1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19
20 enum {
21 EFX_REV_FALCON_A0 = 0,
22 EFX_REV_FALCON_A1 = 1,
23 EFX_REV_FALCON_B0 = 2,
24 EFX_REV_SIENA_A0 = 3,
25 EFX_REV_HUNT_A0 = 4,
26 };
27
efx_nic_rev(struct efx_nic * efx)28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 return efx->type->revision;
31 }
32
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34
35 /* NIC has two interlinked PCI functions for the same port. */
efx_nic_is_dual_func(struct efx_nic * efx)36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40
41 /* Read the current event from the event queue */
efx_event(struct efx_channel * channel,unsigned int index)42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 unsigned int index)
44 {
45 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 (index & channel->eventq_mask);
47 }
48
49 /* See if an event is present
50 *
51 * We check both the high and low dword of the event for all ones. We
52 * wrote all ones when we cleared the event, and no valid event can
53 * have all ones in either its high or low dwords. This approach is
54 * robust against reordering.
55 *
56 * Note that using a single 64-bit comparison is incorrect; even
57 * though the CPU read will be atomic, the DMA write may not be.
58 */
efx_event_present(efx_qword_t * event)59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64
65 /* Returns a pointer to the specified transmit descriptor in the TX
66 * descriptor queue belonging to the specified channel.
67 */
68 static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue * tx_queue,unsigned int index)69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73
74 /* Get partner of a TX queue, seen as part of the same net core queue */
efx_tx_queue_partner(struct efx_tx_queue * tx_queue)75 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
76 {
77 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
78 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
79 else
80 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
81 }
82
83 /* Report whether this TX queue would be empty for the given write_count.
84 * May return false negative.
85 */
__efx_nic_tx_is_empty(struct efx_tx_queue * tx_queue,unsigned int write_count)86 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
87 unsigned int write_count)
88 {
89 unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
90
91 if (empty_read_count == 0)
92 return false;
93
94 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
95 }
96
97 /* Decide whether we can use TX PIO, ie. write packet data directly into
98 * a buffer on the device. This can reduce latency at the expense of
99 * throughput, so we only do this if both hardware and software TX rings
100 * are empty. This also ensures that only one packet at a time can be
101 * using the PIO buffer.
102 */
efx_nic_may_tx_pio(struct efx_tx_queue * tx_queue)103 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
104 {
105 struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
106 return tx_queue->piobuf &&
107 __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
108 __efx_nic_tx_is_empty(partner, partner->insert_count);
109 }
110
111 /* Decide whether to push a TX descriptor to the NIC vs merely writing
112 * the doorbell. This can reduce latency when we are adding a single
113 * descriptor to an empty queue, but is otherwise pointless. Further,
114 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
115 * triggered if we don't check this.
116 * We use the write_count used for the last doorbell push, to get the
117 * NIC's view of the tx queue.
118 */
efx_nic_may_push_tx_desc(struct efx_tx_queue * tx_queue,unsigned int write_count)119 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
120 unsigned int write_count)
121 {
122 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
123
124 tx_queue->empty_read_count = 0;
125 return was_empty && tx_queue->write_count - write_count == 1;
126 }
127
128 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
129 static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)130 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
131 {
132 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
133 }
134
135 enum {
136 PHY_TYPE_NONE = 0,
137 PHY_TYPE_TXC43128 = 1,
138 PHY_TYPE_88E1111 = 2,
139 PHY_TYPE_SFX7101 = 3,
140 PHY_TYPE_QT2022C2 = 4,
141 PHY_TYPE_PM8358 = 6,
142 PHY_TYPE_SFT9001A = 8,
143 PHY_TYPE_QT2025C = 9,
144 PHY_TYPE_SFT9001B = 10,
145 };
146
147 #define FALCON_XMAC_LOOPBACKS \
148 ((1 << LOOPBACK_XGMII) | \
149 (1 << LOOPBACK_XGXS) | \
150 (1 << LOOPBACK_XAUI))
151
152 /* Alignment of PCIe DMA boundaries (4KB) */
153 #define EFX_PAGE_SIZE 4096
154 /* Size and alignment of buffer table entries (same) */
155 #define EFX_BUF_SIZE EFX_PAGE_SIZE
156
157 /* NIC-generic software stats */
158 enum {
159 GENERIC_STAT_rx_noskb_drops,
160 GENERIC_STAT_rx_nodesc_trunc,
161 GENERIC_STAT_COUNT
162 };
163
164 /**
165 * struct falcon_board_type - board operations and type information
166 * @id: Board type id, as found in NVRAM
167 * @init: Allocate resources and initialise peripheral hardware
168 * @init_phy: Do board-specific PHY initialisation
169 * @fini: Shut down hardware and free resources
170 * @set_id_led: Set state of identifying LED or revert to automatic function
171 * @monitor: Board-specific health check function
172 */
173 struct falcon_board_type {
174 u8 id;
175 int (*init) (struct efx_nic *nic);
176 void (*init_phy) (struct efx_nic *efx);
177 void (*fini) (struct efx_nic *nic);
178 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
179 int (*monitor) (struct efx_nic *nic);
180 };
181
182 /**
183 * struct falcon_board - board information
184 * @type: Type of board
185 * @major: Major rev. ('A', 'B' ...)
186 * @minor: Minor rev. (0, 1, ...)
187 * @i2c_adap: I2C adapter for on-board peripherals
188 * @i2c_data: Data for bit-banging algorithm
189 * @hwmon_client: I2C client for hardware monitor
190 * @ioexp_client: I2C client for power/port control
191 */
192 struct falcon_board {
193 const struct falcon_board_type *type;
194 int major;
195 int minor;
196 struct i2c_adapter i2c_adap;
197 struct i2c_algo_bit_data i2c_data;
198 struct i2c_client *hwmon_client, *ioexp_client;
199 };
200
201 /**
202 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
203 * @device_id: Controller's id for the device
204 * @size: Size (in bytes)
205 * @addr_len: Number of address bytes in read/write commands
206 * @munge_address: Flag whether addresses should be munged.
207 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
208 * use bit 3 of the command byte as address bit A8, rather
209 * than having a two-byte address. If this flag is set, then
210 * commands should be munged in this way.
211 * @erase_command: Erase command (or 0 if sector erase not needed).
212 * @erase_size: Erase sector size (in bytes)
213 * Erase commands affect sectors with this size and alignment.
214 * This must be a power of two.
215 * @block_size: Write block size (in bytes).
216 * Write commands are limited to blocks with this size and alignment.
217 */
218 struct falcon_spi_device {
219 int device_id;
220 unsigned int size;
221 unsigned int addr_len;
222 unsigned int munge_address:1;
223 u8 erase_command;
224 unsigned int erase_size;
225 unsigned int block_size;
226 };
227
falcon_spi_present(const struct falcon_spi_device * spi)228 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
229 {
230 return spi->size != 0;
231 }
232
233 enum {
234 FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
235 FALCON_STAT_tx_packets,
236 FALCON_STAT_tx_pause,
237 FALCON_STAT_tx_control,
238 FALCON_STAT_tx_unicast,
239 FALCON_STAT_tx_multicast,
240 FALCON_STAT_tx_broadcast,
241 FALCON_STAT_tx_lt64,
242 FALCON_STAT_tx_64,
243 FALCON_STAT_tx_65_to_127,
244 FALCON_STAT_tx_128_to_255,
245 FALCON_STAT_tx_256_to_511,
246 FALCON_STAT_tx_512_to_1023,
247 FALCON_STAT_tx_1024_to_15xx,
248 FALCON_STAT_tx_15xx_to_jumbo,
249 FALCON_STAT_tx_gtjumbo,
250 FALCON_STAT_tx_non_tcpudp,
251 FALCON_STAT_tx_mac_src_error,
252 FALCON_STAT_tx_ip_src_error,
253 FALCON_STAT_rx_bytes,
254 FALCON_STAT_rx_good_bytes,
255 FALCON_STAT_rx_bad_bytes,
256 FALCON_STAT_rx_packets,
257 FALCON_STAT_rx_good,
258 FALCON_STAT_rx_bad,
259 FALCON_STAT_rx_pause,
260 FALCON_STAT_rx_control,
261 FALCON_STAT_rx_unicast,
262 FALCON_STAT_rx_multicast,
263 FALCON_STAT_rx_broadcast,
264 FALCON_STAT_rx_lt64,
265 FALCON_STAT_rx_64,
266 FALCON_STAT_rx_65_to_127,
267 FALCON_STAT_rx_128_to_255,
268 FALCON_STAT_rx_256_to_511,
269 FALCON_STAT_rx_512_to_1023,
270 FALCON_STAT_rx_1024_to_15xx,
271 FALCON_STAT_rx_15xx_to_jumbo,
272 FALCON_STAT_rx_gtjumbo,
273 FALCON_STAT_rx_bad_lt64,
274 FALCON_STAT_rx_bad_gtjumbo,
275 FALCON_STAT_rx_overflow,
276 FALCON_STAT_rx_symbol_error,
277 FALCON_STAT_rx_align_error,
278 FALCON_STAT_rx_length_error,
279 FALCON_STAT_rx_internal_error,
280 FALCON_STAT_rx_nodesc_drop_cnt,
281 FALCON_STAT_COUNT
282 };
283
284 /**
285 * struct falcon_nic_data - Falcon NIC state
286 * @pci_dev2: Secondary function of Falcon A
287 * @board: Board state and functions
288 * @stats: Hardware statistics
289 * @stats_disable_count: Nest count for disabling statistics fetches
290 * @stats_pending: Is there a pending DMA of MAC statistics.
291 * @stats_timer: A timer for regularly fetching MAC statistics.
292 * @spi_flash: SPI flash device
293 * @spi_eeprom: SPI EEPROM device
294 * @spi_lock: SPI bus lock
295 * @mdio_lock: MDIO bus lock
296 * @xmac_poll_required: XMAC link state needs polling
297 */
298 struct falcon_nic_data {
299 struct pci_dev *pci_dev2;
300 struct falcon_board board;
301 u64 stats[FALCON_STAT_COUNT];
302 unsigned int stats_disable_count;
303 bool stats_pending;
304 struct timer_list stats_timer;
305 struct falcon_spi_device spi_flash;
306 struct falcon_spi_device spi_eeprom;
307 struct mutex spi_lock;
308 struct mutex mdio_lock;
309 bool xmac_poll_required;
310 };
311
falcon_board(struct efx_nic * efx)312 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
313 {
314 struct falcon_nic_data *data = efx->nic_data;
315 return &data->board;
316 }
317
318 enum {
319 SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
320 SIENA_STAT_tx_good_bytes,
321 SIENA_STAT_tx_bad_bytes,
322 SIENA_STAT_tx_packets,
323 SIENA_STAT_tx_bad,
324 SIENA_STAT_tx_pause,
325 SIENA_STAT_tx_control,
326 SIENA_STAT_tx_unicast,
327 SIENA_STAT_tx_multicast,
328 SIENA_STAT_tx_broadcast,
329 SIENA_STAT_tx_lt64,
330 SIENA_STAT_tx_64,
331 SIENA_STAT_tx_65_to_127,
332 SIENA_STAT_tx_128_to_255,
333 SIENA_STAT_tx_256_to_511,
334 SIENA_STAT_tx_512_to_1023,
335 SIENA_STAT_tx_1024_to_15xx,
336 SIENA_STAT_tx_15xx_to_jumbo,
337 SIENA_STAT_tx_gtjumbo,
338 SIENA_STAT_tx_collision,
339 SIENA_STAT_tx_single_collision,
340 SIENA_STAT_tx_multiple_collision,
341 SIENA_STAT_tx_excessive_collision,
342 SIENA_STAT_tx_deferred,
343 SIENA_STAT_tx_late_collision,
344 SIENA_STAT_tx_excessive_deferred,
345 SIENA_STAT_tx_non_tcpudp,
346 SIENA_STAT_tx_mac_src_error,
347 SIENA_STAT_tx_ip_src_error,
348 SIENA_STAT_rx_bytes,
349 SIENA_STAT_rx_good_bytes,
350 SIENA_STAT_rx_bad_bytes,
351 SIENA_STAT_rx_packets,
352 SIENA_STAT_rx_good,
353 SIENA_STAT_rx_bad,
354 SIENA_STAT_rx_pause,
355 SIENA_STAT_rx_control,
356 SIENA_STAT_rx_unicast,
357 SIENA_STAT_rx_multicast,
358 SIENA_STAT_rx_broadcast,
359 SIENA_STAT_rx_lt64,
360 SIENA_STAT_rx_64,
361 SIENA_STAT_rx_65_to_127,
362 SIENA_STAT_rx_128_to_255,
363 SIENA_STAT_rx_256_to_511,
364 SIENA_STAT_rx_512_to_1023,
365 SIENA_STAT_rx_1024_to_15xx,
366 SIENA_STAT_rx_15xx_to_jumbo,
367 SIENA_STAT_rx_gtjumbo,
368 SIENA_STAT_rx_bad_gtjumbo,
369 SIENA_STAT_rx_overflow,
370 SIENA_STAT_rx_false_carrier,
371 SIENA_STAT_rx_symbol_error,
372 SIENA_STAT_rx_align_error,
373 SIENA_STAT_rx_length_error,
374 SIENA_STAT_rx_internal_error,
375 SIENA_STAT_rx_nodesc_drop_cnt,
376 SIENA_STAT_COUNT
377 };
378
379 /**
380 * struct siena_nic_data - Siena NIC state
381 * @wol_filter_id: Wake-on-LAN packet filter id
382 * @stats: Hardware statistics
383 */
384 struct siena_nic_data {
385 int wol_filter_id;
386 u64 stats[SIENA_STAT_COUNT];
387 };
388
389 enum {
390 EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
391 EF10_STAT_tx_packets,
392 EF10_STAT_tx_pause,
393 EF10_STAT_tx_control,
394 EF10_STAT_tx_unicast,
395 EF10_STAT_tx_multicast,
396 EF10_STAT_tx_broadcast,
397 EF10_STAT_tx_lt64,
398 EF10_STAT_tx_64,
399 EF10_STAT_tx_65_to_127,
400 EF10_STAT_tx_128_to_255,
401 EF10_STAT_tx_256_to_511,
402 EF10_STAT_tx_512_to_1023,
403 EF10_STAT_tx_1024_to_15xx,
404 EF10_STAT_tx_15xx_to_jumbo,
405 EF10_STAT_rx_bytes,
406 EF10_STAT_rx_bytes_minus_good_bytes,
407 EF10_STAT_rx_good_bytes,
408 EF10_STAT_rx_bad_bytes,
409 EF10_STAT_rx_packets,
410 EF10_STAT_rx_good,
411 EF10_STAT_rx_bad,
412 EF10_STAT_rx_pause,
413 EF10_STAT_rx_control,
414 EF10_STAT_rx_unicast,
415 EF10_STAT_rx_multicast,
416 EF10_STAT_rx_broadcast,
417 EF10_STAT_rx_lt64,
418 EF10_STAT_rx_64,
419 EF10_STAT_rx_65_to_127,
420 EF10_STAT_rx_128_to_255,
421 EF10_STAT_rx_256_to_511,
422 EF10_STAT_rx_512_to_1023,
423 EF10_STAT_rx_1024_to_15xx,
424 EF10_STAT_rx_15xx_to_jumbo,
425 EF10_STAT_rx_gtjumbo,
426 EF10_STAT_rx_bad_gtjumbo,
427 EF10_STAT_rx_overflow,
428 EF10_STAT_rx_align_error,
429 EF10_STAT_rx_length_error,
430 EF10_STAT_rx_nodesc_drops,
431 EF10_STAT_rx_pm_trunc_bb_overflow,
432 EF10_STAT_rx_pm_discard_bb_overflow,
433 EF10_STAT_rx_pm_trunc_vfifo_full,
434 EF10_STAT_rx_pm_discard_vfifo_full,
435 EF10_STAT_rx_pm_trunc_qbb,
436 EF10_STAT_rx_pm_discard_qbb,
437 EF10_STAT_rx_pm_discard_mapping,
438 EF10_STAT_rx_dp_q_disabled_packets,
439 EF10_STAT_rx_dp_di_dropped_packets,
440 EF10_STAT_rx_dp_streaming_packets,
441 EF10_STAT_rx_dp_hlb_fetch,
442 EF10_STAT_rx_dp_hlb_wait,
443 EF10_STAT_COUNT
444 };
445
446 /* Maximum number of TX PIO buffers we may allocate to a function.
447 * This matches the total number of buffers on each SFC9100-family
448 * controller.
449 */
450 #define EF10_TX_PIOBUF_COUNT 16
451
452 /**
453 * struct efx_ef10_nic_data - EF10 architecture NIC state
454 * @mcdi_buf: DMA buffer for MCDI
455 * @warm_boot_count: Last seen MC warm boot count
456 * @vi_base: Absolute index of first VI in this function
457 * @n_allocated_vis: Number of VIs allocated to this function
458 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
459 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
460 * @n_piobufs: Number of PIO buffers allocated to this function
461 * @wc_membase: Base address of write-combining mapping of the memory BAR
462 * @pio_write_base: Base address for writing PIO buffers
463 * @pio_write_vi_base: Relative VI number for @pio_write_base
464 * @piobuf_handle: Handle of each PIO buffer allocated
465 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
466 * reboot
467 * @rx_rss_context: Firmware handle for our RSS context
468 * @stats: Hardware statistics
469 * @workaround_35388: Flag: firmware supports workaround for bug 35388
470 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
471 * after MC reboot
472 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
473 * %MC_CMD_GET_CAPABILITIES response)
474 */
475 struct efx_ef10_nic_data {
476 struct efx_buffer mcdi_buf;
477 u16 warm_boot_count;
478 unsigned int vi_base;
479 unsigned int n_allocated_vis;
480 bool must_realloc_vis;
481 bool must_restore_filters;
482 unsigned int n_piobufs;
483 void __iomem *wc_membase, *pio_write_base;
484 unsigned int pio_write_vi_base;
485 unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
486 bool must_restore_piobufs;
487 u32 rx_rss_context;
488 u64 stats[EF10_STAT_COUNT];
489 bool workaround_35388;
490 bool must_check_datapath_caps;
491 u32 datapath_caps;
492 };
493
494 /*
495 * On the SFC9000 family each port is associated with 1 PCI physical
496 * function (PF) handled by sfc and a configurable number of virtual
497 * functions (VFs) that may be handled by some other driver, often in
498 * a VM guest. The queue pointer registers are mapped in both PF and
499 * VF BARs such that an 8K region provides access to a single RX, TX
500 * and event queue (collectively a Virtual Interface, VI or VNIC).
501 *
502 * The PF has access to all 1024 VIs while VFs are mapped to VIs
503 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
504 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
505 * The number of VIs and the VI_SCALE value are configurable but must
506 * be established at boot time by firmware.
507 */
508
509 /* Maximum VI_SCALE parameter supported by Siena */
510 #define EFX_VI_SCALE_MAX 6
511 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
512 * so this is the smallest allowed value. */
513 #define EFX_VI_BASE 128U
514 /* Maximum number of VFs allowed */
515 #define EFX_VF_COUNT_MAX 127
516 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
517 #define EFX_MAX_VF_EVQ_SIZE 8192UL
518 /* The number of buffer table entries reserved for each VI on a VF */
519 #define EFX_VF_BUFTBL_PER_VI \
520 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
521 sizeof(efx_qword_t) / EFX_BUF_SIZE)
522
523 #ifdef CONFIG_SFC_SRIOV
524
efx_sriov_wanted(struct efx_nic * efx)525 static inline bool efx_sriov_wanted(struct efx_nic *efx)
526 {
527 return efx->vf_count != 0;
528 }
efx_sriov_enabled(struct efx_nic * efx)529 static inline bool efx_sriov_enabled(struct efx_nic *efx)
530 {
531 return efx->vf_init_count != 0;
532 }
efx_vf_size(struct efx_nic * efx)533 static inline unsigned int efx_vf_size(struct efx_nic *efx)
534 {
535 return 1 << efx->vi_scale;
536 }
537
538 int efx_init_sriov(void);
539 void efx_sriov_probe(struct efx_nic *efx);
540 int efx_sriov_init(struct efx_nic *efx);
541 void efx_sriov_mac_address_changed(struct efx_nic *efx);
542 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
543 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
544 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
545 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
546 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
547 void efx_sriov_reset(struct efx_nic *efx);
548 void efx_sriov_fini(struct efx_nic *efx);
549 void efx_fini_sriov(void);
550
551 #else
552
efx_sriov_wanted(struct efx_nic * efx)553 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
efx_sriov_enabled(struct efx_nic * efx)554 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
efx_vf_size(struct efx_nic * efx)555 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
556
efx_init_sriov(void)557 static inline int efx_init_sriov(void) { return 0; }
efx_sriov_probe(struct efx_nic * efx)558 static inline void efx_sriov_probe(struct efx_nic *efx) {}
efx_sriov_init(struct efx_nic * efx)559 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
efx_sriov_mac_address_changed(struct efx_nic * efx)560 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
efx_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)561 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
562 efx_qword_t *event) {}
efx_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)563 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
564 efx_qword_t *event) {}
efx_sriov_event(struct efx_channel * channel,efx_qword_t * event)565 static inline void efx_sriov_event(struct efx_channel *channel,
566 efx_qword_t *event) {}
efx_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)567 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
efx_sriov_flr(struct efx_nic * efx,unsigned flr)568 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
efx_sriov_reset(struct efx_nic * efx)569 static inline void efx_sriov_reset(struct efx_nic *efx) {}
efx_sriov_fini(struct efx_nic * efx)570 static inline void efx_sriov_fini(struct efx_nic *efx) {}
efx_fini_sriov(void)571 static inline void efx_fini_sriov(void) {}
572
573 #endif
574
575 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
576 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
577 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
578 struct ifla_vf_info *ivf);
579 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
580 bool spoofchk);
581
582 struct ethtool_ts_info;
583 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
584 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
585 void efx_ptp_remove(struct efx_nic *efx);
586 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
587 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
588 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
589 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
590 int efx_ptp_get_mode(struct efx_nic *efx);
591 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
592 unsigned int new_mode);
593 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
594 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
595 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
596 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
597 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
598 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
599 struct sk_buff *skb);
efx_rx_skb_attach_timestamp(struct efx_channel * channel,struct sk_buff * skb)600 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
601 struct sk_buff *skb)
602 {
603 if (channel->sync_events_state == SYNC_EVENTS_VALID)
604 __efx_rx_skb_attach_timestamp(channel, skb);
605 }
606 void efx_ptp_start_datapath(struct efx_nic *efx);
607 void efx_ptp_stop_datapath(struct efx_nic *efx);
608
609 extern const struct efx_nic_type falcon_a1_nic_type;
610 extern const struct efx_nic_type falcon_b0_nic_type;
611 extern const struct efx_nic_type siena_a0_nic_type;
612 extern const struct efx_nic_type efx_hunt_a0_nic_type;
613
614 /**************************************************************************
615 *
616 * Externs
617 *
618 **************************************************************************
619 */
620
621 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
622
623 /* TX data path */
efx_nic_probe_tx(struct efx_tx_queue * tx_queue)624 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
625 {
626 return tx_queue->efx->type->tx_probe(tx_queue);
627 }
efx_nic_init_tx(struct efx_tx_queue * tx_queue)628 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
629 {
630 tx_queue->efx->type->tx_init(tx_queue);
631 }
efx_nic_remove_tx(struct efx_tx_queue * tx_queue)632 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
633 {
634 tx_queue->efx->type->tx_remove(tx_queue);
635 }
efx_nic_push_buffers(struct efx_tx_queue * tx_queue)636 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
637 {
638 tx_queue->efx->type->tx_write(tx_queue);
639 }
640
641 /* RX data path */
efx_nic_probe_rx(struct efx_rx_queue * rx_queue)642 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
643 {
644 return rx_queue->efx->type->rx_probe(rx_queue);
645 }
efx_nic_init_rx(struct efx_rx_queue * rx_queue)646 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
647 {
648 rx_queue->efx->type->rx_init(rx_queue);
649 }
efx_nic_remove_rx(struct efx_rx_queue * rx_queue)650 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
651 {
652 rx_queue->efx->type->rx_remove(rx_queue);
653 }
efx_nic_notify_rx_desc(struct efx_rx_queue * rx_queue)654 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
655 {
656 rx_queue->efx->type->rx_write(rx_queue);
657 }
efx_nic_generate_fill_event(struct efx_rx_queue * rx_queue)658 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
659 {
660 rx_queue->efx->type->rx_defer_refill(rx_queue);
661 }
662
663 /* Event data path */
efx_nic_probe_eventq(struct efx_channel * channel)664 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
665 {
666 return channel->efx->type->ev_probe(channel);
667 }
efx_nic_init_eventq(struct efx_channel * channel)668 static inline int efx_nic_init_eventq(struct efx_channel *channel)
669 {
670 return channel->efx->type->ev_init(channel);
671 }
efx_nic_fini_eventq(struct efx_channel * channel)672 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
673 {
674 channel->efx->type->ev_fini(channel);
675 }
efx_nic_remove_eventq(struct efx_channel * channel)676 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
677 {
678 channel->efx->type->ev_remove(channel);
679 }
680 static inline int
efx_nic_process_eventq(struct efx_channel * channel,int quota)681 efx_nic_process_eventq(struct efx_channel *channel, int quota)
682 {
683 return channel->efx->type->ev_process(channel, quota);
684 }
efx_nic_eventq_read_ack(struct efx_channel * channel)685 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
686 {
687 channel->efx->type->ev_read_ack(channel);
688 }
689 void efx_nic_event_test_start(struct efx_channel *channel);
690
691 /* Falcon/Siena queue operations */
692 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
693 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
694 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
695 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
696 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
697 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
698 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
699 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
700 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
701 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
702 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
703 int efx_farch_ev_probe(struct efx_channel *channel);
704 int efx_farch_ev_init(struct efx_channel *channel);
705 void efx_farch_ev_fini(struct efx_channel *channel);
706 void efx_farch_ev_remove(struct efx_channel *channel);
707 int efx_farch_ev_process(struct efx_channel *channel, int quota);
708 void efx_farch_ev_read_ack(struct efx_channel *channel);
709 void efx_farch_ev_test_generate(struct efx_channel *channel);
710
711 /* Falcon/Siena filter operations */
712 int efx_farch_filter_table_probe(struct efx_nic *efx);
713 void efx_farch_filter_table_restore(struct efx_nic *efx);
714 void efx_farch_filter_table_remove(struct efx_nic *efx);
715 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
716 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
717 bool replace);
718 int efx_farch_filter_remove_safe(struct efx_nic *efx,
719 enum efx_filter_priority priority,
720 u32 filter_id);
721 int efx_farch_filter_get_safe(struct efx_nic *efx,
722 enum efx_filter_priority priority, u32 filter_id,
723 struct efx_filter_spec *);
724 int efx_farch_filter_clear_rx(struct efx_nic *efx,
725 enum efx_filter_priority priority);
726 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
727 enum efx_filter_priority priority);
728 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
729 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
730 enum efx_filter_priority priority, u32 *buf,
731 u32 size);
732 #ifdef CONFIG_RFS_ACCEL
733 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
734 struct efx_filter_spec *spec);
735 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
736 unsigned int index);
737 #endif
738 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
739
740 bool efx_nic_event_present(struct efx_channel *channel);
741
742 /* Some statistics are computed as A - B where A and B each increase
743 * linearly with some hardware counter(s) and the counters are read
744 * asynchronously. If the counters contributing to B are always read
745 * after those contributing to A, the computed value may be lower than
746 * the true value by some variable amount, and may decrease between
747 * subsequent computations.
748 *
749 * We should never allow statistics to decrease or to exceed the true
750 * value. Since the computed value will never be greater than the
751 * true value, we can achieve this by only storing the computed value
752 * when it increases.
753 */
efx_update_diff_stat(u64 * stat,u64 diff)754 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
755 {
756 if ((s64)(diff - *stat) > 0)
757 *stat = diff;
758 }
759
760 /* Interrupts */
761 int efx_nic_init_interrupt(struct efx_nic *efx);
762 void efx_nic_irq_test_start(struct efx_nic *efx);
763 void efx_nic_fini_interrupt(struct efx_nic *efx);
764
765 /* Falcon/Siena interrupts */
766 void efx_farch_irq_enable_master(struct efx_nic *efx);
767 void efx_farch_irq_test_generate(struct efx_nic *efx);
768 void efx_farch_irq_disable_master(struct efx_nic *efx);
769 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
770 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
771 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
772
efx_nic_event_test_irq_cpu(struct efx_channel * channel)773 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
774 {
775 return ACCESS_ONCE(channel->event_test_cpu);
776 }
efx_nic_irq_test_irq_cpu(struct efx_nic * efx)777 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
778 {
779 return ACCESS_ONCE(efx->last_irq_cpu);
780 }
781
782 /* Global Resources */
783 int efx_nic_flush_queues(struct efx_nic *efx);
784 void siena_prepare_flush(struct efx_nic *efx);
785 int efx_farch_fini_dmaq(struct efx_nic *efx);
786 void efx_farch_finish_flr(struct efx_nic *efx);
787 void siena_finish_flush(struct efx_nic *efx);
788 void falcon_start_nic_stats(struct efx_nic *efx);
789 void falcon_stop_nic_stats(struct efx_nic *efx);
790 int falcon_reset_xaui(struct efx_nic *efx);
791 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
792 void efx_farch_init_common(struct efx_nic *efx);
793 void efx_ef10_handle_drain_event(struct efx_nic *efx);
794 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
795
796 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
797 unsigned int len, gfp_t gfp_flags);
798 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
799
800 /* Tests */
801 struct efx_farch_register_test {
802 unsigned address;
803 efx_oword_t mask;
804 };
805 int efx_farch_test_registers(struct efx_nic *efx,
806 const struct efx_farch_register_test *regs,
807 size_t n_regs);
808
809 size_t efx_nic_get_regs_len(struct efx_nic *efx);
810 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
811
812 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
813 const unsigned long *mask, u8 *names);
814 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
815 const unsigned long *mask, u64 *stats,
816 const void *dma_buf, bool accumulate);
817 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
818
819 #define EFX_MAX_FLUSH_TIME 5000
820
821 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
822 efx_qword_t *event);
823
824 #endif /* EFX_NIC_H */
825