• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  * 	Cleaned up and restructured to ease the addition of alternative
6  * 	implementations of SLAB allocators.
7  * (C) Linux Foundation 2008-2013
8  *      Unified interface for all slab allocators
9  */
10 
11 #ifndef _LINUX_SLAB_H
12 #define	_LINUX_SLAB_H
13 
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17 
18 
19 /*
20  * Flags to pass to kmem_cache_create().
21  * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
22  */
23 #define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
27 #define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
28 #define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
30 /*
31  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32  *
33  * This delays freeing the SLAB page by a grace period, it does _NOT_
34  * delay object freeing. This means that if you do kmem_cache_free()
35  * that memory location is free to be reused at any time. Thus it may
36  * be possible to see another object there in the same RCU grace period.
37  *
38  * This feature only ensures the memory location backing the object
39  * stays valid, the trick to using this is relying on an independent
40  * object validation pass. Something like:
41  *
42  *  rcu_read_lock()
43  * again:
44  *  obj = lockless_lookup(key);
45  *  if (obj) {
46  *    if (!try_get_ref(obj)) // might fail for free objects
47  *      goto again;
48  *
49  *    if (obj->key != key) { // not the object we expected
50  *      put_ref(obj);
51  *      goto again;
52  *    }
53  *  }
54  *  rcu_read_unlock();
55  *
56  * This is useful if we need to approach a kernel structure obliquely,
57  * from its address obtained without the usual locking. We can lock
58  * the structure to stabilize it and check it's still at the given address,
59  * only if we can be sure that the memory has not been meanwhile reused
60  * for some other kind of object (which our subsystem's lock might corrupt).
61  *
62  * rcu_read_lock before reading the address, then rcu_read_unlock after
63  * taking the spinlock within the structure expected at that address.
64  */
65 #define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
67 #define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
68 
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS	0x00400000UL
72 #else
73 # define SLAB_DEBUG_OBJECTS	0x00000000UL
74 #endif
75 
76 #define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */
77 
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK		0x01000000UL
81 #else
82 # define SLAB_NOTRACK		0x00000000UL
83 #endif
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
86 #else
87 # define SLAB_FAILSLAB		0x00000000UL
88 #endif
89 
90 /* The following flags affect the page allocator grouping pages by mobility */
91 #define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
92 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
93 /*
94  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95  *
96  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97  *
98  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99  * Both make kfree a no-op.
100  */
101 #define ZERO_SIZE_PTR ((void *)16)
102 
103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104 				(unsigned long)ZERO_SIZE_PTR)
105 
106 #include <linux/kmemleak.h>
107 
108 struct mem_cgroup;
109 /*
110  * struct kmem_cache related prototypes
111  */
112 void __init kmem_cache_init(void);
113 int slab_is_available(void);
114 
115 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
116 			unsigned long,
117 			void (*)(void *));
118 #ifdef CONFIG_MEMCG_KMEM
119 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *,
120 					   struct kmem_cache *,
121 					   const char *);
122 #endif
123 void kmem_cache_destroy(struct kmem_cache *);
124 int kmem_cache_shrink(struct kmem_cache *);
125 void kmem_cache_free(struct kmem_cache *, void *);
126 
127 /*
128  * Please use this macro to create slab caches. Simply specify the
129  * name of the structure and maybe some flags that are listed above.
130  *
131  * The alignment of the struct determines object alignment. If you
132  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
133  * then the objects will be properly aligned in SMP configurations.
134  */
135 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
136 		sizeof(struct __struct), __alignof__(struct __struct),\
137 		(__flags), NULL)
138 
139 /*
140  * Common kmalloc functions provided by all allocators
141  */
142 void * __must_check __krealloc(const void *, size_t, gfp_t);
143 void * __must_check krealloc(const void *, size_t, gfp_t);
144 void kfree(const void *);
145 void kzfree(const void *);
146 size_t ksize(const void *);
147 
148 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
149 const char *__check_heap_object(const void *ptr, unsigned long n,
150 				struct page *page);
151 #else
__check_heap_object(const void * ptr,unsigned long n,struct page * page)152 static inline const char *__check_heap_object(const void *ptr,
153 					      unsigned long n,
154 					      struct page *page)
155 {
156 	return NULL;
157 }
158 #endif
159 
160 /*
161  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
162  * alignment larger than the alignment of a 64-bit integer.
163  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
164  */
165 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
166 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
167 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
168 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
169 #else
170 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
171 #endif
172 
173 /*
174  * Kmalloc array related definitions
175  */
176 
177 #ifdef CONFIG_SLAB
178 /*
179  * The largest kmalloc size supported by the SLAB allocators is
180  * 32 megabyte (2^25) or the maximum allocatable page order if that is
181  * less than 32 MB.
182  *
183  * WARNING: Its not easy to increase this value since the allocators have
184  * to do various tricks to work around compiler limitations in order to
185  * ensure proper constant folding.
186  */
187 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
188 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
189 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
190 #ifndef KMALLOC_SHIFT_LOW
191 #define KMALLOC_SHIFT_LOW	5
192 #endif
193 #endif
194 
195 #ifdef CONFIG_SLUB
196 /*
197  * SLUB directly allocates requests fitting in to an order-1 page
198  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
199  */
200 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
201 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
202 #ifndef KMALLOC_SHIFT_LOW
203 #define KMALLOC_SHIFT_LOW	3
204 #endif
205 #endif
206 
207 #ifdef CONFIG_SLOB
208 /*
209  * SLOB passes all requests larger than one page to the page allocator.
210  * No kmalloc array is necessary since objects of different sizes can
211  * be allocated from the same page.
212  */
213 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
214 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
215 #ifndef KMALLOC_SHIFT_LOW
216 #define KMALLOC_SHIFT_LOW	3
217 #endif
218 #endif
219 
220 /* Maximum allocatable size */
221 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
222 /* Maximum size for which we actually use a slab cache */
223 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
224 /* Maximum order allocatable via the slab allocagtor */
225 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
226 
227 /*
228  * Kmalloc subsystem.
229  */
230 #ifndef KMALLOC_MIN_SIZE
231 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
232 #endif
233 
234 /*
235  * This restriction comes from byte sized index implementation.
236  * Page size is normally 2^12 bytes and, in this case, if we want to use
237  * byte sized index which can represent 2^8 entries, the size of the object
238  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
239  * If minimum size of kmalloc is less than 16, we use it as minimum object
240  * size and give up to use byte sized index.
241  */
242 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
243                                (KMALLOC_MIN_SIZE) : 16)
244 
245 #ifndef CONFIG_SLOB
246 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
247 #ifdef CONFIG_ZONE_DMA
248 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
249 #endif
250 
251 /*
252  * Figure out which kmalloc slab an allocation of a certain size
253  * belongs to.
254  * 0 = zero alloc
255  * 1 =  65 .. 96 bytes
256  * 2 = 120 .. 192 bytes
257  * n = 2^(n-1) .. 2^n -1
258  */
kmalloc_index(size_t size)259 static __always_inline int kmalloc_index(size_t size)
260 {
261 	if (!size)
262 		return 0;
263 
264 	if (size <= KMALLOC_MIN_SIZE)
265 		return KMALLOC_SHIFT_LOW;
266 
267 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
268 		return 1;
269 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
270 		return 2;
271 	if (size <=          8) return 3;
272 	if (size <=         16) return 4;
273 	if (size <=         32) return 5;
274 	if (size <=         64) return 6;
275 	if (size <=        128) return 7;
276 	if (size <=        256) return 8;
277 	if (size <=        512) return 9;
278 	if (size <=       1024) return 10;
279 	if (size <=   2 * 1024) return 11;
280 	if (size <=   4 * 1024) return 12;
281 	if (size <=   8 * 1024) return 13;
282 	if (size <=  16 * 1024) return 14;
283 	if (size <=  32 * 1024) return 15;
284 	if (size <=  64 * 1024) return 16;
285 	if (size <= 128 * 1024) return 17;
286 	if (size <= 256 * 1024) return 18;
287 	if (size <= 512 * 1024) return 19;
288 	if (size <= 1024 * 1024) return 20;
289 	if (size <=  2 * 1024 * 1024) return 21;
290 	if (size <=  4 * 1024 * 1024) return 22;
291 	if (size <=  8 * 1024 * 1024) return 23;
292 	if (size <=  16 * 1024 * 1024) return 24;
293 	if (size <=  32 * 1024 * 1024) return 25;
294 	if (size <=  64 * 1024 * 1024) return 26;
295 	BUG();
296 
297 	/* Will never be reached. Needed because the compiler may complain */
298 	return -1;
299 }
300 #endif /* !CONFIG_SLOB */
301 
302 void *__kmalloc(size_t size, gfp_t flags);
303 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
304 
305 #ifdef CONFIG_NUMA
306 void *__kmalloc_node(size_t size, gfp_t flags, int node);
307 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
308 #else
__kmalloc_node(size_t size,gfp_t flags,int node)309 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
310 {
311 	return __kmalloc(size, flags);
312 }
313 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t flags,int node)314 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
315 {
316 	return kmem_cache_alloc(s, flags);
317 }
318 #endif
319 
320 #ifdef CONFIG_TRACING
321 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
322 
323 #ifdef CONFIG_NUMA
324 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
325 					   gfp_t gfpflags,
326 					   int node, size_t size);
327 #else
328 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)329 kmem_cache_alloc_node_trace(struct kmem_cache *s,
330 			      gfp_t gfpflags,
331 			      int node, size_t size)
332 {
333 	return kmem_cache_alloc_trace(s, gfpflags, size);
334 }
335 #endif /* CONFIG_NUMA */
336 
337 #else /* CONFIG_TRACING */
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t flags,size_t size)338 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
339 		gfp_t flags, size_t size)
340 {
341 	return kmem_cache_alloc(s, flags);
342 }
343 
344 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)345 kmem_cache_alloc_node_trace(struct kmem_cache *s,
346 			      gfp_t gfpflags,
347 			      int node, size_t size)
348 {
349 	return kmem_cache_alloc_node(s, gfpflags, node);
350 }
351 #endif /* CONFIG_TRACING */
352 
353 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
354 
355 #ifdef CONFIG_TRACING
356 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
357 #else
358 static __always_inline void *
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)359 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
360 {
361 	return kmalloc_order(size, flags, order);
362 }
363 #endif
364 
kmalloc_large(size_t size,gfp_t flags)365 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
366 {
367 	unsigned int order = get_order(size);
368 	return kmalloc_order_trace(size, flags, order);
369 }
370 
371 /**
372  * kmalloc - allocate memory
373  * @size: how many bytes of memory are required.
374  * @flags: the type of memory to allocate.
375  *
376  * kmalloc is the normal method of allocating memory
377  * for objects smaller than page size in the kernel.
378  *
379  * The @flags argument may be one of:
380  *
381  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
382  *
383  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
384  *
385  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
386  *   For example, use this inside interrupt handlers.
387  *
388  * %GFP_HIGHUSER - Allocate pages from high memory.
389  *
390  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
391  *
392  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
393  *
394  * %GFP_NOWAIT - Allocation will not sleep.
395  *
396  * %__GFP_THISNODE - Allocate node-local memory only.
397  *
398  * %GFP_DMA - Allocation suitable for DMA.
399  *   Should only be used for kmalloc() caches. Otherwise, use a
400  *   slab created with SLAB_DMA.
401  *
402  * Also it is possible to set different flags by OR'ing
403  * in one or more of the following additional @flags:
404  *
405  * %__GFP_COLD - Request cache-cold pages instead of
406  *   trying to return cache-warm pages.
407  *
408  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
409  *
410  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
411  *   (think twice before using).
412  *
413  * %__GFP_NORETRY - If memory is not immediately available,
414  *   then give up at once.
415  *
416  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
417  *
418  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
419  *
420  * There are other flags available as well, but these are not intended
421  * for general use, and so are not documented here. For a full list of
422  * potential flags, always refer to linux/gfp.h.
423  */
kmalloc(size_t size,gfp_t flags)424 static __always_inline void *kmalloc(size_t size, gfp_t flags)
425 {
426 	if (__builtin_constant_p(size)) {
427 		if (size > KMALLOC_MAX_CACHE_SIZE)
428 			return kmalloc_large(size, flags);
429 #ifndef CONFIG_SLOB
430 		if (!(flags & GFP_DMA)) {
431 			int index = kmalloc_index(size);
432 
433 			if (!index)
434 				return ZERO_SIZE_PTR;
435 
436 			return kmem_cache_alloc_trace(kmalloc_caches[index],
437 					flags, size);
438 		}
439 #endif
440 	}
441 	return __kmalloc(size, flags);
442 }
443 
444 /*
445  * Determine size used for the nth kmalloc cache.
446  * return size or 0 if a kmalloc cache for that
447  * size does not exist
448  */
kmalloc_size(int n)449 static __always_inline int kmalloc_size(int n)
450 {
451 #ifndef CONFIG_SLOB
452 	if (n > 2)
453 		return 1 << n;
454 
455 	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
456 		return 96;
457 
458 	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
459 		return 192;
460 #endif
461 	return 0;
462 }
463 
kmalloc_node(size_t size,gfp_t flags,int node)464 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
465 {
466 #ifndef CONFIG_SLOB
467 	if (__builtin_constant_p(size) &&
468 		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
469 		int i = kmalloc_index(size);
470 
471 		if (!i)
472 			return ZERO_SIZE_PTR;
473 
474 		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
475 						flags, node, size);
476 	}
477 #endif
478 	return __kmalloc_node(size, flags, node);
479 }
480 
481 /*
482  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
483  * Intended for arches that get misalignment faults even for 64 bit integer
484  * aligned buffers.
485  */
486 #ifndef ARCH_SLAB_MINALIGN
487 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
488 #endif
489 /*
490  * This is the main placeholder for memcg-related information in kmem caches.
491  * struct kmem_cache will hold a pointer to it, so the memory cost while
492  * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
493  * would otherwise be if that would be bundled in kmem_cache: we'll need an
494  * extra pointer chase. But the trade off clearly lays in favor of not
495  * penalizing non-users.
496  *
497  * Both the root cache and the child caches will have it. For the root cache,
498  * this will hold a dynamically allocated array large enough to hold
499  * information about the currently limited memcgs in the system. To allow the
500  * array to be accessed without taking any locks, on relocation we free the old
501  * version only after a grace period.
502  *
503  * Child caches will hold extra metadata needed for its operation. Fields are:
504  *
505  * @memcg: pointer to the memcg this cache belongs to
506  * @list: list_head for the list of all caches in this memcg
507  * @root_cache: pointer to the global, root cache, this cache was derived from
508  * @nr_pages: number of pages that belongs to this cache.
509  */
510 struct memcg_cache_params {
511 	bool is_root_cache;
512 	union {
513 		struct {
514 			struct rcu_head rcu_head;
515 			struct kmem_cache *memcg_caches[0];
516 		};
517 		struct {
518 			struct mem_cgroup *memcg;
519 			struct list_head list;
520 			struct kmem_cache *root_cache;
521 			atomic_t nr_pages;
522 		};
523 	};
524 };
525 
526 int memcg_update_all_caches(int num_memcgs);
527 
528 struct seq_file;
529 int cache_show(struct kmem_cache *s, struct seq_file *m);
530 void print_slabinfo_header(struct seq_file *m);
531 
532 /**
533  * kmalloc_array - allocate memory for an array.
534  * @n: number of elements.
535  * @size: element size.
536  * @flags: the type of memory to allocate (see kmalloc).
537  */
kmalloc_array(size_t n,size_t size,gfp_t flags)538 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
539 {
540 	if (size != 0 && n > SIZE_MAX / size)
541 		return NULL;
542 	return __kmalloc(n * size, flags);
543 }
544 
545 /**
546  * kcalloc - allocate memory for an array. The memory is set to zero.
547  * @n: number of elements.
548  * @size: element size.
549  * @flags: the type of memory to allocate (see kmalloc).
550  */
kcalloc(size_t n,size_t size,gfp_t flags)551 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
552 {
553 	return kmalloc_array(n, size, flags | __GFP_ZERO);
554 }
555 
556 /*
557  * kmalloc_track_caller is a special version of kmalloc that records the
558  * calling function of the routine calling it for slab leak tracking instead
559  * of just the calling function (confusing, eh?).
560  * It's useful when the call to kmalloc comes from a widely-used standard
561  * allocator where we care about the real place the memory allocation
562  * request comes from.
563  */
564 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
565 #define kmalloc_track_caller(size, flags) \
566 	__kmalloc_track_caller(size, flags, _RET_IP_)
567 
568 #ifdef CONFIG_NUMA
569 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
570 #define kmalloc_node_track_caller(size, flags, node) \
571 	__kmalloc_node_track_caller(size, flags, node, \
572 			_RET_IP_)
573 
574 #else /* CONFIG_NUMA */
575 
576 #define kmalloc_node_track_caller(size, flags, node) \
577 	kmalloc_track_caller(size, flags)
578 
579 #endif /* CONFIG_NUMA */
580 
581 /*
582  * Shortcuts
583  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)584 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
585 {
586 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
587 }
588 
589 /**
590  * kzalloc - allocate memory. The memory is set to zero.
591  * @size: how many bytes of memory are required.
592  * @flags: the type of memory to allocate (see kmalloc).
593  */
kzalloc(size_t size,gfp_t flags)594 static inline void *kzalloc(size_t size, gfp_t flags)
595 {
596 	return kmalloc(size, flags | __GFP_ZERO);
597 }
598 
599 /**
600  * kzalloc_node - allocate zeroed memory from a particular memory node.
601  * @size: how many bytes of memory are required.
602  * @flags: the type of memory to allocate (see kmalloc).
603  * @node: memory node from which to allocate
604  */
kzalloc_node(size_t size,gfp_t flags,int node)605 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
606 {
607 	return kmalloc_node(size, flags | __GFP_ZERO, node);
608 }
609 
610 unsigned int kmem_cache_size(struct kmem_cache *s);
611 void __init kmem_cache_init_late(void);
612 
613 #endif	/* _LINUX_SLAB_H */
614