 for (i = 0; i < RX_FD_NUM; i++)
943 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
944 lp->rfd_cur = lp->rfd_base;
945 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
946
947 /* Transmit Descriptors */
948 lp->tfd_base = (struct TxFD *)fd_addr;
949 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
950 for (i = 0; i < TX_FD_NUM; i++) {
951 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
952 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
953 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
954 }
955 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
956 lp->tfd_start = 0;
957 lp->tfd_end = 0;
958
959 /* Buffer List (for Receive) */
960 lp->fbl_ptr = (struct FrFD *)fd_addr;
961 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
962 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
963 /*
964 * move all allocated skbs to head of rx_skbs[] array.
965 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
966 * tc35815_rx() had failed.
967 */
968 lp->fbl_count = 0;
969 for (i = 0; i < RX_BUF_NUM; i++) {
970 if (lp->rx_skbs[i].skb) {
971 if (i != lp->fbl_count) {
972 lp->rx_skbs[lp->fbl_count].skb =
973 lp->rx_skbs[i].skb;
974 lp->rx_skbs[lp->fbl_count].skb_dma =
975 lp->rx_skbs[i].skb_dma;
976 }
977 lp->fbl_count++;
978 }
979 }
980 for (i = 0; i < RX_BUF_NUM; i++) {
981 if (i >= lp->fbl_count) {
982 lp->fbl_ptr->bd[i].BuffData = 0;
983 lp->fbl_ptr->bd[i].BDCtl = 0;
984 continue;
985 }
986 lp->fbl_ptr->bd[i].BuffData =
987 cpu_to_le32(lp->rx_skbs[i].skb_dma);
988 /* BDID is index of FrFD.bd[] */
989 lp->fbl_ptr->bd[i].BDCtl =
990 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
991 RX_BUF_SIZE);
992 }
993
994 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
995 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
996 return 0;
997 }
998
999 static void
tc35815_clear_queues(struct net_device * dev)1000 tc35815_clear_queues(struct net_device *dev)
1001 {
1002 struct tc35815_local *lp = netdev_priv(dev);
1003 int i;
1004
1005 for (i = 0; i < TX_FD_NUM; i++) {
1006 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1007 struct sk_buff *skb =
1008 fdsystem != 0xffffffff ?
1009 lp->tx_skbs[fdsystem].skb : NULL;
1010 #ifdef DEBUG
1011 if (lp->tx_skbs[i].skb != skb) {
1012 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1013 panic_queues(dev);
1014 }
1015 #else
1016 BUG_ON(lp->tx_skbs[i].skb != skb);
1017 #endif
1018 if (skb) {
1019 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1020 lp->tx_skbs[i].skb = NULL;
1021 lp->tx_skbs[i].skb_dma = 0;
1022 dev_kfree_skb_any(skb);
1023 }
1024 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1025 }
1026
1027 tc35815_init_queues(dev);
1028 }
1029
1030 static void
tc35815_free_queues(struct net_device * dev)1031 tc35815_free_queues(struct net_device *dev)
1032 {
1033 struct tc35815_local *lp = netdev_priv(dev);
1034 int i;
1035
1036 if (lp->tfd_base) {
1037 for (i = 0; i < TX_FD_NUM; i++) {
1038 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1039 struct sk_buff *skb =
1040 fdsystem != 0xffffffff ?
1041 lp->tx_skbs[fdsystem].skb : NULL;
1042 #ifdef DEBUG
1043 if (lp->tx_skbs[i].skb != skb) {
1044 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1045 panic_queues(dev);
1046 }
1047 #else
1048 BUG_ON(lp->tx_skbs[i].skb != skb);
1049 #endif
1050 if (skb) {
1051 dev_kfree_skb(skb);
1052 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1053 lp->tx_skbs[i].skb = NULL;
1054 lp->tx_skbs[i].skb_dma = 0;
1055 }
1056 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1057 }
1058 }
1059
1060 lp->rfd_base = NULL;
1061 lp->rfd_limit = NULL;
1062 lp->rfd_cur = NULL;
1063 lp->fbl_ptr = NULL;
1064
1065 for (i = 0; i < RX_BUF_NUM; i++) {
1066 if (lp->rx_skbs[i].skb) {
1067 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1068 lp->rx_skbs[i].skb_dma);
1069 lp->rx_skbs[i].skb = NULL;
1070 }
1071 }
1072 if (lp->fd_buf) {
1073 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1074 lp->fd_buf, lp->fd_buf_dma);
1075 lp->fd_buf = NULL;
1076 }
1077 }
1078
1079 static void
dump_txfd(struct TxFD * fd)1080 dump_txfd(struct TxFD *fd)
1081 {
1082 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1083 le32_to_cpu(fd->fd.FDNext),
1084 le32_to_cpu(fd->fd.FDSystem),
1085 le32_to_cpu(fd->fd.FDStat),
1086 le32_to_cpu(fd->fd.FDCtl));
1087 printk("BD: ");
1088 printk(" %08x %08x",
1089 le32_to_cpu(fd->bd.BuffData),
1090 le32_to_cpu(fd->bd.BDCtl));
1091 printk("\n");
1092 }
1093
1094 static int
dump_rxfd(struct RxFD * fd)1095 dump_rxfd(struct RxFD *fd)
1096 {
1097 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1098 if (bd_count > 8)
1099 bd_count = 8;
1100 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1101 le32_to_cpu(fd->fd.FDNext),
1102 le32_to_cpu(fd->fd.FDSystem),
1103 le32_to_cpu(fd->fd.FDStat),
1104 le32_to_cpu(fd->fd.FDCtl));
1105 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1106 return 0;
1107 printk("BD: ");
1108 for (i = 0; i < bd_count; i++)
1109 printk(" %08x %08x",
1110 le32_to_cpu(fd->bd[i].BuffData),
1111 le32_to_cpu(fd->bd[i].BDCtl));
1112 printk("\n");
1113 return bd_count;
1114 }
1115
1116 #ifdef DEBUG
1117 static void
dump_frfd(struct FrFD * fd)1118 dump_frfd(struct FrFD *fd)
1119 {
1120 int i;
1121 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1122 le32_to_cpu(fd->fd.FDNext),
1123 le32_to_cpu(fd->fd.FDSystem),
1124 le32_to_cpu(fd->fd.FDStat),
1125 le32_to_cpu(fd->fd.FDCtl));
1126 printk("BD: ");
1127 for (i = 0; i < RX_BUF_NUM; i++)
1128 printk(" %08x %08x",
1129 le32_to_cpu(fd->bd[i].BuffData),
1130 le32_to_cpu(fd->bd[i].BDCtl));
1131 printk("\n");
1132 }
1133
1134 static void
panic_queues(struct net_device * dev)1135 panic_queues(struct net_device *dev)
1136 {
1137 struct tc35815_local *lp = netdev_priv(dev);
1138 int i;
1139
1140 printk("TxFD base %p, start %u, end %u\n",
1141 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1142 printk("RxFD base %p limit %p cur %p\n",
1143 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1144 printk("FrFD %p\n", lp->fbl_ptr);
1145 for (i = 0; i < TX_FD_NUM; i++)
1146 dump_txfd(&lp->tfd_base[i]);
1147 for (i = 0; i < RX_FD_NUM; i++) {
1148 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1149 i += (bd_count + 1) / 2; /* skip BDs */
1150 }
1151 dump_frfd(lp->fbl_ptr);
1152 panic("%s: Illegal queue state.", dev->name);
1153 }
1154 #endif
1155
print_eth(const u8 * add)1156 static void print_eth(const u8 *add)
1157 {
1158 printk(KERN_DEBUG "print_eth(%p)\n", add);
1159 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1160 add + 6, add, add[12], add[13]);
1161 }
1162
tc35815_tx_full(struct net_device * dev)1163 static int tc35815_tx_full(struct net_device *dev)
1164 {
1165 struct tc35815_local *lp = netdev_priv(dev);
1166 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1167 }
1168
tc35815_restart(struct net_device * dev)1169 static void tc35815_restart(struct net_device *dev)
1170 {
1171 struct tc35815_local *lp = netdev_priv(dev);
1172 int ret;
1173
1174 if (lp->phy_dev) {
1175 ret = phy_init_hw(lp->phy_dev);
1176 if (ret)
1177 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1178 }
1179
1180 spin_lock_bh(&lp->rx_lock);
1181 spin_lock_irq(&lp->lock);
1182 tc35815_chip_reset(dev);
1183 tc35815_clear_queues(dev);
1184 tc35815_chip_init(dev);
1185 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1186 tc35815_set_multicast_list(dev);
1187 spin_unlock_irq(&lp->lock);
1188 spin_unlock_bh(&lp->rx_lock);
1189
1190 netif_wake_queue(dev);
1191 }
1192
tc35815_restart_work(struct work_struct * work)1193 static void tc35815_restart_work(struct work_struct *work)
1194 {
1195 struct tc35815_local *lp =
1196 container_of(work, struct tc35815_local, restart_work);
1197 struct net_device *dev = lp->dev;
1198
1199 tc35815_restart(dev);
1200 }
1201
tc35815_schedule_restart(struct net_device * dev)1202 static void tc35815_schedule_restart(struct net_device *dev)
1203 {
1204 struct tc35815_local *lp = netdev_priv(dev);
1205 struct tc35815_regs __iomem *tr =
1206 (struct tc35815_regs __iomem *)dev->base_addr;
1207 unsigned long flags;
1208
1209 /* disable interrupts */
1210 spin_lock_irqsave(&lp->lock, flags);
1211 tc_writel(0, &tr->Int_En);
1212 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1213 schedule_work(&lp->restart_work);
1214 spin_unlock_irqrestore(&lp->lock, flags);
1215 }
1216
tc35815_tx_timeout(struct net_device * dev)1217 static void tc35815_tx_timeout(struct net_device *dev)
1218 {
1219 struct tc35815_regs __iomem *tr =
1220 (struct tc35815_regs __iomem *)dev->base_addr;
1221
1222 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1223 dev->name, tc_readl(&tr->Tx_Stat));
1224
1225 /* Try to restart the adaptor. */
1226 tc35815_schedule_restart(dev);
1227 dev->stats.tx_errors++;
1228 }
1229
1230 /*
1231 * Open/initialize the controller. This is called (in the current kernel)
1232 * sometime after booting when the 'ifconfig' program is run.
1233 *
1234 * This routine should set everything up anew at each open, even
1235 * registers that "should" only need to be set once at boot, so that
1236 * there is non-reboot way to recover if something goes wrong.
1237 */
1238 static int
tc35815_open(struct net_device * dev)1239 tc35815_open(struct net_device *dev)
1240 {
1241 struct tc35815_local *lp = netdev_priv(dev);
1242
1243 /*
1244 * This is used if the interrupt line can turned off (shared).
1245 * See 3c503.c for an example of selecting the IRQ at config-time.
1246 */
1247 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1248 dev->name, dev))
1249 return -EAGAIN;
1250
1251 tc35815_chip_reset(dev);
1252
1253 if (tc35815_init_queues(dev) != 0) {
1254 free_irq(dev->irq, dev);
1255 return -EAGAIN;
1256 }
1257
1258 napi_enable(&lp->napi);
1259
1260 /* Reset the hardware here. Don't forget to set the station address. */
1261 spin_lock_irq(&lp->lock);
1262 tc35815_chip_init(dev);
1263 spin_unlock_irq(&lp->lock);
1264
1265 netif_carrier_off(dev);
1266 /* schedule a link state check */
1267 phy_start(lp->phy_dev);
1268
1269 /* We are now ready to accept transmit requeusts from
1270 * the queueing layer of the networking.
1271 */
1272 netif_start_queue(dev);
1273
1274 return 0;
1275 }
1276
1277 /* This will only be invoked if your driver is _not_ in XOFF state.
1278 * What this means is that you need not check it, and that this
1279 * invariant will hold if you make sure that the netif_*_queue()
1280 * calls are done at the proper times.
1281 */
tc35815_send_packet(struct sk_buff * skb,struct net_device * dev)1282 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1283 {
1284 struct tc35815_local *lp = netdev_priv(dev);
1285 struct TxFD *txfd;
1286 unsigned long flags;
1287
1288 /* If some error occurs while trying to transmit this
1289 * packet, you should return '1' from this function.
1290 * In such a case you _may not_ do anything to the
1291 * SKB, it is still owned by the network queueing
1292 * layer when an error is returned. This means you
1293 * may not modify any SKB fields, you may not free
1294 * the SKB, etc.
1295 */
1296
1297 /* This is the most common case for modern hardware.
1298 * The spinlock protects this code from the TX complete
1299 * hardware interrupt handler. Queue flow control is
1300 * thus managed under this lock as well.
1301 */
1302 spin_lock_irqsave(&lp->lock, flags);
1303
1304 /* failsafe... (handle txdone now if half of FDs are used) */
1305 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1306 TX_FD_NUM / 2)
1307 tc35815_txdone(dev);
1308
1309 if (netif_msg_pktdata(lp))
1310 print_eth(skb->data);
1311 #ifdef DEBUG
1312 if (lp->tx_skbs[lp->tfd_start].skb) {
1313 printk("%s: tx_skbs conflict.\n", dev->name);
1314 panic_queues(dev);
1315 }
1316 #else
1317 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1318 #endif
1319 lp->tx_skbs[lp->tfd_start].skb = skb;
1320 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1321
1322 /*add to ring */
1323 txfd = &lp->tfd_base[lp->tfd_start];
1324 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1325 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1326 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1327 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1328
1329 if (lp->tfd_start == lp->tfd_end) {
1330 struct tc35815_regs __iomem *tr =
1331 (struct tc35815_regs __iomem *)dev->base_addr;
1332 /* Start DMA Transmitter. */
1333 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1334 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1335 if (netif_msg_tx_queued(lp)) {
1336 printk("%s: starting TxFD.\n", dev->name);
1337 dump_txfd(txfd);
1338 }
1339 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1340 } else {
1341 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1342 if (netif_msg_tx_queued(lp)) {
1343 printk("%s: queueing TxFD.\n", dev->name);
1344 dump_txfd(txfd);
1345 }
1346 }
1347 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1348
1349 /* If we just used up the very last entry in the
1350 * TX ring on this device, tell the queueing
1351 * layer to send no more.
1352 */
1353 if (tc35815_tx_full(dev)) {
1354 if (netif_msg_tx_queued(lp))
1355 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1356 netif_stop_queue(dev);
1357 }
1358
1359 /* When the TX completion hw interrupt arrives, this
1360 * is when the transmit statistics are updated.
1361 */
1362
1363 spin_unlock_irqrestore(&lp->lock, flags);
1364 return NETDEV_TX_OK;
1365 }
1366
1367 #define FATAL_ERROR_INT \
1368 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
tc35815_fatal_error_interrupt(struct net_device * dev,u32 status)1369 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1370 {
1371 static int count;
1372 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1373 dev->name, status);
1374 if (status & Int_IntPCI)
1375 printk(" IntPCI");
1376 if (status & Int_DmParErr)
1377 printk(" DmParErr");
1378 if (status & Int_IntNRAbt)
1379 printk(" IntNRAbt");
1380 printk("\n");
1381 if (count++ > 100)
1382 panic("%s: Too many fatal errors.", dev->name);
1383 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1384 /* Try to restart the adaptor. */
1385 tc35815_schedule_restart(dev);
1386 }
1387
tc35815_do_interrupt(struct net_device * dev,u32 status,int limit)1388 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1389 {
1390 struct tc35815_local *lp = netdev_priv(dev);
1391 int ret = -1;
1392
1393 /* Fatal errors... */
1394 if (status & FATAL_ERROR_INT) {
1395 tc35815_fatal_error_interrupt(dev, status);
1396 return 0;
1397 }
1398 /* recoverable errors */
1399 if (status & Int_IntFDAEx) {
1400 if (netif_msg_rx_err(lp))
1401 dev_warn(&dev->dev,
1402 "Free Descriptor Area Exhausted (%#x).\n",
1403 status);
1404 dev->stats.rx_dropped++;
1405 ret = 0;
1406 }
1407 if (status & Int_IntBLEx) {
1408 if (netif_msg_rx_err(lp))
1409 dev_warn(&dev->dev,
1410 "Buffer List Exhausted (%#x).\n",
1411 status);
1412 dev->stats.rx_dropped++;
1413 ret = 0;
1414 }
1415 if (status & Int_IntExBD) {
1416 if (netif_msg_rx_err(lp))
1417 dev_warn(&dev->dev,
1418 "Excessive Buffer Descriptiors (%#x).\n",
1419 status);
1420 dev->stats.rx_length_errors++;
1421 ret = 0;
1422 }
1423
1424 /* normal notification */
1425 if (status & Int_IntMacRx) {
1426 /* Got a packet(s). */
1427 ret = tc35815_rx(dev, limit);
1428 lp->lstats.rx_ints++;
1429 }
1430 if (status & Int_IntMacTx) {
1431 /* Transmit complete. */
1432 lp->lstats.tx_ints++;
1433 spin_lock_irq(&lp->lock);
1434 tc35815_txdone(dev);
1435 spin_unlock_irq(&lp->lock);
1436 if (ret < 0)
1437 ret = 0;
1438 }
1439 return ret;
1440 }
1441
1442 /*
1443 * The typical workload of the driver:
1444 * Handle the network interface interrupts.
1445 */
tc35815_interrupt(int irq,void * dev_id)1446 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1447 {
1448 struct net_device *dev = dev_id;
1449 struct tc35815_local *lp = netdev_priv(dev);
1450 struct tc35815_regs __iomem *tr =
1451 (struct tc35815_regs __iomem *)dev->base_addr;
1452 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1453
1454 if (!(dmactl & DMA_IntMask)) {
1455 /* disable interrupts */
1456 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1457 if (napi_schedule_prep(&lp->napi))
1458 __napi_schedule(&lp->napi);
1459 else {
1460 printk(KERN_ERR "%s: interrupt taken in poll\n",
1461 dev->name);
1462 BUG();
1463 }
1464 (void)tc_readl(&tr->Int_Src); /* flush */
1465 return IRQ_HANDLED;
1466 }
1467 return IRQ_NONE;
1468 }
1469
1470 #ifdef CONFIG_NET_POLL_CONTROLLER
tc35815_poll_controller(struct net_device * dev)1471 static void tc35815_poll_controller(struct net_device *dev)
1472 {
1473 disable_irq(dev->irq);
1474 tc35815_interrupt(dev->irq, dev);
1475 enable_irq(dev->irq);
1476 }
1477 #endif
1478
1479 /* We have a good packet(s), get it/them out of the buffers. */
1480 static int
tc35815_rx(struct net_device * dev,int limit)1481 tc35815_rx(struct net_device *dev, int limit)
1482 {
1483 struct tc35815_local *lp = netdev_priv(dev);
1484 unsigned int fdctl;
1485 int i;
1486 int received = 0;
1487
1488 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1489 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1490 int pkt_len = fdctl & FD_FDLength_MASK;
1491 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1492 #ifdef DEBUG
1493 struct RxFD *next_rfd;
1494 #endif
1495 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1496 pkt_len -= ETH_FCS_LEN;
1497 #endif
1498
1499 if (netif_msg_rx_status(lp))
1500 dump_rxfd(lp->rfd_cur);
1501 if (status & Rx_Good) {
1502 struct sk_buff *skb;
1503 unsigned char *data;
1504 int cur_bd;
1505
1506 if (--limit < 0)
1507 break;
1508 BUG_ON(bd_count > 1);
1509 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1510 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1511 #ifdef DEBUG
1512 if (cur_bd >= RX_BUF_NUM) {
1513 printk("%s: invalid BDID.\n", dev->name);
1514 panic_queues(dev);
1515 }
1516 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1517 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1518 if (!lp->rx_skbs[cur_bd].skb) {
1519 printk("%s: NULL skb.\n", dev->name);
1520 panic_queues(dev);
1521 }
1522 #else
1523 BUG_ON(cur_bd >= RX_BUF_NUM);
1524 #endif
1525 skb = lp->rx_skbs[cur_bd].skb;
1526 prefetch(skb->data);
1527 lp->rx_skbs[cur_bd].skb = NULL;
1528 pci_unmap_single(lp->pci_dev,
1529 lp->rx_skbs[cur_bd].skb_dma,
1530 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1531 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1532 memmove(skb->data, skb->data - NET_IP_ALIGN,
1533 pkt_len);
1534 data = skb_put(skb, pkt_len);
1535 if (netif_msg_pktdata(lp))
1536 print_eth(data);
1537 skb->protocol = eth_type_trans(skb, dev);
1538 netif_receive_skb(skb);
1539 received++;
1540 dev->stats.rx_packets++;
1541 dev->stats.rx_bytes += pkt_len;
1542 } else {
1543 dev->stats.rx_errors++;
1544 if (netif_msg_rx_err(lp))
1545 dev_info(&dev->dev, "Rx error (status %x)\n",
1546 status & Rx_Stat_Mask);
1547 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1548 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1549 status &= ~(Rx_LongErr|Rx_CRCErr);
1550 status |= Rx_Over;
1551 }
1552 if (status & Rx_LongErr)
1553 dev->stats.rx_length_errors++;
1554 if (status & Rx_Over)
1555 dev->stats.rx_fifo_errors++;
1556 if (status & Rx_CRCErr)
1557 dev->stats.rx_crc_errors++;
1558 if (status & Rx_Align)
1559 dev->stats.rx_frame_errors++;
1560 }
1561
1562 if (bd_count > 0) {
1563 /* put Free Buffer back to controller */
1564 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1565 unsigned char id =
1566 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1567 #ifdef DEBUG
1568 if (id >= RX_BUF_NUM) {
1569 printk("%s: invalid BDID.\n", dev->name);
1570 panic_queues(dev);
1571 }
1572 #else
1573 BUG_ON(id >= RX_BUF_NUM);
1574 #endif
1575 /* free old buffers */
1576 lp->fbl_count--;
1577 while (lp->fbl_count < RX_BUF_NUM)
1578 {
1579 unsigned char curid =
1580 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1581 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1582 #ifdef DEBUG
1583 bdctl = le32_to_cpu(bd->BDCtl);
1584 if (bdctl & BD_CownsBD) {
1585 printk("%s: Freeing invalid BD.\n",
1586 dev->name);
1587 panic_queues(dev);
1588 }
1589 #endif
1590 /* pass BD to controller */
1591 if (!lp->rx_skbs[curid].skb) {
1592 lp->rx_skbs[curid].skb =
1593 alloc_rxbuf_skb(dev,
1594 lp->pci_dev,
1595 &lp->rx_skbs[curid].skb_dma);
1596 if (!lp->rx_skbs[curid].skb)
1597 break; /* try on next reception */
1598 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1599 }
1600 /* Note: BDLength was modified by chip. */
1601 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1602 (curid << BD_RxBDID_SHIFT) |
1603 RX_BUF_SIZE);
1604 lp->fbl_count++;
1605 }
1606 }
1607
1608 /* put RxFD back to controller */
1609 #ifdef DEBUG
1610 next_rfd = fd_bus_to_virt(lp,
1611 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1612 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1613 printk("%s: RxFD FDNext invalid.\n", dev->name);
1614 panic_queues(dev);
1615 }
1616 #endif
1617 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1618 /* pass FD to controller */
1619 #ifdef DEBUG
1620 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1621 #else
1622 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1623 #endif
1624 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1625 lp->rfd_cur++;
1626 }
1627 if (lp->rfd_cur > lp->rfd_limit)
1628 lp->rfd_cur = lp->rfd_base;
1629 #ifdef DEBUG
1630 if (lp->rfd_cur != next_rfd)
1631 printk("rfd_cur = %p, next_rfd %p\n",
1632 lp->rfd_cur, next_rfd);
1633 #endif
1634 }
1635
1636 return received;
1637 }
1638
tc35815_poll(struct napi_struct * napi,int budget)1639 static int tc35815_poll(struct napi_struct *napi, int budget)
1640 {
1641 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1642 struct net_device *dev = lp->dev;
1643 struct tc35815_regs __iomem *tr =
1644 (struct tc35815_regs __iomem *)dev->base_addr;
1645 int received = 0, handled;
1646 u32 status;
1647
1648 if (budget <= 0)
1649 return received;
1650
1651 spin_lock(&lp->rx_lock);
1652 status = tc_readl(&tr->Int_Src);
1653 do {
1654 /* BLEx, FDAEx will be cleared later */
1655 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1656 &tr->Int_Src); /* write to clear */
1657
1658 handled = tc35815_do_interrupt(dev, status, budget - received);
1659 if (status & (Int_BLEx | Int_FDAEx))
1660 tc_writel(status & (Int_BLEx | Int_FDAEx),
1661 &tr->Int_Src);
1662 if (handled >= 0) {
1663 received += handled;
1664 if (received >= budget)
1665 break;
1666 }
1667 status = tc_readl(&tr->Int_Src);
1668 } while (status);
1669 spin_unlock(&lp->rx_lock);
1670
1671 if (received < budget) {
1672 napi_complete(napi);
1673 /* enable interrupts */
1674 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1675 }
1676 return received;
1677 }
1678
1679 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1680
1681 static void
tc35815_check_tx_stat(struct net_device * dev,int status)1682 tc35815_check_tx_stat(struct net_device *dev, int status)
1683 {
1684 struct tc35815_local *lp = netdev_priv(dev);
1685 const char *msg = NULL;
1686
1687 /* count collisions */
1688 if (status & Tx_ExColl)
1689 dev->stats.collisions += 16;
1690 if (status & Tx_TxColl_MASK)
1691 dev->stats.collisions += status & Tx_TxColl_MASK;
1692
1693 /* TX4939 does not have NCarr */
1694 if (lp->chiptype == TC35815_TX4939)
1695 status &= ~Tx_NCarr;
1696 /* WORKAROUND: ignore LostCrS in full duplex operation */
1697 if (!lp->link || lp->duplex == DUPLEX_FULL)
1698 status &= ~Tx_NCarr;
1699
1700 if (!(status & TX_STA_ERR)) {
1701 /* no error. */
1702 dev->stats.tx_packets++;
1703 return;
1704 }
1705
1706 dev->stats.tx_errors++;
1707 if (status & Tx_ExColl) {
1708 dev->stats.tx_aborted_errors++;
1709 msg = "Excessive Collision.";
1710 }
1711 if (status & Tx_Under) {
1712 dev->stats.tx_fifo_errors++;
1713 msg = "Tx FIFO Underrun.";
1714 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1715 lp->lstats.tx_underrun++;
1716 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1717 struct tc35815_regs __iomem *tr =
1718 (struct tc35815_regs __iomem *)dev->base_addr;
1719 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1720 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1721 }
1722 }
1723 }
1724 if (status & Tx_Defer) {
1725 dev->stats.tx_fifo_errors++;
1726 msg = "Excessive Deferral.";
1727 }
1728 if (status & Tx_NCarr) {
1729 dev->stats.tx_carrier_errors++;
1730 msg = "Lost Carrier Sense.";
1731 }
1732 if (status & Tx_LateColl) {
1733 dev->stats.tx_aborted_errors++;
1734 msg = "Late Collision.";
1735 }
1736 if (status & Tx_TxPar) {
1737 dev->stats.tx_fifo_errors++;
1738 msg = "Transmit Parity Error.";
1739 }
1740 if (status & Tx_SQErr) {
1741 dev->stats.tx_heartbeat_errors++;
1742 msg = "Signal Quality Error.";
1743 }
1744 if (msg && netif_msg_tx_err(lp))
1745 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1746 }
1747
1748 /* This handles TX complete events posted by the device
1749 * via interrupts.
1750 */
1751 static void
tc35815_txdone(struct net_device * dev)1752 tc35815_txdone(struct net_device *dev)
1753 {
1754 struct tc35815_local *lp = netdev_priv(dev);
1755 struct TxFD *txfd;
1756 unsigned int fdctl;
1757
1758 txfd = &lp->tfd_base[lp->tfd_end];
1759 while (lp->tfd_start != lp->tfd_end &&
1760 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1761 int status = le32_to_cpu(txfd->fd.FDStat);
1762 struct sk_buff *skb;
1763 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1764 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1765
1766 if (netif_msg_tx_done(lp)) {
1767 printk("%s: complete TxFD.\n", dev->name);
1768 dump_txfd(txfd);
1769 }
1770 tc35815_check_tx_stat(dev, status);
1771
1772 skb = fdsystem != 0xffffffff ?
1773 lp->tx_skbs[fdsystem].skb : NULL;
1774 #ifdef DEBUG
1775 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1776 printk("%s: tx_skbs mismatch.\n", dev->name);
1777 panic_queues(dev);
1778 }
1779 #else
1780 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1781 #endif
1782 if (skb) {
1783 dev->stats.tx_bytes += skb->len;
1784 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1785 lp->tx_skbs[lp->tfd_end].skb = NULL;
1786 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1787 dev_kfree_skb_any(skb);
1788 }
1789 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1790
1791 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1792 txfd = &lp->tfd_base[lp->tfd_end];
1793 #ifdef DEBUG
1794 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1795 printk("%s: TxFD FDNext invalid.\n", dev->name);
1796 panic_queues(dev);
1797 }
1798 #endif
1799 if (fdnext & FD_Next_EOL) {
1800 /* DMA Transmitter has been stopping... */
1801 if (lp->tfd_end != lp->tfd_start) {
1802 struct tc35815_regs __iomem *tr =
1803 (struct tc35815_regs __iomem *)dev->base_addr;
1804 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1805 struct TxFD *txhead = &lp->tfd_base[head];
1806 int qlen = (lp->tfd_start + TX_FD_NUM
1807 - lp->tfd_end) % TX_FD_NUM;
1808
1809 #ifdef DEBUG
1810 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1811 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1812 panic_queues(dev);
1813 }
1814 #endif
1815 /* log max queue length */
1816 if (lp->lstats.max_tx_qlen < qlen)
1817 lp->lstats.max_tx_qlen = qlen;
1818
1819
1820 /* start DMA Transmitter again */
1821 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1822 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1823 if (netif_msg_tx_queued(lp)) {
1824 printk("%s: start TxFD on queue.\n",
1825 dev->name);
1826 dump_txfd(txfd);
1827 }
1828 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1829 }
1830 break;
1831 }
1832 }
1833
1834 /* If we had stopped the queue due to a "tx full"
1835 * condition, and space has now been made available,
1836 * wake up the queue.
1837 */
1838 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1839 netif_wake_queue(dev);
1840 }
1841
1842 /* The inverse routine to tc35815_open(). */
1843 static int
tc35815_close(struct net_device * dev)1844 tc35815_close(struct net_device *dev)
1845 {
1846 struct tc35815_local *lp = netdev_priv(dev);
1847
1848 netif_stop_queue(dev);
1849 napi_disable(&lp->napi);
1850 if (lp->phy_dev)
1851 phy_stop(lp->phy_dev);
1852 cancel_work_sync(&lp->restart_work);
1853
1854 /* Flush the Tx and disable Rx here. */
1855 tc35815_chip_reset(dev);
1856 free_irq(dev->irq, dev);
1857
1858 tc35815_free_queues(dev);
1859
1860 return 0;
1861
1862 }
1863
1864 /*
1865 * Get the current statistics.
1866 * This may be called with the card open or closed.
1867 */
tc35815_get_stats(struct net_device * dev)1868 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1869 {
1870 struct tc35815_regs __iomem *tr =
1871 (struct tc35815_regs __iomem *)dev->base_addr;
1872 if (netif_running(dev))
1873 /* Update the statistics from the device registers. */
1874 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1875
1876 return &dev->stats;
1877 }
1878
tc35815_set_cam_entry(struct net_device * dev,int index,unsigned char * addr)1879 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1880 {
1881 struct tc35815_local *lp = netdev_priv(dev);
1882 struct tc35815_regs __iomem *tr =
1883 (struct tc35815_regs __iomem *)dev->base_addr;
1884 int cam_index = index * 6;
1885 u32 cam_data;
1886 u32 saved_addr;
1887
1888 saved_addr = tc_readl(&tr->CAM_Adr);
1889
1890 if (netif_msg_hw(lp))
1891 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1892 dev->name, index, addr);
1893 if (index & 1) {
1894 /* read modify write */
1895 tc_writel(cam_index - 2, &tr->CAM_Adr);
1896 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1897 cam_data |= addr[0] << 8 | addr[1];
1898 tc_writel(cam_data, &tr->CAM_Data);
1899 /* write whole word */
1900 tc_writel(cam_index + 2, &tr->CAM_Adr);
1901 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1902 tc_writel(cam_data, &tr->CAM_Data);
1903 } else {
1904 /* write whole word */
1905 tc_writel(cam_index, &tr->CAM_Adr);
1906 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1907 tc_writel(cam_data, &tr->CAM_Data);
1908 /* read modify write */
1909 tc_writel(cam_index + 4, &tr->CAM_Adr);
1910 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1911 cam_data |= addr[4] << 24 | (addr[5] << 16);
1912 tc_writel(cam_data, &tr->CAM_Data);
1913 }
1914
1915 tc_writel(saved_addr, &tr->CAM_Adr);
1916 }
1917
1918
1919 /*
1920 * Set or clear the multicast filter for this adaptor.
1921 * num_addrs == -1 Promiscuous mode, receive all packets
1922 * num_addrs == 0 Normal mode, clear multicast list
1923 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1924 * and do best-effort filtering.
1925 */
1926 static void
tc35815_set_multicast_list(struct net_device * dev)1927 tc35815_set_multicast_list(struct net_device *dev)
1928 {
1929 struct tc35815_regs __iomem *tr =
1930 (struct tc35815_regs __iomem *)dev->base_addr;
1931
1932 if (dev->flags & IFF_PROMISC) {
1933 /* With some (all?) 100MHalf HUB, controller will hang
1934 * if we enabled promiscuous mode before linkup... */
1935 struct tc35815_local *lp = netdev_priv(dev);
1936
1937 if (!lp->link)
1938 return;
1939 /* Enable promiscuous mode */
1940 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1941 } else if ((dev->flags & IFF_ALLMULTI) ||
1942 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1943 /* CAM 0, 1, 20 are reserved. */
1944 /* Disable promiscuous mode, use normal mode. */
1945 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1946 } else if (!netdev_mc_empty(dev)) {
1947 struct netdev_hw_addr *ha;
1948 int i;
1949 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1950
1951 tc_writel(0, &tr->CAM_Ctl);
1952 /* Walk the address list, and load the filter */
1953 i = 0;
1954 netdev_for_each_mc_addr(ha, dev) {
1955 /* entry 0,1 is reserved. */
1956 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1957 ena_bits |= CAM_Ena_Bit(i + 2);
1958 i++;
1959 }
1960 tc_writel(ena_bits, &tr->CAM_Ena);
1961 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1962 } else {
1963 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1964 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1965 }
1966 }
1967
tc35815_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1968 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1969 {
1970 struct tc35815_local *lp = netdev_priv(dev);
1971
1972 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1973 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1974 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1975 }
1976
tc35815_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1977 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978 {
1979 struct tc35815_local *lp = netdev_priv(dev);
1980
1981 if (!lp->phy_dev)
1982 return -ENODEV;
1983 return phy_ethtool_gset(lp->phy_dev, cmd);
1984 }
1985
tc35815_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1986 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987 {
1988 struct tc35815_local *lp = netdev_priv(dev);
1989
1990 if (!lp->phy_dev)
1991 return -ENODEV;
1992 return phy_ethtool_sset(lp->phy_dev, cmd);
1993 }
1994
tc35815_get_msglevel(struct net_device * dev)1995 static u32 tc35815_get_msglevel(struct net_device *dev)
1996 {
1997 struct tc35815_local *lp = netdev_priv(dev);
1998 return lp->msg_enable;
1999 }
2000
tc35815_set_msglevel(struct net_device * dev,u32 datum)2001 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002 {
2003 struct tc35815_local *lp = netdev_priv(dev);
2004 lp->msg_enable = datum;
2005 }
2006
tc35815_get_sset_count(struct net_device * dev,int sset)2007 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008 {
2009 struct tc35815_local *lp = netdev_priv(dev);
2010
2011 switch (sset) {
2012 case ETH_SS_STATS:
2013 return sizeof(lp->lstats) / sizeof(int);
2014 default:
2015 return -EOPNOTSUPP;
2016 }
2017 }
2018
tc35815_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2019 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020 {
2021 struct tc35815_local *lp = netdev_priv(dev);
2022 data[0] = lp->lstats.max_tx_qlen;
2023 data[1] = lp->lstats.tx_ints;
2024 data[2] = lp->lstats.rx_ints;
2025 data[3] = lp->lstats.tx_underrun;
2026 }
2027
2028 static struct {
2029 const char str[ETH_GSTRING_LEN];
2030 } ethtool_stats_keys[] = {
2031 { "max_tx_qlen" },
2032 { "tx_ints" },
2033 { "rx_ints" },
2034 { "tx_underrun" },
2035 };
2036
tc35815_get_strings(struct net_device * dev,u32 stringset,u8 * data)2037 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038 {
2039 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040 }
2041
2042 static const struct ethtool_ops tc35815_ethtool_ops = {
2043 .get_drvinfo = tc35815_get_drvinfo,
2044 .get_settings = tc35815_get_settings,
2045 .set_settings = tc35815_set_settings,
2046 .get_link = ethtool_op_get_link,
2047 .get_msglevel = tc35815_get_msglevel,
2048 .set_msglevel = tc35815_set_msglevel,
2049 .get_strings = tc35815_get_strings,
2050 .get_sset_count = tc35815_get_sset_count,
2051 .get_ethtool_stats = tc35815_get_ethtool_stats,
2052 };
2053
tc35815_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2054 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055 {
2056 struct tc35815_local *lp = netdev_priv(dev);
2057
2058 if (!netif_running(dev))
2059 return -EINVAL;
2060 if (!lp->phy_dev)
2061 return -ENODEV;
2062 return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2063 }
2064
tc35815_chip_reset(struct net_device * dev)2065 static void tc35815_chip_reset(struct net_device *dev)
2066 {
2067 struct tc35815_regs __iomem *tr =
2068 (struct tc35815_regs __iomem *)dev->base_addr;
2069 int i;
2070 /* reset the controller */
2071 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072 udelay(4); /* 3200ns */
2073 i = 0;
2074 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075 if (i++ > 100) {
2076 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077 break;
2078 }
2079 mdelay(1);
2080 }
2081 tc_writel(0, &tr->MAC_Ctl);
2082
2083 /* initialize registers to default value */
2084 tc_writel(0, &tr->DMA_Ctl);
2085 tc_writel(0, &tr->TxThrsh);
2086 tc_writel(0, &tr->TxPollCtr);
2087 tc_writel(0, &tr->RxFragSize);
2088 tc_writel(0, &tr->Int_En);
2089 tc_writel(0, &tr->FDA_Bas);
2090 tc_writel(0, &tr->FDA_Lim);
2091 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2092 tc_writel(0, &tr->CAM_Ctl);
2093 tc_writel(0, &tr->Tx_Ctl);
2094 tc_writel(0, &tr->Rx_Ctl);
2095 tc_writel(0, &tr->CAM_Ena);
2096 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2097
2098 /* initialize internal SRAM */
2099 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100 for (i = 0; i < 0x1000; i += 4) {
2101 tc_writel(i, &tr->CAM_Adr);
2102 tc_writel(0, &tr->CAM_Data);
2103 }
2104 tc_writel(0, &tr->DMA_Ctl);
2105 }
2106
tc35815_chip_init(struct net_device * dev)2107 static void tc35815_chip_init(struct net_device *dev)
2108 {
2109 struct tc35815_local *lp = netdev_priv(dev);
2110 struct tc35815_regs __iomem *tr =
2111 (struct tc35815_regs __iomem *)dev->base_addr;
2112 unsigned long txctl = TX_CTL_CMD;
2113
2114 /* load station address to CAM */
2115 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116
2117 /* Enable CAM (broadcast and unicast) */
2118 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120
2121 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122 if (HAVE_DMA_RXALIGN(lp))
2123 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124 else
2125 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2127 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128 tc_writel(INT_EN_CMD, &tr->Int_En);
2129
2130 /* set queues */
2131 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133 &tr->FDA_Lim);
2134 /*
2135 * Activation method:
2136 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138 */
2139 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2140 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2141
2142 /* start MAC transmitter */
2143 /* TX4939 does not have EnLCarr */
2144 if (lp->chiptype == TC35815_TX4939)
2145 txctl &= ~Tx_EnLCarr;
2146 /* WORKAROUND: ignore LostCrS in full duplex operation */
2147 if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2148 txctl &= ~Tx_EnLCarr;
2149 tc_writel(txctl, &tr->Tx_Ctl);
2150 }
2151
2152 #ifdef CONFIG_PM
tc35815_suspend(struct pci_dev * pdev,pm_message_t state)2153 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2154 {
2155 struct net_device *dev = pci_get_drvdata(pdev);
2156 struct tc35815_local *lp = netdev_priv(dev);
2157 unsigned long flags;
2158
2159 pci_save_state(pdev);
2160 if (!netif_running(dev))
2161 return 0;
2162 netif_device_detach(dev);
2163 if (lp->phy_dev)
2164 phy_stop(lp->phy_dev);
2165 spin_lock_irqsave(&lp->lock, flags);
2166 tc35815_chip_reset(dev);
2167 spin_unlock_irqrestore(&lp->lock, flags);
2168 pci_set_power_state(pdev, PCI_D3hot);
2169 return 0;
2170 }
2171
tc35815_resume(struct pci_dev * pdev)2172 static int tc35815_resume(struct pci_dev *pdev)
2173 {
2174 struct net_device *dev = pci_get_drvdata(pdev);
2175 struct tc35815_local *lp = netdev_priv(dev);
2176
2177 pci_restore_state(pdev);
2178 if (!netif_running(dev))
2179 return 0;
2180 pci_set_power_state(pdev, PCI_D0);
2181 tc35815_restart(dev);
2182 netif_carrier_off(dev);
2183 if (lp->phy_dev)
2184 phy_start(lp->phy_dev);
2185 netif_device_attach(dev);
2186 return 0;
2187 }
2188 #endif /* CONFIG_PM */
2189
2190 static struct pci_driver tc35815_pci_driver = {
2191 .name = MODNAME,
2192 .id_table = tc35815_pci_tbl,
2193 .probe = tc35815_init_one,
2194 .remove = tc35815_remove_one,
2195 #ifdef CONFIG_PM
2196 .suspend = tc35815_suspend,
2197 .resume = tc35815_resume,
2198 #endif
2199 };
2200
2201 module_param_named(speed, options.speed, int, 0);
2202 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2203 module_param_named(duplex, options.duplex, int, 0);
2204 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2205
2206 module_pci_driver(tc35815_pci_driver);
2207 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2208 MODULE_LICENSE("GPL");
2209