• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
34 #include <linux/sched.h>
35 #include <net/flow_keys.h>
36 
37 /* A. Checksumming of received packets by device.
38  *
39  * CHECKSUM_NONE:
40  *
41  *   Device failed to checksum this packet e.g. due to lack of capabilities.
42  *   The packet contains full (though not verified) checksum in packet but
43  *   not in skb->csum. Thus, skb->csum is undefined in this case.
44  *
45  * CHECKSUM_UNNECESSARY:
46  *
47  *   The hardware you're dealing with doesn't calculate the full checksum
48  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
49  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
50  *   if their checksums are okay. skb->csum is still undefined in this case
51  *   though. It is a bad option, but, unfortunately, nowadays most vendors do
52  *   this. Apparently with the secret goal to sell you new devices, when you
53  *   will add new protocol to your host, f.e. IPv6 8)
54  *
55  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
56  *     TCP: IPv6 and IPv4.
57  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
58  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
59  *       may perform further validation in this case.
60  *     GRE: only if the checksum is present in the header.
61  *     SCTP: indicates the CRC in SCTP header has been validated.
62  *
63  *   skb->csum_level indicates the number of consecutive checksums found in
64  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
65  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
66  *   and a device is able to verify the checksums for UDP (possibly zero),
67  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
68  *   two. If the device were only able to verify the UDP checksum and not
69  *   GRE, either because it doesn't support GRE checksum of because GRE
70  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
71  *   not considered in this case).
72  *
73  * CHECKSUM_COMPLETE:
74  *
75  *   This is the most generic way. The device supplied checksum of the _whole_
76  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
77  *   hardware doesn't need to parse L3/L4 headers to implement this.
78  *
79  *   Note: Even if device supports only some protocols, but is able to produce
80  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
81  *
82  * CHECKSUM_PARTIAL:
83  *
84  *   This is identical to the case for output below. This may occur on a packet
85  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
86  *   on the same host. The packet can be treated in the same way as
87  *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
88  *   checksum must be filled in by the OS or the hardware.
89  *
90  * B. Checksumming on output.
91  *
92  * CHECKSUM_NONE:
93  *
94  *   The skb was already checksummed by the protocol, or a checksum is not
95  *   required.
96  *
97  * CHECKSUM_PARTIAL:
98  *
99  *   The device is required to checksum the packet as seen by hard_start_xmit()
100  *   from skb->csum_start up to the end, and to record/write the checksum at
101  *   offset skb->csum_start + skb->csum_offset.
102  *
103  *   The device must show its capabilities in dev->features, set up at device
104  *   setup time, e.g. netdev_features.h:
105  *
106  *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
107  *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
108  *			  IPv4. Sigh. Vendors like this way for an unknown reason.
109  *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
110  *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
111  *	NETIF_F_...     - Well, you get the picture.
112  *
113  * CHECKSUM_UNNECESSARY:
114  *
115  *   Normally, the device will do per protocol specific checksumming. Protocol
116  *   implementations that do not want the NIC to perform the checksum
117  *   calculation should use this flag in their outgoing skbs.
118  *
119  *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
120  *			   offload. Correspondingly, the FCoE protocol driver
121  *			   stack should use CHECKSUM_UNNECESSARY.
122  *
123  * Any questions? No questions, good.		--ANK
124  */
125 
126 /* Don't change this without changing skb_csum_unnecessary! */
127 #define CHECKSUM_NONE		0
128 #define CHECKSUM_UNNECESSARY	1
129 #define CHECKSUM_COMPLETE	2
130 #define CHECKSUM_PARTIAL	3
131 
132 /* Maximum value in skb->csum_level */
133 #define SKB_MAX_CSUM_LEVEL	3
134 
135 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
136 #define SKB_WITH_OVERHEAD(X)	\
137 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
138 #define SKB_MAX_ORDER(X, ORDER) \
139 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
140 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
141 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
142 
143 /* return minimum truesize of one skb containing X bytes of data */
144 #define SKB_TRUESIZE(X) ((X) +						\
145 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
146 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147 
148 struct net_device;
149 struct scatterlist;
150 struct pipe_inode_info;
151 
152 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
153 struct nf_conntrack {
154 	atomic_t use;
155 };
156 #endif
157 
158 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
159 struct nf_bridge_info {
160 	atomic_t		use;
161 	unsigned int		mask;
162 	struct net_device	*physindev;
163 	struct net_device	*physoutdev;
164 	unsigned long		data[32 / sizeof(unsigned long)];
165 };
166 #endif
167 
168 struct sk_buff_head {
169 	/* These two members must be first. */
170 	struct sk_buff	*next;
171 	struct sk_buff	*prev;
172 
173 	__u32		qlen;
174 	spinlock_t	lock;
175 };
176 
177 struct sk_buff;
178 
179 /* To allow 64K frame to be packed as single skb without frag_list we
180  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
181  * buffers which do not start on a page boundary.
182  *
183  * Since GRO uses frags we allocate at least 16 regardless of page
184  * size.
185  */
186 #if (65536/PAGE_SIZE + 1) < 16
187 #define MAX_SKB_FRAGS 16UL
188 #else
189 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
190 #endif
191 extern int sysctl_max_skb_frags;
192 
193 typedef struct skb_frag_struct skb_frag_t;
194 
195 struct skb_frag_struct {
196 	struct {
197 		struct page *p;
198 	} page;
199 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
200 	__u32 page_offset;
201 	__u32 size;
202 #else
203 	__u16 page_offset;
204 	__u16 size;
205 #endif
206 };
207 
skb_frag_size(const skb_frag_t * frag)208 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
209 {
210 	return frag->size;
211 }
212 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)213 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
214 {
215 	frag->size = size;
216 }
217 
skb_frag_size_add(skb_frag_t * frag,int delta)218 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
219 {
220 	frag->size += delta;
221 }
222 
skb_frag_size_sub(skb_frag_t * frag,int delta)223 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
224 {
225 	frag->size -= delta;
226 }
227 
228 #define HAVE_HW_TIME_STAMP
229 
230 /**
231  * struct skb_shared_hwtstamps - hardware time stamps
232  * @hwtstamp:	hardware time stamp transformed into duration
233  *		since arbitrary point in time
234  *
235  * Software time stamps generated by ktime_get_real() are stored in
236  * skb->tstamp.
237  *
238  * hwtstamps can only be compared against other hwtstamps from
239  * the same device.
240  *
241  * This structure is attached to packets as part of the
242  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
243  */
244 struct skb_shared_hwtstamps {
245 	ktime_t	hwtstamp;
246 };
247 
248 /* Definitions for tx_flags in struct skb_shared_info */
249 enum {
250 	/* generate hardware time stamp */
251 	SKBTX_HW_TSTAMP = 1 << 0,
252 
253 	/* generate software time stamp when queueing packet to NIC */
254 	SKBTX_SW_TSTAMP = 1 << 1,
255 
256 	/* device driver is going to provide hardware time stamp */
257 	SKBTX_IN_PROGRESS = 1 << 2,
258 
259 	/* device driver supports TX zero-copy buffers */
260 	SKBTX_DEV_ZEROCOPY = 1 << 3,
261 
262 	/* generate wifi status information (where possible) */
263 	SKBTX_WIFI_STATUS = 1 << 4,
264 
265 	/* This indicates at least one fragment might be overwritten
266 	 * (as in vmsplice(), sendfile() ...)
267 	 * If we need to compute a TX checksum, we'll need to copy
268 	 * all frags to avoid possible bad checksum
269 	 */
270 	SKBTX_SHARED_FRAG = 1 << 5,
271 
272 	/* generate software time stamp when entering packet scheduling */
273 	SKBTX_SCHED_TSTAMP = 1 << 6,
274 
275 	/* generate software timestamp on peer data acknowledgment */
276 	SKBTX_ACK_TSTAMP = 1 << 7,
277 };
278 
279 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
280 				 SKBTX_SCHED_TSTAMP | \
281 				 SKBTX_ACK_TSTAMP)
282 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
283 
284 /*
285  * The callback notifies userspace to release buffers when skb DMA is done in
286  * lower device, the skb last reference should be 0 when calling this.
287  * The zerocopy_success argument is true if zero copy transmit occurred,
288  * false on data copy or out of memory error caused by data copy attempt.
289  * The ctx field is used to track device context.
290  * The desc field is used to track userspace buffer index.
291  */
292 struct ubuf_info {
293 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
294 	void *ctx;
295 	unsigned long desc;
296 };
297 
298 /* This data is invariant across clones and lives at
299  * the end of the header data, ie. at skb->end.
300  */
301 struct skb_shared_info {
302 	unsigned char	nr_frags;
303 	__u8		tx_flags;
304 	unsigned short	gso_size;
305 	/* Warning: this field is not always filled in (UFO)! */
306 	unsigned short	gso_segs;
307 	unsigned short  gso_type;
308 	struct sk_buff	*frag_list;
309 	struct skb_shared_hwtstamps hwtstamps;
310 	u32		tskey;
311 	__be32          ip6_frag_id;
312 
313 	/*
314 	 * Warning : all fields before dataref are cleared in __alloc_skb()
315 	 */
316 	atomic_t	dataref;
317 
318 	/* Intermediate layers must ensure that destructor_arg
319 	 * remains valid until skb destructor */
320 	void *		destructor_arg;
321 
322 	/* must be last field, see pskb_expand_head() */
323 	skb_frag_t	frags[MAX_SKB_FRAGS];
324 };
325 
326 /* We divide dataref into two halves.  The higher 16 bits hold references
327  * to the payload part of skb->data.  The lower 16 bits hold references to
328  * the entire skb->data.  A clone of a headerless skb holds the length of
329  * the header in skb->hdr_len.
330  *
331  * All users must obey the rule that the skb->data reference count must be
332  * greater than or equal to the payload reference count.
333  *
334  * Holding a reference to the payload part means that the user does not
335  * care about modifications to the header part of skb->data.
336  */
337 #define SKB_DATAREF_SHIFT 16
338 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
339 
340 
341 enum {
342 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
343 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
344 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
345 	SKB_FCLONE_FREE,	/* this companion fclone skb is available */
346 };
347 
348 enum {
349 	SKB_GSO_TCPV4 = 1 << 0,
350 	SKB_GSO_UDP = 1 << 1,
351 
352 	/* This indicates the skb is from an untrusted source. */
353 	SKB_GSO_DODGY = 1 << 2,
354 
355 	/* This indicates the tcp segment has CWR set. */
356 	SKB_GSO_TCP_ECN = 1 << 3,
357 
358 	SKB_GSO_TCPV6 = 1 << 4,
359 
360 	SKB_GSO_FCOE = 1 << 5,
361 
362 	SKB_GSO_GRE = 1 << 6,
363 
364 	SKB_GSO_GRE_CSUM = 1 << 7,
365 
366 	SKB_GSO_IPIP = 1 << 8,
367 
368 	SKB_GSO_SIT = 1 << 9,
369 
370 	SKB_GSO_UDP_TUNNEL = 1 << 10,
371 
372 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
373 
374 	SKB_GSO_MPLS = 1 << 12,
375 
376 };
377 
378 #if BITS_PER_LONG > 32
379 #define NET_SKBUFF_DATA_USES_OFFSET 1
380 #endif
381 
382 #ifdef NET_SKBUFF_DATA_USES_OFFSET
383 typedef unsigned int sk_buff_data_t;
384 #else
385 typedef unsigned char *sk_buff_data_t;
386 #endif
387 
388 /**
389  * struct skb_mstamp - multi resolution time stamps
390  * @stamp_us: timestamp in us resolution
391  * @stamp_jiffies: timestamp in jiffies
392  */
393 struct skb_mstamp {
394 	union {
395 		u64		v64;
396 		struct {
397 			u32	stamp_us;
398 			u32	stamp_jiffies;
399 		};
400 	};
401 };
402 
403 /**
404  * skb_mstamp_get - get current timestamp
405  * @cl: place to store timestamps
406  */
skb_mstamp_get(struct skb_mstamp * cl)407 static inline void skb_mstamp_get(struct skb_mstamp *cl)
408 {
409 	u64 val = local_clock();
410 
411 	do_div(val, NSEC_PER_USEC);
412 	cl->stamp_us = (u32)val;
413 	cl->stamp_jiffies = (u32)jiffies;
414 }
415 
416 /**
417  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
418  * @t1: pointer to newest sample
419  * @t0: pointer to oldest sample
420  */
skb_mstamp_us_delta(const struct skb_mstamp * t1,const struct skb_mstamp * t0)421 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
422 				      const struct skb_mstamp *t0)
423 {
424 	s32 delta_us = t1->stamp_us - t0->stamp_us;
425 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
426 
427 	/* If delta_us is negative, this might be because interval is too big,
428 	 * or local_clock() drift is too big : fallback using jiffies.
429 	 */
430 	if (delta_us <= 0 ||
431 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
432 
433 		delta_us = jiffies_to_usecs(delta_jiffies);
434 
435 	return delta_us;
436 }
437 
438 
439 /**
440  *	struct sk_buff - socket buffer
441  *	@next: Next buffer in list
442  *	@prev: Previous buffer in list
443  *	@tstamp: Time we arrived/left
444  *	@sk: Socket we are owned by
445  *	@dev: Device we arrived on/are leaving by
446  *	@cb: Control buffer. Free for use by every layer. Put private vars here
447  *	@_skb_refdst: destination entry (with norefcount bit)
448  *	@sp: the security path, used for xfrm
449  *	@len: Length of actual data
450  *	@data_len: Data length
451  *	@mac_len: Length of link layer header
452  *	@hdr_len: writable header length of cloned skb
453  *	@csum: Checksum (must include start/offset pair)
454  *	@csum_start: Offset from skb->head where checksumming should start
455  *	@csum_offset: Offset from csum_start where checksum should be stored
456  *	@priority: Packet queueing priority
457  *	@ignore_df: allow local fragmentation
458  *	@cloned: Head may be cloned (check refcnt to be sure)
459  *	@ip_summed: Driver fed us an IP checksum
460  *	@nohdr: Payload reference only, must not modify header
461  *	@nfctinfo: Relationship of this skb to the connection
462  *	@pkt_type: Packet class
463  *	@fclone: skbuff clone status
464  *	@ipvs_property: skbuff is owned by ipvs
465  *	@peeked: this packet has been seen already, so stats have been
466  *		done for it, don't do them again
467  *	@nf_trace: netfilter packet trace flag
468  *	@protocol: Packet protocol from driver
469  *	@destructor: Destruct function
470  *	@nfct: Associated connection, if any
471  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
472  *	@skb_iif: ifindex of device we arrived on
473  *	@tc_index: Traffic control index
474  *	@tc_verd: traffic control verdict
475  *	@hash: the packet hash
476  *	@queue_mapping: Queue mapping for multiqueue devices
477  *	@xmit_more: More SKBs are pending for this queue
478  *	@ndisc_nodetype: router type (from link layer)
479  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
480  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
481  *		ports.
482  *	@sw_hash: indicates hash was computed in software stack
483  *	@wifi_acked_valid: wifi_acked was set
484  *	@wifi_acked: whether frame was acked on wifi or not
485  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
486   *	@napi_id: id of the NAPI struct this skb came from
487  *	@secmark: security marking
488  *	@mark: Generic packet mark
489  *	@dropcount: total number of sk_receive_queue overflows
490  *	@vlan_proto: vlan encapsulation protocol
491  *	@vlan_tci: vlan tag control information
492  *	@inner_protocol: Protocol (encapsulation)
493  *	@inner_transport_header: Inner transport layer header (encapsulation)
494  *	@inner_network_header: Network layer header (encapsulation)
495  *	@inner_mac_header: Link layer header (encapsulation)
496  *	@transport_header: Transport layer header
497  *	@network_header: Network layer header
498  *	@mac_header: Link layer header
499  *	@tail: Tail pointer
500  *	@end: End pointer
501  *	@head: Head of buffer
502  *	@data: Data head pointer
503  *	@truesize: Buffer size
504  *	@users: User count - see {datagram,tcp}.c
505  */
506 
507 struct sk_buff {
508 	/* These two members must be first. */
509 	struct sk_buff		*next;
510 	struct sk_buff		*prev;
511 
512 	union {
513 		ktime_t		tstamp;
514 		struct skb_mstamp skb_mstamp;
515 	};
516 
517 	struct sock		*sk;
518 	struct net_device	*dev;
519 
520 	/*
521 	 * This is the control buffer. It is free to use for every
522 	 * layer. Please put your private variables there. If you
523 	 * want to keep them across layers you have to do a skb_clone()
524 	 * first. This is owned by whoever has the skb queued ATM.
525 	 */
526 	char			cb[48] __aligned(8);
527 
528 	unsigned long		_skb_refdst;
529 	void			(*destructor)(struct sk_buff *skb);
530 #ifdef CONFIG_XFRM
531 	struct	sec_path	*sp;
532 #endif
533 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
534 	struct nf_conntrack	*nfct;
535 #endif
536 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
537 	struct nf_bridge_info	*nf_bridge;
538 #endif
539 	unsigned int		len,
540 				data_len;
541 	__u16			mac_len,
542 				hdr_len;
543 
544 	/* Following fields are _not_ copied in __copy_skb_header()
545 	 * Note that queue_mapping is here mostly to fill a hole.
546 	 */
547 	kmemcheck_bitfield_begin(flags1);
548 	__u16			queue_mapping;
549 	__u8			cloned:1,
550 				nohdr:1,
551 				fclone:2,
552 				peeked:1,
553 				head_frag:1,
554 				xmit_more:1;
555 	/* one bit hole */
556 	kmemcheck_bitfield_end(flags1);
557 
558 	/* fields enclosed in headers_start/headers_end are copied
559 	 * using a single memcpy() in __copy_skb_header()
560 	 */
561 	/* private: */
562 	__u32			headers_start[0];
563 	/* public: */
564 
565 /* if you move pkt_type around you also must adapt those constants */
566 #ifdef __BIG_ENDIAN_BITFIELD
567 #define PKT_TYPE_MAX	(7 << 5)
568 #else
569 #define PKT_TYPE_MAX	7
570 #endif
571 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
572 
573 	__u8			__pkt_type_offset[0];
574 	__u8			pkt_type:3;
575 	__u8			pfmemalloc:1;
576 	__u8			ignore_df:1;
577 	__u8			nfctinfo:3;
578 
579 	__u8			nf_trace:1;
580 	__u8			ip_summed:2;
581 	__u8			ooo_okay:1;
582 	__u8			l4_hash:1;
583 	__u8			sw_hash:1;
584 	__u8			wifi_acked_valid:1;
585 	__u8			wifi_acked:1;
586 
587 	__u8			no_fcs:1;
588 	/* Indicates the inner headers are valid in the skbuff. */
589 	__u8			encapsulation:1;
590 	__u8			encap_hdr_csum:1;
591 	__u8			csum_valid:1;
592 	__u8			csum_complete_sw:1;
593 	__u8			csum_level:2;
594 	__u8			csum_bad:1;
595 
596 #ifdef CONFIG_IPV6_NDISC_NODETYPE
597 	__u8			ndisc_nodetype:2;
598 #endif
599 	__u8			ipvs_property:1;
600 	__u8			inner_protocol_type:1;
601 	/* 4 or 6 bit hole */
602 
603 #ifdef CONFIG_NET_SCHED
604 	__u16			tc_index;	/* traffic control index */
605 #ifdef CONFIG_NET_CLS_ACT
606 	__u16			tc_verd;	/* traffic control verdict */
607 #endif
608 #endif
609 
610 	union {
611 		__wsum		csum;
612 		struct {
613 			__u16	csum_start;
614 			__u16	csum_offset;
615 		};
616 	};
617 	__u32			priority;
618 	int			skb_iif;
619 	__u32			hash;
620 	__be16			vlan_proto;
621 	__u16			vlan_tci;
622 #ifdef CONFIG_NET_RX_BUSY_POLL
623 	unsigned int	napi_id;
624 #endif
625 #ifdef CONFIG_NETWORK_SECMARK
626 	__u32			secmark;
627 #endif
628 	union {
629 		__u32		mark;
630 		__u32		dropcount;
631 		__u32		reserved_tailroom;
632 	};
633 
634 	union {
635 		__be16		inner_protocol;
636 		__u8		inner_ipproto;
637 	};
638 
639 	__u16			inner_transport_header;
640 	__u16			inner_network_header;
641 	__u16			inner_mac_header;
642 
643 	__be16			protocol;
644 	__u16			transport_header;
645 	__u16			network_header;
646 	__u16			mac_header;
647 
648 	/* private: */
649 	__u32			headers_end[0];
650 	/* public: */
651 
652 	/* These elements must be at the end, see alloc_skb() for details.  */
653 	sk_buff_data_t		tail;
654 	sk_buff_data_t		end;
655 	unsigned char		*head,
656 				*data;
657 	unsigned int		truesize;
658 	atomic_t		users;
659 };
660 
661 #ifdef __KERNEL__
662 /*
663  *	Handling routines are only of interest to the kernel
664  */
665 #include <linux/slab.h>
666 
667 
668 #define SKB_ALLOC_FCLONE	0x01
669 #define SKB_ALLOC_RX		0x02
670 
671 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)672 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
673 {
674 	return unlikely(skb->pfmemalloc);
675 }
676 
677 /*
678  * skb might have a dst pointer attached, refcounted or not.
679  * _skb_refdst low order bit is set if refcount was _not_ taken
680  */
681 #define SKB_DST_NOREF	1UL
682 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
683 
684 /**
685  * skb_dst - returns skb dst_entry
686  * @skb: buffer
687  *
688  * Returns skb dst_entry, regardless of reference taken or not.
689  */
skb_dst(const struct sk_buff * skb)690 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
691 {
692 	/* If refdst was not refcounted, check we still are in a
693 	 * rcu_read_lock section
694 	 */
695 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
696 		!rcu_read_lock_held() &&
697 		!rcu_read_lock_bh_held());
698 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
699 }
700 
701 /**
702  * skb_dst_set - sets skb dst
703  * @skb: buffer
704  * @dst: dst entry
705  *
706  * Sets skb dst, assuming a reference was taken on dst and should
707  * be released by skb_dst_drop()
708  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)709 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
710 {
711 	skb->_skb_refdst = (unsigned long)dst;
712 }
713 
714 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
715 			 bool force);
716 
717 /**
718  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
719  * @skb: buffer
720  * @dst: dst entry
721  *
722  * Sets skb dst, assuming a reference was not taken on dst.
723  * If dst entry is cached, we do not take reference and dst_release
724  * will be avoided by refdst_drop. If dst entry is not cached, we take
725  * reference, so that last dst_release can destroy the dst immediately.
726  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)727 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
728 {
729 	__skb_dst_set_noref(skb, dst, false);
730 }
731 
732 /**
733  * skb_dst_set_noref_force - sets skb dst, without taking reference
734  * @skb: buffer
735  * @dst: dst entry
736  *
737  * Sets skb dst, assuming a reference was not taken on dst.
738  * No reference is taken and no dst_release will be called. While for
739  * cached dsts deferred reclaim is a basic feature, for entries that are
740  * not cached it is caller's job to guarantee that last dst_release for
741  * provided dst happens when nobody uses it, eg. after a RCU grace period.
742  */
skb_dst_set_noref_force(struct sk_buff * skb,struct dst_entry * dst)743 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
744 					   struct dst_entry *dst)
745 {
746 	__skb_dst_set_noref(skb, dst, true);
747 }
748 
749 /**
750  * skb_dst_is_noref - Test if skb dst isn't refcounted
751  * @skb: buffer
752  */
skb_dst_is_noref(const struct sk_buff * skb)753 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
754 {
755 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
756 }
757 
skb_rtable(const struct sk_buff * skb)758 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
759 {
760 	return (struct rtable *)skb_dst(skb);
761 }
762 
763 void kfree_skb(struct sk_buff *skb);
764 void kfree_skb_list(struct sk_buff *segs);
765 void skb_tx_error(struct sk_buff *skb);
766 void consume_skb(struct sk_buff *skb);
767 void  __kfree_skb(struct sk_buff *skb);
768 extern struct kmem_cache *skbuff_head_cache;
769 
770 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
771 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
772 		      bool *fragstolen, int *delta_truesize);
773 
774 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
775 			    int node);
776 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
777 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)778 static inline struct sk_buff *alloc_skb(unsigned int size,
779 					gfp_t priority)
780 {
781 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
782 }
783 
784 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
785 				     unsigned long data_len,
786 				     int max_page_order,
787 				     int *errcode,
788 				     gfp_t gfp_mask);
789 
790 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
791 struct sk_buff_fclones {
792 	struct sk_buff	skb1;
793 
794 	struct sk_buff	skb2;
795 
796 	atomic_t	fclone_ref;
797 };
798 
799 /**
800  *	skb_fclone_busy - check if fclone is busy
801  *	@skb: buffer
802  *
803  * Returns true is skb is a fast clone, and its clone is not freed.
804  * Some drivers call skb_orphan() in their ndo_start_xmit(),
805  * so we also check that this didnt happen.
806  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)807 static inline bool skb_fclone_busy(const struct sock *sk,
808 				   const struct sk_buff *skb)
809 {
810 	const struct sk_buff_fclones *fclones;
811 
812 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
813 
814 	return skb->fclone == SKB_FCLONE_ORIG &&
815 	       fclones->skb2.fclone == SKB_FCLONE_CLONE &&
816 	       fclones->skb2.sk == sk;
817 }
818 
alloc_skb_fclone(unsigned int size,gfp_t priority)819 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
820 					       gfp_t priority)
821 {
822 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
823 }
824 
825 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
alloc_skb_head(gfp_t priority)826 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
827 {
828 	return __alloc_skb_head(priority, -1);
829 }
830 
831 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
832 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
833 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
834 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
835 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
836 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)837 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
838 					  gfp_t gfp_mask)
839 {
840 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
841 }
842 
843 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
844 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
845 				     unsigned int headroom);
846 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
847 				int newtailroom, gfp_t priority);
848 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
849 			int offset, int len);
850 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
851 		 int len);
852 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
853 int skb_pad(struct sk_buff *skb, int pad);
854 #define dev_kfree_skb(a)	consume_skb(a)
855 
856 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
857 			    int getfrag(void *from, char *to, int offset,
858 					int len, int odd, struct sk_buff *skb),
859 			    void *from, int length);
860 
861 struct skb_seq_state {
862 	__u32		lower_offset;
863 	__u32		upper_offset;
864 	__u32		frag_idx;
865 	__u32		stepped_offset;
866 	struct sk_buff	*root_skb;
867 	struct sk_buff	*cur_skb;
868 	__u8		*frag_data;
869 };
870 
871 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
872 			  unsigned int to, struct skb_seq_state *st);
873 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
874 			  struct skb_seq_state *st);
875 void skb_abort_seq_read(struct skb_seq_state *st);
876 
877 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
878 			   unsigned int to, struct ts_config *config,
879 			   struct ts_state *state);
880 
881 /*
882  * Packet hash types specify the type of hash in skb_set_hash.
883  *
884  * Hash types refer to the protocol layer addresses which are used to
885  * construct a packet's hash. The hashes are used to differentiate or identify
886  * flows of the protocol layer for the hash type. Hash types are either
887  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
888  *
889  * Properties of hashes:
890  *
891  * 1) Two packets in different flows have different hash values
892  * 2) Two packets in the same flow should have the same hash value
893  *
894  * A hash at a higher layer is considered to be more specific. A driver should
895  * set the most specific hash possible.
896  *
897  * A driver cannot indicate a more specific hash than the layer at which a hash
898  * was computed. For instance an L3 hash cannot be set as an L4 hash.
899  *
900  * A driver may indicate a hash level which is less specific than the
901  * actual layer the hash was computed on. For instance, a hash computed
902  * at L4 may be considered an L3 hash. This should only be done if the
903  * driver can't unambiguously determine that the HW computed the hash at
904  * the higher layer. Note that the "should" in the second property above
905  * permits this.
906  */
907 enum pkt_hash_types {
908 	PKT_HASH_TYPE_NONE,	/* Undefined type */
909 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
910 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
911 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
912 };
913 
914 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)915 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
916 {
917 	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
918 	skb->sw_hash = 0;
919 	skb->hash = hash;
920 }
921 
922 void __skb_get_hash(struct sk_buff *skb);
skb_get_hash(struct sk_buff * skb)923 static inline __u32 skb_get_hash(struct sk_buff *skb)
924 {
925 	if (!skb->l4_hash && !skb->sw_hash)
926 		__skb_get_hash(skb);
927 
928 	return skb->hash;
929 }
930 
skb_get_hash_raw(const struct sk_buff * skb)931 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
932 {
933 	return skb->hash;
934 }
935 
skb_clear_hash(struct sk_buff * skb)936 static inline void skb_clear_hash(struct sk_buff *skb)
937 {
938 	skb->hash = 0;
939 	skb->sw_hash = 0;
940 	skb->l4_hash = 0;
941 }
942 
skb_clear_hash_if_not_l4(struct sk_buff * skb)943 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
944 {
945 	if (!skb->l4_hash)
946 		skb_clear_hash(skb);
947 }
948 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)949 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
950 {
951 	to->hash = from->hash;
952 	to->sw_hash = from->sw_hash;
953 	to->l4_hash = from->l4_hash;
954 };
955 
956 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)957 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
958 {
959 	return skb->head + skb->end;
960 }
961 
skb_end_offset(const struct sk_buff * skb)962 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
963 {
964 	return skb->end;
965 }
966 #else
skb_end_pointer(const struct sk_buff * skb)967 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
968 {
969 	return skb->end;
970 }
971 
skb_end_offset(const struct sk_buff * skb)972 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
973 {
974 	return skb->end - skb->head;
975 }
976 #endif
977 
978 /* Internal */
979 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
980 
skb_hwtstamps(struct sk_buff * skb)981 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
982 {
983 	return &skb_shinfo(skb)->hwtstamps;
984 }
985 
986 /**
987  *	skb_queue_empty - check if a queue is empty
988  *	@list: queue head
989  *
990  *	Returns true if the queue is empty, false otherwise.
991  */
skb_queue_empty(const struct sk_buff_head * list)992 static inline int skb_queue_empty(const struct sk_buff_head *list)
993 {
994 	return list->next == (const struct sk_buff *) list;
995 }
996 
997 /**
998  *	skb_queue_is_last - check if skb is the last entry in the queue
999  *	@list: queue head
1000  *	@skb: buffer
1001  *
1002  *	Returns true if @skb is the last buffer on the list.
1003  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1004 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1005 				     const struct sk_buff *skb)
1006 {
1007 	return skb->next == (const struct sk_buff *) list;
1008 }
1009 
1010 /**
1011  *	skb_queue_is_first - check if skb is the first entry in the queue
1012  *	@list: queue head
1013  *	@skb: buffer
1014  *
1015  *	Returns true if @skb is the first buffer on the list.
1016  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1017 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1018 				      const struct sk_buff *skb)
1019 {
1020 	return skb->prev == (const struct sk_buff *) list;
1021 }
1022 
1023 /**
1024  *	skb_queue_next - return the next packet in the queue
1025  *	@list: queue head
1026  *	@skb: current buffer
1027  *
1028  *	Return the next packet in @list after @skb.  It is only valid to
1029  *	call this if skb_queue_is_last() evaluates to false.
1030  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1031 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1032 					     const struct sk_buff *skb)
1033 {
1034 	/* This BUG_ON may seem severe, but if we just return then we
1035 	 * are going to dereference garbage.
1036 	 */
1037 	BUG_ON(skb_queue_is_last(list, skb));
1038 	return skb->next;
1039 }
1040 
1041 /**
1042  *	skb_queue_prev - return the prev packet in the queue
1043  *	@list: queue head
1044  *	@skb: current buffer
1045  *
1046  *	Return the prev packet in @list before @skb.  It is only valid to
1047  *	call this if skb_queue_is_first() evaluates to false.
1048  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1049 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1050 					     const struct sk_buff *skb)
1051 {
1052 	/* This BUG_ON may seem severe, but if we just return then we
1053 	 * are going to dereference garbage.
1054 	 */
1055 	BUG_ON(skb_queue_is_first(list, skb));
1056 	return skb->prev;
1057 }
1058 
1059 /**
1060  *	skb_get - reference buffer
1061  *	@skb: buffer to reference
1062  *
1063  *	Makes another reference to a socket buffer and returns a pointer
1064  *	to the buffer.
1065  */
skb_get(struct sk_buff * skb)1066 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1067 {
1068 	atomic_inc(&skb->users);
1069 	return skb;
1070 }
1071 
1072 /*
1073  * If users == 1, we are the only owner and are can avoid redundant
1074  * atomic change.
1075  */
1076 
1077 /**
1078  *	skb_cloned - is the buffer a clone
1079  *	@skb: buffer to check
1080  *
1081  *	Returns true if the buffer was generated with skb_clone() and is
1082  *	one of multiple shared copies of the buffer. Cloned buffers are
1083  *	shared data so must not be written to under normal circumstances.
1084  */
skb_cloned(const struct sk_buff * skb)1085 static inline int skb_cloned(const struct sk_buff *skb)
1086 {
1087 	return skb->cloned &&
1088 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1089 }
1090 
skb_unclone(struct sk_buff * skb,gfp_t pri)1091 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1092 {
1093 	might_sleep_if(pri & __GFP_WAIT);
1094 
1095 	if (skb_cloned(skb))
1096 		return pskb_expand_head(skb, 0, 0, pri);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  *	skb_header_cloned - is the header a clone
1103  *	@skb: buffer to check
1104  *
1105  *	Returns true if modifying the header part of the buffer requires
1106  *	the data to be copied.
1107  */
skb_header_cloned(const struct sk_buff * skb)1108 static inline int skb_header_cloned(const struct sk_buff *skb)
1109 {
1110 	int dataref;
1111 
1112 	if (!skb->cloned)
1113 		return 0;
1114 
1115 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1116 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1117 	return dataref != 1;
1118 }
1119 
1120 /**
1121  *	skb_header_release - release reference to header
1122  *	@skb: buffer to operate on
1123  *
1124  *	Drop a reference to the header part of the buffer.  This is done
1125  *	by acquiring a payload reference.  You must not read from the header
1126  *	part of skb->data after this.
1127  *	Note : Check if you can use __skb_header_release() instead.
1128  */
skb_header_release(struct sk_buff * skb)1129 static inline void skb_header_release(struct sk_buff *skb)
1130 {
1131 	BUG_ON(skb->nohdr);
1132 	skb->nohdr = 1;
1133 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1134 }
1135 
1136 /**
1137  *	__skb_header_release - release reference to header
1138  *	@skb: buffer to operate on
1139  *
1140  *	Variant of skb_header_release() assuming skb is private to caller.
1141  *	We can avoid one atomic operation.
1142  */
__skb_header_release(struct sk_buff * skb)1143 static inline void __skb_header_release(struct sk_buff *skb)
1144 {
1145 	skb->nohdr = 1;
1146 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1147 }
1148 
1149 
1150 /**
1151  *	skb_shared - is the buffer shared
1152  *	@skb: buffer to check
1153  *
1154  *	Returns true if more than one person has a reference to this
1155  *	buffer.
1156  */
skb_shared(const struct sk_buff * skb)1157 static inline int skb_shared(const struct sk_buff *skb)
1158 {
1159 	return atomic_read(&skb->users) != 1;
1160 }
1161 
1162 /**
1163  *	skb_share_check - check if buffer is shared and if so clone it
1164  *	@skb: buffer to check
1165  *	@pri: priority for memory allocation
1166  *
1167  *	If the buffer is shared the buffer is cloned and the old copy
1168  *	drops a reference. A new clone with a single reference is returned.
1169  *	If the buffer is not shared the original buffer is returned. When
1170  *	being called from interrupt status or with spinlocks held pri must
1171  *	be GFP_ATOMIC.
1172  *
1173  *	NULL is returned on a memory allocation failure.
1174  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1175 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1176 {
1177 	might_sleep_if(pri & __GFP_WAIT);
1178 	if (skb_shared(skb)) {
1179 		struct sk_buff *nskb = skb_clone(skb, pri);
1180 
1181 		if (likely(nskb))
1182 			consume_skb(skb);
1183 		else
1184 			kfree_skb(skb);
1185 		skb = nskb;
1186 	}
1187 	return skb;
1188 }
1189 
1190 /*
1191  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1192  *	packets to handle cases where we have a local reader and forward
1193  *	and a couple of other messy ones. The normal one is tcpdumping
1194  *	a packet thats being forwarded.
1195  */
1196 
1197 /**
1198  *	skb_unshare - make a copy of a shared buffer
1199  *	@skb: buffer to check
1200  *	@pri: priority for memory allocation
1201  *
1202  *	If the socket buffer is a clone then this function creates a new
1203  *	copy of the data, drops a reference count on the old copy and returns
1204  *	the new copy with the reference count at 1. If the buffer is not a clone
1205  *	the original buffer is returned. When called with a spinlock held or
1206  *	from interrupt state @pri must be %GFP_ATOMIC
1207  *
1208  *	%NULL is returned on a memory allocation failure.
1209  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1210 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1211 					  gfp_t pri)
1212 {
1213 	might_sleep_if(pri & __GFP_WAIT);
1214 	if (skb_cloned(skb)) {
1215 		struct sk_buff *nskb = skb_copy(skb, pri);
1216 
1217 		/* Free our shared copy */
1218 		if (likely(nskb))
1219 			consume_skb(skb);
1220 		else
1221 			kfree_skb(skb);
1222 		skb = nskb;
1223 	}
1224 	return skb;
1225 }
1226 
1227 /**
1228  *	skb_peek - peek at the head of an &sk_buff_head
1229  *	@list_: list to peek at
1230  *
1231  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1232  *	be careful with this one. A peek leaves the buffer on the
1233  *	list and someone else may run off with it. You must hold
1234  *	the appropriate locks or have a private queue to do this.
1235  *
1236  *	Returns %NULL for an empty list or a pointer to the head element.
1237  *	The reference count is not incremented and the reference is therefore
1238  *	volatile. Use with caution.
1239  */
skb_peek(const struct sk_buff_head * list_)1240 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1241 {
1242 	struct sk_buff *skb = list_->next;
1243 
1244 	if (skb == (struct sk_buff *)list_)
1245 		skb = NULL;
1246 	return skb;
1247 }
1248 
1249 /**
1250  *	skb_peek_next - peek skb following the given one from a queue
1251  *	@skb: skb to start from
1252  *	@list_: list to peek at
1253  *
1254  *	Returns %NULL when the end of the list is met or a pointer to the
1255  *	next element. The reference count is not incremented and the
1256  *	reference is therefore volatile. Use with caution.
1257  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1258 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1259 		const struct sk_buff_head *list_)
1260 {
1261 	struct sk_buff *next = skb->next;
1262 
1263 	if (next == (struct sk_buff *)list_)
1264 		next = NULL;
1265 	return next;
1266 }
1267 
1268 /**
1269  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1270  *	@list_: list to peek at
1271  *
1272  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1273  *	be careful with this one. A peek leaves the buffer on the
1274  *	list and someone else may run off with it. You must hold
1275  *	the appropriate locks or have a private queue to do this.
1276  *
1277  *	Returns %NULL for an empty list or a pointer to the tail element.
1278  *	The reference count is not incremented and the reference is therefore
1279  *	volatile. Use with caution.
1280  */
skb_peek_tail(const struct sk_buff_head * list_)1281 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1282 {
1283 	struct sk_buff *skb = list_->prev;
1284 
1285 	if (skb == (struct sk_buff *)list_)
1286 		skb = NULL;
1287 	return skb;
1288 
1289 }
1290 
1291 /**
1292  *	skb_queue_len	- get queue length
1293  *	@list_: list to measure
1294  *
1295  *	Return the length of an &sk_buff queue.
1296  */
skb_queue_len(const struct sk_buff_head * list_)1297 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1298 {
1299 	return list_->qlen;
1300 }
1301 
1302 /**
1303  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1304  *	@list: queue to initialize
1305  *
1306  *	This initializes only the list and queue length aspects of
1307  *	an sk_buff_head object.  This allows to initialize the list
1308  *	aspects of an sk_buff_head without reinitializing things like
1309  *	the spinlock.  It can also be used for on-stack sk_buff_head
1310  *	objects where the spinlock is known to not be used.
1311  */
__skb_queue_head_init(struct sk_buff_head * list)1312 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1313 {
1314 	list->prev = list->next = (struct sk_buff *)list;
1315 	list->qlen = 0;
1316 }
1317 
1318 /*
1319  * This function creates a split out lock class for each invocation;
1320  * this is needed for now since a whole lot of users of the skb-queue
1321  * infrastructure in drivers have different locking usage (in hardirq)
1322  * than the networking core (in softirq only). In the long run either the
1323  * network layer or drivers should need annotation to consolidate the
1324  * main types of usage into 3 classes.
1325  */
skb_queue_head_init(struct sk_buff_head * list)1326 static inline void skb_queue_head_init(struct sk_buff_head *list)
1327 {
1328 	spin_lock_init(&list->lock);
1329 	__skb_queue_head_init(list);
1330 }
1331 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1332 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1333 		struct lock_class_key *class)
1334 {
1335 	skb_queue_head_init(list);
1336 	lockdep_set_class(&list->lock, class);
1337 }
1338 
1339 /*
1340  *	Insert an sk_buff on a list.
1341  *
1342  *	The "__skb_xxxx()" functions are the non-atomic ones that
1343  *	can only be called with interrupts disabled.
1344  */
1345 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1346 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1347 static inline void __skb_insert(struct sk_buff *newsk,
1348 				struct sk_buff *prev, struct sk_buff *next,
1349 				struct sk_buff_head *list)
1350 {
1351 	newsk->next = next;
1352 	newsk->prev = prev;
1353 	next->prev  = prev->next = newsk;
1354 	list->qlen++;
1355 }
1356 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1357 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1358 				      struct sk_buff *prev,
1359 				      struct sk_buff *next)
1360 {
1361 	struct sk_buff *first = list->next;
1362 	struct sk_buff *last = list->prev;
1363 
1364 	first->prev = prev;
1365 	prev->next = first;
1366 
1367 	last->next = next;
1368 	next->prev = last;
1369 }
1370 
1371 /**
1372  *	skb_queue_splice - join two skb lists, this is designed for stacks
1373  *	@list: the new list to add
1374  *	@head: the place to add it in the first list
1375  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1376 static inline void skb_queue_splice(const struct sk_buff_head *list,
1377 				    struct sk_buff_head *head)
1378 {
1379 	if (!skb_queue_empty(list)) {
1380 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1381 		head->qlen += list->qlen;
1382 	}
1383 }
1384 
1385 /**
1386  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1387  *	@list: the new list to add
1388  *	@head: the place to add it in the first list
1389  *
1390  *	The list at @list is reinitialised
1391  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1392 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1393 					 struct sk_buff_head *head)
1394 {
1395 	if (!skb_queue_empty(list)) {
1396 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1397 		head->qlen += list->qlen;
1398 		__skb_queue_head_init(list);
1399 	}
1400 }
1401 
1402 /**
1403  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1404  *	@list: the new list to add
1405  *	@head: the place to add it in the first list
1406  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1407 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1408 					 struct sk_buff_head *head)
1409 {
1410 	if (!skb_queue_empty(list)) {
1411 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1412 		head->qlen += list->qlen;
1413 	}
1414 }
1415 
1416 /**
1417  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1418  *	@list: the new list to add
1419  *	@head: the place to add it in the first list
1420  *
1421  *	Each of the lists is a queue.
1422  *	The list at @list is reinitialised
1423  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1424 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1425 					      struct sk_buff_head *head)
1426 {
1427 	if (!skb_queue_empty(list)) {
1428 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1429 		head->qlen += list->qlen;
1430 		__skb_queue_head_init(list);
1431 	}
1432 }
1433 
1434 /**
1435  *	__skb_queue_after - queue a buffer at the list head
1436  *	@list: list to use
1437  *	@prev: place after this buffer
1438  *	@newsk: buffer to queue
1439  *
1440  *	Queue a buffer int the middle of a list. This function takes no locks
1441  *	and you must therefore hold required locks before calling it.
1442  *
1443  *	A buffer cannot be placed on two lists at the same time.
1444  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1445 static inline void __skb_queue_after(struct sk_buff_head *list,
1446 				     struct sk_buff *prev,
1447 				     struct sk_buff *newsk)
1448 {
1449 	__skb_insert(newsk, prev, prev->next, list);
1450 }
1451 
1452 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1453 		struct sk_buff_head *list);
1454 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1455 static inline void __skb_queue_before(struct sk_buff_head *list,
1456 				      struct sk_buff *next,
1457 				      struct sk_buff *newsk)
1458 {
1459 	__skb_insert(newsk, next->prev, next, list);
1460 }
1461 
1462 /**
1463  *	__skb_queue_head - queue a buffer at the list head
1464  *	@list: list to use
1465  *	@newsk: buffer to queue
1466  *
1467  *	Queue a buffer at the start of a list. This function takes no locks
1468  *	and you must therefore hold required locks before calling it.
1469  *
1470  *	A buffer cannot be placed on two lists at the same time.
1471  */
1472 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1473 static inline void __skb_queue_head(struct sk_buff_head *list,
1474 				    struct sk_buff *newsk)
1475 {
1476 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1477 }
1478 
1479 /**
1480  *	__skb_queue_tail - queue a buffer at the list tail
1481  *	@list: list to use
1482  *	@newsk: buffer to queue
1483  *
1484  *	Queue a buffer at the end of a list. This function takes no locks
1485  *	and you must therefore hold required locks before calling it.
1486  *
1487  *	A buffer cannot be placed on two lists at the same time.
1488  */
1489 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1490 static inline void __skb_queue_tail(struct sk_buff_head *list,
1491 				   struct sk_buff *newsk)
1492 {
1493 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1494 }
1495 
1496 /*
1497  * remove sk_buff from list. _Must_ be called atomically, and with
1498  * the list known..
1499  */
1500 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1501 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1502 {
1503 	struct sk_buff *next, *prev;
1504 
1505 	list->qlen--;
1506 	next	   = skb->next;
1507 	prev	   = skb->prev;
1508 	skb->next  = skb->prev = NULL;
1509 	next->prev = prev;
1510 	prev->next = next;
1511 }
1512 
1513 /**
1514  *	__skb_dequeue - remove from the head of the queue
1515  *	@list: list to dequeue from
1516  *
1517  *	Remove the head of the list. This function does not take any locks
1518  *	so must be used with appropriate locks held only. The head item is
1519  *	returned or %NULL if the list is empty.
1520  */
1521 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1522 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1523 {
1524 	struct sk_buff *skb = skb_peek(list);
1525 	if (skb)
1526 		__skb_unlink(skb, list);
1527 	return skb;
1528 }
1529 
1530 /**
1531  *	__skb_dequeue_tail - remove from the tail of the queue
1532  *	@list: list to dequeue from
1533  *
1534  *	Remove the tail of the list. This function does not take any locks
1535  *	so must be used with appropriate locks held only. The tail item is
1536  *	returned or %NULL if the list is empty.
1537  */
1538 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1539 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1540 {
1541 	struct sk_buff *skb = skb_peek_tail(list);
1542 	if (skb)
1543 		__skb_unlink(skb, list);
1544 	return skb;
1545 }
1546 
1547 
skb_is_nonlinear(const struct sk_buff * skb)1548 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1549 {
1550 	return skb->data_len;
1551 }
1552 
skb_headlen(const struct sk_buff * skb)1553 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1554 {
1555 	return skb->len - skb->data_len;
1556 }
1557 
skb_pagelen(const struct sk_buff * skb)1558 static inline int skb_pagelen(const struct sk_buff *skb)
1559 {
1560 	int i, len = 0;
1561 
1562 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1563 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1564 	return len + skb_headlen(skb);
1565 }
1566 
1567 /**
1568  * __skb_fill_page_desc - initialise a paged fragment in an skb
1569  * @skb: buffer containing fragment to be initialised
1570  * @i: paged fragment index to initialise
1571  * @page: the page to use for this fragment
1572  * @off: the offset to the data with @page
1573  * @size: the length of the data
1574  *
1575  * Initialises the @i'th fragment of @skb to point to &size bytes at
1576  * offset @off within @page.
1577  *
1578  * Does not take any additional reference on the fragment.
1579  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1580 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1581 					struct page *page, int off, int size)
1582 {
1583 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1584 
1585 	/*
1586 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1587 	 * that not all callers have unique ownership of the page. If
1588 	 * pfmemalloc is set, we check the mapping as a mapping implies
1589 	 * page->index is set (index and pfmemalloc share space).
1590 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1591 	 * do not lose pfmemalloc information as the pages would not be
1592 	 * allocated using __GFP_MEMALLOC.
1593 	 */
1594 	frag->page.p		  = page;
1595 	frag->page_offset	  = off;
1596 	skb_frag_size_set(frag, size);
1597 
1598 	page = compound_head(page);
1599 	if (page->pfmemalloc && !page->mapping)
1600 		skb->pfmemalloc	= true;
1601 }
1602 
1603 /**
1604  * skb_fill_page_desc - initialise a paged fragment in an skb
1605  * @skb: buffer containing fragment to be initialised
1606  * @i: paged fragment index to initialise
1607  * @page: the page to use for this fragment
1608  * @off: the offset to the data with @page
1609  * @size: the length of the data
1610  *
1611  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1612  * @skb to point to @size bytes at offset @off within @page. In
1613  * addition updates @skb such that @i is the last fragment.
1614  *
1615  * Does not take any additional reference on the fragment.
1616  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1617 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1618 				      struct page *page, int off, int size)
1619 {
1620 	__skb_fill_page_desc(skb, i, page, off, size);
1621 	skb_shinfo(skb)->nr_frags = i + 1;
1622 }
1623 
1624 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1625 		     int size, unsigned int truesize);
1626 
1627 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1628 			  unsigned int truesize);
1629 
1630 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1631 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1632 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1633 
1634 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1635 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1636 {
1637 	return skb->head + skb->tail;
1638 }
1639 
skb_reset_tail_pointer(struct sk_buff * skb)1640 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1641 {
1642 	skb->tail = skb->data - skb->head;
1643 }
1644 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1645 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1646 {
1647 	skb_reset_tail_pointer(skb);
1648 	skb->tail += offset;
1649 }
1650 
1651 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1652 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1653 {
1654 	return skb->tail;
1655 }
1656 
skb_reset_tail_pointer(struct sk_buff * skb)1657 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1658 {
1659 	skb->tail = skb->data;
1660 }
1661 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1662 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1663 {
1664 	skb->tail = skb->data + offset;
1665 }
1666 
1667 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1668 
1669 /*
1670  *	Add data to an sk_buff
1671  */
1672 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1673 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1674 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1675 {
1676 	unsigned char *tmp = skb_tail_pointer(skb);
1677 	SKB_LINEAR_ASSERT(skb);
1678 	skb->tail += len;
1679 	skb->len  += len;
1680 	return tmp;
1681 }
1682 
1683 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1684 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1685 {
1686 	skb->data -= len;
1687 	skb->len  += len;
1688 	return skb->data;
1689 }
1690 
1691 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1692 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1693 {
1694 	skb->len -= len;
1695 	BUG_ON(skb->len < skb->data_len);
1696 	return skb->data += len;
1697 }
1698 
skb_pull_inline(struct sk_buff * skb,unsigned int len)1699 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1700 {
1701 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1702 }
1703 
1704 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1705 
__pskb_pull(struct sk_buff * skb,unsigned int len)1706 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1707 {
1708 	if (len > skb_headlen(skb) &&
1709 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1710 		return NULL;
1711 	skb->len -= len;
1712 	return skb->data += len;
1713 }
1714 
pskb_pull(struct sk_buff * skb,unsigned int len)1715 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1716 {
1717 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1718 }
1719 
pskb_may_pull(struct sk_buff * skb,unsigned int len)1720 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1721 {
1722 	if (likely(len <= skb_headlen(skb)))
1723 		return 1;
1724 	if (unlikely(len > skb->len))
1725 		return 0;
1726 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1727 }
1728 
1729 /**
1730  *	skb_headroom - bytes at buffer head
1731  *	@skb: buffer to check
1732  *
1733  *	Return the number of bytes of free space at the head of an &sk_buff.
1734  */
skb_headroom(const struct sk_buff * skb)1735 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1736 {
1737 	return skb->data - skb->head;
1738 }
1739 
1740 /**
1741  *	skb_tailroom - bytes at buffer end
1742  *	@skb: buffer to check
1743  *
1744  *	Return the number of bytes of free space at the tail of an sk_buff
1745  */
skb_tailroom(const struct sk_buff * skb)1746 static inline int skb_tailroom(const struct sk_buff *skb)
1747 {
1748 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1749 }
1750 
1751 /**
1752  *	skb_availroom - bytes at buffer end
1753  *	@skb: buffer to check
1754  *
1755  *	Return the number of bytes of free space at the tail of an sk_buff
1756  *	allocated by sk_stream_alloc()
1757  */
skb_availroom(const struct sk_buff * skb)1758 static inline int skb_availroom(const struct sk_buff *skb)
1759 {
1760 	if (skb_is_nonlinear(skb))
1761 		return 0;
1762 
1763 	return skb->end - skb->tail - skb->reserved_tailroom;
1764 }
1765 
1766 /**
1767  *	skb_reserve - adjust headroom
1768  *	@skb: buffer to alter
1769  *	@len: bytes to move
1770  *
1771  *	Increase the headroom of an empty &sk_buff by reducing the tail
1772  *	room. This is only allowed for an empty buffer.
1773  */
skb_reserve(struct sk_buff * skb,int len)1774 static inline void skb_reserve(struct sk_buff *skb, int len)
1775 {
1776 	skb->data += len;
1777 	skb->tail += len;
1778 }
1779 
1780 #define ENCAP_TYPE_ETHER	0
1781 #define ENCAP_TYPE_IPPROTO	1
1782 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)1783 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1784 					  __be16 protocol)
1785 {
1786 	skb->inner_protocol = protocol;
1787 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1788 }
1789 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)1790 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1791 					 __u8 ipproto)
1792 {
1793 	skb->inner_ipproto = ipproto;
1794 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1795 }
1796 
skb_reset_inner_headers(struct sk_buff * skb)1797 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1798 {
1799 	skb->inner_mac_header = skb->mac_header;
1800 	skb->inner_network_header = skb->network_header;
1801 	skb->inner_transport_header = skb->transport_header;
1802 }
1803 
skb_reset_mac_len(struct sk_buff * skb)1804 static inline void skb_reset_mac_len(struct sk_buff *skb)
1805 {
1806 	skb->mac_len = skb->network_header - skb->mac_header;
1807 }
1808 
skb_inner_transport_header(const struct sk_buff * skb)1809 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1810 							*skb)
1811 {
1812 	return skb->head + skb->inner_transport_header;
1813 }
1814 
skb_reset_inner_transport_header(struct sk_buff * skb)1815 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1816 {
1817 	skb->inner_transport_header = skb->data - skb->head;
1818 }
1819 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)1820 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1821 						   const int offset)
1822 {
1823 	skb_reset_inner_transport_header(skb);
1824 	skb->inner_transport_header += offset;
1825 }
1826 
skb_inner_network_header(const struct sk_buff * skb)1827 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1828 {
1829 	return skb->head + skb->inner_network_header;
1830 }
1831 
skb_reset_inner_network_header(struct sk_buff * skb)1832 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1833 {
1834 	skb->inner_network_header = skb->data - skb->head;
1835 }
1836 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)1837 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1838 						const int offset)
1839 {
1840 	skb_reset_inner_network_header(skb);
1841 	skb->inner_network_header += offset;
1842 }
1843 
skb_inner_mac_header(const struct sk_buff * skb)1844 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1845 {
1846 	return skb->head + skb->inner_mac_header;
1847 }
1848 
skb_reset_inner_mac_header(struct sk_buff * skb)1849 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1850 {
1851 	skb->inner_mac_header = skb->data - skb->head;
1852 }
1853 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)1854 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1855 					    const int offset)
1856 {
1857 	skb_reset_inner_mac_header(skb);
1858 	skb->inner_mac_header += offset;
1859 }
skb_transport_header_was_set(const struct sk_buff * skb)1860 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1861 {
1862 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1863 }
1864 
skb_transport_header(const struct sk_buff * skb)1865 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1866 {
1867 	return skb->head + skb->transport_header;
1868 }
1869 
skb_reset_transport_header(struct sk_buff * skb)1870 static inline void skb_reset_transport_header(struct sk_buff *skb)
1871 {
1872 	skb->transport_header = skb->data - skb->head;
1873 }
1874 
skb_set_transport_header(struct sk_buff * skb,const int offset)1875 static inline void skb_set_transport_header(struct sk_buff *skb,
1876 					    const int offset)
1877 {
1878 	skb_reset_transport_header(skb);
1879 	skb->transport_header += offset;
1880 }
1881 
skb_network_header(const struct sk_buff * skb)1882 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1883 {
1884 	return skb->head + skb->network_header;
1885 }
1886 
skb_reset_network_header(struct sk_buff * skb)1887 static inline void skb_reset_network_header(struct sk_buff *skb)
1888 {
1889 	skb->network_header = skb->data - skb->head;
1890 }
1891 
skb_set_network_header(struct sk_buff * skb,const int offset)1892 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1893 {
1894 	skb_reset_network_header(skb);
1895 	skb->network_header += offset;
1896 }
1897 
skb_mac_header(const struct sk_buff * skb)1898 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1899 {
1900 	return skb->head + skb->mac_header;
1901 }
1902 
skb_mac_header_was_set(const struct sk_buff * skb)1903 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1904 {
1905 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1906 }
1907 
skb_reset_mac_header(struct sk_buff * skb)1908 static inline void skb_reset_mac_header(struct sk_buff *skb)
1909 {
1910 	skb->mac_header = skb->data - skb->head;
1911 }
1912 
skb_set_mac_header(struct sk_buff * skb,const int offset)1913 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1914 {
1915 	skb_reset_mac_header(skb);
1916 	skb->mac_header += offset;
1917 }
1918 
skb_pop_mac_header(struct sk_buff * skb)1919 static inline void skb_pop_mac_header(struct sk_buff *skb)
1920 {
1921 	skb->mac_header = skb->network_header;
1922 }
1923 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)1924 static inline void skb_probe_transport_header(struct sk_buff *skb,
1925 					      const int offset_hint)
1926 {
1927 	struct flow_keys keys;
1928 
1929 	if (skb_transport_header_was_set(skb))
1930 		return;
1931 	else if (skb_flow_dissect(skb, &keys))
1932 		skb_set_transport_header(skb, keys.thoff);
1933 	else
1934 		skb_set_transport_header(skb, offset_hint);
1935 }
1936 
skb_mac_header_rebuild(struct sk_buff * skb)1937 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1938 {
1939 	if (skb_mac_header_was_set(skb)) {
1940 		const unsigned char *old_mac = skb_mac_header(skb);
1941 
1942 		skb_set_mac_header(skb, -skb->mac_len);
1943 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1944 	}
1945 }
1946 
skb_checksum_start_offset(const struct sk_buff * skb)1947 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1948 {
1949 	return skb->csum_start - skb_headroom(skb);
1950 }
1951 
skb_transport_offset(const struct sk_buff * skb)1952 static inline int skb_transport_offset(const struct sk_buff *skb)
1953 {
1954 	return skb_transport_header(skb) - skb->data;
1955 }
1956 
skb_network_header_len(const struct sk_buff * skb)1957 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1958 {
1959 	return skb->transport_header - skb->network_header;
1960 }
1961 
skb_inner_network_header_len(const struct sk_buff * skb)1962 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1963 {
1964 	return skb->inner_transport_header - skb->inner_network_header;
1965 }
1966 
skb_network_offset(const struct sk_buff * skb)1967 static inline int skb_network_offset(const struct sk_buff *skb)
1968 {
1969 	return skb_network_header(skb) - skb->data;
1970 }
1971 
skb_inner_network_offset(const struct sk_buff * skb)1972 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1973 {
1974 	return skb_inner_network_header(skb) - skb->data;
1975 }
1976 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1977 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1978 {
1979 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1980 }
1981 
1982 /*
1983  * CPUs often take a performance hit when accessing unaligned memory
1984  * locations. The actual performance hit varies, it can be small if the
1985  * hardware handles it or large if we have to take an exception and fix it
1986  * in software.
1987  *
1988  * Since an ethernet header is 14 bytes network drivers often end up with
1989  * the IP header at an unaligned offset. The IP header can be aligned by
1990  * shifting the start of the packet by 2 bytes. Drivers should do this
1991  * with:
1992  *
1993  * skb_reserve(skb, NET_IP_ALIGN);
1994  *
1995  * The downside to this alignment of the IP header is that the DMA is now
1996  * unaligned. On some architectures the cost of an unaligned DMA is high
1997  * and this cost outweighs the gains made by aligning the IP header.
1998  *
1999  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2000  * to be overridden.
2001  */
2002 #ifndef NET_IP_ALIGN
2003 #define NET_IP_ALIGN	2
2004 #endif
2005 
2006 /*
2007  * The networking layer reserves some headroom in skb data (via
2008  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2009  * the header has to grow. In the default case, if the header has to grow
2010  * 32 bytes or less we avoid the reallocation.
2011  *
2012  * Unfortunately this headroom changes the DMA alignment of the resulting
2013  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2014  * on some architectures. An architecture can override this value,
2015  * perhaps setting it to a cacheline in size (since that will maintain
2016  * cacheline alignment of the DMA). It must be a power of 2.
2017  *
2018  * Various parts of the networking layer expect at least 32 bytes of
2019  * headroom, you should not reduce this.
2020  *
2021  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2022  * to reduce average number of cache lines per packet.
2023  * get_rps_cpus() for example only access one 64 bytes aligned block :
2024  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2025  */
2026 #ifndef NET_SKB_PAD
2027 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2028 #endif
2029 
2030 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2031 
__skb_trim(struct sk_buff * skb,unsigned int len)2032 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2033 {
2034 	if (unlikely(skb_is_nonlinear(skb))) {
2035 		WARN_ON(1);
2036 		return;
2037 	}
2038 	skb->len = len;
2039 	skb_set_tail_pointer(skb, len);
2040 }
2041 
2042 void skb_trim(struct sk_buff *skb, unsigned int len);
2043 
__pskb_trim(struct sk_buff * skb,unsigned int len)2044 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2045 {
2046 	if (skb->data_len)
2047 		return ___pskb_trim(skb, len);
2048 	__skb_trim(skb, len);
2049 	return 0;
2050 }
2051 
pskb_trim(struct sk_buff * skb,unsigned int len)2052 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2053 {
2054 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2055 }
2056 
2057 /**
2058  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2059  *	@skb: buffer to alter
2060  *	@len: new length
2061  *
2062  *	This is identical to pskb_trim except that the caller knows that
2063  *	the skb is not cloned so we should never get an error due to out-
2064  *	of-memory.
2065  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2066 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2067 {
2068 	int err = pskb_trim(skb, len);
2069 	BUG_ON(err);
2070 }
2071 
2072 /**
2073  *	skb_orphan - orphan a buffer
2074  *	@skb: buffer to orphan
2075  *
2076  *	If a buffer currently has an owner then we call the owner's
2077  *	destructor function and make the @skb unowned. The buffer continues
2078  *	to exist but is no longer charged to its former owner.
2079  */
skb_orphan(struct sk_buff * skb)2080 static inline void skb_orphan(struct sk_buff *skb)
2081 {
2082 	if (skb->destructor) {
2083 		skb->destructor(skb);
2084 		skb->destructor = NULL;
2085 		skb->sk		= NULL;
2086 	} else {
2087 		BUG_ON(skb->sk);
2088 	}
2089 }
2090 
2091 /**
2092  *	skb_orphan_frags - orphan the frags contained in a buffer
2093  *	@skb: buffer to orphan frags from
2094  *	@gfp_mask: allocation mask for replacement pages
2095  *
2096  *	For each frag in the SKB which needs a destructor (i.e. has an
2097  *	owner) create a copy of that frag and release the original
2098  *	page by calling the destructor.
2099  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2100 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2101 {
2102 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2103 		return 0;
2104 	return skb_copy_ubufs(skb, gfp_mask);
2105 }
2106 
2107 /**
2108  *	__skb_queue_purge - empty a list
2109  *	@list: list to empty
2110  *
2111  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2112  *	the list and one reference dropped. This function does not take the
2113  *	list lock and the caller must hold the relevant locks to use it.
2114  */
2115 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2116 static inline void __skb_queue_purge(struct sk_buff_head *list)
2117 {
2118 	struct sk_buff *skb;
2119 	while ((skb = __skb_dequeue(list)) != NULL)
2120 		kfree_skb(skb);
2121 }
2122 
2123 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2124 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2125 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
2126 
2127 void *netdev_alloc_frag(unsigned int fragsz);
2128 
2129 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2130 				   gfp_t gfp_mask);
2131 
2132 /**
2133  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2134  *	@dev: network device to receive on
2135  *	@length: length to allocate
2136  *
2137  *	Allocate a new &sk_buff and assign it a usage count of one. The
2138  *	buffer has unspecified headroom built in. Users should allocate
2139  *	the headroom they think they need without accounting for the
2140  *	built in space. The built in space is used for optimisations.
2141  *
2142  *	%NULL is returned if there is no free memory. Although this function
2143  *	allocates memory it can be called from an interrupt.
2144  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2145 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2146 					       unsigned int length)
2147 {
2148 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2149 }
2150 
2151 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2152 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2153 					      gfp_t gfp_mask)
2154 {
2155 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2156 }
2157 
2158 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2159 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2160 {
2161 	return netdev_alloc_skb(NULL, length);
2162 }
2163 
2164 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2165 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2166 		unsigned int length, gfp_t gfp)
2167 {
2168 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2169 
2170 	if (NET_IP_ALIGN && skb)
2171 		skb_reserve(skb, NET_IP_ALIGN);
2172 	return skb;
2173 }
2174 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2175 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2176 		unsigned int length)
2177 {
2178 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2179 }
2180 
2181 /**
2182  *	__skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2183  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2184  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2185  *	@order: size of the allocation
2186  *
2187  * 	Allocate a new page.
2188  *
2189  * 	%NULL is returned if there is no free memory.
2190 */
__skb_alloc_pages(gfp_t gfp_mask,struct sk_buff * skb,unsigned int order)2191 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2192 					      struct sk_buff *skb,
2193 					      unsigned int order)
2194 {
2195 	struct page *page;
2196 
2197 	gfp_mask |= __GFP_COLD;
2198 
2199 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2200 		gfp_mask |= __GFP_MEMALLOC;
2201 
2202 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2203 	if (skb && page && page->pfmemalloc)
2204 		skb->pfmemalloc = true;
2205 
2206 	return page;
2207 }
2208 
2209 /**
2210  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2211  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2212  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2213  *
2214  * 	Allocate a new page.
2215  *
2216  * 	%NULL is returned if there is no free memory.
2217  */
__skb_alloc_page(gfp_t gfp_mask,struct sk_buff * skb)2218 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2219 					     struct sk_buff *skb)
2220 {
2221 	return __skb_alloc_pages(gfp_mask, skb, 0);
2222 }
2223 
2224 /**
2225  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2226  *	@page: The page that was allocated from skb_alloc_page
2227  *	@skb: The skb that may need pfmemalloc set
2228  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2229 static inline void skb_propagate_pfmemalloc(struct page *page,
2230 					     struct sk_buff *skb)
2231 {
2232 	if (page && page->pfmemalloc)
2233 		skb->pfmemalloc = true;
2234 }
2235 
2236 /**
2237  * skb_frag_page - retrieve the page referred to by a paged fragment
2238  * @frag: the paged fragment
2239  *
2240  * Returns the &struct page associated with @frag.
2241  */
skb_frag_page(const skb_frag_t * frag)2242 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2243 {
2244 	return frag->page.p;
2245 }
2246 
2247 /**
2248  * __skb_frag_ref - take an addition reference on a paged fragment.
2249  * @frag: the paged fragment
2250  *
2251  * Takes an additional reference on the paged fragment @frag.
2252  */
__skb_frag_ref(skb_frag_t * frag)2253 static inline void __skb_frag_ref(skb_frag_t *frag)
2254 {
2255 	get_page(skb_frag_page(frag));
2256 }
2257 
2258 /**
2259  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2260  * @skb: the buffer
2261  * @f: the fragment offset.
2262  *
2263  * Takes an additional reference on the @f'th paged fragment of @skb.
2264  */
skb_frag_ref(struct sk_buff * skb,int f)2265 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2266 {
2267 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2268 }
2269 
2270 /**
2271  * __skb_frag_unref - release a reference on a paged fragment.
2272  * @frag: the paged fragment
2273  *
2274  * Releases a reference on the paged fragment @frag.
2275  */
__skb_frag_unref(skb_frag_t * frag)2276 static inline void __skb_frag_unref(skb_frag_t *frag)
2277 {
2278 	put_page(skb_frag_page(frag));
2279 }
2280 
2281 /**
2282  * skb_frag_unref - release a reference on a paged fragment of an skb.
2283  * @skb: the buffer
2284  * @f: the fragment offset
2285  *
2286  * Releases a reference on the @f'th paged fragment of @skb.
2287  */
skb_frag_unref(struct sk_buff * skb,int f)2288 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2289 {
2290 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2291 }
2292 
2293 /**
2294  * skb_frag_address - gets the address of the data contained in a paged fragment
2295  * @frag: the paged fragment buffer
2296  *
2297  * Returns the address of the data within @frag. The page must already
2298  * be mapped.
2299  */
skb_frag_address(const skb_frag_t * frag)2300 static inline void *skb_frag_address(const skb_frag_t *frag)
2301 {
2302 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2303 }
2304 
2305 /**
2306  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2307  * @frag: the paged fragment buffer
2308  *
2309  * Returns the address of the data within @frag. Checks that the page
2310  * is mapped and returns %NULL otherwise.
2311  */
skb_frag_address_safe(const skb_frag_t * frag)2312 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2313 {
2314 	void *ptr = page_address(skb_frag_page(frag));
2315 	if (unlikely(!ptr))
2316 		return NULL;
2317 
2318 	return ptr + frag->page_offset;
2319 }
2320 
2321 /**
2322  * __skb_frag_set_page - sets the page contained in a paged fragment
2323  * @frag: the paged fragment
2324  * @page: the page to set
2325  *
2326  * Sets the fragment @frag to contain @page.
2327  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2328 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2329 {
2330 	frag->page.p = page;
2331 }
2332 
2333 /**
2334  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2335  * @skb: the buffer
2336  * @f: the fragment offset
2337  * @page: the page to set
2338  *
2339  * Sets the @f'th fragment of @skb to contain @page.
2340  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2341 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2342 				     struct page *page)
2343 {
2344 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2345 }
2346 
2347 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2348 
2349 /**
2350  * skb_frag_dma_map - maps a paged fragment via the DMA API
2351  * @dev: the device to map the fragment to
2352  * @frag: the paged fragment to map
2353  * @offset: the offset within the fragment (starting at the
2354  *          fragment's own offset)
2355  * @size: the number of bytes to map
2356  * @dir: the direction of the mapping (%PCI_DMA_*)
2357  *
2358  * Maps the page associated with @frag to @device.
2359  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2360 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2361 					  const skb_frag_t *frag,
2362 					  size_t offset, size_t size,
2363 					  enum dma_data_direction dir)
2364 {
2365 	return dma_map_page(dev, skb_frag_page(frag),
2366 			    frag->page_offset + offset, size, dir);
2367 }
2368 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2369 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2370 					gfp_t gfp_mask)
2371 {
2372 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2373 }
2374 
2375 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2376 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2377 						  gfp_t gfp_mask)
2378 {
2379 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2380 }
2381 
2382 
2383 /**
2384  *	skb_clone_writable - is the header of a clone writable
2385  *	@skb: buffer to check
2386  *	@len: length up to which to write
2387  *
2388  *	Returns true if modifying the header part of the cloned buffer
2389  *	does not requires the data to be copied.
2390  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2391 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2392 {
2393 	return !skb_header_cloned(skb) &&
2394 	       skb_headroom(skb) + len <= skb->hdr_len;
2395 }
2396 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2397 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2398 			    int cloned)
2399 {
2400 	int delta = 0;
2401 
2402 	if (headroom > skb_headroom(skb))
2403 		delta = headroom - skb_headroom(skb);
2404 
2405 	if (delta || cloned)
2406 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2407 					GFP_ATOMIC);
2408 	return 0;
2409 }
2410 
2411 /**
2412  *	skb_cow - copy header of skb when it is required
2413  *	@skb: buffer to cow
2414  *	@headroom: needed headroom
2415  *
2416  *	If the skb passed lacks sufficient headroom or its data part
2417  *	is shared, data is reallocated. If reallocation fails, an error
2418  *	is returned and original skb is not changed.
2419  *
2420  *	The result is skb with writable area skb->head...skb->tail
2421  *	and at least @headroom of space at head.
2422  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2423 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2424 {
2425 	return __skb_cow(skb, headroom, skb_cloned(skb));
2426 }
2427 
2428 /**
2429  *	skb_cow_head - skb_cow but only making the head writable
2430  *	@skb: buffer to cow
2431  *	@headroom: needed headroom
2432  *
2433  *	This function is identical to skb_cow except that we replace the
2434  *	skb_cloned check by skb_header_cloned.  It should be used when
2435  *	you only need to push on some header and do not need to modify
2436  *	the data.
2437  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2438 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2439 {
2440 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2441 }
2442 
2443 /**
2444  *	skb_padto	- pad an skbuff up to a minimal size
2445  *	@skb: buffer to pad
2446  *	@len: minimal length
2447  *
2448  *	Pads up a buffer to ensure the trailing bytes exist and are
2449  *	blanked. If the buffer already contains sufficient data it
2450  *	is untouched. Otherwise it is extended. Returns zero on
2451  *	success. The skb is freed on error.
2452  */
2453 
skb_padto(struct sk_buff * skb,unsigned int len)2454 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2455 {
2456 	unsigned int size = skb->len;
2457 	if (likely(size >= len))
2458 		return 0;
2459 	return skb_pad(skb, len - size);
2460 }
2461 
skb_add_data(struct sk_buff * skb,char __user * from,int copy)2462 static inline int skb_add_data(struct sk_buff *skb,
2463 			       char __user *from, int copy)
2464 {
2465 	const int off = skb->len;
2466 
2467 	if (skb->ip_summed == CHECKSUM_NONE) {
2468 		int err = 0;
2469 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2470 							    copy, 0, &err);
2471 		if (!err) {
2472 			skb->csum = csum_block_add(skb->csum, csum, off);
2473 			return 0;
2474 		}
2475 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2476 		return 0;
2477 
2478 	__skb_trim(skb, off);
2479 	return -EFAULT;
2480 }
2481 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2482 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2483 				    const struct page *page, int off)
2484 {
2485 	if (i) {
2486 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2487 
2488 		return page == skb_frag_page(frag) &&
2489 		       off == frag->page_offset + skb_frag_size(frag);
2490 	}
2491 	return false;
2492 }
2493 
__skb_linearize(struct sk_buff * skb)2494 static inline int __skb_linearize(struct sk_buff *skb)
2495 {
2496 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2497 }
2498 
2499 /**
2500  *	skb_linearize - convert paged skb to linear one
2501  *	@skb: buffer to linarize
2502  *
2503  *	If there is no free memory -ENOMEM is returned, otherwise zero
2504  *	is returned and the old skb data released.
2505  */
skb_linearize(struct sk_buff * skb)2506 static inline int skb_linearize(struct sk_buff *skb)
2507 {
2508 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2509 }
2510 
2511 /**
2512  * skb_has_shared_frag - can any frag be overwritten
2513  * @skb: buffer to test
2514  *
2515  * Return true if the skb has at least one frag that might be modified
2516  * by an external entity (as in vmsplice()/sendfile())
2517  */
skb_has_shared_frag(const struct sk_buff * skb)2518 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2519 {
2520 	return skb_is_nonlinear(skb) &&
2521 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2522 }
2523 
2524 /**
2525  *	skb_linearize_cow - make sure skb is linear and writable
2526  *	@skb: buffer to process
2527  *
2528  *	If there is no free memory -ENOMEM is returned, otherwise zero
2529  *	is returned and the old skb data released.
2530  */
skb_linearize_cow(struct sk_buff * skb)2531 static inline int skb_linearize_cow(struct sk_buff *skb)
2532 {
2533 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2534 	       __skb_linearize(skb) : 0;
2535 }
2536 
2537 /**
2538  *	skb_postpull_rcsum - update checksum for received skb after pull
2539  *	@skb: buffer to update
2540  *	@start: start of data before pull
2541  *	@len: length of data pulled
2542  *
2543  *	After doing a pull on a received packet, you need to call this to
2544  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2545  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2546  */
2547 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2548 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2549 				      const void *start, unsigned int len)
2550 {
2551 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2552 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2553 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2554 		 skb_checksum_start_offset(skb) < 0)
2555 		skb->ip_summed = CHECKSUM_NONE;
2556 }
2557 
2558 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2559 
2560 /**
2561  *	pskb_trim_rcsum - trim received skb and update checksum
2562  *	@skb: buffer to trim
2563  *	@len: new length
2564  *
2565  *	This is exactly the same as pskb_trim except that it ensures the
2566  *	checksum of received packets are still valid after the operation.
2567  */
2568 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2569 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2570 {
2571 	if (likely(len >= skb->len))
2572 		return 0;
2573 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2574 		skb->ip_summed = CHECKSUM_NONE;
2575 	return __pskb_trim(skb, len);
2576 }
2577 
2578 #define skb_queue_walk(queue, skb) \
2579 		for (skb = (queue)->next;					\
2580 		     skb != (struct sk_buff *)(queue);				\
2581 		     skb = skb->next)
2582 
2583 #define skb_queue_walk_safe(queue, skb, tmp)					\
2584 		for (skb = (queue)->next, tmp = skb->next;			\
2585 		     skb != (struct sk_buff *)(queue);				\
2586 		     skb = tmp, tmp = skb->next)
2587 
2588 #define skb_queue_walk_from(queue, skb)						\
2589 		for (; skb != (struct sk_buff *)(queue);			\
2590 		     skb = skb->next)
2591 
2592 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2593 		for (tmp = skb->next;						\
2594 		     skb != (struct sk_buff *)(queue);				\
2595 		     skb = tmp, tmp = skb->next)
2596 
2597 #define skb_queue_reverse_walk(queue, skb) \
2598 		for (skb = (queue)->prev;					\
2599 		     skb != (struct sk_buff *)(queue);				\
2600 		     skb = skb->prev)
2601 
2602 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2603 		for (skb = (queue)->prev, tmp = skb->prev;			\
2604 		     skb != (struct sk_buff *)(queue);				\
2605 		     skb = tmp, tmp = skb->prev)
2606 
2607 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2608 		for (tmp = skb->prev;						\
2609 		     skb != (struct sk_buff *)(queue);				\
2610 		     skb = tmp, tmp = skb->prev)
2611 
skb_has_frag_list(const struct sk_buff * skb)2612 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2613 {
2614 	return skb_shinfo(skb)->frag_list != NULL;
2615 }
2616 
skb_frag_list_init(struct sk_buff * skb)2617 static inline void skb_frag_list_init(struct sk_buff *skb)
2618 {
2619 	skb_shinfo(skb)->frag_list = NULL;
2620 }
2621 
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2622 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2623 {
2624 	frag->next = skb_shinfo(skb)->frag_list;
2625 	skb_shinfo(skb)->frag_list = frag;
2626 }
2627 
2628 #define skb_walk_frags(skb, iter)	\
2629 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2630 
2631 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2632 				    int *peeked, int *off, int *err);
2633 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2634 				  int *err);
2635 unsigned int datagram_poll(struct file *file, struct socket *sock,
2636 			   struct poll_table_struct *wait);
2637 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2638 			    struct iovec *to, int size);
2639 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2640 				     struct iovec *iov);
2641 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2642 				 const struct iovec *from, int from_offset,
2643 				 int len);
2644 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2645 			   int offset, size_t count);
2646 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2647 				  const struct iovec *to, int to_offset,
2648 				  int size);
2649 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2650 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2651 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2652 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2653 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2654 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2655 			      int len, __wsum csum);
2656 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2657 		    struct pipe_inode_info *pipe, unsigned int len,
2658 		    unsigned int flags);
2659 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2660 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2661 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2662 		 int len, int hlen);
2663 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2664 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2665 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2666 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2667 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2668 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2669 
2670 struct skb_checksum_ops {
2671 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2672 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2673 };
2674 
2675 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2676 		      __wsum csum, const struct skb_checksum_ops *ops);
2677 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2678 		    __wsum csum);
2679 
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)2680 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2681 					 int len, void *data, int hlen, void *buffer)
2682 {
2683 	if (hlen - offset >= len)
2684 		return data + offset;
2685 
2686 	if (!skb ||
2687 	    skb_copy_bits(skb, offset, buffer, len) < 0)
2688 		return NULL;
2689 
2690 	return buffer;
2691 }
2692 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2693 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2694 				       int len, void *buffer)
2695 {
2696 	return __skb_header_pointer(skb, offset, len, skb->data,
2697 				    skb_headlen(skb), buffer);
2698 }
2699 
2700 /**
2701  *	skb_needs_linearize - check if we need to linearize a given skb
2702  *			      depending on the given device features.
2703  *	@skb: socket buffer to check
2704  *	@features: net device features
2705  *
2706  *	Returns true if either:
2707  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2708  *	2. skb is fragmented and the device does not support SG.
2709  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2710 static inline bool skb_needs_linearize(struct sk_buff *skb,
2711 				       netdev_features_t features)
2712 {
2713 	return skb_is_nonlinear(skb) &&
2714 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2715 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2716 }
2717 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2718 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2719 					     void *to,
2720 					     const unsigned int len)
2721 {
2722 	memcpy(to, skb->data, len);
2723 }
2724 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2725 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2726 						    const int offset, void *to,
2727 						    const unsigned int len)
2728 {
2729 	memcpy(to, skb->data + offset, len);
2730 }
2731 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2732 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2733 					   const void *from,
2734 					   const unsigned int len)
2735 {
2736 	memcpy(skb->data, from, len);
2737 }
2738 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2739 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2740 						  const int offset,
2741 						  const void *from,
2742 						  const unsigned int len)
2743 {
2744 	memcpy(skb->data + offset, from, len);
2745 }
2746 
2747 void skb_init(void);
2748 
skb_get_ktime(const struct sk_buff * skb)2749 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2750 {
2751 	return skb->tstamp;
2752 }
2753 
2754 /**
2755  *	skb_get_timestamp - get timestamp from a skb
2756  *	@skb: skb to get stamp from
2757  *	@stamp: pointer to struct timeval to store stamp in
2758  *
2759  *	Timestamps are stored in the skb as offsets to a base timestamp.
2760  *	This function converts the offset back to a struct timeval and stores
2761  *	it in stamp.
2762  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2763 static inline void skb_get_timestamp(const struct sk_buff *skb,
2764 				     struct timeval *stamp)
2765 {
2766 	*stamp = ktime_to_timeval(skb->tstamp);
2767 }
2768 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2769 static inline void skb_get_timestampns(const struct sk_buff *skb,
2770 				       struct timespec *stamp)
2771 {
2772 	*stamp = ktime_to_timespec(skb->tstamp);
2773 }
2774 
__net_timestamp(struct sk_buff * skb)2775 static inline void __net_timestamp(struct sk_buff *skb)
2776 {
2777 	skb->tstamp = ktime_get_real();
2778 }
2779 
net_timedelta(ktime_t t)2780 static inline ktime_t net_timedelta(ktime_t t)
2781 {
2782 	return ktime_sub(ktime_get_real(), t);
2783 }
2784 
net_invalid_timestamp(void)2785 static inline ktime_t net_invalid_timestamp(void)
2786 {
2787 	return ktime_set(0, 0);
2788 }
2789 
2790 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2791 
2792 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2793 
2794 void skb_clone_tx_timestamp(struct sk_buff *skb);
2795 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2796 
2797 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2798 
skb_clone_tx_timestamp(struct sk_buff * skb)2799 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2800 {
2801 }
2802 
skb_defer_rx_timestamp(struct sk_buff * skb)2803 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2804 {
2805 	return false;
2806 }
2807 
2808 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2809 
2810 /**
2811  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2812  *
2813  * PHY drivers may accept clones of transmitted packets for
2814  * timestamping via their phy_driver.txtstamp method. These drivers
2815  * must call this function to return the skb back to the stack, with
2816  * or without a timestamp.
2817  *
2818  * @skb: clone of the the original outgoing packet
2819  * @hwtstamps: hardware time stamps, may be NULL if not available
2820  *
2821  */
2822 void skb_complete_tx_timestamp(struct sk_buff *skb,
2823 			       struct skb_shared_hwtstamps *hwtstamps);
2824 
2825 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2826 		     struct skb_shared_hwtstamps *hwtstamps,
2827 		     struct sock *sk, int tstype);
2828 
2829 /**
2830  * skb_tstamp_tx - queue clone of skb with send time stamps
2831  * @orig_skb:	the original outgoing packet
2832  * @hwtstamps:	hardware time stamps, may be NULL if not available
2833  *
2834  * If the skb has a socket associated, then this function clones the
2835  * skb (thus sharing the actual data and optional structures), stores
2836  * the optional hardware time stamping information (if non NULL) or
2837  * generates a software time stamp (otherwise), then queues the clone
2838  * to the error queue of the socket.  Errors are silently ignored.
2839  */
2840 void skb_tstamp_tx(struct sk_buff *orig_skb,
2841 		   struct skb_shared_hwtstamps *hwtstamps);
2842 
sw_tx_timestamp(struct sk_buff * skb)2843 static inline void sw_tx_timestamp(struct sk_buff *skb)
2844 {
2845 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2846 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2847 		skb_tstamp_tx(skb, NULL);
2848 }
2849 
2850 /**
2851  * skb_tx_timestamp() - Driver hook for transmit timestamping
2852  *
2853  * Ethernet MAC Drivers should call this function in their hard_xmit()
2854  * function immediately before giving the sk_buff to the MAC hardware.
2855  *
2856  * Specifically, one should make absolutely sure that this function is
2857  * called before TX completion of this packet can trigger.  Otherwise
2858  * the packet could potentially already be freed.
2859  *
2860  * @skb: A socket buffer.
2861  */
skb_tx_timestamp(struct sk_buff * skb)2862 static inline void skb_tx_timestamp(struct sk_buff *skb)
2863 {
2864 	skb_clone_tx_timestamp(skb);
2865 	sw_tx_timestamp(skb);
2866 }
2867 
2868 /**
2869  * skb_complete_wifi_ack - deliver skb with wifi status
2870  *
2871  * @skb: the original outgoing packet
2872  * @acked: ack status
2873  *
2874  */
2875 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2876 
2877 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2878 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2879 
skb_csum_unnecessary(const struct sk_buff * skb)2880 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2881 {
2882 	return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2883 }
2884 
2885 /**
2886  *	skb_checksum_complete - Calculate checksum of an entire packet
2887  *	@skb: packet to process
2888  *
2889  *	This function calculates the checksum over the entire packet plus
2890  *	the value of skb->csum.  The latter can be used to supply the
2891  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2892  *	checksum.
2893  *
2894  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2895  *	this function can be used to verify that checksum on received
2896  *	packets.  In that case the function should return zero if the
2897  *	checksum is correct.  In particular, this function will return zero
2898  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2899  *	hardware has already verified the correctness of the checksum.
2900  */
skb_checksum_complete(struct sk_buff * skb)2901 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2902 {
2903 	return skb_csum_unnecessary(skb) ?
2904 	       0 : __skb_checksum_complete(skb);
2905 }
2906 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)2907 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2908 {
2909 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2910 		if (skb->csum_level == 0)
2911 			skb->ip_summed = CHECKSUM_NONE;
2912 		else
2913 			skb->csum_level--;
2914 	}
2915 }
2916 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)2917 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2918 {
2919 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2920 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2921 			skb->csum_level++;
2922 	} else if (skb->ip_summed == CHECKSUM_NONE) {
2923 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2924 		skb->csum_level = 0;
2925 	}
2926 }
2927 
__skb_mark_checksum_bad(struct sk_buff * skb)2928 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2929 {
2930 	/* Mark current checksum as bad (typically called from GRO
2931 	 * path). In the case that ip_summed is CHECKSUM_NONE
2932 	 * this must be the first checksum encountered in the packet.
2933 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2934 	 * checksum after the last one validated. For UDP, a zero
2935 	 * checksum can not be marked as bad.
2936 	 */
2937 
2938 	if (skb->ip_summed == CHECKSUM_NONE ||
2939 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
2940 		skb->csum_bad = 1;
2941 }
2942 
2943 /* Check if we need to perform checksum complete validation.
2944  *
2945  * Returns true if checksum complete is needed, false otherwise
2946  * (either checksum is unnecessary or zero checksum is allowed).
2947  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2948 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2949 						  bool zero_okay,
2950 						  __sum16 check)
2951 {
2952 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2953 		skb->csum_valid = 1;
2954 		__skb_decr_checksum_unnecessary(skb);
2955 		return false;
2956 	}
2957 
2958 	return true;
2959 }
2960 
2961 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2962  * in checksum_init.
2963  */
2964 #define CHECKSUM_BREAK 76
2965 
2966 /* Unset checksum-complete
2967  *
2968  * Unset checksum complete can be done when packet is being modified
2969  * (uncompressed for instance) and checksum-complete value is
2970  * invalidated.
2971  */
skb_checksum_complete_unset(struct sk_buff * skb)2972 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
2973 {
2974 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2975 		skb->ip_summed = CHECKSUM_NONE;
2976 }
2977 
2978 /* Validate (init) checksum based on checksum complete.
2979  *
2980  * Return values:
2981  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
2982  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2983  *	checksum is stored in skb->csum for use in __skb_checksum_complete
2984  *   non-zero: value of invalid checksum
2985  *
2986  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)2987 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2988 						       bool complete,
2989 						       __wsum psum)
2990 {
2991 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2992 		if (!csum_fold(csum_add(psum, skb->csum))) {
2993 			skb->csum_valid = 1;
2994 			return 0;
2995 		}
2996 	} else if (skb->csum_bad) {
2997 		/* ip_summed == CHECKSUM_NONE in this case */
2998 		return 1;
2999 	}
3000 
3001 	skb->csum = psum;
3002 
3003 	if (complete || skb->len <= CHECKSUM_BREAK) {
3004 		__sum16 csum;
3005 
3006 		csum = __skb_checksum_complete(skb);
3007 		skb->csum_valid = !csum;
3008 		return csum;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
null_compute_pseudo(struct sk_buff * skb,int proto)3014 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3015 {
3016 	return 0;
3017 }
3018 
3019 /* Perform checksum validate (init). Note that this is a macro since we only
3020  * want to calculate the pseudo header which is an input function if necessary.
3021  * First we try to validate without any computation (checksum unnecessary) and
3022  * then calculate based on checksum complete calling the function to compute
3023  * pseudo header.
3024  *
3025  * Return values:
3026  *   0: checksum is validated or try to in skb_checksum_complete
3027  *   non-zero: value of invalid checksum
3028  */
3029 #define __skb_checksum_validate(skb, proto, complete,			\
3030 				zero_okay, check, compute_pseudo)	\
3031 ({									\
3032 	__sum16 __ret = 0;						\
3033 	skb->csum_valid = 0;						\
3034 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3035 		__ret = __skb_checksum_validate_complete(skb,		\
3036 				complete, compute_pseudo(skb, proto));	\
3037 	__ret;								\
3038 })
3039 
3040 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3041 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3042 
3043 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3044 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3045 
3046 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3047 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3048 
3049 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3050 					 compute_pseudo)		\
3051 	__skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
3052 
3053 #define skb_checksum_simple_validate(skb)				\
3054 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3055 
__skb_checksum_convert_check(struct sk_buff * skb)3056 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3057 {
3058 	return (skb->ip_summed == CHECKSUM_NONE &&
3059 		skb->csum_valid && !skb->csum_bad);
3060 }
3061 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3062 static inline void __skb_checksum_convert(struct sk_buff *skb,
3063 					  __sum16 check, __wsum pseudo)
3064 {
3065 	skb->csum = ~pseudo;
3066 	skb->ip_summed = CHECKSUM_COMPLETE;
3067 }
3068 
3069 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3070 do {									\
3071 	if (__skb_checksum_convert_check(skb))				\
3072 		__skb_checksum_convert(skb, check,			\
3073 				       compute_pseudo(skb, proto));	\
3074 } while (0)
3075 
3076 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3077 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3078 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3079 {
3080 	if (nfct && atomic_dec_and_test(&nfct->use))
3081 		nf_conntrack_destroy(nfct);
3082 }
nf_conntrack_get(struct nf_conntrack * nfct)3083 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3084 {
3085 	if (nfct)
3086 		atomic_inc(&nfct->use);
3087 }
3088 #endif
3089 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3090 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3091 {
3092 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3093 		kfree(nf_bridge);
3094 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3095 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3096 {
3097 	if (nf_bridge)
3098 		atomic_inc(&nf_bridge->use);
3099 }
3100 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3101 static inline void nf_reset(struct sk_buff *skb)
3102 {
3103 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3104 	nf_conntrack_put(skb->nfct);
3105 	skb->nfct = NULL;
3106 #endif
3107 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3108 	nf_bridge_put(skb->nf_bridge);
3109 	skb->nf_bridge = NULL;
3110 #endif
3111 }
3112 
nf_reset_trace(struct sk_buff * skb)3113 static inline void nf_reset_trace(struct sk_buff *skb)
3114 {
3115 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3116 	skb->nf_trace = 0;
3117 #endif
3118 }
3119 
ipvs_reset(struct sk_buff * skb)3120 static inline void ipvs_reset(struct sk_buff *skb)
3121 {
3122 #if IS_ENABLED(CONFIG_IP_VS)
3123 	skb->ipvs_property = 0;
3124 #endif
3125 }
3126 
3127 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3128 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3129 			     bool copy)
3130 {
3131 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3132 	dst->nfct = src->nfct;
3133 	nf_conntrack_get(src->nfct);
3134 	if (copy)
3135 		dst->nfctinfo = src->nfctinfo;
3136 #endif
3137 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3138 	dst->nf_bridge  = src->nf_bridge;
3139 	nf_bridge_get(src->nf_bridge);
3140 #endif
3141 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3142 	if (copy)
3143 		dst->nf_trace = src->nf_trace;
3144 #endif
3145 }
3146 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3147 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3148 {
3149 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3150 	nf_conntrack_put(dst->nfct);
3151 #endif
3152 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3153 	nf_bridge_put(dst->nf_bridge);
3154 #endif
3155 	__nf_copy(dst, src, true);
3156 }
3157 
3158 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3159 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3160 {
3161 	to->secmark = from->secmark;
3162 }
3163 
skb_init_secmark(struct sk_buff * skb)3164 static inline void skb_init_secmark(struct sk_buff *skb)
3165 {
3166 	skb->secmark = 0;
3167 }
3168 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3169 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3170 { }
3171 
skb_init_secmark(struct sk_buff * skb)3172 static inline void skb_init_secmark(struct sk_buff *skb)
3173 { }
3174 #endif
3175 
skb_irq_freeable(const struct sk_buff * skb)3176 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3177 {
3178 	return !skb->destructor &&
3179 #if IS_ENABLED(CONFIG_XFRM)
3180 		!skb->sp &&
3181 #endif
3182 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3183 		!skb->nfct &&
3184 #endif
3185 		!skb->_skb_refdst &&
3186 		!skb_has_frag_list(skb);
3187 }
3188 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3189 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3190 {
3191 	skb->queue_mapping = queue_mapping;
3192 }
3193 
skb_get_queue_mapping(const struct sk_buff * skb)3194 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3195 {
3196 	return skb->queue_mapping;
3197 }
3198 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3199 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3200 {
3201 	to->queue_mapping = from->queue_mapping;
3202 }
3203 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3204 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3205 {
3206 	skb->queue_mapping = rx_queue + 1;
3207 }
3208 
skb_get_rx_queue(const struct sk_buff * skb)3209 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3210 {
3211 	return skb->queue_mapping - 1;
3212 }
3213 
skb_rx_queue_recorded(const struct sk_buff * skb)3214 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3215 {
3216 	return skb->queue_mapping != 0;
3217 }
3218 
3219 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3220 		  unsigned int num_tx_queues);
3221 
skb_sec_path(struct sk_buff * skb)3222 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3223 {
3224 #ifdef CONFIG_XFRM
3225 	return skb->sp;
3226 #else
3227 	return NULL;
3228 #endif
3229 }
3230 
3231 /* Keeps track of mac header offset relative to skb->head.
3232  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3233  * For non-tunnel skb it points to skb_mac_header() and for
3234  * tunnel skb it points to outer mac header.
3235  * Keeps track of level of encapsulation of network headers.
3236  */
3237 struct skb_gso_cb {
3238 	int	mac_offset;
3239 	int	encap_level;
3240 	__u16	csum_start;
3241 };
3242 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3243 
skb_tnl_header_len(const struct sk_buff * inner_skb)3244 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3245 {
3246 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3247 		SKB_GSO_CB(inner_skb)->mac_offset;
3248 }
3249 
gso_pskb_expand_head(struct sk_buff * skb,int extra)3250 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3251 {
3252 	int new_headroom, headroom;
3253 	int ret;
3254 
3255 	headroom = skb_headroom(skb);
3256 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3257 	if (ret)
3258 		return ret;
3259 
3260 	new_headroom = skb_headroom(skb);
3261 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3262 	return 0;
3263 }
3264 
3265 /* Compute the checksum for a gso segment. First compute the checksum value
3266  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3267  * then add in skb->csum (checksum from csum_start to end of packet).
3268  * skb->csum and csum_start are then updated to reflect the checksum of the
3269  * resultant packet starting from the transport header-- the resultant checksum
3270  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3271  * header.
3272  */
gso_make_checksum(struct sk_buff * skb,__wsum res)3273 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3274 {
3275 	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3276 	    skb_transport_offset(skb);
3277 	__u16 csum;
3278 
3279 	csum = csum_fold(csum_partial(skb_transport_header(skb),
3280 				      plen, skb->csum));
3281 	skb->csum = res;
3282 	SKB_GSO_CB(skb)->csum_start -= plen;
3283 
3284 	return csum;
3285 }
3286 
skb_is_gso(const struct sk_buff * skb)3287 static inline bool skb_is_gso(const struct sk_buff *skb)
3288 {
3289 	return skb_shinfo(skb)->gso_size;
3290 }
3291 
3292 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)3293 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3294 {
3295 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3296 }
3297 
3298 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3299 
skb_warn_if_lro(const struct sk_buff * skb)3300 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3301 {
3302 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3303 	 * wanted then gso_type will be set. */
3304 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3305 
3306 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3307 	    unlikely(shinfo->gso_type == 0)) {
3308 		__skb_warn_lro_forwarding(skb);
3309 		return true;
3310 	}
3311 	return false;
3312 }
3313 
skb_forward_csum(struct sk_buff * skb)3314 static inline void skb_forward_csum(struct sk_buff *skb)
3315 {
3316 	/* Unfortunately we don't support this one.  Any brave souls? */
3317 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3318 		skb->ip_summed = CHECKSUM_NONE;
3319 }
3320 
3321 /**
3322  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3323  * @skb: skb to check
3324  *
3325  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3326  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3327  * use this helper, to document places where we make this assertion.
3328  */
skb_checksum_none_assert(const struct sk_buff * skb)3329 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3330 {
3331 #ifdef DEBUG
3332 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3333 #endif
3334 }
3335 
3336 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3337 
3338 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3339 
3340 u32 skb_get_poff(const struct sk_buff *skb);
3341 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3342 		   const struct flow_keys *keys, int hlen);
3343 
3344 /**
3345  * skb_head_is_locked - Determine if the skb->head is locked down
3346  * @skb: skb to check
3347  *
3348  * The head on skbs build around a head frag can be removed if they are
3349  * not cloned.  This function returns true if the skb head is locked down
3350  * due to either being allocated via kmalloc, or by being a clone with
3351  * multiple references to the head.
3352  */
skb_head_is_locked(const struct sk_buff * skb)3353 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3354 {
3355 	return !skb->head_frag || skb_cloned(skb);
3356 }
3357 
3358 /**
3359  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3360  *
3361  * @skb: GSO skb
3362  *
3363  * skb_gso_network_seglen is used to determine the real size of the
3364  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3365  *
3366  * The MAC/L2 header is not accounted for.
3367  */
skb_gso_network_seglen(const struct sk_buff * skb)3368 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3369 {
3370 	unsigned int hdr_len = skb_transport_header(skb) -
3371 			       skb_network_header(skb);
3372 	return hdr_len + skb_gso_transport_seglen(skb);
3373 }
3374 #endif	/* __KERNEL__ */
3375 #endif	/* _LINUX_SKBUFF_H */
3376