• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13 
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 
20 enum {
21 	EFX_REV_FALCON_A0 = 0,
22 	EFX_REV_FALCON_A1 = 1,
23 	EFX_REV_FALCON_B0 = 2,
24 	EFX_REV_SIENA_A0 = 3,
25 	EFX_REV_HUNT_A0 = 4,
26 };
27 
efx_nic_rev(struct efx_nic * efx)28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 	return efx->type->revision;
31 }
32 
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34 
35 /* NIC has two interlinked PCI functions for the same port. */
efx_nic_is_dual_func(struct efx_nic * efx)36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40 
41 /* Read the current event from the event queue */
efx_event(struct efx_channel * channel,unsigned int index)42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 				     unsigned int index)
44 {
45 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 		(index & channel->eventq_mask);
47 }
48 
49 /* See if an event is present
50  *
51  * We check both the high and low dword of the event for all ones.  We
52  * wrote all ones when we cleared the event, and no valid event can
53  * have all ones in either its high or low dwords.  This approach is
54  * robust against reordering.
55  *
56  * Note that using a single 64-bit comparison is incorrect; even
57  * though the CPU read will be atomic, the DMA write may not be.
58  */
efx_event_present(efx_qword_t * event)59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64 
65 /* Returns a pointer to the specified transmit descriptor in the TX
66  * descriptor queue belonging to the specified channel.
67  */
68 static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue * tx_queue,unsigned int index)69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73 
74 /* Get partner of a TX queue, seen as part of the same net core queue */
efx_tx_queue_partner(struct efx_tx_queue * tx_queue)75 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
76 {
77 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
78 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
79 	else
80 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
81 }
82 
83 /* Report whether this TX queue would be empty for the given write_count.
84  * May return false negative.
85  */
__efx_nic_tx_is_empty(struct efx_tx_queue * tx_queue,unsigned int write_count)86 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
87 					 unsigned int write_count)
88 {
89 	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
90 
91 	if (empty_read_count == 0)
92 		return false;
93 
94 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
95 }
96 
97 /* Decide whether we can use TX PIO, ie. write packet data directly into
98  * a buffer on the device.  This can reduce latency at the expense of
99  * throughput, so we only do this if both hardware and software TX rings
100  * are empty.  This also ensures that only one packet at a time can be
101  * using the PIO buffer.
102  */
efx_nic_may_tx_pio(struct efx_tx_queue * tx_queue)103 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
104 {
105 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
106 	return tx_queue->piobuf &&
107 	       __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
108 	       __efx_nic_tx_is_empty(partner, partner->insert_count);
109 }
110 
111 /* Decide whether to push a TX descriptor to the NIC vs merely writing
112  * the doorbell.  This can reduce latency when we are adding a single
113  * descriptor to an empty queue, but is otherwise pointless.  Further,
114  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
115  * triggered if we don't check this.
116  * We use the write_count used for the last doorbell push, to get the
117  * NIC's view of the tx queue.
118  */
efx_nic_may_push_tx_desc(struct efx_tx_queue * tx_queue,unsigned int write_count)119 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
120 					    unsigned int write_count)
121 {
122 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
123 
124 	tx_queue->empty_read_count = 0;
125 	return was_empty && tx_queue->write_count - write_count == 1;
126 }
127 
128 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
129 static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)130 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
131 {
132 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
133 }
134 
135 enum {
136 	PHY_TYPE_NONE = 0,
137 	PHY_TYPE_TXC43128 = 1,
138 	PHY_TYPE_88E1111 = 2,
139 	PHY_TYPE_SFX7101 = 3,
140 	PHY_TYPE_QT2022C2 = 4,
141 	PHY_TYPE_PM8358 = 6,
142 	PHY_TYPE_SFT9001A = 8,
143 	PHY_TYPE_QT2025C = 9,
144 	PHY_TYPE_SFT9001B = 10,
145 };
146 
147 #define FALCON_XMAC_LOOPBACKS			\
148 	((1 << LOOPBACK_XGMII) |		\
149 	 (1 << LOOPBACK_XGXS) |			\
150 	 (1 << LOOPBACK_XAUI))
151 
152 /* Alignment of PCIe DMA boundaries (4KB) */
153 #define EFX_PAGE_SIZE	4096
154 /* Size and alignment of buffer table entries (same) */
155 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
156 
157 /* NIC-generic software stats */
158 enum {
159 	GENERIC_STAT_rx_noskb_drops,
160 	GENERIC_STAT_rx_nodesc_trunc,
161 	GENERIC_STAT_COUNT
162 };
163 
164 /**
165  * struct falcon_board_type - board operations and type information
166  * @id: Board type id, as found in NVRAM
167  * @init: Allocate resources and initialise peripheral hardware
168  * @init_phy: Do board-specific PHY initialisation
169  * @fini: Shut down hardware and free resources
170  * @set_id_led: Set state of identifying LED or revert to automatic function
171  * @monitor: Board-specific health check function
172  */
173 struct falcon_board_type {
174 	u8 id;
175 	int (*init) (struct efx_nic *nic);
176 	void (*init_phy) (struct efx_nic *efx);
177 	void (*fini) (struct efx_nic *nic);
178 	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
179 	int (*monitor) (struct efx_nic *nic);
180 };
181 
182 /**
183  * struct falcon_board - board information
184  * @type: Type of board
185  * @major: Major rev. ('A', 'B' ...)
186  * @minor: Minor rev. (0, 1, ...)
187  * @i2c_adap: I2C adapter for on-board peripherals
188  * @i2c_data: Data for bit-banging algorithm
189  * @hwmon_client: I2C client for hardware monitor
190  * @ioexp_client: I2C client for power/port control
191  */
192 struct falcon_board {
193 	const struct falcon_board_type *type;
194 	int major;
195 	int minor;
196 	struct i2c_adapter i2c_adap;
197 	struct i2c_algo_bit_data i2c_data;
198 	struct i2c_client *hwmon_client, *ioexp_client;
199 };
200 
201 /**
202  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
203  * @device_id:		Controller's id for the device
204  * @size:		Size (in bytes)
205  * @addr_len:		Number of address bytes in read/write commands
206  * @munge_address:	Flag whether addresses should be munged.
207  *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
208  *	use bit 3 of the command byte as address bit A8, rather
209  *	than having a two-byte address.  If this flag is set, then
210  *	commands should be munged in this way.
211  * @erase_command:	Erase command (or 0 if sector erase not needed).
212  * @erase_size:		Erase sector size (in bytes)
213  *	Erase commands affect sectors with this size and alignment.
214  *	This must be a power of two.
215  * @block_size:		Write block size (in bytes).
216  *	Write commands are limited to blocks with this size and alignment.
217  */
218 struct falcon_spi_device {
219 	int device_id;
220 	unsigned int size;
221 	unsigned int addr_len;
222 	unsigned int munge_address:1;
223 	u8 erase_command;
224 	unsigned int erase_size;
225 	unsigned int block_size;
226 };
227 
falcon_spi_present(const struct falcon_spi_device * spi)228 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
229 {
230 	return spi->size != 0;
231 }
232 
233 enum {
234 	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
235 	FALCON_STAT_tx_packets,
236 	FALCON_STAT_tx_pause,
237 	FALCON_STAT_tx_control,
238 	FALCON_STAT_tx_unicast,
239 	FALCON_STAT_tx_multicast,
240 	FALCON_STAT_tx_broadcast,
241 	FALCON_STAT_tx_lt64,
242 	FALCON_STAT_tx_64,
243 	FALCON_STAT_tx_65_to_127,
244 	FALCON_STAT_tx_128_to_255,
245 	FALCON_STAT_tx_256_to_511,
246 	FALCON_STAT_tx_512_to_1023,
247 	FALCON_STAT_tx_1024_to_15xx,
248 	FALCON_STAT_tx_15xx_to_jumbo,
249 	FALCON_STAT_tx_gtjumbo,
250 	FALCON_STAT_tx_non_tcpudp,
251 	FALCON_STAT_tx_mac_src_error,
252 	FALCON_STAT_tx_ip_src_error,
253 	FALCON_STAT_rx_bytes,
254 	FALCON_STAT_rx_good_bytes,
255 	FALCON_STAT_rx_bad_bytes,
256 	FALCON_STAT_rx_packets,
257 	FALCON_STAT_rx_good,
258 	FALCON_STAT_rx_bad,
259 	FALCON_STAT_rx_pause,
260 	FALCON_STAT_rx_control,
261 	FALCON_STAT_rx_unicast,
262 	FALCON_STAT_rx_multicast,
263 	FALCON_STAT_rx_broadcast,
264 	FALCON_STAT_rx_lt64,
265 	FALCON_STAT_rx_64,
266 	FALCON_STAT_rx_65_to_127,
267 	FALCON_STAT_rx_128_to_255,
268 	FALCON_STAT_rx_256_to_511,
269 	FALCON_STAT_rx_512_to_1023,
270 	FALCON_STAT_rx_1024_to_15xx,
271 	FALCON_STAT_rx_15xx_to_jumbo,
272 	FALCON_STAT_rx_gtjumbo,
273 	FALCON_STAT_rx_bad_lt64,
274 	FALCON_STAT_rx_bad_gtjumbo,
275 	FALCON_STAT_rx_overflow,
276 	FALCON_STAT_rx_symbol_error,
277 	FALCON_STAT_rx_align_error,
278 	FALCON_STAT_rx_length_error,
279 	FALCON_STAT_rx_internal_error,
280 	FALCON_STAT_rx_nodesc_drop_cnt,
281 	FALCON_STAT_COUNT
282 };
283 
284 /**
285  * struct falcon_nic_data - Falcon NIC state
286  * @pci_dev2: Secondary function of Falcon A
287  * @board: Board state and functions
288  * @stats: Hardware statistics
289  * @stats_disable_count: Nest count for disabling statistics fetches
290  * @stats_pending: Is there a pending DMA of MAC statistics.
291  * @stats_timer: A timer for regularly fetching MAC statistics.
292  * @spi_flash: SPI flash device
293  * @spi_eeprom: SPI EEPROM device
294  * @spi_lock: SPI bus lock
295  * @mdio_lock: MDIO bus lock
296  * @xmac_poll_required: XMAC link state needs polling
297  */
298 struct falcon_nic_data {
299 	struct pci_dev *pci_dev2;
300 	struct falcon_board board;
301 	u64 stats[FALCON_STAT_COUNT];
302 	unsigned int stats_disable_count;
303 	bool stats_pending;
304 	struct timer_list stats_timer;
305 	struct falcon_spi_device spi_flash;
306 	struct falcon_spi_device spi_eeprom;
307 	struct mutex spi_lock;
308 	struct mutex mdio_lock;
309 	bool xmac_poll_required;
310 };
311 
falcon_board(struct efx_nic * efx)312 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
313 {
314 	struct falcon_nic_data *data = efx->nic_data;
315 	return &data->board;
316 }
317 
318 enum {
319 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
320 	SIENA_STAT_tx_good_bytes,
321 	SIENA_STAT_tx_bad_bytes,
322 	SIENA_STAT_tx_packets,
323 	SIENA_STAT_tx_bad,
324 	SIENA_STAT_tx_pause,
325 	SIENA_STAT_tx_control,
326 	SIENA_STAT_tx_unicast,
327 	SIENA_STAT_tx_multicast,
328 	SIENA_STAT_tx_broadcast,
329 	SIENA_STAT_tx_lt64,
330 	SIENA_STAT_tx_64,
331 	SIENA_STAT_tx_65_to_127,
332 	SIENA_STAT_tx_128_to_255,
333 	SIENA_STAT_tx_256_to_511,
334 	SIENA_STAT_tx_512_to_1023,
335 	SIENA_STAT_tx_1024_to_15xx,
336 	SIENA_STAT_tx_15xx_to_jumbo,
337 	SIENA_STAT_tx_gtjumbo,
338 	SIENA_STAT_tx_collision,
339 	SIENA_STAT_tx_single_collision,
340 	SIENA_STAT_tx_multiple_collision,
341 	SIENA_STAT_tx_excessive_collision,
342 	SIENA_STAT_tx_deferred,
343 	SIENA_STAT_tx_late_collision,
344 	SIENA_STAT_tx_excessive_deferred,
345 	SIENA_STAT_tx_non_tcpudp,
346 	SIENA_STAT_tx_mac_src_error,
347 	SIENA_STAT_tx_ip_src_error,
348 	SIENA_STAT_rx_bytes,
349 	SIENA_STAT_rx_good_bytes,
350 	SIENA_STAT_rx_bad_bytes,
351 	SIENA_STAT_rx_packets,
352 	SIENA_STAT_rx_good,
353 	SIENA_STAT_rx_bad,
354 	SIENA_STAT_rx_pause,
355 	SIENA_STAT_rx_control,
356 	SIENA_STAT_rx_unicast,
357 	SIENA_STAT_rx_multicast,
358 	SIENA_STAT_rx_broadcast,
359 	SIENA_STAT_rx_lt64,
360 	SIENA_STAT_rx_64,
361 	SIENA_STAT_rx_65_to_127,
362 	SIENA_STAT_rx_128_to_255,
363 	SIENA_STAT_rx_256_to_511,
364 	SIENA_STAT_rx_512_to_1023,
365 	SIENA_STAT_rx_1024_to_15xx,
366 	SIENA_STAT_rx_15xx_to_jumbo,
367 	SIENA_STAT_rx_gtjumbo,
368 	SIENA_STAT_rx_bad_gtjumbo,
369 	SIENA_STAT_rx_overflow,
370 	SIENA_STAT_rx_false_carrier,
371 	SIENA_STAT_rx_symbol_error,
372 	SIENA_STAT_rx_align_error,
373 	SIENA_STAT_rx_length_error,
374 	SIENA_STAT_rx_internal_error,
375 	SIENA_STAT_rx_nodesc_drop_cnt,
376 	SIENA_STAT_COUNT
377 };
378 
379 /**
380  * struct siena_nic_data - Siena NIC state
381  * @wol_filter_id: Wake-on-LAN packet filter id
382  * @stats: Hardware statistics
383  */
384 struct siena_nic_data {
385 	int wol_filter_id;
386 	u64 stats[SIENA_STAT_COUNT];
387 };
388 
389 enum {
390 	EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
391 	EF10_STAT_tx_packets,
392 	EF10_STAT_tx_pause,
393 	EF10_STAT_tx_control,
394 	EF10_STAT_tx_unicast,
395 	EF10_STAT_tx_multicast,
396 	EF10_STAT_tx_broadcast,
397 	EF10_STAT_tx_lt64,
398 	EF10_STAT_tx_64,
399 	EF10_STAT_tx_65_to_127,
400 	EF10_STAT_tx_128_to_255,
401 	EF10_STAT_tx_256_to_511,
402 	EF10_STAT_tx_512_to_1023,
403 	EF10_STAT_tx_1024_to_15xx,
404 	EF10_STAT_tx_15xx_to_jumbo,
405 	EF10_STAT_rx_bytes,
406 	EF10_STAT_rx_bytes_minus_good_bytes,
407 	EF10_STAT_rx_good_bytes,
408 	EF10_STAT_rx_bad_bytes,
409 	EF10_STAT_rx_packets,
410 	EF10_STAT_rx_good,
411 	EF10_STAT_rx_bad,
412 	EF10_STAT_rx_pause,
413 	EF10_STAT_rx_control,
414 	EF10_STAT_rx_unicast,
415 	EF10_STAT_rx_multicast,
416 	EF10_STAT_rx_broadcast,
417 	EF10_STAT_rx_lt64,
418 	EF10_STAT_rx_64,
419 	EF10_STAT_rx_65_to_127,
420 	EF10_STAT_rx_128_to_255,
421 	EF10_STAT_rx_256_to_511,
422 	EF10_STAT_rx_512_to_1023,
423 	EF10_STAT_rx_1024_to_15xx,
424 	EF10_STAT_rx_15xx_to_jumbo,
425 	EF10_STAT_rx_gtjumbo,
426 	EF10_STAT_rx_bad_gtjumbo,
427 	EF10_STAT_rx_overflow,
428 	EF10_STAT_rx_align_error,
429 	EF10_STAT_rx_length_error,
430 	EF10_STAT_rx_nodesc_drops,
431 	EF10_STAT_rx_pm_trunc_bb_overflow,
432 	EF10_STAT_rx_pm_discard_bb_overflow,
433 	EF10_STAT_rx_pm_trunc_vfifo_full,
434 	EF10_STAT_rx_pm_discard_vfifo_full,
435 	EF10_STAT_rx_pm_trunc_qbb,
436 	EF10_STAT_rx_pm_discard_qbb,
437 	EF10_STAT_rx_pm_discard_mapping,
438 	EF10_STAT_rx_dp_q_disabled_packets,
439 	EF10_STAT_rx_dp_di_dropped_packets,
440 	EF10_STAT_rx_dp_streaming_packets,
441 	EF10_STAT_rx_dp_hlb_fetch,
442 	EF10_STAT_rx_dp_hlb_wait,
443 	EF10_STAT_COUNT
444 };
445 
446 /* Maximum number of TX PIO buffers we may allocate to a function.
447  * This matches the total number of buffers on each SFC9100-family
448  * controller.
449  */
450 #define EF10_TX_PIOBUF_COUNT 16
451 
452 /**
453  * struct efx_ef10_nic_data - EF10 architecture NIC state
454  * @mcdi_buf: DMA buffer for MCDI
455  * @warm_boot_count: Last seen MC warm boot count
456  * @vi_base: Absolute index of first VI in this function
457  * @n_allocated_vis: Number of VIs allocated to this function
458  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
459  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
460  * @n_piobufs: Number of PIO buffers allocated to this function
461  * @wc_membase: Base address of write-combining mapping of the memory BAR
462  * @pio_write_base: Base address for writing PIO buffers
463  * @pio_write_vi_base: Relative VI number for @pio_write_base
464  * @piobuf_handle: Handle of each PIO buffer allocated
465  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
466  *	reboot
467  * @rx_rss_context: Firmware handle for our RSS context
468  * @stats: Hardware statistics
469  * @workaround_35388: Flag: firmware supports workaround for bug 35388
470  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
471  *	after MC reboot
472  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
473  *	%MC_CMD_GET_CAPABILITIES response)
474  */
475 struct efx_ef10_nic_data {
476 	struct efx_buffer mcdi_buf;
477 	u16 warm_boot_count;
478 	unsigned int vi_base;
479 	unsigned int n_allocated_vis;
480 	bool must_realloc_vis;
481 	bool must_restore_filters;
482 	unsigned int n_piobufs;
483 	void __iomem *wc_membase, *pio_write_base;
484 	unsigned int pio_write_vi_base;
485 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
486 	bool must_restore_piobufs;
487 	u32 rx_rss_context;
488 	u64 stats[EF10_STAT_COUNT];
489 	bool workaround_35388;
490 	bool must_check_datapath_caps;
491 	u32 datapath_caps;
492 };
493 
494 /*
495  * On the SFC9000 family each port is associated with 1 PCI physical
496  * function (PF) handled by sfc and a configurable number of virtual
497  * functions (VFs) that may be handled by some other driver, often in
498  * a VM guest.  The queue pointer registers are mapped in both PF and
499  * VF BARs such that an 8K region provides access to a single RX, TX
500  * and event queue (collectively a Virtual Interface, VI or VNIC).
501  *
502  * The PF has access to all 1024 VIs while VFs are mapped to VIs
503  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
504  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
505  * The number of VIs and the VI_SCALE value are configurable but must
506  * be established at boot time by firmware.
507  */
508 
509 /* Maximum VI_SCALE parameter supported by Siena */
510 #define EFX_VI_SCALE_MAX 6
511 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
512  * so this is the smallest allowed value. */
513 #define EFX_VI_BASE 128U
514 /* Maximum number of VFs allowed */
515 #define EFX_VF_COUNT_MAX 127
516 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
517 #define EFX_MAX_VF_EVQ_SIZE 8192UL
518 /* The number of buffer table entries reserved for each VI on a VF */
519 #define EFX_VF_BUFTBL_PER_VI					\
520 	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
521 	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
522 
523 #ifdef CONFIG_SFC_SRIOV
524 
efx_sriov_wanted(struct efx_nic * efx)525 static inline bool efx_sriov_wanted(struct efx_nic *efx)
526 {
527 	return efx->vf_count != 0;
528 }
efx_sriov_enabled(struct efx_nic * efx)529 static inline bool efx_sriov_enabled(struct efx_nic *efx)
530 {
531 	return efx->vf_init_count != 0;
532 }
efx_vf_size(struct efx_nic * efx)533 static inline unsigned int efx_vf_size(struct efx_nic *efx)
534 {
535 	return 1 << efx->vi_scale;
536 }
537 
538 int efx_init_sriov(void);
539 void efx_sriov_probe(struct efx_nic *efx);
540 int efx_sriov_init(struct efx_nic *efx);
541 void efx_sriov_mac_address_changed(struct efx_nic *efx);
542 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
543 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
544 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
545 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
546 void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
547 void efx_sriov_reset(struct efx_nic *efx);
548 void efx_sriov_fini(struct efx_nic *efx);
549 void efx_fini_sriov(void);
550 
551 #else
552 
efx_sriov_wanted(struct efx_nic * efx)553 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
efx_sriov_enabled(struct efx_nic * efx)554 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
efx_vf_size(struct efx_nic * efx)555 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
556 
efx_init_sriov(void)557 static inline int efx_init_sriov(void) { return 0; }
efx_sriov_probe(struct efx_nic * efx)558 static inline void efx_sriov_probe(struct efx_nic *efx) {}
efx_sriov_init(struct efx_nic * efx)559 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
efx_sriov_mac_address_changed(struct efx_nic * efx)560 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
efx_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)561 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
562 					   efx_qword_t *event) {}
efx_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)563 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
564 					   efx_qword_t *event) {}
efx_sriov_event(struct efx_channel * channel,efx_qword_t * event)565 static inline void efx_sriov_event(struct efx_channel *channel,
566 				   efx_qword_t *event) {}
efx_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)567 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
efx_sriov_flr(struct efx_nic * efx,unsigned flr)568 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
efx_sriov_reset(struct efx_nic * efx)569 static inline void efx_sriov_reset(struct efx_nic *efx) {}
efx_sriov_fini(struct efx_nic * efx)570 static inline void efx_sriov_fini(struct efx_nic *efx) {}
efx_fini_sriov(void)571 static inline void efx_fini_sriov(void) {}
572 
573 #endif
574 
575 int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
576 int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
577 int efx_sriov_get_vf_config(struct net_device *dev, int vf,
578 			    struct ifla_vf_info *ivf);
579 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
580 			      bool spoofchk);
581 
582 struct ethtool_ts_info;
583 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
584 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
585 void efx_ptp_remove(struct efx_nic *efx);
586 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
587 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
588 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
589 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
590 int efx_ptp_get_mode(struct efx_nic *efx);
591 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
592 			unsigned int new_mode);
593 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
594 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
595 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
596 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
597 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
598 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
599 				   struct sk_buff *skb);
efx_rx_skb_attach_timestamp(struct efx_channel * channel,struct sk_buff * skb)600 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
601 					       struct sk_buff *skb)
602 {
603 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
604 		__efx_rx_skb_attach_timestamp(channel, skb);
605 }
606 void efx_ptp_start_datapath(struct efx_nic *efx);
607 void efx_ptp_stop_datapath(struct efx_nic *efx);
608 
609 extern const struct efx_nic_type falcon_a1_nic_type;
610 extern const struct efx_nic_type falcon_b0_nic_type;
611 extern const struct efx_nic_type siena_a0_nic_type;
612 extern const struct efx_nic_type efx_hunt_a0_nic_type;
613 
614 /**************************************************************************
615  *
616  * Externs
617  *
618  **************************************************************************
619  */
620 
621 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
622 
623 /* TX data path */
efx_nic_probe_tx(struct efx_tx_queue * tx_queue)624 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
625 {
626 	return tx_queue->efx->type->tx_probe(tx_queue);
627 }
efx_nic_init_tx(struct efx_tx_queue * tx_queue)628 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
629 {
630 	tx_queue->efx->type->tx_init(tx_queue);
631 }
efx_nic_remove_tx(struct efx_tx_queue * tx_queue)632 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
633 {
634 	tx_queue->efx->type->tx_remove(tx_queue);
635 }
efx_nic_push_buffers(struct efx_tx_queue * tx_queue)636 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
637 {
638 	tx_queue->efx->type->tx_write(tx_queue);
639 }
640 
641 /* RX data path */
efx_nic_probe_rx(struct efx_rx_queue * rx_queue)642 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
643 {
644 	return rx_queue->efx->type->rx_probe(rx_queue);
645 }
efx_nic_init_rx(struct efx_rx_queue * rx_queue)646 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
647 {
648 	rx_queue->efx->type->rx_init(rx_queue);
649 }
efx_nic_remove_rx(struct efx_rx_queue * rx_queue)650 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
651 {
652 	rx_queue->efx->type->rx_remove(rx_queue);
653 }
efx_nic_notify_rx_desc(struct efx_rx_queue * rx_queue)654 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
655 {
656 	rx_queue->efx->type->rx_write(rx_queue);
657 }
efx_nic_generate_fill_event(struct efx_rx_queue * rx_queue)658 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
659 {
660 	rx_queue->efx->type->rx_defer_refill(rx_queue);
661 }
662 
663 /* Event data path */
efx_nic_probe_eventq(struct efx_channel * channel)664 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
665 {
666 	return channel->efx->type->ev_probe(channel);
667 }
efx_nic_init_eventq(struct efx_channel * channel)668 static inline int efx_nic_init_eventq(struct efx_channel *channel)
669 {
670 	return channel->efx->type->ev_init(channel);
671 }
efx_nic_fini_eventq(struct efx_channel * channel)672 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
673 {
674 	channel->efx->type->ev_fini(channel);
675 }
efx_nic_remove_eventq(struct efx_channel * channel)676 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
677 {
678 	channel->efx->type->ev_remove(channel);
679 }
680 static inline int
efx_nic_process_eventq(struct efx_channel * channel,int quota)681 efx_nic_process_eventq(struct efx_channel *channel, int quota)
682 {
683 	return channel->efx->type->ev_process(channel, quota);
684 }
efx_nic_eventq_read_ack(struct efx_channel * channel)685 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
686 {
687 	channel->efx->type->ev_read_ack(channel);
688 }
689 void efx_nic_event_test_start(struct efx_channel *channel);
690 
691 /* Falcon/Siena queue operations */
692 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
693 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
694 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
695 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
696 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
697 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
698 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
699 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
700 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
701 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
702 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
703 int efx_farch_ev_probe(struct efx_channel *channel);
704 int efx_farch_ev_init(struct efx_channel *channel);
705 void efx_farch_ev_fini(struct efx_channel *channel);
706 void efx_farch_ev_remove(struct efx_channel *channel);
707 int efx_farch_ev_process(struct efx_channel *channel, int quota);
708 void efx_farch_ev_read_ack(struct efx_channel *channel);
709 void efx_farch_ev_test_generate(struct efx_channel *channel);
710 
711 /* Falcon/Siena filter operations */
712 int efx_farch_filter_table_probe(struct efx_nic *efx);
713 void efx_farch_filter_table_restore(struct efx_nic *efx);
714 void efx_farch_filter_table_remove(struct efx_nic *efx);
715 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
716 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
717 			    bool replace);
718 int efx_farch_filter_remove_safe(struct efx_nic *efx,
719 				 enum efx_filter_priority priority,
720 				 u32 filter_id);
721 int efx_farch_filter_get_safe(struct efx_nic *efx,
722 			      enum efx_filter_priority priority, u32 filter_id,
723 			      struct efx_filter_spec *);
724 int efx_farch_filter_clear_rx(struct efx_nic *efx,
725 			      enum efx_filter_priority priority);
726 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
727 				   enum efx_filter_priority priority);
728 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
729 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
730 				enum efx_filter_priority priority, u32 *buf,
731 				u32 size);
732 #ifdef CONFIG_RFS_ACCEL
733 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
734 				struct efx_filter_spec *spec);
735 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
736 				     unsigned int index);
737 #endif
738 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
739 
740 bool efx_nic_event_present(struct efx_channel *channel);
741 
742 /* Some statistics are computed as A - B where A and B each increase
743  * linearly with some hardware counter(s) and the counters are read
744  * asynchronously.  If the counters contributing to B are always read
745  * after those contributing to A, the computed value may be lower than
746  * the true value by some variable amount, and may decrease between
747  * subsequent computations.
748  *
749  * We should never allow statistics to decrease or to exceed the true
750  * value.  Since the computed value will never be greater than the
751  * true value, we can achieve this by only storing the computed value
752  * when it increases.
753  */
efx_update_diff_stat(u64 * stat,u64 diff)754 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
755 {
756 	if ((s64)(diff - *stat) > 0)
757 		*stat = diff;
758 }
759 
760 /* Interrupts */
761 int efx_nic_init_interrupt(struct efx_nic *efx);
762 void efx_nic_irq_test_start(struct efx_nic *efx);
763 void efx_nic_fini_interrupt(struct efx_nic *efx);
764 
765 /* Falcon/Siena interrupts */
766 void efx_farch_irq_enable_master(struct efx_nic *efx);
767 void efx_farch_irq_test_generate(struct efx_nic *efx);
768 void efx_farch_irq_disable_master(struct efx_nic *efx);
769 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
770 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
771 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
772 
efx_nic_event_test_irq_cpu(struct efx_channel * channel)773 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
774 {
775 	return ACCESS_ONCE(channel->event_test_cpu);
776 }
efx_nic_irq_test_irq_cpu(struct efx_nic * efx)777 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
778 {
779 	return ACCESS_ONCE(efx->last_irq_cpu);
780 }
781 
782 /* Global Resources */
783 int efx_nic_flush_queues(struct efx_nic *efx);
784 void siena_prepare_flush(struct efx_nic *efx);
785 int efx_farch_fini_dmaq(struct efx_nic *efx);
786 void efx_farch_finish_flr(struct efx_nic *efx);
787 void siena_finish_flush(struct efx_nic *efx);
788 void falcon_start_nic_stats(struct efx_nic *efx);
789 void falcon_stop_nic_stats(struct efx_nic *efx);
790 int falcon_reset_xaui(struct efx_nic *efx);
791 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
792 void efx_farch_init_common(struct efx_nic *efx);
793 void efx_ef10_handle_drain_event(struct efx_nic *efx);
794 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
795 
796 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
797 			 unsigned int len, gfp_t gfp_flags);
798 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
799 
800 /* Tests */
801 struct efx_farch_register_test {
802 	unsigned address;
803 	efx_oword_t mask;
804 };
805 int efx_farch_test_registers(struct efx_nic *efx,
806 			     const struct efx_farch_register_test *regs,
807 			     size_t n_regs);
808 
809 size_t efx_nic_get_regs_len(struct efx_nic *efx);
810 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
811 
812 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
813 			      const unsigned long *mask, u8 *names);
814 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
815 			  const unsigned long *mask, u64 *stats,
816 			  const void *dma_buf, bool accumulate);
817 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
818 
819 #define EFX_MAX_FLUSH_TIME 5000
820 
821 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
822 			      efx_qword_t *event);
823 
824 #endif /* EFX_NIC_H */
825