• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00
23 	Abstract: rt2x00 global information.
24  */
25 
26 #ifndef RT2X00_H
27 #define RT2X00_H
28 
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 
42 #include <net/mac80211.h>
43 
44 #include "rt2x00debug.h"
45 #include "rt2x00dump.h"
46 #include "rt2x00leds.h"
47 #include "rt2x00reg.h"
48 #include "rt2x00queue.h"
49 
50 /*
51  * Module information.
52  */
53 #define DRV_VERSION	"2.3.0"
54 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
55 
56 /* Debug definitions.
57  * Debug output has to be enabled during compile time.
58  */
59 #ifdef CONFIG_RT2X00_DEBUG
60 #define DEBUG
61 #endif /* CONFIG_RT2X00_DEBUG */
62 
63 /* Utility printing macros
64  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65  */
66 #define rt2x00_probe_err(fmt, ...)					\
67 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
68 	       __func__, ##__VA_ARGS__)
69 #define rt2x00_err(dev, fmt, ...)					\
70 	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
71 		  __func__, ##__VA_ARGS__)
72 #define rt2x00_warn(dev, fmt, ...)					\
73 	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
74 		   __func__, ##__VA_ARGS__)
75 #define rt2x00_info(dev, fmt, ...)					\
76 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
77 		   __func__, ##__VA_ARGS__)
78 
79 /* Various debug levels */
80 #define rt2x00_dbg(dev, fmt, ...)					\
81 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
82 		  __func__, ##__VA_ARGS__)
83 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
84 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
85 		  __func__, ##__VA_ARGS__)
86 
87 /*
88  * Duration calculations
89  * The rate variable passed is: 100kbs.
90  * To convert from bytes to bits we multiply size with 8,
91  * then the size is multiplied with 10 to make the
92  * real rate -> rate argument correction.
93  */
94 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96 
97 /*
98  * Determine the number of L2 padding bytes required between the header and
99  * the payload.
100  */
101 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
102 
103 /*
104  * Determine the alignment requirement,
105  * to make sure the 802.11 payload is padded to a 4-byte boundrary
106  * we must determine the address of the payload and calculate the
107  * amount of bytes needed to move the data.
108  */
109 #define ALIGN_SIZE(__skb, __header) \
110 	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
111 
112 /*
113  * Constants for extra TX headroom for alignment purposes.
114  */
115 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
116 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
117 
118 /*
119  * Standard timing and size defines.
120  * These values should follow the ieee80211 specifications.
121  */
122 #define ACK_SIZE		14
123 #define IEEE80211_HEADER	24
124 #define PLCP			48
125 #define BEACON			100
126 #define PREAMBLE		144
127 #define SHORT_PREAMBLE		72
128 #define SLOT_TIME		20
129 #define SHORT_SLOT_TIME		9
130 #define SIFS			10
131 #define PIFS			( SIFS + SLOT_TIME )
132 #define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
133 #define DIFS			( PIFS + SLOT_TIME )
134 #define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
135 #define EIFS			( SIFS + DIFS + \
136 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137 #define SHORT_EIFS		( SIFS + SHORT_DIFS + \
138 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139 
140 enum rt2x00_chip_intf {
141 	RT2X00_CHIP_INTF_PCI,
142 	RT2X00_CHIP_INTF_PCIE,
143 	RT2X00_CHIP_INTF_USB,
144 	RT2X00_CHIP_INTF_SOC,
145 };
146 
147 /*
148  * Chipset identification
149  * The chipset on the device is composed of a RT and RF chip.
150  * The chipset combination is important for determining device capabilities.
151  */
152 struct rt2x00_chip {
153 	u16 rt;
154 #define RT2460		0x2460
155 #define RT2560		0x2560
156 #define RT2570		0x2570
157 #define RT2661		0x2661
158 #define RT2573		0x2573
159 #define RT2860		0x2860	/* 2.4GHz */
160 #define RT2872		0x2872	/* WSOC */
161 #define RT2883		0x2883	/* WSOC */
162 #define RT3070		0x3070
163 #define RT3071		0x3071
164 #define RT3090		0x3090	/* 2.4GHz PCIe */
165 #define RT3290		0x3290
166 #define RT3352		0x3352  /* WSOC */
167 #define RT3390		0x3390
168 #define RT3572		0x3572
169 #define RT3593		0x3593
170 #define RT3883		0x3883	/* WSOC */
171 #define RT5390		0x5390  /* 2.4GHz */
172 #define RT5392		0x5392  /* 2.4GHz */
173 #define RT5592		0x5592
174 
175 	u16 rf;
176 	u16 rev;
177 
178 	enum rt2x00_chip_intf intf;
179 };
180 
181 /*
182  * RF register values that belong to a particular channel.
183  */
184 struct rf_channel {
185 	int channel;
186 	u32 rf1;
187 	u32 rf2;
188 	u32 rf3;
189 	u32 rf4;
190 };
191 
192 /*
193  * Channel information structure
194  */
195 struct channel_info {
196 	unsigned int flags;
197 #define GEOGRAPHY_ALLOWED	0x00000001
198 
199 	short max_power;
200 	short default_power1;
201 	short default_power2;
202 	short default_power3;
203 };
204 
205 /*
206  * Antenna setup values.
207  */
208 struct antenna_setup {
209 	enum antenna rx;
210 	enum antenna tx;
211 	u8 rx_chain_num;
212 	u8 tx_chain_num;
213 };
214 
215 /*
216  * Quality statistics about the currently active link.
217  */
218 struct link_qual {
219 	/*
220 	 * Statistics required for Link tuning by driver
221 	 * The rssi value is provided by rt2x00lib during the
222 	 * link_tuner() callback function.
223 	 * The false_cca field is filled during the link_stats()
224 	 * callback function and could be used during the
225 	 * link_tuner() callback function.
226 	 */
227 	int rssi;
228 	int false_cca;
229 
230 	/*
231 	 * VGC levels
232 	 * Hardware driver will tune the VGC level during each call
233 	 * to the link_tuner() callback function. This vgc_level is
234 	 * is determined based on the link quality statistics like
235 	 * average RSSI and the false CCA count.
236 	 *
237 	 * In some cases the drivers need to differentiate between
238 	 * the currently "desired" VGC level and the level configured
239 	 * in the hardware. The latter is important to reduce the
240 	 * number of BBP register reads to reduce register access
241 	 * overhead. For this reason we store both values here.
242 	 */
243 	u8 vgc_level;
244 	u8 vgc_level_reg;
245 
246 	/*
247 	 * Statistics required for Signal quality calculation.
248 	 * These fields might be changed during the link_stats()
249 	 * callback function.
250 	 */
251 	int rx_success;
252 	int rx_failed;
253 	int tx_success;
254 	int tx_failed;
255 };
256 
257 /*
258  * Antenna settings about the currently active link.
259  */
260 struct link_ant {
261 	/*
262 	 * Antenna flags
263 	 */
264 	unsigned int flags;
265 #define ANTENNA_RX_DIVERSITY	0x00000001
266 #define ANTENNA_TX_DIVERSITY	0x00000002
267 #define ANTENNA_MODE_SAMPLE	0x00000004
268 
269 	/*
270 	 * Currently active TX/RX antenna setup.
271 	 * When software diversity is used, this will indicate
272 	 * which antenna is actually used at this time.
273 	 */
274 	struct antenna_setup active;
275 
276 	/*
277 	 * RSSI history information for the antenna.
278 	 * Used to determine when to switch antenna
279 	 * when using software diversity.
280 	 */
281 	int rssi_history;
282 
283 	/*
284 	 * Current RSSI average of the currently active antenna.
285 	 * Similar to the avg_rssi in the link_qual structure
286 	 * this value is updated by using the walking average.
287 	 */
288 	struct ewma rssi_ant;
289 };
290 
291 /*
292  * To optimize the quality of the link we need to store
293  * the quality of received frames and periodically
294  * optimize the link.
295  */
296 struct link {
297 	/*
298 	 * Link tuner counter
299 	 * The number of times the link has been tuned
300 	 * since the radio has been switched on.
301 	 */
302 	u32 count;
303 
304 	/*
305 	 * Quality measurement values.
306 	 */
307 	struct link_qual qual;
308 
309 	/*
310 	 * TX/RX antenna setup.
311 	 */
312 	struct link_ant ant;
313 
314 	/*
315 	 * Currently active average RSSI value
316 	 */
317 	struct ewma avg_rssi;
318 
319 	/*
320 	 * Work structure for scheduling periodic link tuning.
321 	 */
322 	struct delayed_work work;
323 
324 	/*
325 	 * Work structure for scheduling periodic watchdog monitoring.
326 	 * This work must be scheduled on the kernel workqueue, while
327 	 * all other work structures must be queued on the mac80211
328 	 * workqueue. This guarantees that the watchdog can schedule
329 	 * other work structures and wait for their completion in order
330 	 * to bring the device/driver back into the desired state.
331 	 */
332 	struct delayed_work watchdog_work;
333 
334 	/*
335 	 * Work structure for scheduling periodic AGC adjustments.
336 	 */
337 	struct delayed_work agc_work;
338 
339 	/*
340 	 * Work structure for scheduling periodic VCO calibration.
341 	 */
342 	struct delayed_work vco_work;
343 };
344 
345 enum rt2x00_delayed_flags {
346 	DELAYED_UPDATE_BEACON,
347 };
348 
349 /*
350  * Interface structure
351  * Per interface configuration details, this structure
352  * is allocated as the private data for ieee80211_vif.
353  */
354 struct rt2x00_intf {
355 	/*
356 	 * beacon->skb must be protected with the mutex.
357 	 */
358 	struct mutex beacon_skb_mutex;
359 
360 	/*
361 	 * Entry in the beacon queue which belongs to
362 	 * this interface. Each interface has its own
363 	 * dedicated beacon entry.
364 	 */
365 	struct queue_entry *beacon;
366 	bool enable_beacon;
367 
368 	/*
369 	 * Actions that needed rescheduling.
370 	 */
371 	unsigned long delayed_flags;
372 
373 	/*
374 	 * Software sequence counter, this is only required
375 	 * for hardware which doesn't support hardware
376 	 * sequence counting.
377 	 */
378 	atomic_t seqno;
379 };
380 
vif_to_intf(struct ieee80211_vif * vif)381 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
382 {
383 	return (struct rt2x00_intf *)vif->drv_priv;
384 }
385 
386 /**
387  * struct hw_mode_spec: Hardware specifications structure
388  *
389  * Details about the supported modes, rates and channels
390  * of a particular chipset. This is used by rt2x00lib
391  * to build the ieee80211_hw_mode array for mac80211.
392  *
393  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
394  * @supported_rates: Rate types which are supported (CCK, OFDM).
395  * @num_channels: Number of supported channels. This is used as array size
396  *	for @tx_power_a, @tx_power_bg and @channels.
397  * @channels: Device/chipset specific channel values (See &struct rf_channel).
398  * @channels_info: Additional information for channels (See &struct channel_info).
399  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
400  */
401 struct hw_mode_spec {
402 	unsigned int supported_bands;
403 #define SUPPORT_BAND_2GHZ	0x00000001
404 #define SUPPORT_BAND_5GHZ	0x00000002
405 
406 	unsigned int supported_rates;
407 #define SUPPORT_RATE_CCK	0x00000001
408 #define SUPPORT_RATE_OFDM	0x00000002
409 
410 	unsigned int num_channels;
411 	const struct rf_channel *channels;
412 	const struct channel_info *channels_info;
413 
414 	struct ieee80211_sta_ht_cap ht;
415 };
416 
417 /*
418  * Configuration structure wrapper around the
419  * mac80211 configuration structure.
420  * When mac80211 configures the driver, rt2x00lib
421  * can precalculate values which are equal for all
422  * rt2x00 drivers. Those values can be stored in here.
423  */
424 struct rt2x00lib_conf {
425 	struct ieee80211_conf *conf;
426 
427 	struct rf_channel rf;
428 	struct channel_info channel;
429 };
430 
431 /*
432  * Configuration structure for erp settings.
433  */
434 struct rt2x00lib_erp {
435 	int short_preamble;
436 	int cts_protection;
437 
438 	u32 basic_rates;
439 
440 	int slot_time;
441 
442 	short sifs;
443 	short pifs;
444 	short difs;
445 	short eifs;
446 
447 	u16 beacon_int;
448 	u16 ht_opmode;
449 };
450 
451 /*
452  * Configuration structure for hardware encryption.
453  */
454 struct rt2x00lib_crypto {
455 	enum cipher cipher;
456 
457 	enum set_key_cmd cmd;
458 	const u8 *address;
459 
460 	u32 bssidx;
461 
462 	u8 key[16];
463 	u8 tx_mic[8];
464 	u8 rx_mic[8];
465 
466 	int wcid;
467 };
468 
469 /*
470  * Configuration structure wrapper around the
471  * rt2x00 interface configuration handler.
472  */
473 struct rt2x00intf_conf {
474 	/*
475 	 * Interface type
476 	 */
477 	enum nl80211_iftype type;
478 
479 	/*
480 	 * TSF sync value, this is dependent on the operation type.
481 	 */
482 	enum tsf_sync sync;
483 
484 	/*
485 	 * The MAC and BSSID addresses are simple array of bytes,
486 	 * these arrays are little endian, so when sending the addresses
487 	 * to the drivers, copy the it into a endian-signed variable.
488 	 *
489 	 * Note that all devices (except rt2500usb) have 32 bits
490 	 * register word sizes. This means that whatever variable we
491 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
492 	 * might not accept what we are sending to it.
493 	 * This will also make it easier for the driver to write
494 	 * the data to the device.
495 	 */
496 	__le32 mac[2];
497 	__le32 bssid[2];
498 };
499 
500 /*
501  * Private structure for storing STA details
502  * wcid: Wireless Client ID
503  */
504 struct rt2x00_sta {
505 	int wcid;
506 };
507 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)508 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
509 {
510 	return (struct rt2x00_sta *)sta->drv_priv;
511 }
512 
513 /*
514  * rt2x00lib callback functions.
515  */
516 struct rt2x00lib_ops {
517 	/*
518 	 * Interrupt handlers.
519 	 */
520 	irq_handler_t irq_handler;
521 
522 	/*
523 	 * TX status tasklet handler.
524 	 */
525 	void (*txstatus_tasklet) (unsigned long data);
526 	void (*pretbtt_tasklet) (unsigned long data);
527 	void (*tbtt_tasklet) (unsigned long data);
528 	void (*rxdone_tasklet) (unsigned long data);
529 	void (*autowake_tasklet) (unsigned long data);
530 
531 	/*
532 	 * Device init handlers.
533 	 */
534 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
535 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
536 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
537 			       const u8 *data, const size_t len);
538 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
539 			      const u8 *data, const size_t len);
540 
541 	/*
542 	 * Device initialization/deinitialization handlers.
543 	 */
544 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
545 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
546 
547 	/*
548 	 * queue initialization handlers
549 	 */
550 	bool (*get_entry_state) (struct queue_entry *entry);
551 	void (*clear_entry) (struct queue_entry *entry);
552 
553 	/*
554 	 * Radio control handlers.
555 	 */
556 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
557 				 enum dev_state state);
558 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
559 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
560 			    struct link_qual *qual);
561 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
562 			     struct link_qual *qual);
563 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
564 			    struct link_qual *qual, const u32 count);
565 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
566 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
567 
568 	/*
569 	 * Data queue handlers.
570 	 */
571 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
572 	void (*start_queue) (struct data_queue *queue);
573 	void (*kick_queue) (struct data_queue *queue);
574 	void (*stop_queue) (struct data_queue *queue);
575 	void (*flush_queue) (struct data_queue *queue, bool drop);
576 	void (*tx_dma_done) (struct queue_entry *entry);
577 
578 	/*
579 	 * TX control handlers
580 	 */
581 	void (*write_tx_desc) (struct queue_entry *entry,
582 			       struct txentry_desc *txdesc);
583 	void (*write_tx_data) (struct queue_entry *entry,
584 			       struct txentry_desc *txdesc);
585 	void (*write_beacon) (struct queue_entry *entry,
586 			      struct txentry_desc *txdesc);
587 	void (*clear_beacon) (struct queue_entry *entry);
588 	int (*get_tx_data_len) (struct queue_entry *entry);
589 
590 	/*
591 	 * RX control handlers
592 	 */
593 	void (*fill_rxdone) (struct queue_entry *entry,
594 			     struct rxdone_entry_desc *rxdesc);
595 
596 	/*
597 	 * Configuration handlers.
598 	 */
599 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
600 				  struct rt2x00lib_crypto *crypto,
601 				  struct ieee80211_key_conf *key);
602 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
603 				    struct rt2x00lib_crypto *crypto,
604 				    struct ieee80211_key_conf *key);
605 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
606 			       const unsigned int filter_flags);
607 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
608 			     struct rt2x00_intf *intf,
609 			     struct rt2x00intf_conf *conf,
610 			     const unsigned int flags);
611 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
612 #define CONFIG_UPDATE_MAC		( 1 << 2 )
613 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
614 
615 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
616 			    struct rt2x00lib_erp *erp,
617 			    u32 changed);
618 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
619 			    struct antenna_setup *ant);
620 	void (*config) (struct rt2x00_dev *rt2x00dev,
621 			struct rt2x00lib_conf *libconf,
622 			const unsigned int changed_flags);
623 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
624 			struct ieee80211_vif *vif,
625 			struct ieee80211_sta *sta);
626 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
627 			   int wcid);
628 };
629 
630 /*
631  * rt2x00 driver callback operation structure.
632  */
633 struct rt2x00_ops {
634 	const char *name;
635 	const unsigned int drv_data_size;
636 	const unsigned int max_ap_intf;
637 	const unsigned int eeprom_size;
638 	const unsigned int rf_size;
639 	const unsigned int tx_queues;
640 	void (*queue_init)(struct data_queue *queue);
641 	const struct rt2x00lib_ops *lib;
642 	const void *drv;
643 	const struct ieee80211_ops *hw;
644 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
645 	const struct rt2x00debug *debugfs;
646 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
647 };
648 
649 /*
650  * rt2x00 state flags
651  */
652 enum rt2x00_state_flags {
653 	/*
654 	 * Device flags
655 	 */
656 	DEVICE_STATE_PRESENT,
657 	DEVICE_STATE_REGISTERED_HW,
658 	DEVICE_STATE_INITIALIZED,
659 	DEVICE_STATE_STARTED,
660 	DEVICE_STATE_ENABLED_RADIO,
661 	DEVICE_STATE_SCANNING,
662 
663 	/*
664 	 * Driver configuration
665 	 */
666 	CONFIG_CHANNEL_HT40,
667 	CONFIG_POWERSAVING,
668 	CONFIG_HT_DISABLED,
669 	CONFIG_QOS_DISABLED,
670 
671 	/*
672 	 * Mark we currently are sequentially reading TX_STA_FIFO register
673 	 * FIXME: this is for only rt2800usb, should go to private data
674 	 */
675 	TX_STATUS_READING,
676 };
677 
678 /*
679  * rt2x00 capability flags
680  */
681 enum rt2x00_capability_flags {
682 	/*
683 	 * Requirements
684 	 */
685 	REQUIRE_FIRMWARE,
686 	REQUIRE_BEACON_GUARD,
687 	REQUIRE_ATIM_QUEUE,
688 	REQUIRE_DMA,
689 	REQUIRE_COPY_IV,
690 	REQUIRE_L2PAD,
691 	REQUIRE_TXSTATUS_FIFO,
692 	REQUIRE_TASKLET_CONTEXT,
693 	REQUIRE_SW_SEQNO,
694 	REQUIRE_HT_TX_DESC,
695 	REQUIRE_PS_AUTOWAKE,
696 	REQUIRE_DELAYED_RFKILL,
697 
698 	/*
699 	 * Capabilities
700 	 */
701 	CAPABILITY_HW_BUTTON,
702 	CAPABILITY_HW_CRYPTO,
703 	CAPABILITY_POWER_LIMIT,
704 	CAPABILITY_CONTROL_FILTERS,
705 	CAPABILITY_CONTROL_FILTER_PSPOLL,
706 	CAPABILITY_PRE_TBTT_INTERRUPT,
707 	CAPABILITY_LINK_TUNING,
708 	CAPABILITY_FRAME_TYPE,
709 	CAPABILITY_RF_SEQUENCE,
710 	CAPABILITY_EXTERNAL_LNA_A,
711 	CAPABILITY_EXTERNAL_LNA_BG,
712 	CAPABILITY_DOUBLE_ANTENNA,
713 	CAPABILITY_BT_COEXIST,
714 	CAPABILITY_VCO_RECALIBRATION,
715 };
716 
717 /*
718  * Interface combinations
719  */
720 enum {
721 	IF_COMB_AP = 0,
722 	NUM_IF_COMB,
723 };
724 
725 /*
726  * rt2x00 device structure.
727  */
728 struct rt2x00_dev {
729 	/*
730 	 * Device structure.
731 	 * The structure stored in here depends on the
732 	 * system bus (PCI or USB).
733 	 * When accessing this variable, the rt2x00dev_{pci,usb}
734 	 * macros should be used for correct typecasting.
735 	 */
736 	struct device *dev;
737 
738 	/*
739 	 * Callback functions.
740 	 */
741 	const struct rt2x00_ops *ops;
742 
743 	/*
744 	 * Driver data.
745 	 */
746 	void *drv_data;
747 
748 	/*
749 	 * IEEE80211 control structure.
750 	 */
751 	struct ieee80211_hw *hw;
752 	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
753 	enum ieee80211_band curr_band;
754 	int curr_freq;
755 
756 	/*
757 	 * If enabled, the debugfs interface structures
758 	 * required for deregistration of debugfs.
759 	 */
760 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
761 	struct rt2x00debug_intf *debugfs_intf;
762 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
763 
764 	/*
765 	 * LED structure for changing the LED status
766 	 * by mac8011 or the kernel.
767 	 */
768 #ifdef CONFIG_RT2X00_LIB_LEDS
769 	struct rt2x00_led led_radio;
770 	struct rt2x00_led led_assoc;
771 	struct rt2x00_led led_qual;
772 	u16 led_mcu_reg;
773 #endif /* CONFIG_RT2X00_LIB_LEDS */
774 
775 	/*
776 	 * Device state flags.
777 	 * In these flags the current status is stored.
778 	 * Access to these flags should occur atomically.
779 	 */
780 	unsigned long flags;
781 
782 	/*
783 	 * Device capabiltiy flags.
784 	 * In these flags the device/driver capabilities are stored.
785 	 * Access to these flags should occur non-atomically.
786 	 */
787 	unsigned long cap_flags;
788 
789 	/*
790 	 * Device information, Bus IRQ and name (PCI, SoC)
791 	 */
792 	int irq;
793 	const char *name;
794 
795 	/*
796 	 * Chipset identification.
797 	 */
798 	struct rt2x00_chip chip;
799 
800 	/*
801 	 * hw capability specifications.
802 	 */
803 	struct hw_mode_spec spec;
804 
805 	/*
806 	 * This is the default TX/RX antenna setup as indicated
807 	 * by the device's EEPROM.
808 	 */
809 	struct antenna_setup default_ant;
810 
811 	/*
812 	 * Register pointers
813 	 * csr.base: CSR base register address. (PCI)
814 	 * csr.cache: CSR cache for usb_control_msg. (USB)
815 	 */
816 	union csr {
817 		void __iomem *base;
818 		void *cache;
819 	} csr;
820 
821 	/*
822 	 * Mutex to protect register accesses.
823 	 * For PCI and USB devices it protects against concurrent indirect
824 	 * register access (BBP, RF, MCU) since accessing those
825 	 * registers require multiple calls to the CSR registers.
826 	 * For USB devices it also protects the csr_cache since that
827 	 * field is used for normal CSR access and it cannot support
828 	 * multiple callers simultaneously.
829 	 */
830 	struct mutex csr_mutex;
831 
832 	/*
833 	 * Current packet filter configuration for the device.
834 	 * This contains all currently active FIF_* flags send
835 	 * to us by mac80211 during configure_filter().
836 	 */
837 	unsigned int packet_filter;
838 
839 	/*
840 	 * Interface details:
841 	 *  - Open ap interface count.
842 	 *  - Open sta interface count.
843 	 *  - Association count.
844 	 *  - Beaconing enabled count.
845 	 */
846 	unsigned int intf_ap_count;
847 	unsigned int intf_sta_count;
848 	unsigned int intf_associated;
849 	unsigned int intf_beaconing;
850 
851 	/*
852 	 * Interface combinations
853 	 */
854 	struct ieee80211_iface_limit if_limits_ap;
855 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
856 
857 	/*
858 	 * Link quality
859 	 */
860 	struct link link;
861 
862 	/*
863 	 * EEPROM data.
864 	 */
865 	__le16 *eeprom;
866 
867 	/*
868 	 * Active RF register values.
869 	 * These are stored here so we don't need
870 	 * to read the rf registers and can directly
871 	 * use this value instead.
872 	 * This field should be accessed by using
873 	 * rt2x00_rf_read() and rt2x00_rf_write().
874 	 */
875 	u32 *rf;
876 
877 	/*
878 	 * LNA gain
879 	 */
880 	short lna_gain;
881 
882 	/*
883 	 * Current TX power value.
884 	 */
885 	u16 tx_power;
886 
887 	/*
888 	 * Current retry values.
889 	 */
890 	u8 short_retry;
891 	u8 long_retry;
892 
893 	/*
894 	 * Rssi <-> Dbm offset
895 	 */
896 	u8 rssi_offset;
897 
898 	/*
899 	 * Frequency offset.
900 	 */
901 	u8 freq_offset;
902 
903 	/*
904 	 * Association id.
905 	 */
906 	u16 aid;
907 
908 	/*
909 	 * Beacon interval.
910 	 */
911 	u16 beacon_int;
912 
913 	/**
914 	 * Timestamp of last received beacon
915 	 */
916 	unsigned long last_beacon;
917 
918 	/*
919 	 * Low level statistics which will have
920 	 * to be kept up to date while device is running.
921 	 */
922 	struct ieee80211_low_level_stats low_level_stats;
923 
924 	/**
925 	 * Work queue for all work which should not be placed
926 	 * on the mac80211 workqueue (because of dependencies
927 	 * between various work structures).
928 	 */
929 	struct workqueue_struct *workqueue;
930 
931 	/*
932 	 * Scheduled work.
933 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
934 	 * which means it cannot be placed on the hw->workqueue
935 	 * due to RTNL locking requirements.
936 	 */
937 	struct work_struct intf_work;
938 
939 	/**
940 	 * Scheduled work for TX/RX done handling (USB devices)
941 	 */
942 	struct work_struct rxdone_work;
943 	struct work_struct txdone_work;
944 
945 	/*
946 	 * Powersaving work
947 	 */
948 	struct delayed_work autowakeup_work;
949 	struct work_struct sleep_work;
950 
951 	/*
952 	 * Data queue arrays for RX, TX, Beacon and ATIM.
953 	 */
954 	unsigned int data_queues;
955 	struct data_queue *rx;
956 	struct data_queue *tx;
957 	struct data_queue *bcn;
958 	struct data_queue *atim;
959 
960 	/*
961 	 * Firmware image.
962 	 */
963 	const struct firmware *fw;
964 
965 	/*
966 	 * FIFO for storing tx status reports between isr and tasklet.
967 	 */
968 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
969 
970 	/*
971 	 * Timer to ensure tx status reports are read (rt2800usb).
972 	 */
973 	struct hrtimer txstatus_timer;
974 
975 	/*
976 	 * Tasklet for processing tx status reports (rt2800pci).
977 	 */
978 	struct tasklet_struct txstatus_tasklet;
979 	struct tasklet_struct pretbtt_tasklet;
980 	struct tasklet_struct tbtt_tasklet;
981 	struct tasklet_struct rxdone_tasklet;
982 	struct tasklet_struct autowake_tasklet;
983 
984 	/*
985 	 * Used for VCO periodic calibration.
986 	 */
987 	int rf_channel;
988 
989 	/*
990 	 * Protect the interrupt mask register.
991 	 */
992 	spinlock_t irqmask_lock;
993 
994 	/*
995 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
996 	 */
997 	struct list_head bar_list;
998 	spinlock_t bar_list_lock;
999 
1000 	/* Extra TX headroom required for alignment purposes. */
1001 	unsigned int extra_tx_headroom;
1002 };
1003 
1004 struct rt2x00_bar_list_entry {
1005 	struct list_head list;
1006 	struct rcu_head head;
1007 
1008 	struct queue_entry *entry;
1009 	int block_acked;
1010 
1011 	/* Relevant parts of the IEEE80211 BAR header */
1012 	__u8 ra[6];
1013 	__u8 ta[6];
1014 	__le16 control;
1015 	__le16 start_seq_num;
1016 };
1017 
1018 /*
1019  * Register defines.
1020  * Some registers require multiple attempts before success,
1021  * in those cases REGISTER_BUSY_COUNT attempts should be
1022  * taken with a REGISTER_BUSY_DELAY interval.
1023  */
1024 #define REGISTER_BUSY_COUNT	100
1025 #define REGISTER_BUSY_DELAY	100
1026 
1027 /*
1028  * Generic RF access.
1029  * The RF is being accessed by word index.
1030  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1031 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1032 				  const unsigned int word, u32 *data)
1033 {
1034 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1035 	*data = rt2x00dev->rf[word - 1];
1036 }
1037 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1038 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1039 				   const unsigned int word, u32 data)
1040 {
1041 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1042 	rt2x00dev->rf[word - 1] = data;
1043 }
1044 
1045 /*
1046  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1047  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1048 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1049 				       const unsigned int word)
1050 {
1051 	return (void *)&rt2x00dev->eeprom[word];
1052 }
1053 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1054 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1055 				      const unsigned int word, u16 *data)
1056 {
1057 	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
1058 }
1059 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1060 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1061 				       const unsigned int word, u16 data)
1062 {
1063 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1064 }
1065 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1066 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1067 				    const unsigned int byte)
1068 {
1069 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1070 }
1071 
1072 /*
1073  * Chipset handlers
1074  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1075 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1076 				   const u16 rt, const u16 rf, const u16 rev)
1077 {
1078 	rt2x00dev->chip.rt = rt;
1079 	rt2x00dev->chip.rf = rf;
1080 	rt2x00dev->chip.rev = rev;
1081 
1082 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1083 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1084 		    rt2x00dev->chip.rev);
1085 }
1086 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1087 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1088 				 const u16 rt, const u16 rev)
1089 {
1090 	rt2x00dev->chip.rt = rt;
1091 	rt2x00dev->chip.rev = rev;
1092 
1093 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1094 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1095 }
1096 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1097 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1098 {
1099 	rt2x00dev->chip.rf = rf;
1100 
1101 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1102 		    rt2x00dev->chip.rf);
1103 }
1104 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1105 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1106 {
1107 	return (rt2x00dev->chip.rt == rt);
1108 }
1109 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1110 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1111 {
1112 	return (rt2x00dev->chip.rf == rf);
1113 }
1114 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1115 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1116 {
1117 	return rt2x00dev->chip.rev;
1118 }
1119 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1120 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1121 				 const u16 rt, const u16 rev)
1122 {
1123 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1124 }
1125 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1126 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1127 				    const u16 rt, const u16 rev)
1128 {
1129 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1130 }
1131 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1132 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1133 				     const u16 rt, const u16 rev)
1134 {
1135 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1136 }
1137 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1138 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1139 					enum rt2x00_chip_intf intf)
1140 {
1141 	rt2x00dev->chip.intf = intf;
1142 }
1143 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1144 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1145 			       enum rt2x00_chip_intf intf)
1146 {
1147 	return (rt2x00dev->chip.intf == intf);
1148 }
1149 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1150 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1151 {
1152 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1153 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1154 }
1155 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1156 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1157 {
1158 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1159 }
1160 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1161 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1162 {
1163 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1164 }
1165 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1166 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1167 {
1168 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1169 }
1170 
1171 /* Helpers for capability flags */
1172 
1173 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1174 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1175 		    enum rt2x00_capability_flags cap_flag)
1176 {
1177 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1178 }
1179 
1180 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1181 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1182 {
1183 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1184 }
1185 
1186 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1187 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1188 {
1189 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1190 }
1191 
1192 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1193 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1194 {
1195 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1196 }
1197 
1198 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1199 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1200 {
1201 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1202 }
1203 
1204 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1205 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1206 {
1207 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1208 }
1209 
1210 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1211 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1212 {
1213 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1214 }
1215 
1216 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1217 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1218 {
1219 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1220 }
1221 
1222 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1223 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1224 {
1225 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1226 }
1227 
1228 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1229 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1230 {
1231 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1232 }
1233 
1234 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1235 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1236 {
1237 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1238 }
1239 
1240 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1241 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1242 {
1243 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1244 }
1245 
1246 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1247 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1248 {
1249 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1250 }
1251 
1252 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1253 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1254 {
1255 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1256 }
1257 
1258 /**
1259  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1260  * @entry: Pointer to &struct queue_entry
1261  *
1262  * Returns -ENOMEM if mapping fail, 0 otherwise.
1263  */
1264 int rt2x00queue_map_txskb(struct queue_entry *entry);
1265 
1266 /**
1267  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1268  * @entry: Pointer to &struct queue_entry
1269  */
1270 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1271 
1272 /**
1273  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1274  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1275  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1276  *
1277  * Returns NULL for non tx queues.
1278  */
1279 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1280 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1281 			 const enum data_queue_qid queue)
1282 {
1283 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1284 		return &rt2x00dev->tx[queue];
1285 
1286 	if (queue == QID_ATIM)
1287 		return rt2x00dev->atim;
1288 
1289 	return NULL;
1290 }
1291 
1292 /**
1293  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1294  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1295  * @index: Index identifier for obtaining the correct index.
1296  */
1297 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1298 					  enum queue_index index);
1299 
1300 /**
1301  * rt2x00queue_pause_queue - Pause a data queue
1302  * @queue: Pointer to &struct data_queue.
1303  *
1304  * This function will pause the data queue locally, preventing
1305  * new frames to be added to the queue (while the hardware is
1306  * still allowed to run).
1307  */
1308 void rt2x00queue_pause_queue(struct data_queue *queue);
1309 
1310 /**
1311  * rt2x00queue_unpause_queue - unpause a data queue
1312  * @queue: Pointer to &struct data_queue.
1313  *
1314  * This function will unpause the data queue locally, allowing
1315  * new frames to be added to the queue again.
1316  */
1317 void rt2x00queue_unpause_queue(struct data_queue *queue);
1318 
1319 /**
1320  * rt2x00queue_start_queue - Start a data queue
1321  * @queue: Pointer to &struct data_queue.
1322  *
1323  * This function will start handling all pending frames in the queue.
1324  */
1325 void rt2x00queue_start_queue(struct data_queue *queue);
1326 
1327 /**
1328  * rt2x00queue_stop_queue - Halt a data queue
1329  * @queue: Pointer to &struct data_queue.
1330  *
1331  * This function will stop all pending frames in the queue.
1332  */
1333 void rt2x00queue_stop_queue(struct data_queue *queue);
1334 
1335 /**
1336  * rt2x00queue_flush_queue - Flush a data queue
1337  * @queue: Pointer to &struct data_queue.
1338  * @drop: True to drop all pending frames.
1339  *
1340  * This function will flush the queue. After this call
1341  * the queue is guaranteed to be empty.
1342  */
1343 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1344 
1345 /**
1346  * rt2x00queue_start_queues - Start all data queues
1347  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1348  *
1349  * This function will loop through all available queues to start them
1350  */
1351 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1352 
1353 /**
1354  * rt2x00queue_stop_queues - Halt all data queues
1355  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1356  *
1357  * This function will loop through all available queues to stop
1358  * any pending frames.
1359  */
1360 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1361 
1362 /**
1363  * rt2x00queue_flush_queues - Flush all data queues
1364  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1365  * @drop: True to drop all pending frames.
1366  *
1367  * This function will loop through all available queues to flush
1368  * any pending frames.
1369  */
1370 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1371 
1372 /*
1373  * Debugfs handlers.
1374  */
1375 /**
1376  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1377  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1378  * @type: The type of frame that is being dumped.
1379  * @skb: The skb containing the frame to be dumped.
1380  */
1381 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1382 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1383 			    enum rt2x00_dump_type type, struct sk_buff *skb);
1384 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1385 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1386 					  enum rt2x00_dump_type type,
1387 					  struct sk_buff *skb)
1388 {
1389 }
1390 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1391 
1392 /*
1393  * Utility functions.
1394  */
1395 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1396 			 struct ieee80211_vif *vif);
1397 
1398 /*
1399  * Interrupt context handlers.
1400  */
1401 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1402 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1403 void rt2x00lib_dmastart(struct queue_entry *entry);
1404 void rt2x00lib_dmadone(struct queue_entry *entry);
1405 void rt2x00lib_txdone(struct queue_entry *entry,
1406 		      struct txdone_entry_desc *txdesc);
1407 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1408 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1409 
1410 /*
1411  * mac80211 handlers.
1412  */
1413 void rt2x00mac_tx(struct ieee80211_hw *hw,
1414 		  struct ieee80211_tx_control *control,
1415 		  struct sk_buff *skb);
1416 int rt2x00mac_start(struct ieee80211_hw *hw);
1417 void rt2x00mac_stop(struct ieee80211_hw *hw);
1418 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1419 			    struct ieee80211_vif *vif);
1420 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1421 				struct ieee80211_vif *vif);
1422 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1423 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1424 				unsigned int changed_flags,
1425 				unsigned int *total_flags,
1426 				u64 multicast);
1427 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1428 		      bool set);
1429 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1430 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1431 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1432 		      struct ieee80211_key_conf *key);
1433 #else
1434 #define rt2x00mac_set_key	NULL
1435 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1436 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1437 		      struct ieee80211_sta *sta);
1438 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1439 			 struct ieee80211_sta *sta);
1440 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw);
1441 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw);
1442 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1443 			struct ieee80211_low_level_stats *stats);
1444 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1445 				struct ieee80211_vif *vif,
1446 				struct ieee80211_bss_conf *bss_conf,
1447 				u32 changes);
1448 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1449 		      struct ieee80211_vif *vif, u16 queue,
1450 		      const struct ieee80211_tx_queue_params *params);
1451 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1452 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1453 		     u32 queues, bool drop);
1454 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1455 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1456 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1457 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1458 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1459 
1460 /*
1461  * Driver allocation handlers.
1462  */
1463 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1464 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1465 #ifdef CONFIG_PM
1466 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1467 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1468 #endif /* CONFIG_PM */
1469 
1470 #endif /* RT2X00_H */
1471