• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 
23 struct mempolicy;
24 struct anon_vma;
25 struct anon_vma_chain;
26 struct file_ra_state;
27 struct user_struct;
28 struct writeback_control;
29 
30 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
31 extern unsigned long max_mapnr;
32 
set_max_mapnr(unsigned long limit)33 static inline void set_max_mapnr(unsigned long limit)
34 {
35 	max_mapnr = limit;
36 }
37 #else
set_max_mapnr(unsigned long limit)38 static inline void set_max_mapnr(unsigned long limit) { }
39 #endif
40 
41 extern unsigned long totalram_pages;
42 extern void * high_memory;
43 extern int page_cluster;
44 
45 #ifdef CONFIG_SYSCTL
46 extern int sysctl_legacy_va_layout;
47 #else
48 #define sysctl_legacy_va_layout 0
49 #endif
50 
51 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
52 extern const int mmap_rnd_bits_min;
53 extern const int mmap_rnd_bits_max;
54 extern int mmap_rnd_bits __read_mostly;
55 #endif
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
57 extern const int mmap_rnd_compat_bits_min;
58 extern const int mmap_rnd_compat_bits_max;
59 extern int mmap_rnd_compat_bits __read_mostly;
60 #endif
61 
62 #include <asm/page.h>
63 #include <asm/pgtable.h>
64 #include <asm/processor.h>
65 
66 #ifndef __pa_symbol
67 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
68 #endif
69 
70 extern unsigned long sysctl_user_reserve_kbytes;
71 extern unsigned long sysctl_admin_reserve_kbytes;
72 
73 extern int sysctl_overcommit_memory;
74 extern int sysctl_overcommit_ratio;
75 extern unsigned long sysctl_overcommit_kbytes;
76 
77 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
78 				    size_t *, loff_t *);
79 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
80 				    size_t *, loff_t *);
81 
82 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
83 
84 /* to align the pointer to the (next) page boundary */
85 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
86 
87 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
88 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
89 
90 /*
91  * Linux kernel virtual memory manager primitives.
92  * The idea being to have a "virtual" mm in the same way
93  * we have a virtual fs - giving a cleaner interface to the
94  * mm details, and allowing different kinds of memory mappings
95  * (from shared memory to executable loading to arbitrary
96  * mmap() functions).
97  */
98 
99 extern struct kmem_cache *vm_area_cachep;
100 
101 #ifndef CONFIG_MMU
102 extern struct rb_root nommu_region_tree;
103 extern struct rw_semaphore nommu_region_sem;
104 
105 extern unsigned int kobjsize(const void *objp);
106 #endif
107 
108 /*
109  * vm_flags in vm_area_struct, see mm_types.h.
110  */
111 #define VM_NONE		0x00000000
112 
113 #define VM_READ		0x00000001	/* currently active flags */
114 #define VM_WRITE	0x00000002
115 #define VM_EXEC		0x00000004
116 #define VM_SHARED	0x00000008
117 
118 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
119 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
120 #define VM_MAYWRITE	0x00000020
121 #define VM_MAYEXEC	0x00000040
122 #define VM_MAYSHARE	0x00000080
123 
124 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
125 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
126 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
127 
128 #define VM_LOCKED	0x00002000
129 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
130 
131 					/* Used by sys_madvise() */
132 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
133 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
134 
135 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
136 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
137 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
138 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
139 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
140 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
141 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
142 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
143 
144 #ifdef CONFIG_MEM_SOFT_DIRTY
145 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
146 #else
147 # define VM_SOFTDIRTY	0
148 #endif
149 
150 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
151 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
152 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
153 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
154 
155 #if defined(CONFIG_X86)
156 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
157 #elif defined(CONFIG_PPC)
158 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
159 #elif defined(CONFIG_PARISC)
160 # define VM_GROWSUP	VM_ARCH_1
161 #elif defined(CONFIG_METAG)
162 # define VM_GROWSUP	VM_ARCH_1
163 #elif defined(CONFIG_IA64)
164 # define VM_GROWSUP	VM_ARCH_1
165 #elif !defined(CONFIG_MMU)
166 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
167 #endif
168 
169 #ifndef VM_GROWSUP
170 # define VM_GROWSUP	VM_NONE
171 #endif
172 
173 /* Bits set in the VMA until the stack is in its final location */
174 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
175 
176 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
177 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
178 #endif
179 
180 #ifdef CONFIG_STACK_GROWSUP
181 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
182 #else
183 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
184 #endif
185 
186 /*
187  * Special vmas that are non-mergable, non-mlock()able.
188  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
189  */
190 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
191 
192 /* This mask defines which mm->def_flags a process can inherit its parent */
193 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
194 
195 /*
196  * mapping from the currently active vm_flags protection bits (the
197  * low four bits) to a page protection mask..
198  */
199 extern pgprot_t protection_map[16];
200 
201 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
202 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
203 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
204 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
205 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
206 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
207 #define FAULT_FLAG_TRIED	0x40	/* second try */
208 #define FAULT_FLAG_USER		0x80	/* The fault originated in userspace */
209 
210 /*
211  * vm_fault is filled by the the pagefault handler and passed to the vma's
212  * ->fault function. The vma's ->fault is responsible for returning a bitmask
213  * of VM_FAULT_xxx flags that give details about how the fault was handled.
214  *
215  * pgoff should be used in favour of virtual_address, if possible. If pgoff
216  * is used, one may implement ->remap_pages to get nonlinear mapping support.
217  */
218 struct vm_fault {
219 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
220 	pgoff_t pgoff;			/* Logical page offset based on vma */
221 	void __user *virtual_address;	/* Faulting virtual address */
222 
223 	struct page *page;		/* ->fault handlers should return a
224 					 * page here, unless VM_FAULT_NOPAGE
225 					 * is set (which is also implied by
226 					 * VM_FAULT_ERROR).
227 					 */
228 	/* for ->map_pages() only */
229 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
230 					 * max_pgoff inclusive */
231 	pte_t *pte;			/* pte entry associated with ->pgoff */
232 };
233 
234 /*
235  * These are the virtual MM functions - opening of an area, closing and
236  * unmapping it (needed to keep files on disk up-to-date etc), pointer
237  * to the functions called when a no-page or a wp-page exception occurs.
238  */
239 struct vm_operations_struct {
240 	void (*open)(struct vm_area_struct * area);
241 	void (*close)(struct vm_area_struct * area);
242 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
243 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
244 
245 	/* notification that a previously read-only page is about to become
246 	 * writable, if an error is returned it will cause a SIGBUS */
247 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
248 
249 	/* called by access_process_vm when get_user_pages() fails, typically
250 	 * for use by special VMAs that can switch between memory and hardware
251 	 */
252 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
253 		      void *buf, int len, int write);
254 
255 	/* Called by the /proc/PID/maps code to ask the vma whether it
256 	 * has a special name.  Returning non-NULL will also cause this
257 	 * vma to be dumped unconditionally. */
258 	const char *(*name)(struct vm_area_struct *vma);
259 
260 #ifdef CONFIG_NUMA
261 	/*
262 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
263 	 * to hold the policy upon return.  Caller should pass NULL @new to
264 	 * remove a policy and fall back to surrounding context--i.e. do not
265 	 * install a MPOL_DEFAULT policy, nor the task or system default
266 	 * mempolicy.
267 	 */
268 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
269 
270 	/*
271 	 * get_policy() op must add reference [mpol_get()] to any policy at
272 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
273 	 * in mm/mempolicy.c will do this automatically.
274 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
275 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
276 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
277 	 * must return NULL--i.e., do not "fallback" to task or system default
278 	 * policy.
279 	 */
280 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
281 					unsigned long addr);
282 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
283 		const nodemask_t *to, unsigned long flags);
284 #endif
285 	/* called by sys_remap_file_pages() to populate non-linear mapping */
286 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
287 			   unsigned long size, pgoff_t pgoff);
288 };
289 
290 struct mmu_gather;
291 struct inode;
292 
293 #define page_private(page)		((page)->private)
294 #define set_page_private(page, v)	((page)->private = (v))
295 
296 /* It's valid only if the page is free path or free_list */
set_freepage_migratetype(struct page * page,int migratetype)297 static inline void set_freepage_migratetype(struct page *page, int migratetype)
298 {
299 	page->index = migratetype;
300 }
301 
302 /* It's valid only if the page is free path or free_list */
get_freepage_migratetype(struct page * page)303 static inline int get_freepage_migratetype(struct page *page)
304 {
305 	return page->index;
306 }
307 
308 /*
309  * FIXME: take this include out, include page-flags.h in
310  * files which need it (119 of them)
311  */
312 #include <linux/page-flags.h>
313 #include <linux/huge_mm.h>
314 
315 /*
316  * Methods to modify the page usage count.
317  *
318  * What counts for a page usage:
319  * - cache mapping   (page->mapping)
320  * - private data    (page->private)
321  * - page mapped in a task's page tables, each mapping
322  *   is counted separately
323  *
324  * Also, many kernel routines increase the page count before a critical
325  * routine so they can be sure the page doesn't go away from under them.
326  */
327 
328 /*
329  * Drop a ref, return true if the refcount fell to zero (the page has no users)
330  */
put_page_testzero(struct page * page)331 static inline int put_page_testzero(struct page *page)
332 {
333 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
334 	return atomic_dec_and_test(&page->_count);
335 }
336 
337 /*
338  * Try to grab a ref unless the page has a refcount of zero, return false if
339  * that is the case.
340  * This can be called when MMU is off so it must not access
341  * any of the virtual mappings.
342  */
get_page_unless_zero(struct page * page)343 static inline int get_page_unless_zero(struct page *page)
344 {
345 	return atomic_inc_not_zero(&page->_count);
346 }
347 
348 /*
349  * Try to drop a ref unless the page has a refcount of one, return false if
350  * that is the case.
351  * This is to make sure that the refcount won't become zero after this drop.
352  * This can be called when MMU is off so it must not access
353  * any of the virtual mappings.
354  */
put_page_unless_one(struct page * page)355 static inline int put_page_unless_one(struct page *page)
356 {
357 	return atomic_add_unless(&page->_count, -1, 1);
358 }
359 
360 extern int page_is_ram(unsigned long pfn);
361 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
362 
363 /* Support for virtually mapped pages */
364 struct page *vmalloc_to_page(const void *addr);
365 unsigned long vmalloc_to_pfn(const void *addr);
366 
367 /*
368  * Determine if an address is within the vmalloc range
369  *
370  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
371  * is no special casing required.
372  */
is_vmalloc_addr(const void * x)373 static inline int is_vmalloc_addr(const void *x)
374 {
375 #ifdef CONFIG_MMU
376 	unsigned long addr = (unsigned long)x;
377 
378 	return addr >= VMALLOC_START && addr < VMALLOC_END;
379 #else
380 	return 0;
381 #endif
382 }
383 #ifdef CONFIG_MMU
384 extern int is_vmalloc_or_module_addr(const void *x);
385 #else
is_vmalloc_or_module_addr(const void * x)386 static inline int is_vmalloc_or_module_addr(const void *x)
387 {
388 	return 0;
389 }
390 #endif
391 
392 extern void kvfree(const void *addr);
393 
compound_lock(struct page * page)394 static inline void compound_lock(struct page *page)
395 {
396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
397 	VM_BUG_ON_PAGE(PageSlab(page), page);
398 	bit_spin_lock(PG_compound_lock, &page->flags);
399 #endif
400 }
401 
compound_unlock(struct page * page)402 static inline void compound_unlock(struct page *page)
403 {
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 	VM_BUG_ON_PAGE(PageSlab(page), page);
406 	bit_spin_unlock(PG_compound_lock, &page->flags);
407 #endif
408 }
409 
compound_lock_irqsave(struct page * page)410 static inline unsigned long compound_lock_irqsave(struct page *page)
411 {
412 	unsigned long uninitialized_var(flags);
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 	local_irq_save(flags);
415 	compound_lock(page);
416 #endif
417 	return flags;
418 }
419 
compound_unlock_irqrestore(struct page * page,unsigned long flags)420 static inline void compound_unlock_irqrestore(struct page *page,
421 					      unsigned long flags)
422 {
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 	compound_unlock(page);
425 	local_irq_restore(flags);
426 #endif
427 }
428 
compound_head_by_tail(struct page * tail)429 static inline struct page *compound_head_by_tail(struct page *tail)
430 {
431 	struct page *head = tail->first_page;
432 
433 	/*
434 	 * page->first_page may be a dangling pointer to an old
435 	 * compound page, so recheck that it is still a tail
436 	 * page before returning.
437 	 */
438 	smp_rmb();
439 	if (likely(PageTail(tail)))
440 		return head;
441 	return tail;
442 }
443 
compound_head(struct page * page)444 static inline struct page *compound_head(struct page *page)
445 {
446 	if (unlikely(PageTail(page)))
447 		return compound_head_by_tail(page);
448 	return page;
449 }
450 
451 /*
452  * The atomic page->_mapcount, starts from -1: so that transitions
453  * both from it and to it can be tracked, using atomic_inc_and_test
454  * and atomic_add_negative(-1).
455  */
page_mapcount_reset(struct page * page)456 static inline void page_mapcount_reset(struct page *page)
457 {
458 	atomic_set(&(page)->_mapcount, -1);
459 }
460 
page_mapcount(struct page * page)461 static inline int page_mapcount(struct page *page)
462 {
463 	return atomic_read(&(page)->_mapcount) + 1;
464 }
465 
page_count(struct page * page)466 static inline int page_count(struct page *page)
467 {
468 	return atomic_read(&compound_head(page)->_count);
469 }
470 
471 #ifdef CONFIG_HUGETLB_PAGE
472 extern int PageHeadHuge(struct page *page_head);
473 #else /* CONFIG_HUGETLB_PAGE */
PageHeadHuge(struct page * page_head)474 static inline int PageHeadHuge(struct page *page_head)
475 {
476 	return 0;
477 }
478 #endif /* CONFIG_HUGETLB_PAGE */
479 
__compound_tail_refcounted(struct page * page)480 static inline bool __compound_tail_refcounted(struct page *page)
481 {
482 	return !PageSlab(page) && !PageHeadHuge(page);
483 }
484 
485 /*
486  * This takes a head page as parameter and tells if the
487  * tail page reference counting can be skipped.
488  *
489  * For this to be safe, PageSlab and PageHeadHuge must remain true on
490  * any given page where they return true here, until all tail pins
491  * have been released.
492  */
compound_tail_refcounted(struct page * page)493 static inline bool compound_tail_refcounted(struct page *page)
494 {
495 	VM_BUG_ON_PAGE(!PageHead(page), page);
496 	return __compound_tail_refcounted(page);
497 }
498 
get_huge_page_tail(struct page * page)499 static inline void get_huge_page_tail(struct page *page)
500 {
501 	/*
502 	 * __split_huge_page_refcount() cannot run from under us.
503 	 */
504 	VM_BUG_ON_PAGE(!PageTail(page), page);
505 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
506 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
507 	if (compound_tail_refcounted(page->first_page))
508 		atomic_inc(&page->_mapcount);
509 }
510 
511 extern bool __get_page_tail(struct page *page);
512 
get_page(struct page * page)513 static inline void get_page(struct page *page)
514 {
515 	if (unlikely(PageTail(page)))
516 		if (likely(__get_page_tail(page)))
517 			return;
518 	/*
519 	 * Getting a normal page or the head of a compound page
520 	 * requires to already have an elevated page->_count.
521 	 */
522 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
523 	atomic_inc(&page->_count);
524 }
525 
virt_to_head_page(const void * x)526 static inline struct page *virt_to_head_page(const void *x)
527 {
528 	struct page *page = virt_to_page(x);
529 	return compound_head(page);
530 }
531 
532 /*
533  * Setup the page count before being freed into the page allocator for
534  * the first time (boot or memory hotplug)
535  */
init_page_count(struct page * page)536 static inline void init_page_count(struct page *page)
537 {
538 	atomic_set(&page->_count, 1);
539 }
540 
541 /*
542  * PageBuddy() indicate that the page is free and in the buddy system
543  * (see mm/page_alloc.c).
544  *
545  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
546  * -2 so that an underflow of the page_mapcount() won't be mistaken
547  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
548  * efficiently by most CPU architectures.
549  */
550 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
551 
PageBuddy(struct page * page)552 static inline int PageBuddy(struct page *page)
553 {
554 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
555 }
556 
__SetPageBuddy(struct page * page)557 static inline void __SetPageBuddy(struct page *page)
558 {
559 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
560 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
561 }
562 
__ClearPageBuddy(struct page * page)563 static inline void __ClearPageBuddy(struct page *page)
564 {
565 	VM_BUG_ON_PAGE(!PageBuddy(page), page);
566 	atomic_set(&page->_mapcount, -1);
567 }
568 
569 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
570 
PageBalloon(struct page * page)571 static inline int PageBalloon(struct page *page)
572 {
573 	return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
574 }
575 
__SetPageBalloon(struct page * page)576 static inline void __SetPageBalloon(struct page *page)
577 {
578 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
579 	atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
580 }
581 
__ClearPageBalloon(struct page * page)582 static inline void __ClearPageBalloon(struct page *page)
583 {
584 	VM_BUG_ON_PAGE(!PageBalloon(page), page);
585 	atomic_set(&page->_mapcount, -1);
586 }
587 
588 void put_page(struct page *page);
589 void put_pages_list(struct list_head *pages);
590 
591 void split_page(struct page *page, unsigned int order);
592 int split_free_page(struct page *page);
593 
594 /*
595  * Compound pages have a destructor function.  Provide a
596  * prototype for that function and accessor functions.
597  * These are _only_ valid on the head of a PG_compound page.
598  */
599 typedef void compound_page_dtor(struct page *);
600 
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)601 static inline void set_compound_page_dtor(struct page *page,
602 						compound_page_dtor *dtor)
603 {
604 	page[1].lru.next = (void *)dtor;
605 }
606 
get_compound_page_dtor(struct page * page)607 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
608 {
609 	return (compound_page_dtor *)page[1].lru.next;
610 }
611 
compound_order(struct page * page)612 static inline unsigned int compound_order(struct page *page)
613 {
614 	if (!PageHead(page))
615 		return 0;
616 	return (unsigned long)page[1].lru.prev;
617 }
618 
set_compound_order(struct page * page,unsigned long order)619 static inline void set_compound_order(struct page *page, unsigned long order)
620 {
621 	page[1].lru.prev = (void *)order;
622 }
623 
624 #ifdef CONFIG_MMU
625 /*
626  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
627  * servicing faults for write access.  In the normal case, do always want
628  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
629  * that do not have writing enabled, when used by access_process_vm.
630  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)631 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
632 {
633 	if (likely(vma->vm_flags & VM_WRITE))
634 		pte = pte_mkwrite(pte);
635 	return pte;
636 }
637 
638 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
639 		struct page *page, pte_t *pte, bool write, bool anon);
640 #endif
641 
642 /*
643  * Multiple processes may "see" the same page. E.g. for untouched
644  * mappings of /dev/null, all processes see the same page full of
645  * zeroes, and text pages of executables and shared libraries have
646  * only one copy in memory, at most, normally.
647  *
648  * For the non-reserved pages, page_count(page) denotes a reference count.
649  *   page_count() == 0 means the page is free. page->lru is then used for
650  *   freelist management in the buddy allocator.
651  *   page_count() > 0  means the page has been allocated.
652  *
653  * Pages are allocated by the slab allocator in order to provide memory
654  * to kmalloc and kmem_cache_alloc. In this case, the management of the
655  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
656  * unless a particular usage is carefully commented. (the responsibility of
657  * freeing the kmalloc memory is the caller's, of course).
658  *
659  * A page may be used by anyone else who does a __get_free_page().
660  * In this case, page_count still tracks the references, and should only
661  * be used through the normal accessor functions. The top bits of page->flags
662  * and page->virtual store page management information, but all other fields
663  * are unused and could be used privately, carefully. The management of this
664  * page is the responsibility of the one who allocated it, and those who have
665  * subsequently been given references to it.
666  *
667  * The other pages (we may call them "pagecache pages") are completely
668  * managed by the Linux memory manager: I/O, buffers, swapping etc.
669  * The following discussion applies only to them.
670  *
671  * A pagecache page contains an opaque `private' member, which belongs to the
672  * page's address_space. Usually, this is the address of a circular list of
673  * the page's disk buffers. PG_private must be set to tell the VM to call
674  * into the filesystem to release these pages.
675  *
676  * A page may belong to an inode's memory mapping. In this case, page->mapping
677  * is the pointer to the inode, and page->index is the file offset of the page,
678  * in units of PAGE_CACHE_SIZE.
679  *
680  * If pagecache pages are not associated with an inode, they are said to be
681  * anonymous pages. These may become associated with the swapcache, and in that
682  * case PG_swapcache is set, and page->private is an offset into the swapcache.
683  *
684  * In either case (swapcache or inode backed), the pagecache itself holds one
685  * reference to the page. Setting PG_private should also increment the
686  * refcount. The each user mapping also has a reference to the page.
687  *
688  * The pagecache pages are stored in a per-mapping radix tree, which is
689  * rooted at mapping->page_tree, and indexed by offset.
690  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
691  * lists, we instead now tag pages as dirty/writeback in the radix tree.
692  *
693  * All pagecache pages may be subject to I/O:
694  * - inode pages may need to be read from disk,
695  * - inode pages which have been modified and are MAP_SHARED may need
696  *   to be written back to the inode on disk,
697  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
698  *   modified may need to be swapped out to swap space and (later) to be read
699  *   back into memory.
700  */
701 
702 /*
703  * The zone field is never updated after free_area_init_core()
704  * sets it, so none of the operations on it need to be atomic.
705  */
706 
707 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
708 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
709 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
710 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
711 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
712 
713 /*
714  * Define the bit shifts to access each section.  For non-existent
715  * sections we define the shift as 0; that plus a 0 mask ensures
716  * the compiler will optimise away reference to them.
717  */
718 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
719 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
720 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
721 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
722 
723 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
724 #ifdef NODE_NOT_IN_PAGE_FLAGS
725 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
726 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
727 						SECTIONS_PGOFF : ZONES_PGOFF)
728 #else
729 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
730 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
731 						NODES_PGOFF : ZONES_PGOFF)
732 #endif
733 
734 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
735 
736 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
737 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
738 #endif
739 
740 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
741 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
742 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
743 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
744 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
745 
page_zonenum(const struct page * page)746 static inline enum zone_type page_zonenum(const struct page *page)
747 {
748 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
749 }
750 
751 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
752 #define SECTION_IN_PAGE_FLAGS
753 #endif
754 
755 /*
756  * The identification function is mainly used by the buddy allocator for
757  * determining if two pages could be buddies. We are not really identifying
758  * the zone since we could be using the section number id if we do not have
759  * node id available in page flags.
760  * We only guarantee that it will return the same value for two combinable
761  * pages in a zone.
762  */
page_zone_id(struct page * page)763 static inline int page_zone_id(struct page *page)
764 {
765 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
766 }
767 
zone_to_nid(struct zone * zone)768 static inline int zone_to_nid(struct zone *zone)
769 {
770 #ifdef CONFIG_NUMA
771 	return zone->node;
772 #else
773 	return 0;
774 #endif
775 }
776 
777 #ifdef NODE_NOT_IN_PAGE_FLAGS
778 extern int page_to_nid(const struct page *page);
779 #else
page_to_nid(const struct page * page)780 static inline int page_to_nid(const struct page *page)
781 {
782 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
783 }
784 #endif
785 
786 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)787 static inline int cpu_pid_to_cpupid(int cpu, int pid)
788 {
789 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
790 }
791 
cpupid_to_pid(int cpupid)792 static inline int cpupid_to_pid(int cpupid)
793 {
794 	return cpupid & LAST__PID_MASK;
795 }
796 
cpupid_to_cpu(int cpupid)797 static inline int cpupid_to_cpu(int cpupid)
798 {
799 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
800 }
801 
cpupid_to_nid(int cpupid)802 static inline int cpupid_to_nid(int cpupid)
803 {
804 	return cpu_to_node(cpupid_to_cpu(cpupid));
805 }
806 
cpupid_pid_unset(int cpupid)807 static inline bool cpupid_pid_unset(int cpupid)
808 {
809 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
810 }
811 
cpupid_cpu_unset(int cpupid)812 static inline bool cpupid_cpu_unset(int cpupid)
813 {
814 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
815 }
816 
__cpupid_match_pid(pid_t task_pid,int cpupid)817 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
818 {
819 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
820 }
821 
822 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
823 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)824 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
825 {
826 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
827 }
828 
page_cpupid_last(struct page * page)829 static inline int page_cpupid_last(struct page *page)
830 {
831 	return page->_last_cpupid;
832 }
page_cpupid_reset_last(struct page * page)833 static inline void page_cpupid_reset_last(struct page *page)
834 {
835 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
836 }
837 #else
page_cpupid_last(struct page * page)838 static inline int page_cpupid_last(struct page *page)
839 {
840 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
841 }
842 
843 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
844 
page_cpupid_reset_last(struct page * page)845 static inline void page_cpupid_reset_last(struct page *page)
846 {
847 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
848 
849 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
850 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
851 }
852 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
853 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)854 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
855 {
856 	return page_to_nid(page); /* XXX */
857 }
858 
page_cpupid_last(struct page * page)859 static inline int page_cpupid_last(struct page *page)
860 {
861 	return page_to_nid(page); /* XXX */
862 }
863 
cpupid_to_nid(int cpupid)864 static inline int cpupid_to_nid(int cpupid)
865 {
866 	return -1;
867 }
868 
cpupid_to_pid(int cpupid)869 static inline int cpupid_to_pid(int cpupid)
870 {
871 	return -1;
872 }
873 
cpupid_to_cpu(int cpupid)874 static inline int cpupid_to_cpu(int cpupid)
875 {
876 	return -1;
877 }
878 
cpu_pid_to_cpupid(int nid,int pid)879 static inline int cpu_pid_to_cpupid(int nid, int pid)
880 {
881 	return -1;
882 }
883 
cpupid_pid_unset(int cpupid)884 static inline bool cpupid_pid_unset(int cpupid)
885 {
886 	return 1;
887 }
888 
page_cpupid_reset_last(struct page * page)889 static inline void page_cpupid_reset_last(struct page *page)
890 {
891 }
892 
cpupid_match_pid(struct task_struct * task,int cpupid)893 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
894 {
895 	return false;
896 }
897 #endif /* CONFIG_NUMA_BALANCING */
898 
page_zone(const struct page * page)899 static inline struct zone *page_zone(const struct page *page)
900 {
901 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
902 }
903 
904 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)905 static inline void set_page_section(struct page *page, unsigned long section)
906 {
907 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
908 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
909 }
910 
page_to_section(const struct page * page)911 static inline unsigned long page_to_section(const struct page *page)
912 {
913 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
914 }
915 #endif
916 
set_page_zone(struct page * page,enum zone_type zone)917 static inline void set_page_zone(struct page *page, enum zone_type zone)
918 {
919 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
920 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
921 }
922 
set_page_node(struct page * page,unsigned long node)923 static inline void set_page_node(struct page *page, unsigned long node)
924 {
925 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
926 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
927 }
928 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)929 static inline void set_page_links(struct page *page, enum zone_type zone,
930 	unsigned long node, unsigned long pfn)
931 {
932 	set_page_zone(page, zone);
933 	set_page_node(page, node);
934 #ifdef SECTION_IN_PAGE_FLAGS
935 	set_page_section(page, pfn_to_section_nr(pfn));
936 #endif
937 }
938 
939 /*
940  * Some inline functions in vmstat.h depend on page_zone()
941  */
942 #include <linux/vmstat.h>
943 
lowmem_page_address(const struct page * page)944 static __always_inline void *lowmem_page_address(const struct page *page)
945 {
946 	return __va(PFN_PHYS(page_to_pfn(page)));
947 }
948 
949 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
950 #define HASHED_PAGE_VIRTUAL
951 #endif
952 
953 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)954 static inline void *page_address(const struct page *page)
955 {
956 	return page->virtual;
957 }
set_page_address(struct page * page,void * address)958 static inline void set_page_address(struct page *page, void *address)
959 {
960 	page->virtual = address;
961 }
962 #define page_address_init()  do { } while(0)
963 #endif
964 
965 #if defined(HASHED_PAGE_VIRTUAL)
966 void *page_address(const struct page *page);
967 void set_page_address(struct page *page, void *virtual);
968 void page_address_init(void);
969 #endif
970 
971 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
972 #define page_address(page) lowmem_page_address(page)
973 #define set_page_address(page, address)  do { } while(0)
974 #define page_address_init()  do { } while(0)
975 #endif
976 
977 /*
978  * On an anonymous page mapped into a user virtual memory area,
979  * page->mapping points to its anon_vma, not to a struct address_space;
980  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
981  *
982  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
983  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
984  * and then page->mapping points, not to an anon_vma, but to a private
985  * structure which KSM associates with that merged page.  See ksm.h.
986  *
987  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
988  *
989  * Please note that, confusingly, "page_mapping" refers to the inode
990  * address_space which maps the page from disk; whereas "page_mapped"
991  * refers to user virtual address space into which the page is mapped.
992  */
993 #define PAGE_MAPPING_ANON	1
994 #define PAGE_MAPPING_KSM	2
995 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
996 
997 extern struct address_space *page_mapping(struct page *page);
998 
999 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)1000 static inline void *page_rmapping(struct page *page)
1001 {
1002 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1003 }
1004 
1005 extern struct address_space *__page_file_mapping(struct page *);
1006 
1007 static inline
page_file_mapping(struct page * page)1008 struct address_space *page_file_mapping(struct page *page)
1009 {
1010 	if (unlikely(PageSwapCache(page)))
1011 		return __page_file_mapping(page);
1012 
1013 	return page->mapping;
1014 }
1015 
PageAnon(struct page * page)1016 static inline int PageAnon(struct page *page)
1017 {
1018 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1019 }
1020 
1021 /*
1022  * Return the pagecache index of the passed page.  Regular pagecache pages
1023  * use ->index whereas swapcache pages use ->private
1024  */
page_index(struct page * page)1025 static inline pgoff_t page_index(struct page *page)
1026 {
1027 	if (unlikely(PageSwapCache(page)))
1028 		return page_private(page);
1029 	return page->index;
1030 }
1031 
1032 extern pgoff_t __page_file_index(struct page *page);
1033 
1034 /*
1035  * Return the file index of the page. Regular pagecache pages use ->index
1036  * whereas swapcache pages use swp_offset(->private)
1037  */
page_file_index(struct page * page)1038 static inline pgoff_t page_file_index(struct page *page)
1039 {
1040 	if (unlikely(PageSwapCache(page)))
1041 		return __page_file_index(page);
1042 
1043 	return page->index;
1044 }
1045 
1046 /*
1047  * Return true if this page is mapped into pagetables.
1048  */
page_mapped(struct page * page)1049 static inline int page_mapped(struct page *page)
1050 {
1051 	return atomic_read(&(page)->_mapcount) >= 0;
1052 }
1053 
1054 /*
1055  * Different kinds of faults, as returned by handle_mm_fault().
1056  * Used to decide whether a process gets delivered SIGBUS or
1057  * just gets major/minor fault counters bumped up.
1058  */
1059 
1060 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1061 
1062 #define VM_FAULT_OOM	0x0001
1063 #define VM_FAULT_SIGBUS	0x0002
1064 #define VM_FAULT_MAJOR	0x0004
1065 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1066 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1067 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1068 #define VM_FAULT_SIGSEGV 0x0040
1069 
1070 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1071 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1072 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1073 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1074 
1075 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1076 
1077 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1078 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1079 			 VM_FAULT_FALLBACK)
1080 
1081 /* Encode hstate index for a hwpoisoned large page */
1082 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1083 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1084 
1085 /*
1086  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1087  */
1088 extern void pagefault_out_of_memory(void);
1089 
1090 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1091 
1092 /*
1093  * Flags passed to show_mem() and show_free_areas() to suppress output in
1094  * various contexts.
1095  */
1096 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1097 
1098 extern void show_free_areas(unsigned int flags);
1099 extern bool skip_free_areas_node(unsigned int flags, int nid);
1100 
1101 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
1102 int shmem_zero_setup(struct vm_area_struct *);
1103 #ifdef CONFIG_SHMEM
1104 bool shmem_mapping(struct address_space *mapping);
1105 #else
shmem_mapping(struct address_space * mapping)1106 static inline bool shmem_mapping(struct address_space *mapping)
1107 {
1108 	return false;
1109 }
1110 #endif
1111 
1112 extern int can_do_mlock(void);
1113 extern int user_shm_lock(size_t, struct user_struct *);
1114 extern void user_shm_unlock(size_t, struct user_struct *);
1115 
1116 /*
1117  * Parameter block passed down to zap_pte_range in exceptional cases.
1118  */
1119 struct zap_details {
1120 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
1121 	struct address_space *check_mapping;	/* Check page->mapping if set */
1122 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1123 	pgoff_t last_index;			/* Highest page->index to unmap */
1124 };
1125 
1126 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1127 		pte_t pte);
1128 
1129 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1130 		unsigned long size);
1131 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1132 		unsigned long size, struct zap_details *);
1133 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1134 		unsigned long start, unsigned long end);
1135 
1136 /**
1137  * mm_walk - callbacks for walk_page_range
1138  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1139  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1140  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1141  *	       this handler is required to be able to handle
1142  *	       pmd_trans_huge() pmds.  They may simply choose to
1143  *	       split_huge_page() instead of handling it explicitly.
1144  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1145  * @pte_hole: if set, called for each hole at all levels
1146  * @hugetlb_entry: if set, called for each hugetlb entry
1147  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1148  * 			      is used.
1149  *
1150  * (see walk_page_range for more details)
1151  */
1152 struct mm_walk {
1153 	int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1154 			 unsigned long next, struct mm_walk *walk);
1155 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1156 	                 unsigned long next, struct mm_walk *walk);
1157 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1158 			 unsigned long next, struct mm_walk *walk);
1159 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1160 			 unsigned long next, struct mm_walk *walk);
1161 	int (*pte_hole)(unsigned long addr, unsigned long next,
1162 			struct mm_walk *walk);
1163 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1164 			     unsigned long addr, unsigned long next,
1165 			     struct mm_walk *walk);
1166 	struct mm_struct *mm;
1167 	void *private;
1168 };
1169 
1170 int walk_page_range(unsigned long addr, unsigned long end,
1171 		struct mm_walk *walk);
1172 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1173 		unsigned long end, unsigned long floor, unsigned long ceiling);
1174 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1175 			struct vm_area_struct *vma);
1176 void unmap_mapping_range(struct address_space *mapping,
1177 		loff_t const holebegin, loff_t const holelen, int even_cows);
1178 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1179 	unsigned long *pfn);
1180 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1181 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1182 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1183 			void *buf, int len, int write);
1184 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1185 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1186 		loff_t const holebegin, loff_t const holelen)
1187 {
1188 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1189 }
1190 
1191 extern void truncate_pagecache(struct inode *inode, loff_t new);
1192 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1193 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1194 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1195 int truncate_inode_page(struct address_space *mapping, struct page *page);
1196 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1197 int invalidate_inode_page(struct page *page);
1198 
1199 #ifdef CONFIG_MMU
1200 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1201 			unsigned long address, unsigned int flags);
1202 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1203 			    unsigned long address, unsigned int fault_flags);
1204 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)1205 static inline int handle_mm_fault(struct mm_struct *mm,
1206 			struct vm_area_struct *vma, unsigned long address,
1207 			unsigned int flags)
1208 {
1209 	/* should never happen if there's no MMU */
1210 	BUG();
1211 	return VM_FAULT_SIGBUS;
1212 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1213 static inline int fixup_user_fault(struct task_struct *tsk,
1214 		struct mm_struct *mm, unsigned long address,
1215 		unsigned int fault_flags)
1216 {
1217 	/* should never happen if there's no MMU */
1218 	BUG();
1219 	return -EFAULT;
1220 }
1221 #endif
1222 
1223 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1224 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1225 		void *buf, int len, int write);
1226 
1227 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1228 		      unsigned long start, unsigned long nr_pages,
1229 		      unsigned int foll_flags, struct page **pages,
1230 		      struct vm_area_struct **vmas, int *nonblocking);
1231 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1232 		    unsigned long start, unsigned long nr_pages,
1233 		    int write, int force, struct page **pages,
1234 		    struct vm_area_struct **vmas);
1235 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1236 			struct page **pages);
1237 struct kvec;
1238 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1239 			struct page **pages);
1240 int get_kernel_page(unsigned long start, int write, struct page **pages);
1241 struct page *get_dump_page(unsigned long addr);
1242 
1243 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1244 extern void do_invalidatepage(struct page *page, unsigned int offset,
1245 			      unsigned int length);
1246 
1247 int __set_page_dirty_nobuffers(struct page *page);
1248 int __set_page_dirty_no_writeback(struct page *page);
1249 int redirty_page_for_writepage(struct writeback_control *wbc,
1250 				struct page *page);
1251 void account_page_dirtied(struct page *page, struct address_space *mapping);
1252 int set_page_dirty(struct page *page);
1253 int set_page_dirty_lock(struct page *page);
1254 int clear_page_dirty_for_io(struct page *page);
1255 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1256 
1257 extern struct task_struct *task_of_stack(struct task_struct *task,
1258 				struct vm_area_struct *vma, bool in_group);
1259 
1260 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1261 		unsigned long old_addr, struct vm_area_struct *new_vma,
1262 		unsigned long new_addr, unsigned long len,
1263 		bool need_rmap_locks);
1264 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1265 			      unsigned long end, pgprot_t newprot,
1266 			      int dirty_accountable, int prot_numa);
1267 extern int mprotect_fixup(struct vm_area_struct *vma,
1268 			  struct vm_area_struct **pprev, unsigned long start,
1269 			  unsigned long end, unsigned long newflags);
1270 
1271 /*
1272  * doesn't attempt to fault and will return short.
1273  */
1274 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1275 			  struct page **pages);
1276 /*
1277  * per-process(per-mm_struct) statistics.
1278  */
get_mm_counter(struct mm_struct * mm,int member)1279 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1280 {
1281 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1282 
1283 #ifdef SPLIT_RSS_COUNTING
1284 	/*
1285 	 * counter is updated in asynchronous manner and may go to minus.
1286 	 * But it's never be expected number for users.
1287 	 */
1288 	if (val < 0)
1289 		val = 0;
1290 #endif
1291 	return (unsigned long)val;
1292 }
1293 
add_mm_counter(struct mm_struct * mm,int member,long value)1294 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1295 {
1296 	atomic_long_add(value, &mm->rss_stat.count[member]);
1297 }
1298 
inc_mm_counter(struct mm_struct * mm,int member)1299 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1300 {
1301 	atomic_long_inc(&mm->rss_stat.count[member]);
1302 }
1303 
dec_mm_counter(struct mm_struct * mm,int member)1304 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1305 {
1306 	atomic_long_dec(&mm->rss_stat.count[member]);
1307 }
1308 
get_mm_rss(struct mm_struct * mm)1309 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1310 {
1311 	return get_mm_counter(mm, MM_FILEPAGES) +
1312 		get_mm_counter(mm, MM_ANONPAGES);
1313 }
1314 
get_mm_hiwater_rss(struct mm_struct * mm)1315 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1316 {
1317 	return max(mm->hiwater_rss, get_mm_rss(mm));
1318 }
1319 
get_mm_hiwater_vm(struct mm_struct * mm)1320 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1321 {
1322 	return max(mm->hiwater_vm, mm->total_vm);
1323 }
1324 
update_hiwater_rss(struct mm_struct * mm)1325 static inline void update_hiwater_rss(struct mm_struct *mm)
1326 {
1327 	unsigned long _rss = get_mm_rss(mm);
1328 
1329 	if ((mm)->hiwater_rss < _rss)
1330 		(mm)->hiwater_rss = _rss;
1331 }
1332 
update_hiwater_vm(struct mm_struct * mm)1333 static inline void update_hiwater_vm(struct mm_struct *mm)
1334 {
1335 	if (mm->hiwater_vm < mm->total_vm)
1336 		mm->hiwater_vm = mm->total_vm;
1337 }
1338 
reset_mm_hiwater_rss(struct mm_struct * mm)1339 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1340 {
1341 	mm->hiwater_rss = get_mm_rss(mm);
1342 }
1343 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1344 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1345 					 struct mm_struct *mm)
1346 {
1347 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1348 
1349 	if (*maxrss < hiwater_rss)
1350 		*maxrss = hiwater_rss;
1351 }
1352 
1353 #if defined(SPLIT_RSS_COUNTING)
1354 void sync_mm_rss(struct mm_struct *mm);
1355 #else
sync_mm_rss(struct mm_struct * mm)1356 static inline void sync_mm_rss(struct mm_struct *mm)
1357 {
1358 }
1359 #endif
1360 
1361 int vma_wants_writenotify(struct vm_area_struct *vma);
1362 
1363 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1364 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1365 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1366 				    spinlock_t **ptl)
1367 {
1368 	pte_t *ptep;
1369 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1370 	return ptep;
1371 }
1372 
1373 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1374 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1375 						unsigned long address)
1376 {
1377 	return 0;
1378 }
1379 #else
1380 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1381 #endif
1382 
1383 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1384 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1385 						unsigned long address)
1386 {
1387 	return 0;
1388 }
1389 #else
1390 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1391 #endif
1392 
1393 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1394 		pmd_t *pmd, unsigned long address);
1395 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1396 
1397 /*
1398  * The following ifdef needed to get the 4level-fixup.h header to work.
1399  * Remove it when 4level-fixup.h has been removed.
1400  */
1401 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1402 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1403 {
1404 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1405 		NULL: pud_offset(pgd, address);
1406 }
1407 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1408 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1409 {
1410 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1411 		NULL: pmd_offset(pud, address);
1412 }
1413 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1414 
1415 #if USE_SPLIT_PTE_PTLOCKS
1416 #if ALLOC_SPLIT_PTLOCKS
1417 void __init ptlock_cache_init(void);
1418 extern bool ptlock_alloc(struct page *page);
1419 extern void ptlock_free(struct page *page);
1420 
ptlock_ptr(struct page * page)1421 static inline spinlock_t *ptlock_ptr(struct page *page)
1422 {
1423 	return page->ptl;
1424 }
1425 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1426 static inline void ptlock_cache_init(void)
1427 {
1428 }
1429 
ptlock_alloc(struct page * page)1430 static inline bool ptlock_alloc(struct page *page)
1431 {
1432 	return true;
1433 }
1434 
ptlock_free(struct page * page)1435 static inline void ptlock_free(struct page *page)
1436 {
1437 }
1438 
ptlock_ptr(struct page * page)1439 static inline spinlock_t *ptlock_ptr(struct page *page)
1440 {
1441 	return &page->ptl;
1442 }
1443 #endif /* ALLOC_SPLIT_PTLOCKS */
1444 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1445 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1446 {
1447 	return ptlock_ptr(pmd_page(*pmd));
1448 }
1449 
ptlock_init(struct page * page)1450 static inline bool ptlock_init(struct page *page)
1451 {
1452 	/*
1453 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1454 	 * with 0. Make sure nobody took it in use in between.
1455 	 *
1456 	 * It can happen if arch try to use slab for page table allocation:
1457 	 * slab code uses page->slab_cache and page->first_page (for tail
1458 	 * pages), which share storage with page->ptl.
1459 	 */
1460 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1461 	if (!ptlock_alloc(page))
1462 		return false;
1463 	spin_lock_init(ptlock_ptr(page));
1464 	return true;
1465 }
1466 
1467 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1468 static inline void pte_lock_deinit(struct page *page)
1469 {
1470 	page->mapping = NULL;
1471 	ptlock_free(page);
1472 }
1473 
1474 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1475 /*
1476  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1477  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1478 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1479 {
1480 	return &mm->page_table_lock;
1481 }
ptlock_cache_init(void)1482 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1483 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1484 static inline void pte_lock_deinit(struct page *page) {}
1485 #endif /* USE_SPLIT_PTE_PTLOCKS */
1486 
pgtable_init(void)1487 static inline void pgtable_init(void)
1488 {
1489 	ptlock_cache_init();
1490 	pgtable_cache_init();
1491 }
1492 
pgtable_page_ctor(struct page * page)1493 static inline bool pgtable_page_ctor(struct page *page)
1494 {
1495 	inc_zone_page_state(page, NR_PAGETABLE);
1496 	return ptlock_init(page);
1497 }
1498 
pgtable_page_dtor(struct page * page)1499 static inline void pgtable_page_dtor(struct page *page)
1500 {
1501 	pte_lock_deinit(page);
1502 	dec_zone_page_state(page, NR_PAGETABLE);
1503 }
1504 
1505 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1506 ({							\
1507 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1508 	pte_t *__pte = pte_offset_map(pmd, address);	\
1509 	*(ptlp) = __ptl;				\
1510 	spin_lock(__ptl);				\
1511 	__pte;						\
1512 })
1513 
1514 #define pte_unmap_unlock(pte, ptl)	do {		\
1515 	spin_unlock(ptl);				\
1516 	pte_unmap(pte);					\
1517 } while (0)
1518 
1519 #define pte_alloc_map(mm, vma, pmd, address)				\
1520 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1521 							pmd, address))?	\
1522 	 NULL: pte_offset_map(pmd, address))
1523 
1524 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1525 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1526 							pmd, address))?	\
1527 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1528 
1529 #define pte_alloc_kernel(pmd, address)			\
1530 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1531 		NULL: pte_offset_kernel(pmd, address))
1532 
1533 #if USE_SPLIT_PMD_PTLOCKS
1534 
pmd_to_page(pmd_t * pmd)1535 static struct page *pmd_to_page(pmd_t *pmd)
1536 {
1537 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1538 	return virt_to_page((void *)((unsigned long) pmd & mask));
1539 }
1540 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1541 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1542 {
1543 	return ptlock_ptr(pmd_to_page(pmd));
1544 }
1545 
pgtable_pmd_page_ctor(struct page * page)1546 static inline bool pgtable_pmd_page_ctor(struct page *page)
1547 {
1548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1549 	page->pmd_huge_pte = NULL;
1550 #endif
1551 	return ptlock_init(page);
1552 }
1553 
pgtable_pmd_page_dtor(struct page * page)1554 static inline void pgtable_pmd_page_dtor(struct page *page)
1555 {
1556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1557 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1558 #endif
1559 	ptlock_free(page);
1560 }
1561 
1562 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1563 
1564 #else
1565 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1566 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1567 {
1568 	return &mm->page_table_lock;
1569 }
1570 
pgtable_pmd_page_ctor(struct page * page)1571 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)1572 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1573 
1574 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1575 
1576 #endif
1577 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)1578 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1579 {
1580 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1581 	spin_lock(ptl);
1582 	return ptl;
1583 }
1584 
1585 extern void free_area_init(unsigned long * zones_size);
1586 extern void free_area_init_node(int nid, unsigned long * zones_size,
1587 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1588 extern void free_initmem(void);
1589 
1590 /*
1591  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1592  * into the buddy system. The freed pages will be poisoned with pattern
1593  * "poison" if it's within range [0, UCHAR_MAX].
1594  * Return pages freed into the buddy system.
1595  */
1596 extern unsigned long free_reserved_area(void *start, void *end,
1597 					int poison, char *s);
1598 
1599 #ifdef	CONFIG_HIGHMEM
1600 /*
1601  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1602  * and totalram_pages.
1603  */
1604 extern void free_highmem_page(struct page *page);
1605 #endif
1606 
1607 extern void adjust_managed_page_count(struct page *page, long count);
1608 extern void mem_init_print_info(const char *str);
1609 
1610 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1611 static inline void __free_reserved_page(struct page *page)
1612 {
1613 	ClearPageReserved(page);
1614 	init_page_count(page);
1615 	__free_page(page);
1616 }
1617 
free_reserved_page(struct page * page)1618 static inline void free_reserved_page(struct page *page)
1619 {
1620 	__free_reserved_page(page);
1621 	adjust_managed_page_count(page, 1);
1622 }
1623 
mark_page_reserved(struct page * page)1624 static inline void mark_page_reserved(struct page *page)
1625 {
1626 	SetPageReserved(page);
1627 	adjust_managed_page_count(page, -1);
1628 }
1629 
1630 /*
1631  * Default method to free all the __init memory into the buddy system.
1632  * The freed pages will be poisoned with pattern "poison" if it's within
1633  * range [0, UCHAR_MAX].
1634  * Return pages freed into the buddy system.
1635  */
free_initmem_default(int poison)1636 static inline unsigned long free_initmem_default(int poison)
1637 {
1638 	extern char __init_begin[], __init_end[];
1639 
1640 	return free_reserved_area(&__init_begin, &__init_end,
1641 				  poison, "unused kernel");
1642 }
1643 
get_num_physpages(void)1644 static inline unsigned long get_num_physpages(void)
1645 {
1646 	int nid;
1647 	unsigned long phys_pages = 0;
1648 
1649 	for_each_online_node(nid)
1650 		phys_pages += node_present_pages(nid);
1651 
1652 	return phys_pages;
1653 }
1654 
1655 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1656 /*
1657  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1658  * zones, allocate the backing mem_map and account for memory holes in a more
1659  * architecture independent manner. This is a substitute for creating the
1660  * zone_sizes[] and zholes_size[] arrays and passing them to
1661  * free_area_init_node()
1662  *
1663  * An architecture is expected to register range of page frames backed by
1664  * physical memory with memblock_add[_node]() before calling
1665  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1666  * usage, an architecture is expected to do something like
1667  *
1668  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1669  * 							 max_highmem_pfn};
1670  * for_each_valid_physical_page_range()
1671  * 	memblock_add_node(base, size, nid)
1672  * free_area_init_nodes(max_zone_pfns);
1673  *
1674  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1675  * registered physical page range.  Similarly
1676  * sparse_memory_present_with_active_regions() calls memory_present() for
1677  * each range when SPARSEMEM is enabled.
1678  *
1679  * See mm/page_alloc.c for more information on each function exposed by
1680  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1681  */
1682 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1683 unsigned long node_map_pfn_alignment(void);
1684 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1685 						unsigned long end_pfn);
1686 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1687 						unsigned long end_pfn);
1688 extern void get_pfn_range_for_nid(unsigned int nid,
1689 			unsigned long *start_pfn, unsigned long *end_pfn);
1690 extern unsigned long find_min_pfn_with_active_regions(void);
1691 extern void free_bootmem_with_active_regions(int nid,
1692 						unsigned long max_low_pfn);
1693 extern void sparse_memory_present_with_active_regions(int nid);
1694 
1695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1696 
1697 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1698     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1699 static inline int __early_pfn_to_nid(unsigned long pfn)
1700 {
1701 	return 0;
1702 }
1703 #else
1704 /* please see mm/page_alloc.c */
1705 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1706 /* there is a per-arch backend function. */
1707 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1708 #endif
1709 
1710 extern void set_dma_reserve(unsigned long new_dma_reserve);
1711 extern void memmap_init_zone(unsigned long, int, unsigned long,
1712 				unsigned long, enum memmap_context);
1713 extern void setup_per_zone_wmarks(void);
1714 extern int __meminit init_per_zone_wmark_min(void);
1715 extern void mem_init(void);
1716 extern void __init mmap_init(void);
1717 extern void show_mem(unsigned int flags);
1718 extern void si_meminfo(struct sysinfo * val);
1719 extern void si_meminfo_node(struct sysinfo *val, int nid);
1720 
1721 extern __printf(3, 4)
1722 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1723 		const char *fmt, ...);
1724 
1725 extern void setup_per_cpu_pageset(void);
1726 
1727 extern void zone_pcp_update(struct zone *zone);
1728 extern void zone_pcp_reset(struct zone *zone);
1729 
1730 /* page_alloc.c */
1731 extern int min_free_kbytes;
1732 
1733 /* nommu.c */
1734 extern atomic_long_t mmap_pages_allocated;
1735 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1736 
1737 /* interval_tree.c */
1738 void vma_interval_tree_insert(struct vm_area_struct *node,
1739 			      struct rb_root *root);
1740 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1741 				    struct vm_area_struct *prev,
1742 				    struct rb_root *root);
1743 void vma_interval_tree_remove(struct vm_area_struct *node,
1744 			      struct rb_root *root);
1745 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1746 				unsigned long start, unsigned long last);
1747 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1748 				unsigned long start, unsigned long last);
1749 
1750 #define vma_interval_tree_foreach(vma, root, start, last)		\
1751 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1752 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1753 
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1754 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1755 					struct list_head *list)
1756 {
1757 	list_add_tail(&vma->shared.nonlinear, list);
1758 }
1759 
1760 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1761 				   struct rb_root *root);
1762 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1763 				   struct rb_root *root);
1764 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1765 	struct rb_root *root, unsigned long start, unsigned long last);
1766 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1767 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1768 #ifdef CONFIG_DEBUG_VM_RB
1769 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1770 #endif
1771 
1772 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1773 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1774 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1775 
1776 /* mmap.c */
1777 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1778 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1779 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1780 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1781 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1782 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1783 	struct mempolicy *, const char __user *);
1784 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1785 extern int split_vma(struct mm_struct *,
1786 	struct vm_area_struct *, unsigned long addr, int new_below);
1787 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1788 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1789 	struct rb_node **, struct rb_node *);
1790 extern void unlink_file_vma(struct vm_area_struct *);
1791 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1792 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1793 	bool *need_rmap_locks);
1794 extern void exit_mmap(struct mm_struct *);
1795 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)1796 static inline int check_data_rlimit(unsigned long rlim,
1797 				    unsigned long new,
1798 				    unsigned long start,
1799 				    unsigned long end_data,
1800 				    unsigned long start_data)
1801 {
1802 	if (rlim < RLIM_INFINITY) {
1803 		if (((new - start) + (end_data - start_data)) > rlim)
1804 			return -ENOSPC;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 extern int mm_take_all_locks(struct mm_struct *mm);
1811 extern void mm_drop_all_locks(struct mm_struct *mm);
1812 
1813 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1814 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1815 
1816 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1817 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1818 				   unsigned long addr, unsigned long len,
1819 				   unsigned long flags,
1820 				   const struct vm_special_mapping *spec);
1821 /* This is an obsolete alternative to _install_special_mapping. */
1822 extern int install_special_mapping(struct mm_struct *mm,
1823 				   unsigned long addr, unsigned long len,
1824 				   unsigned long flags, struct page **pages);
1825 
1826 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1827 
1828 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1829 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1830 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1831 	unsigned long len, unsigned long prot, unsigned long flags,
1832 	unsigned long pgoff, unsigned long *populate);
1833 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1834 
1835 #ifdef CONFIG_MMU
1836 extern int __mm_populate(unsigned long addr, unsigned long len,
1837 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)1838 static inline void mm_populate(unsigned long addr, unsigned long len)
1839 {
1840 	/* Ignore errors */
1841 	(void) __mm_populate(addr, len, 1);
1842 }
1843 #else
mm_populate(unsigned long addr,unsigned long len)1844 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1845 #endif
1846 
1847 /* These take the mm semaphore themselves */
1848 extern unsigned long vm_brk(unsigned long, unsigned long);
1849 extern int vm_munmap(unsigned long, size_t);
1850 extern unsigned long vm_mmap(struct file *, unsigned long,
1851         unsigned long, unsigned long,
1852         unsigned long, unsigned long);
1853 
1854 struct vm_unmapped_area_info {
1855 #define VM_UNMAPPED_AREA_TOPDOWN 1
1856 	unsigned long flags;
1857 	unsigned long length;
1858 	unsigned long low_limit;
1859 	unsigned long high_limit;
1860 	unsigned long align_mask;
1861 	unsigned long align_offset;
1862 };
1863 
1864 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1865 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1866 
1867 /*
1868  * Search for an unmapped address range.
1869  *
1870  * We are looking for a range that:
1871  * - does not intersect with any VMA;
1872  * - is contained within the [low_limit, high_limit) interval;
1873  * - is at least the desired size.
1874  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1875  */
1876 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)1877 vm_unmapped_area(struct vm_unmapped_area_info *info)
1878 {
1879 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1880 		return unmapped_area(info);
1881 	else
1882 		return unmapped_area_topdown(info);
1883 }
1884 
1885 /* truncate.c */
1886 extern void truncate_inode_pages(struct address_space *, loff_t);
1887 extern void truncate_inode_pages_range(struct address_space *,
1888 				       loff_t lstart, loff_t lend);
1889 extern void truncate_inode_pages_final(struct address_space *);
1890 
1891 /* generic vm_area_ops exported for stackable file systems */
1892 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1893 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1894 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1895 
1896 /* mm/page-writeback.c */
1897 int write_one_page(struct page *page, int wait);
1898 void task_dirty_inc(struct task_struct *tsk);
1899 
1900 /* readahead.c */
1901 #define VM_MAX_READAHEAD	128	/* kbytes */
1902 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1903 
1904 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1905 			pgoff_t offset, unsigned long nr_to_read);
1906 
1907 void page_cache_sync_readahead(struct address_space *mapping,
1908 			       struct file_ra_state *ra,
1909 			       struct file *filp,
1910 			       pgoff_t offset,
1911 			       unsigned long size);
1912 
1913 void page_cache_async_readahead(struct address_space *mapping,
1914 				struct file_ra_state *ra,
1915 				struct file *filp,
1916 				struct page *pg,
1917 				pgoff_t offset,
1918 				unsigned long size);
1919 
1920 unsigned long max_sane_readahead(unsigned long nr);
1921 
1922 extern unsigned long stack_guard_gap;
1923 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1924 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1925 
1926 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1927 extern int expand_downwards(struct vm_area_struct *vma,
1928 		unsigned long address);
1929 #if VM_GROWSUP
1930 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1931 #else
1932   #define expand_upwards(vma, address) (0)
1933 #endif
1934 
1935 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1936 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1937 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1938 					     struct vm_area_struct **pprev);
1939 
1940 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1941    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1942 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1943 {
1944 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1945 
1946 	if (vma && end_addr <= vma->vm_start)
1947 		vma = NULL;
1948 	return vma;
1949 }
1950 
vm_start_gap(struct vm_area_struct * vma)1951 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1952 {
1953 	unsigned long vm_start = vma->vm_start;
1954 
1955 	if (vma->vm_flags & VM_GROWSDOWN) {
1956 		vm_start -= stack_guard_gap;
1957 		if (vm_start > vma->vm_start)
1958 			vm_start = 0;
1959 	}
1960 	return vm_start;
1961 }
1962 
vm_end_gap(struct vm_area_struct * vma)1963 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1964 {
1965 	unsigned long vm_end = vma->vm_end;
1966 
1967 	if (vma->vm_flags & VM_GROWSUP) {
1968 		vm_end += stack_guard_gap;
1969 		if (vm_end < vma->vm_end)
1970 			vm_end = -PAGE_SIZE;
1971 	}
1972 	return vm_end;
1973 }
1974 
vma_pages(struct vm_area_struct * vma)1975 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1976 {
1977 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1978 }
1979 
1980 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)1981 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1982 				unsigned long vm_start, unsigned long vm_end)
1983 {
1984 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1985 
1986 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1987 		vma = NULL;
1988 
1989 	return vma;
1990 }
1991 
1992 #ifdef CONFIG_MMU
1993 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1994 void vma_set_page_prot(struct vm_area_struct *vma);
1995 #else
vm_get_page_prot(unsigned long vm_flags)1996 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1997 {
1998 	return __pgprot(0);
1999 }
vma_set_page_prot(struct vm_area_struct * vma)2000 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2001 {
2002 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2003 }
2004 #endif
2005 
2006 #ifdef CONFIG_NUMA_BALANCING
2007 unsigned long change_prot_numa(struct vm_area_struct *vma,
2008 			unsigned long start, unsigned long end);
2009 #endif
2010 
2011 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2012 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2013 			unsigned long pfn, unsigned long size, pgprot_t);
2014 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2015 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2016 			unsigned long pfn);
2017 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2018 			unsigned long pfn);
2019 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2020 
2021 
2022 struct page *follow_page_mask(struct vm_area_struct *vma,
2023 			      unsigned long address, unsigned int foll_flags,
2024 			      unsigned int *page_mask);
2025 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2026 static inline struct page *follow_page(struct vm_area_struct *vma,
2027 		unsigned long address, unsigned int foll_flags)
2028 {
2029 	unsigned int unused_page_mask;
2030 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2031 }
2032 
2033 #define FOLL_WRITE	0x01	/* check pte is writable */
2034 #define FOLL_TOUCH	0x02	/* mark page accessed */
2035 #define FOLL_GET	0x04	/* do get_page on page */
2036 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2037 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2038 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2039 				 * and return without waiting upon it */
2040 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
2041 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2042 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2043 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2044 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2045 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2046 #define FOLL_COW	0x4000	/* internal GUP flag */
2047 
2048 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2049 			void *data);
2050 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2051 			       unsigned long size, pte_fn_t fn, void *data);
2052 
2053 #ifdef CONFIG_PROC_FS
2054 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2055 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)2056 static inline void vm_stat_account(struct mm_struct *mm,
2057 			unsigned long flags, struct file *file, long pages)
2058 {
2059 	mm->total_vm += pages;
2060 }
2061 #endif /* CONFIG_PROC_FS */
2062 
2063 #ifdef CONFIG_DEBUG_PAGEALLOC
2064 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2065 #ifdef CONFIG_HIBERNATION
2066 extern bool kernel_page_present(struct page *page);
2067 #endif /* CONFIG_HIBERNATION */
2068 #else
2069 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2070 kernel_map_pages(struct page *page, int numpages, int enable) {}
2071 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2072 static inline bool kernel_page_present(struct page *page) { return true; }
2073 #endif /* CONFIG_HIBERNATION */
2074 #endif
2075 
2076 #ifdef __HAVE_ARCH_GATE_AREA
2077 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2078 extern int in_gate_area_no_mm(unsigned long addr);
2079 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2080 #else
get_gate_vma(struct mm_struct * mm)2081 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2082 {
2083 	return NULL;
2084 }
in_gate_area_no_mm(unsigned long addr)2085 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2086 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2087 {
2088 	return 0;
2089 }
2090 #endif	/* __HAVE_ARCH_GATE_AREA */
2091 
2092 #ifdef CONFIG_SYSCTL
2093 extern int sysctl_drop_caches;
2094 int drop_caches_sysctl_handler(struct ctl_table *, int,
2095 					void __user *, size_t *, loff_t *);
2096 #endif
2097 
2098 unsigned long shrink_slab(struct shrink_control *shrink,
2099 			  unsigned long nr_pages_scanned,
2100 			  unsigned long lru_pages);
2101 
2102 #ifndef CONFIG_MMU
2103 #define randomize_va_space 0
2104 #else
2105 extern int randomize_va_space;
2106 #endif
2107 
2108 const char * arch_vma_name(struct vm_area_struct *vma);
2109 void print_vma_addr(char *prefix, unsigned long rip);
2110 
2111 void sparse_mem_maps_populate_node(struct page **map_map,
2112 				   unsigned long pnum_begin,
2113 				   unsigned long pnum_end,
2114 				   unsigned long map_count,
2115 				   int nodeid);
2116 
2117 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2118 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2119 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2120 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2121 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2122 void *vmemmap_alloc_block(unsigned long size, int node);
2123 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2124 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2125 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2126 			       int node);
2127 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2128 void vmemmap_populate_print_last(void);
2129 #ifdef CONFIG_MEMORY_HOTPLUG
2130 void vmemmap_free(unsigned long start, unsigned long end);
2131 #endif
2132 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2133 				  unsigned long size);
2134 
2135 enum mf_flags {
2136 	MF_COUNT_INCREASED = 1 << 0,
2137 	MF_ACTION_REQUIRED = 1 << 1,
2138 	MF_MUST_KILL = 1 << 2,
2139 	MF_SOFT_OFFLINE = 1 << 3,
2140 };
2141 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2142 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2143 extern int unpoison_memory(unsigned long pfn);
2144 extern int sysctl_memory_failure_early_kill;
2145 extern int sysctl_memory_failure_recovery;
2146 extern void shake_page(struct page *p, int access);
2147 extern atomic_long_t num_poisoned_pages;
2148 extern int soft_offline_page(struct page *page, int flags);
2149 
2150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2151 extern void clear_huge_page(struct page *page,
2152 			    unsigned long addr,
2153 			    unsigned int pages_per_huge_page);
2154 extern void copy_user_huge_page(struct page *dst, struct page *src,
2155 				unsigned long addr, struct vm_area_struct *vma,
2156 				unsigned int pages_per_huge_page);
2157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2158 
2159 #ifdef CONFIG_DEBUG_PAGEALLOC
2160 extern unsigned int _debug_guardpage_minorder;
2161 
debug_guardpage_minorder(void)2162 static inline unsigned int debug_guardpage_minorder(void)
2163 {
2164 	return _debug_guardpage_minorder;
2165 }
2166 
page_is_guard(struct page * page)2167 static inline bool page_is_guard(struct page *page)
2168 {
2169 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2170 }
2171 #else
debug_guardpage_minorder(void)2172 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
page_is_guard(struct page * page)2173 static inline bool page_is_guard(struct page *page) { return false; }
2174 #endif /* CONFIG_DEBUG_PAGEALLOC */
2175 
2176 #if MAX_NUMNODES > 1
2177 void __init setup_nr_node_ids(void);
2178 #else
setup_nr_node_ids(void)2179 static inline void setup_nr_node_ids(void) {}
2180 #endif
2181 
2182 #endif /* __KERNEL__ */
2183 #endif /* _LINUX_MM_H */
2184