1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 cpumask_var_t cpus_requested;
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
108
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
121 struct fmeter fmeter; /* memory_pressure filter */
122
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
129 /* partition number for rebuild_sched_domains() */
130 int pn;
131
132 /* for custom sched domain */
133 int relax_domain_level;
134 };
135
css_cs(struct cgroup_subsys_state * css)136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140
141 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146
parent_cs(struct cpuset * cs)147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 return css_cs(cs->css.parent);
150 }
151
152 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 return task->mempolicy;
156 }
157 #else
task_has_mempolicy(struct task_struct * task)158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 return false;
161 }
162 #endif
163
164
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 CS_ONLINE,
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
170 CS_MEM_HARDWALL,
171 CS_MEMORY_MIGRATE,
172 CS_SCHED_LOAD_BALANCE,
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
176
177 /* convenient tests for these bits */
is_cpuset_online(const struct cpuset * cs)178 static inline bool is_cpuset_online(const struct cpuset *cs)
179 {
180 return test_bit(CS_ONLINE, &cs->flags);
181 }
182
is_cpu_exclusive(const struct cpuset * cs)183 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 {
185 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
186 }
187
is_mem_exclusive(const struct cpuset * cs)188 static inline int is_mem_exclusive(const struct cpuset *cs)
189 {
190 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
191 }
192
is_mem_hardwall(const struct cpuset * cs)193 static inline int is_mem_hardwall(const struct cpuset *cs)
194 {
195 return test_bit(CS_MEM_HARDWALL, &cs->flags);
196 }
197
is_sched_load_balance(const struct cpuset * cs)198 static inline int is_sched_load_balance(const struct cpuset *cs)
199 {
200 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201 }
202
is_memory_migrate(const struct cpuset * cs)203 static inline int is_memory_migrate(const struct cpuset *cs)
204 {
205 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 }
207
is_spread_page(const struct cpuset * cs)208 static inline int is_spread_page(const struct cpuset *cs)
209 {
210 return test_bit(CS_SPREAD_PAGE, &cs->flags);
211 }
212
is_spread_slab(const struct cpuset * cs)213 static inline int is_spread_slab(const struct cpuset *cs)
214 {
215 return test_bit(CS_SPREAD_SLAB, &cs->flags);
216 }
217
218 static struct cpuset top_cpuset = {
219 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 (1 << CS_MEM_EXCLUSIVE)),
221 };
222
223 /**
224 * cpuset_for_each_child - traverse online children of a cpuset
225 * @child_cs: loop cursor pointing to the current child
226 * @pos_css: used for iteration
227 * @parent_cs: target cpuset to walk children of
228 *
229 * Walk @child_cs through the online children of @parent_cs. Must be used
230 * with RCU read locked.
231 */
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
233 css_for_each_child((pos_css), &(parent_cs)->css) \
234 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235
236 /**
237 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238 * @des_cs: loop cursor pointing to the current descendant
239 * @pos_css: used for iteration
240 * @root_cs: target cpuset to walk ancestor of
241 *
242 * Walk @des_cs through the online descendants of @root_cs. Must be used
243 * with RCU read locked. The caller may modify @pos_css by calling
244 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
245 * iteration and the first node to be visited.
246 */
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
248 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
249 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250
251 /*
252 * There are two global mutexes guarding cpuset structures - cpuset_mutex
253 * and callback_mutex. The latter may nest inside the former. We also
254 * require taking task_lock() when dereferencing a task's cpuset pointer.
255 * See "The task_lock() exception", at the end of this comment.
256 *
257 * A task must hold both mutexes to modify cpusets. If a task holds
258 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259 * is the only task able to also acquire callback_mutex and be able to
260 * modify cpusets. It can perform various checks on the cpuset structure
261 * first, knowing nothing will change. It can also allocate memory while
262 * just holding cpuset_mutex. While it is performing these checks, various
263 * callback routines can briefly acquire callback_mutex to query cpusets.
264 * Once it is ready to make the changes, it takes callback_mutex, blocking
265 * everyone else.
266 *
267 * Calls to the kernel memory allocator can not be made while holding
268 * callback_mutex, as that would risk double tripping on callback_mutex
269 * from one of the callbacks into the cpuset code from within
270 * __alloc_pages().
271 *
272 * If a task is only holding callback_mutex, then it has read-only
273 * access to cpusets.
274 *
275 * Now, the task_struct fields mems_allowed and mempolicy may be changed
276 * by other task, we use alloc_lock in the task_struct fields to protect
277 * them.
278 *
279 * The cpuset_common_file_read() handlers only hold callback_mutex across
280 * small pieces of code, such as when reading out possibly multi-word
281 * cpumasks and nodemasks.
282 *
283 * Accessing a task's cpuset should be done in accordance with the
284 * guidelines for accessing subsystem state in kernel/cgroup.c
285 */
286
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_MUTEX(callback_mutex);
289
290 /*
291 * CPU / memory hotplug is handled asynchronously.
292 */
293 static void cpuset_hotplug_workfn(struct work_struct *work);
294 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
295
296 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
297
298 /*
299 * This is ugly, but preserves the userspace API for existing cpuset
300 * users. If someone tries to mount the "cpuset" filesystem, we
301 * silently switch it to mount "cgroup" instead
302 */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)303 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
304 int flags, const char *unused_dev_name, void *data)
305 {
306 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
307 struct dentry *ret = ERR_PTR(-ENODEV);
308 if (cgroup_fs) {
309 char mountopts[] =
310 "cpuset,noprefix,"
311 "release_agent=/sbin/cpuset_release_agent";
312 ret = cgroup_fs->mount(cgroup_fs, flags,
313 unused_dev_name, mountopts);
314 put_filesystem(cgroup_fs);
315 }
316 return ret;
317 }
318
319 static struct file_system_type cpuset_fs_type = {
320 .name = "cpuset",
321 .mount = cpuset_mount,
322 };
323
324 /*
325 * Return in pmask the portion of a cpusets's cpus_allowed that
326 * are online. If none are online, walk up the cpuset hierarchy
327 * until we find one that does have some online cpus.
328 *
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
331 *
332 * Call with callback_mutex held.
333 */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
337 cs = parent_cs(cs);
338 if (unlikely(!cs)) {
339 /*
340 * The top cpuset doesn't have any online cpu as a
341 * consequence of a race between cpuset_hotplug_work
342 * and cpu hotplug notifier. But we know the top
343 * cpuset's effective_cpus is on its way to to be
344 * identical to cpu_online_mask.
345 */
346 cpumask_copy(pmask, cpu_online_mask);
347 return;
348 }
349 }
350 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
351 }
352
353 /*
354 * Return in *pmask the portion of a cpusets's mems_allowed that
355 * are online, with memory. If none are online with memory, walk
356 * up the cpuset hierarchy until we find one that does have some
357 * online mems. The top cpuset always has some mems online.
358 *
359 * One way or another, we guarantee to return some non-empty subset
360 * of node_states[N_MEMORY].
361 *
362 * Call with callback_mutex held.
363 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)364 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
365 {
366 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
367 cs = parent_cs(cs);
368 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
369 }
370
371 /*
372 * update task's spread flag if cpuset's page/slab spread flag is set
373 *
374 * Called with callback_mutex/cpuset_mutex held
375 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)376 static void cpuset_update_task_spread_flag(struct cpuset *cs,
377 struct task_struct *tsk)
378 {
379 if (is_spread_page(cs))
380 task_set_spread_page(tsk);
381 else
382 task_clear_spread_page(tsk);
383
384 if (is_spread_slab(cs))
385 task_set_spread_slab(tsk);
386 else
387 task_clear_spread_slab(tsk);
388 }
389
390 /*
391 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
392 *
393 * One cpuset is a subset of another if all its allowed CPUs and
394 * Memory Nodes are a subset of the other, and its exclusive flags
395 * are only set if the other's are set. Call holding cpuset_mutex.
396 */
397
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)398 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
399 {
400 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
401 nodes_subset(p->mems_allowed, q->mems_allowed) &&
402 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
403 is_mem_exclusive(p) <= is_mem_exclusive(q);
404 }
405
406 /**
407 * alloc_trial_cpuset - allocate a trial cpuset
408 * @cs: the cpuset that the trial cpuset duplicates
409 */
alloc_trial_cpuset(struct cpuset * cs)410 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
411 {
412 struct cpuset *trial;
413
414 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
415 if (!trial)
416 return NULL;
417
418 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
419 goto free_cs;
420 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
421 goto free_cpus;
422
423 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
424 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
425 return trial;
426
427 free_cpus:
428 free_cpumask_var(trial->cpus_allowed);
429 free_cs:
430 kfree(trial);
431 return NULL;
432 }
433
434 /**
435 * free_trial_cpuset - free the trial cpuset
436 * @trial: the trial cpuset to be freed
437 */
free_trial_cpuset(struct cpuset * trial)438 static void free_trial_cpuset(struct cpuset *trial)
439 {
440 free_cpumask_var(trial->effective_cpus);
441 free_cpumask_var(trial->cpus_allowed);
442 kfree(trial);
443 }
444
445 /*
446 * validate_change() - Used to validate that any proposed cpuset change
447 * follows the structural rules for cpusets.
448 *
449 * If we replaced the flag and mask values of the current cpuset
450 * (cur) with those values in the trial cpuset (trial), would
451 * our various subset and exclusive rules still be valid? Presumes
452 * cpuset_mutex held.
453 *
454 * 'cur' is the address of an actual, in-use cpuset. Operations
455 * such as list traversal that depend on the actual address of the
456 * cpuset in the list must use cur below, not trial.
457 *
458 * 'trial' is the address of bulk structure copy of cur, with
459 * perhaps one or more of the fields cpus_allowed, mems_allowed,
460 * or flags changed to new, trial values.
461 *
462 * Return 0 if valid, -errno if not.
463 */
464
validate_change(struct cpuset * cur,struct cpuset * trial)465 static int validate_change(struct cpuset *cur, struct cpuset *trial)
466 {
467 struct cgroup_subsys_state *css;
468 struct cpuset *c, *par;
469 int ret;
470
471 rcu_read_lock();
472
473 /* Each of our child cpusets must be a subset of us */
474 ret = -EBUSY;
475 cpuset_for_each_child(c, css, cur)
476 if (!is_cpuset_subset(c, trial))
477 goto out;
478
479 /* Remaining checks don't apply to root cpuset */
480 ret = 0;
481 if (cur == &top_cpuset)
482 goto out;
483
484 par = parent_cs(cur);
485
486 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
487 ret = -EACCES;
488 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
489 goto out;
490
491 /*
492 * If either I or some sibling (!= me) is exclusive, we can't
493 * overlap
494 */
495 ret = -EINVAL;
496 cpuset_for_each_child(c, css, par) {
497 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
498 c != cur &&
499 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
500 goto out;
501 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
502 c != cur &&
503 nodes_intersects(trial->mems_allowed, c->mems_allowed))
504 goto out;
505 }
506
507 /*
508 * Cpusets with tasks - existing or newly being attached - can't
509 * be changed to have empty cpus_allowed or mems_allowed.
510 */
511 ret = -ENOSPC;
512 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
513 if (!cpumask_empty(cur->cpus_allowed) &&
514 cpumask_empty(trial->cpus_allowed))
515 goto out;
516 if (!nodes_empty(cur->mems_allowed) &&
517 nodes_empty(trial->mems_allowed))
518 goto out;
519 }
520
521 ret = 0;
522 out:
523 rcu_read_unlock();
524 return ret;
525 }
526
527 #ifdef CONFIG_SMP
528 /*
529 * Helper routine for generate_sched_domains().
530 * Do cpusets a, b have overlapping effective cpus_allowed masks?
531 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)532 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
533 {
534 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
535 }
536
537 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)538 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
539 {
540 if (dattr->relax_domain_level < c->relax_domain_level)
541 dattr->relax_domain_level = c->relax_domain_level;
542 return;
543 }
544
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)545 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
546 struct cpuset *root_cs)
547 {
548 struct cpuset *cp;
549 struct cgroup_subsys_state *pos_css;
550
551 rcu_read_lock();
552 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
553 /* skip the whole subtree if @cp doesn't have any CPU */
554 if (cpumask_empty(cp->cpus_allowed)) {
555 pos_css = css_rightmost_descendant(pos_css);
556 continue;
557 }
558
559 if (is_sched_load_balance(cp))
560 update_domain_attr(dattr, cp);
561 }
562 rcu_read_unlock();
563 }
564
565 /*
566 * generate_sched_domains()
567 *
568 * This function builds a partial partition of the systems CPUs
569 * A 'partial partition' is a set of non-overlapping subsets whose
570 * union is a subset of that set.
571 * The output of this function needs to be passed to kernel/sched/core.c
572 * partition_sched_domains() routine, which will rebuild the scheduler's
573 * load balancing domains (sched domains) as specified by that partial
574 * partition.
575 *
576 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
577 * for a background explanation of this.
578 *
579 * Does not return errors, on the theory that the callers of this
580 * routine would rather not worry about failures to rebuild sched
581 * domains when operating in the severe memory shortage situations
582 * that could cause allocation failures below.
583 *
584 * Must be called with cpuset_mutex held.
585 *
586 * The three key local variables below are:
587 * q - a linked-list queue of cpuset pointers, used to implement a
588 * top-down scan of all cpusets. This scan loads a pointer
589 * to each cpuset marked is_sched_load_balance into the
590 * array 'csa'. For our purposes, rebuilding the schedulers
591 * sched domains, we can ignore !is_sched_load_balance cpusets.
592 * csa - (for CpuSet Array) Array of pointers to all the cpusets
593 * that need to be load balanced, for convenient iterative
594 * access by the subsequent code that finds the best partition,
595 * i.e the set of domains (subsets) of CPUs such that the
596 * cpus_allowed of every cpuset marked is_sched_load_balance
597 * is a subset of one of these domains, while there are as
598 * many such domains as possible, each as small as possible.
599 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
600 * the kernel/sched/core.c routine partition_sched_domains() in a
601 * convenient format, that can be easily compared to the prior
602 * value to determine what partition elements (sched domains)
603 * were changed (added or removed.)
604 *
605 * Finding the best partition (set of domains):
606 * The triple nested loops below over i, j, k scan over the
607 * load balanced cpusets (using the array of cpuset pointers in
608 * csa[]) looking for pairs of cpusets that have overlapping
609 * cpus_allowed, but which don't have the same 'pn' partition
610 * number and gives them in the same partition number. It keeps
611 * looping on the 'restart' label until it can no longer find
612 * any such pairs.
613 *
614 * The union of the cpus_allowed masks from the set of
615 * all cpusets having the same 'pn' value then form the one
616 * element of the partition (one sched domain) to be passed to
617 * partition_sched_domains().
618 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)619 static int generate_sched_domains(cpumask_var_t **domains,
620 struct sched_domain_attr **attributes)
621 {
622 struct cpuset *cp; /* scans q */
623 struct cpuset **csa; /* array of all cpuset ptrs */
624 int csn; /* how many cpuset ptrs in csa so far */
625 int i, j, k; /* indices for partition finding loops */
626 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
627 struct sched_domain_attr *dattr; /* attributes for custom domains */
628 int ndoms = 0; /* number of sched domains in result */
629 int nslot; /* next empty doms[] struct cpumask slot */
630 struct cgroup_subsys_state *pos_css;
631
632 doms = NULL;
633 dattr = NULL;
634 csa = NULL;
635
636 /* Special case for the 99% of systems with one, full, sched domain */
637 if (is_sched_load_balance(&top_cpuset)) {
638 ndoms = 1;
639 doms = alloc_sched_domains(ndoms);
640 if (!doms)
641 goto done;
642
643 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
644 if (dattr) {
645 *dattr = SD_ATTR_INIT;
646 update_domain_attr_tree(dattr, &top_cpuset);
647 }
648 cpumask_copy(doms[0], top_cpuset.effective_cpus);
649
650 goto done;
651 }
652
653 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
654 if (!csa)
655 goto done;
656 csn = 0;
657
658 rcu_read_lock();
659 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
660 if (cp == &top_cpuset)
661 continue;
662 /*
663 * Continue traversing beyond @cp iff @cp has some CPUs and
664 * isn't load balancing. The former is obvious. The
665 * latter: All child cpusets contain a subset of the
666 * parent's cpus, so just skip them, and then we call
667 * update_domain_attr_tree() to calc relax_domain_level of
668 * the corresponding sched domain.
669 */
670 if (!cpumask_empty(cp->cpus_allowed) &&
671 !is_sched_load_balance(cp))
672 continue;
673
674 if (is_sched_load_balance(cp))
675 csa[csn++] = cp;
676
677 /* skip @cp's subtree */
678 pos_css = css_rightmost_descendant(pos_css);
679 }
680 rcu_read_unlock();
681
682 for (i = 0; i < csn; i++)
683 csa[i]->pn = i;
684 ndoms = csn;
685
686 restart:
687 /* Find the best partition (set of sched domains) */
688 for (i = 0; i < csn; i++) {
689 struct cpuset *a = csa[i];
690 int apn = a->pn;
691
692 for (j = 0; j < csn; j++) {
693 struct cpuset *b = csa[j];
694 int bpn = b->pn;
695
696 if (apn != bpn && cpusets_overlap(a, b)) {
697 for (k = 0; k < csn; k++) {
698 struct cpuset *c = csa[k];
699
700 if (c->pn == bpn)
701 c->pn = apn;
702 }
703 ndoms--; /* one less element */
704 goto restart;
705 }
706 }
707 }
708
709 /*
710 * Now we know how many domains to create.
711 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
712 */
713 doms = alloc_sched_domains(ndoms);
714 if (!doms)
715 goto done;
716
717 /*
718 * The rest of the code, including the scheduler, can deal with
719 * dattr==NULL case. No need to abort if alloc fails.
720 */
721 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
722
723 for (nslot = 0, i = 0; i < csn; i++) {
724 struct cpuset *a = csa[i];
725 struct cpumask *dp;
726 int apn = a->pn;
727
728 if (apn < 0) {
729 /* Skip completed partitions */
730 continue;
731 }
732
733 dp = doms[nslot];
734
735 if (nslot == ndoms) {
736 static int warnings = 10;
737 if (warnings) {
738 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
739 nslot, ndoms, csn, i, apn);
740 warnings--;
741 }
742 continue;
743 }
744
745 cpumask_clear(dp);
746 if (dattr)
747 *(dattr + nslot) = SD_ATTR_INIT;
748 for (j = i; j < csn; j++) {
749 struct cpuset *b = csa[j];
750
751 if (apn == b->pn) {
752 cpumask_or(dp, dp, b->effective_cpus);
753 if (dattr)
754 update_domain_attr_tree(dattr + nslot, b);
755
756 /* Done with this partition */
757 b->pn = -1;
758 }
759 }
760 nslot++;
761 }
762 BUG_ON(nslot != ndoms);
763
764 done:
765 kfree(csa);
766
767 /*
768 * Fallback to the default domain if kmalloc() failed.
769 * See comments in partition_sched_domains().
770 */
771 if (doms == NULL)
772 ndoms = 1;
773
774 *domains = doms;
775 *attributes = dattr;
776 return ndoms;
777 }
778
779 /*
780 * Rebuild scheduler domains.
781 *
782 * If the flag 'sched_load_balance' of any cpuset with non-empty
783 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
784 * which has that flag enabled, or if any cpuset with a non-empty
785 * 'cpus' is removed, then call this routine to rebuild the
786 * scheduler's dynamic sched domains.
787 *
788 * Call with cpuset_mutex held. Takes get_online_cpus().
789 */
rebuild_sched_domains_locked(void)790 static void rebuild_sched_domains_locked(void)
791 {
792 struct sched_domain_attr *attr;
793 cpumask_var_t *doms;
794 int ndoms;
795
796 lockdep_assert_held(&cpuset_mutex);
797 get_online_cpus();
798
799 /*
800 * We have raced with CPU hotplug. Don't do anything to avoid
801 * passing doms with offlined cpu to partition_sched_domains().
802 * Anyways, hotplug work item will rebuild sched domains.
803 */
804 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
805 goto out;
806
807 /* Generate domain masks and attrs */
808 ndoms = generate_sched_domains(&doms, &attr);
809
810 /* Have scheduler rebuild the domains */
811 partition_sched_domains(ndoms, doms, attr);
812 out:
813 put_online_cpus();
814 }
815 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)816 static void rebuild_sched_domains_locked(void)
817 {
818 }
819 #endif /* CONFIG_SMP */
820
rebuild_sched_domains(void)821 void rebuild_sched_domains(void)
822 {
823 mutex_lock(&cpuset_mutex);
824 rebuild_sched_domains_locked();
825 mutex_unlock(&cpuset_mutex);
826 }
827
828 /**
829 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
830 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
831 *
832 * Iterate through each task of @cs updating its cpus_allowed to the
833 * effective cpuset's. As this function is called with cpuset_mutex held,
834 * cpuset membership stays stable.
835 */
update_tasks_cpumask(struct cpuset * cs)836 static void update_tasks_cpumask(struct cpuset *cs)
837 {
838 struct css_task_iter it;
839 struct task_struct *task;
840
841 css_task_iter_start(&cs->css, &it);
842 while ((task = css_task_iter_next(&it)))
843 set_cpus_allowed_ptr(task, cs->effective_cpus);
844 css_task_iter_end(&it);
845 }
846
847 /*
848 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
849 * @cs: the cpuset to consider
850 * @new_cpus: temp variable for calculating new effective_cpus
851 *
852 * When congifured cpumask is changed, the effective cpumasks of this cpuset
853 * and all its descendants need to be updated.
854 *
855 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
856 *
857 * Called with cpuset_mutex held
858 */
update_cpumasks_hier(struct cpuset * cs,struct cpumask * new_cpus)859 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
860 {
861 struct cpuset *cp;
862 struct cgroup_subsys_state *pos_css;
863 bool need_rebuild_sched_domains = false;
864
865 rcu_read_lock();
866 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
867 struct cpuset *parent = parent_cs(cp);
868
869 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
870
871 /*
872 * If it becomes empty, inherit the effective mask of the
873 * parent, which is guaranteed to have some CPUs.
874 */
875 if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
876 cpumask_copy(new_cpus, parent->effective_cpus);
877
878 /* Skip the whole subtree if the cpumask remains the same. */
879 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
880 pos_css = css_rightmost_descendant(pos_css);
881 continue;
882 }
883
884 if (!css_tryget_online(&cp->css))
885 continue;
886 rcu_read_unlock();
887
888 mutex_lock(&callback_mutex);
889 cpumask_copy(cp->effective_cpus, new_cpus);
890 mutex_unlock(&callback_mutex);
891
892 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
893 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
894
895 update_tasks_cpumask(cp);
896
897 /*
898 * If the effective cpumask of any non-empty cpuset is changed,
899 * we need to rebuild sched domains.
900 */
901 if (!cpumask_empty(cp->cpus_allowed) &&
902 is_sched_load_balance(cp))
903 need_rebuild_sched_domains = true;
904
905 rcu_read_lock();
906 css_put(&cp->css);
907 }
908 rcu_read_unlock();
909
910 if (need_rebuild_sched_domains)
911 rebuild_sched_domains_locked();
912 }
913
914 /**
915 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
916 * @cs: the cpuset to consider
917 * @trialcs: trial cpuset
918 * @buf: buffer of cpu numbers written to this cpuset
919 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)920 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
921 const char *buf)
922 {
923 int retval;
924
925 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
926 if (cs == &top_cpuset)
927 return -EACCES;
928
929 /*
930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
934 */
935 if (!*buf) {
936 cpumask_clear(trialcs->cpus_allowed);
937 } else {
938 retval = cpulist_parse(buf, trialcs->cpus_requested);
939 if (retval < 0)
940 return retval;
941
942 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
943 return -EINVAL;
944
945 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
946 }
947
948 /* Nothing to do if the cpus didn't change */
949 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
950 return 0;
951
952 retval = validate_change(cs, trialcs);
953 if (retval < 0)
954 return retval;
955
956 mutex_lock(&callback_mutex);
957 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
958 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
959 mutex_unlock(&callback_mutex);
960
961 /* use trialcs->cpus_allowed as a temp variable */
962 update_cpumasks_hier(cs, trialcs->cpus_allowed);
963 return 0;
964 }
965
966 /*
967 * cpuset_migrate_mm
968 *
969 * Migrate memory region from one set of nodes to another.
970 *
971 * Temporarilly set tasks mems_allowed to target nodes of migration,
972 * so that the migration code can allocate pages on these nodes.
973 *
974 * While the mm_struct we are migrating is typically from some
975 * other task, the task_struct mems_allowed that we are hacking
976 * is for our current task, which must allocate new pages for that
977 * migrating memory region.
978 */
979
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)980 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
981 const nodemask_t *to)
982 {
983 struct task_struct *tsk = current;
984
985 tsk->mems_allowed = *to;
986
987 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
988
989 rcu_read_lock();
990 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
991 rcu_read_unlock();
992 }
993
994 /*
995 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
996 * @tsk: the task to change
997 * @newmems: new nodes that the task will be set
998 *
999 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1000 * we structure updates as setting all new allowed nodes, then clearing newly
1001 * disallowed ones.
1002 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1003 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1004 nodemask_t *newmems)
1005 {
1006 bool need_loop;
1007
1008 /*
1009 * Allow tasks that have access to memory reserves because they have
1010 * been OOM killed to get memory anywhere.
1011 */
1012 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1013 return;
1014 if (current->flags & PF_EXITING) /* Let dying task have memory */
1015 return;
1016
1017 task_lock(tsk);
1018 /*
1019 * Determine if a loop is necessary if another thread is doing
1020 * read_mems_allowed_begin(). If at least one node remains unchanged and
1021 * tsk does not have a mempolicy, then an empty nodemask will not be
1022 * possible when mems_allowed is larger than a word.
1023 */
1024 need_loop = task_has_mempolicy(tsk) ||
1025 !nodes_intersects(*newmems, tsk->mems_allowed);
1026
1027 if (need_loop) {
1028 local_irq_disable();
1029 write_seqcount_begin(&tsk->mems_allowed_seq);
1030 }
1031
1032 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1033 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1034
1035 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1036 tsk->mems_allowed = *newmems;
1037
1038 if (need_loop) {
1039 write_seqcount_end(&tsk->mems_allowed_seq);
1040 local_irq_enable();
1041 }
1042
1043 task_unlock(tsk);
1044 }
1045
1046 static void *cpuset_being_rebound;
1047
1048 /**
1049 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1050 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1051 *
1052 * Iterate through each task of @cs updating its mems_allowed to the
1053 * effective cpuset's. As this function is called with cpuset_mutex held,
1054 * cpuset membership stays stable.
1055 */
update_tasks_nodemask(struct cpuset * cs)1056 static void update_tasks_nodemask(struct cpuset *cs)
1057 {
1058 static nodemask_t newmems; /* protected by cpuset_mutex */
1059 struct css_task_iter it;
1060 struct task_struct *task;
1061
1062 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1063
1064 guarantee_online_mems(cs, &newmems);
1065
1066 /*
1067 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1068 * take while holding tasklist_lock. Forks can happen - the
1069 * mpol_dup() cpuset_being_rebound check will catch such forks,
1070 * and rebind their vma mempolicies too. Because we still hold
1071 * the global cpuset_mutex, we know that no other rebind effort
1072 * will be contending for the global variable cpuset_being_rebound.
1073 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1074 * is idempotent. Also migrate pages in each mm to new nodes.
1075 */
1076 css_task_iter_start(&cs->css, &it);
1077 while ((task = css_task_iter_next(&it))) {
1078 struct mm_struct *mm;
1079 bool migrate;
1080
1081 cpuset_change_task_nodemask(task, &newmems);
1082
1083 mm = get_task_mm(task);
1084 if (!mm)
1085 continue;
1086
1087 migrate = is_memory_migrate(cs);
1088
1089 mpol_rebind_mm(mm, &cs->mems_allowed);
1090 if (migrate)
1091 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1092 mmput(mm);
1093 }
1094 css_task_iter_end(&it);
1095
1096 /*
1097 * All the tasks' nodemasks have been updated, update
1098 * cs->old_mems_allowed.
1099 */
1100 cs->old_mems_allowed = newmems;
1101
1102 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1103 cpuset_being_rebound = NULL;
1104 }
1105
1106 /*
1107 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1108 * @cs: the cpuset to consider
1109 * @new_mems: a temp variable for calculating new effective_mems
1110 *
1111 * When configured nodemask is changed, the effective nodemasks of this cpuset
1112 * and all its descendants need to be updated.
1113 *
1114 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1115 *
1116 * Called with cpuset_mutex held
1117 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1118 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1119 {
1120 struct cpuset *cp;
1121 struct cgroup_subsys_state *pos_css;
1122
1123 rcu_read_lock();
1124 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1125 struct cpuset *parent = parent_cs(cp);
1126
1127 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1128
1129 /*
1130 * If it becomes empty, inherit the effective mask of the
1131 * parent, which is guaranteed to have some MEMs.
1132 */
1133 if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1134 *new_mems = parent->effective_mems;
1135
1136 /* Skip the whole subtree if the nodemask remains the same. */
1137 if (nodes_equal(*new_mems, cp->effective_mems)) {
1138 pos_css = css_rightmost_descendant(pos_css);
1139 continue;
1140 }
1141
1142 if (!css_tryget_online(&cp->css))
1143 continue;
1144 rcu_read_unlock();
1145
1146 mutex_lock(&callback_mutex);
1147 cp->effective_mems = *new_mems;
1148 mutex_unlock(&callback_mutex);
1149
1150 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1151 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1152
1153 update_tasks_nodemask(cp);
1154
1155 rcu_read_lock();
1156 css_put(&cp->css);
1157 }
1158 rcu_read_unlock();
1159 }
1160
1161 /*
1162 * Handle user request to change the 'mems' memory placement
1163 * of a cpuset. Needs to validate the request, update the
1164 * cpusets mems_allowed, and for each task in the cpuset,
1165 * update mems_allowed and rebind task's mempolicy and any vma
1166 * mempolicies and if the cpuset is marked 'memory_migrate',
1167 * migrate the tasks pages to the new memory.
1168 *
1169 * Call with cpuset_mutex held. May take callback_mutex during call.
1170 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1171 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1172 * their mempolicies to the cpusets new mems_allowed.
1173 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1174 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1175 const char *buf)
1176 {
1177 int retval;
1178
1179 /*
1180 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1181 * it's read-only
1182 */
1183 if (cs == &top_cpuset) {
1184 retval = -EACCES;
1185 goto done;
1186 }
1187
1188 /*
1189 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1190 * Since nodelist_parse() fails on an empty mask, we special case
1191 * that parsing. The validate_change() call ensures that cpusets
1192 * with tasks have memory.
1193 */
1194 if (!*buf) {
1195 nodes_clear(trialcs->mems_allowed);
1196 } else {
1197 retval = nodelist_parse(buf, trialcs->mems_allowed);
1198 if (retval < 0)
1199 goto done;
1200
1201 if (!nodes_subset(trialcs->mems_allowed,
1202 top_cpuset.mems_allowed)) {
1203 retval = -EINVAL;
1204 goto done;
1205 }
1206 }
1207
1208 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1209 retval = 0; /* Too easy - nothing to do */
1210 goto done;
1211 }
1212 retval = validate_change(cs, trialcs);
1213 if (retval < 0)
1214 goto done;
1215
1216 mutex_lock(&callback_mutex);
1217 cs->mems_allowed = trialcs->mems_allowed;
1218 mutex_unlock(&callback_mutex);
1219
1220 /* use trialcs->mems_allowed as a temp variable */
1221 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1222 done:
1223 return retval;
1224 }
1225
current_cpuset_is_being_rebound(void)1226 int current_cpuset_is_being_rebound(void)
1227 {
1228 int ret;
1229
1230 rcu_read_lock();
1231 ret = task_cs(current) == cpuset_being_rebound;
1232 rcu_read_unlock();
1233
1234 return ret;
1235 }
1236
update_relax_domain_level(struct cpuset * cs,s64 val)1237 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1238 {
1239 #ifdef CONFIG_SMP
1240 if (val < -1 || val >= sched_domain_level_max)
1241 return -EINVAL;
1242 #endif
1243
1244 if (val != cs->relax_domain_level) {
1245 cs->relax_domain_level = val;
1246 if (!cpumask_empty(cs->cpus_allowed) &&
1247 is_sched_load_balance(cs))
1248 rebuild_sched_domains_locked();
1249 }
1250
1251 return 0;
1252 }
1253
1254 /**
1255 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1256 * @cs: the cpuset in which each task's spread flags needs to be changed
1257 *
1258 * Iterate through each task of @cs updating its spread flags. As this
1259 * function is called with cpuset_mutex held, cpuset membership stays
1260 * stable.
1261 */
update_tasks_flags(struct cpuset * cs)1262 static void update_tasks_flags(struct cpuset *cs)
1263 {
1264 struct css_task_iter it;
1265 struct task_struct *task;
1266
1267 css_task_iter_start(&cs->css, &it);
1268 while ((task = css_task_iter_next(&it)))
1269 cpuset_update_task_spread_flag(cs, task);
1270 css_task_iter_end(&it);
1271 }
1272
1273 /*
1274 * update_flag - read a 0 or a 1 in a file and update associated flag
1275 * bit: the bit to update (see cpuset_flagbits_t)
1276 * cs: the cpuset to update
1277 * turning_on: whether the flag is being set or cleared
1278 *
1279 * Call with cpuset_mutex held.
1280 */
1281
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1282 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1283 int turning_on)
1284 {
1285 struct cpuset *trialcs;
1286 int balance_flag_changed;
1287 int spread_flag_changed;
1288 int err;
1289
1290 trialcs = alloc_trial_cpuset(cs);
1291 if (!trialcs)
1292 return -ENOMEM;
1293
1294 if (turning_on)
1295 set_bit(bit, &trialcs->flags);
1296 else
1297 clear_bit(bit, &trialcs->flags);
1298
1299 err = validate_change(cs, trialcs);
1300 if (err < 0)
1301 goto out;
1302
1303 balance_flag_changed = (is_sched_load_balance(cs) !=
1304 is_sched_load_balance(trialcs));
1305
1306 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1307 || (is_spread_page(cs) != is_spread_page(trialcs)));
1308
1309 mutex_lock(&callback_mutex);
1310 cs->flags = trialcs->flags;
1311 mutex_unlock(&callback_mutex);
1312
1313 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1314 rebuild_sched_domains_locked();
1315
1316 if (spread_flag_changed)
1317 update_tasks_flags(cs);
1318 out:
1319 free_trial_cpuset(trialcs);
1320 return err;
1321 }
1322
1323 /*
1324 * Frequency meter - How fast is some event occurring?
1325 *
1326 * These routines manage a digitally filtered, constant time based,
1327 * event frequency meter. There are four routines:
1328 * fmeter_init() - initialize a frequency meter.
1329 * fmeter_markevent() - called each time the event happens.
1330 * fmeter_getrate() - returns the recent rate of such events.
1331 * fmeter_update() - internal routine used to update fmeter.
1332 *
1333 * A common data structure is passed to each of these routines,
1334 * which is used to keep track of the state required to manage the
1335 * frequency meter and its digital filter.
1336 *
1337 * The filter works on the number of events marked per unit time.
1338 * The filter is single-pole low-pass recursive (IIR). The time unit
1339 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1340 * simulate 3 decimal digits of precision (multiplied by 1000).
1341 *
1342 * With an FM_COEF of 933, and a time base of 1 second, the filter
1343 * has a half-life of 10 seconds, meaning that if the events quit
1344 * happening, then the rate returned from the fmeter_getrate()
1345 * will be cut in half each 10 seconds, until it converges to zero.
1346 *
1347 * It is not worth doing a real infinitely recursive filter. If more
1348 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1349 * just compute FM_MAXTICKS ticks worth, by which point the level
1350 * will be stable.
1351 *
1352 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1353 * arithmetic overflow in the fmeter_update() routine.
1354 *
1355 * Given the simple 32 bit integer arithmetic used, this meter works
1356 * best for reporting rates between one per millisecond (msec) and
1357 * one per 32 (approx) seconds. At constant rates faster than one
1358 * per msec it maxes out at values just under 1,000,000. At constant
1359 * rates between one per msec, and one per second it will stabilize
1360 * to a value N*1000, where N is the rate of events per second.
1361 * At constant rates between one per second and one per 32 seconds,
1362 * it will be choppy, moving up on the seconds that have an event,
1363 * and then decaying until the next event. At rates slower than
1364 * about one in 32 seconds, it decays all the way back to zero between
1365 * each event.
1366 */
1367
1368 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1369 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1370 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1371 #define FM_SCALE 1000 /* faux fixed point scale */
1372
1373 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1374 static void fmeter_init(struct fmeter *fmp)
1375 {
1376 fmp->cnt = 0;
1377 fmp->val = 0;
1378 fmp->time = 0;
1379 spin_lock_init(&fmp->lock);
1380 }
1381
1382 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1383 static void fmeter_update(struct fmeter *fmp)
1384 {
1385 time_t now = get_seconds();
1386 time_t ticks = now - fmp->time;
1387
1388 if (ticks == 0)
1389 return;
1390
1391 ticks = min(FM_MAXTICKS, ticks);
1392 while (ticks-- > 0)
1393 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1394 fmp->time = now;
1395
1396 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1397 fmp->cnt = 0;
1398 }
1399
1400 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1401 static void fmeter_markevent(struct fmeter *fmp)
1402 {
1403 spin_lock(&fmp->lock);
1404 fmeter_update(fmp);
1405 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1406 spin_unlock(&fmp->lock);
1407 }
1408
1409 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1410 static int fmeter_getrate(struct fmeter *fmp)
1411 {
1412 int val;
1413
1414 spin_lock(&fmp->lock);
1415 fmeter_update(fmp);
1416 val = fmp->val;
1417 spin_unlock(&fmp->lock);
1418 return val;
1419 }
1420
1421 static struct cpuset *cpuset_attach_old_cs;
1422
1423 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1424 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1425 struct cgroup_taskset *tset)
1426 {
1427 struct cpuset *cs = css_cs(css);
1428 struct task_struct *task;
1429 int ret;
1430
1431 /* used later by cpuset_attach() */
1432 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1433
1434 mutex_lock(&cpuset_mutex);
1435
1436 /* allow moving tasks into an empty cpuset if on default hierarchy */
1437 ret = -ENOSPC;
1438 if (!cgroup_on_dfl(css->cgroup) &&
1439 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1440 goto out_unlock;
1441
1442 cgroup_taskset_for_each(task, tset) {
1443 /*
1444 * Kthreads which disallow setaffinity shouldn't be moved
1445 * to a new cpuset; we don't want to change their cpu
1446 * affinity and isolating such threads by their set of
1447 * allowed nodes is unnecessary. Thus, cpusets are not
1448 * applicable for such threads. This prevents checking for
1449 * success of set_cpus_allowed_ptr() on all attached tasks
1450 * before cpus_allowed may be changed.
1451 */
1452 ret = -EINVAL;
1453 if (task->flags & PF_NO_SETAFFINITY)
1454 goto out_unlock;
1455 ret = security_task_setscheduler(task);
1456 if (ret)
1457 goto out_unlock;
1458 }
1459
1460 /*
1461 * Mark attach is in progress. This makes validate_change() fail
1462 * changes which zero cpus/mems_allowed.
1463 */
1464 cs->attach_in_progress++;
1465 ret = 0;
1466 out_unlock:
1467 mutex_unlock(&cpuset_mutex);
1468 return ret;
1469 }
1470
cpuset_cancel_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1471 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1472 struct cgroup_taskset *tset)
1473 {
1474 mutex_lock(&cpuset_mutex);
1475 css_cs(css)->attach_in_progress--;
1476 mutex_unlock(&cpuset_mutex);
1477 }
1478
1479 /*
1480 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1481 * but we can't allocate it dynamically there. Define it global and
1482 * allocate from cpuset_init().
1483 */
1484 static cpumask_var_t cpus_attach;
1485
cpuset_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)1486 static void cpuset_attach(struct cgroup_subsys_state *css,
1487 struct cgroup_taskset *tset)
1488 {
1489 /* static buf protected by cpuset_mutex */
1490 static nodemask_t cpuset_attach_nodemask_to;
1491 struct mm_struct *mm;
1492 struct task_struct *task;
1493 struct task_struct *leader = cgroup_taskset_first(tset);
1494 struct cpuset *cs = css_cs(css);
1495 struct cpuset *oldcs = cpuset_attach_old_cs;
1496
1497 mutex_lock(&cpuset_mutex);
1498
1499 /* prepare for attach */
1500 if (cs == &top_cpuset)
1501 cpumask_copy(cpus_attach, cpu_possible_mask);
1502 else
1503 guarantee_online_cpus(cs, cpus_attach);
1504
1505 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1506
1507 cgroup_taskset_for_each(task, tset) {
1508 /*
1509 * can_attach beforehand should guarantee that this doesn't
1510 * fail. TODO: have a better way to handle failure here
1511 */
1512 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1513
1514 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1515 cpuset_update_task_spread_flag(cs, task);
1516 }
1517
1518 /*
1519 * Change mm, possibly for multiple threads in a threadgroup. This is
1520 * expensive and may sleep.
1521 */
1522 cpuset_attach_nodemask_to = cs->effective_mems;
1523 mm = get_task_mm(leader);
1524 if (mm) {
1525 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1526
1527 /*
1528 * old_mems_allowed is the same with mems_allowed here, except
1529 * if this task is being moved automatically due to hotplug.
1530 * In that case @mems_allowed has been updated and is empty,
1531 * so @old_mems_allowed is the right nodesets that we migrate
1532 * mm from.
1533 */
1534 if (is_memory_migrate(cs)) {
1535 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1536 &cpuset_attach_nodemask_to);
1537 }
1538 mmput(mm);
1539 }
1540
1541 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1542
1543 cs->attach_in_progress--;
1544 if (!cs->attach_in_progress)
1545 wake_up(&cpuset_attach_wq);
1546
1547 mutex_unlock(&cpuset_mutex);
1548 }
1549
1550 /* The various types of files and directories in a cpuset file system */
1551
1552 typedef enum {
1553 FILE_MEMORY_MIGRATE,
1554 FILE_CPULIST,
1555 FILE_MEMLIST,
1556 FILE_EFFECTIVE_CPULIST,
1557 FILE_EFFECTIVE_MEMLIST,
1558 FILE_CPU_EXCLUSIVE,
1559 FILE_MEM_EXCLUSIVE,
1560 FILE_MEM_HARDWALL,
1561 FILE_SCHED_LOAD_BALANCE,
1562 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1563 FILE_MEMORY_PRESSURE_ENABLED,
1564 FILE_MEMORY_PRESSURE,
1565 FILE_SPREAD_PAGE,
1566 FILE_SPREAD_SLAB,
1567 } cpuset_filetype_t;
1568
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1569 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1570 u64 val)
1571 {
1572 struct cpuset *cs = css_cs(css);
1573 cpuset_filetype_t type = cft->private;
1574 int retval = 0;
1575
1576 mutex_lock(&cpuset_mutex);
1577 if (!is_cpuset_online(cs)) {
1578 retval = -ENODEV;
1579 goto out_unlock;
1580 }
1581
1582 switch (type) {
1583 case FILE_CPU_EXCLUSIVE:
1584 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1585 break;
1586 case FILE_MEM_EXCLUSIVE:
1587 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1588 break;
1589 case FILE_MEM_HARDWALL:
1590 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1591 break;
1592 case FILE_SCHED_LOAD_BALANCE:
1593 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1594 break;
1595 case FILE_MEMORY_MIGRATE:
1596 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1597 break;
1598 case FILE_MEMORY_PRESSURE_ENABLED:
1599 cpuset_memory_pressure_enabled = !!val;
1600 break;
1601 case FILE_MEMORY_PRESSURE:
1602 retval = -EACCES;
1603 break;
1604 case FILE_SPREAD_PAGE:
1605 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1606 break;
1607 case FILE_SPREAD_SLAB:
1608 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1609 break;
1610 default:
1611 retval = -EINVAL;
1612 break;
1613 }
1614 out_unlock:
1615 mutex_unlock(&cpuset_mutex);
1616 return retval;
1617 }
1618
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)1619 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1620 s64 val)
1621 {
1622 struct cpuset *cs = css_cs(css);
1623 cpuset_filetype_t type = cft->private;
1624 int retval = -ENODEV;
1625
1626 mutex_lock(&cpuset_mutex);
1627 if (!is_cpuset_online(cs))
1628 goto out_unlock;
1629
1630 switch (type) {
1631 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1632 retval = update_relax_domain_level(cs, val);
1633 break;
1634 default:
1635 retval = -EINVAL;
1636 break;
1637 }
1638 out_unlock:
1639 mutex_unlock(&cpuset_mutex);
1640 return retval;
1641 }
1642
1643 /*
1644 * Common handling for a write to a "cpus" or "mems" file.
1645 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1646 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1647 char *buf, size_t nbytes, loff_t off)
1648 {
1649 struct cpuset *cs = css_cs(of_css(of));
1650 struct cpuset *trialcs;
1651 int retval = -ENODEV;
1652
1653 buf = strstrip(buf);
1654
1655 /*
1656 * CPU or memory hotunplug may leave @cs w/o any execution
1657 * resources, in which case the hotplug code asynchronously updates
1658 * configuration and transfers all tasks to the nearest ancestor
1659 * which can execute.
1660 *
1661 * As writes to "cpus" or "mems" may restore @cs's execution
1662 * resources, wait for the previously scheduled operations before
1663 * proceeding, so that we don't end up keep removing tasks added
1664 * after execution capability is restored.
1665 *
1666 * cpuset_hotplug_work calls back into cgroup core via
1667 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1668 * operation like this one can lead to a deadlock through kernfs
1669 * active_ref protection. Let's break the protection. Losing the
1670 * protection is okay as we check whether @cs is online after
1671 * grabbing cpuset_mutex anyway. This only happens on the legacy
1672 * hierarchies.
1673 */
1674 css_get(&cs->css);
1675 kernfs_break_active_protection(of->kn);
1676 flush_work(&cpuset_hotplug_work);
1677
1678 mutex_lock(&cpuset_mutex);
1679 if (!is_cpuset_online(cs))
1680 goto out_unlock;
1681
1682 trialcs = alloc_trial_cpuset(cs);
1683 if (!trialcs) {
1684 retval = -ENOMEM;
1685 goto out_unlock;
1686 }
1687
1688 switch (of_cft(of)->private) {
1689 case FILE_CPULIST:
1690 retval = update_cpumask(cs, trialcs, buf);
1691 break;
1692 case FILE_MEMLIST:
1693 retval = update_nodemask(cs, trialcs, buf);
1694 break;
1695 default:
1696 retval = -EINVAL;
1697 break;
1698 }
1699
1700 free_trial_cpuset(trialcs);
1701 out_unlock:
1702 mutex_unlock(&cpuset_mutex);
1703 kernfs_unbreak_active_protection(of->kn);
1704 css_put(&cs->css);
1705 return retval ?: nbytes;
1706 }
1707
1708 /*
1709 * These ascii lists should be read in a single call, by using a user
1710 * buffer large enough to hold the entire map. If read in smaller
1711 * chunks, there is no guarantee of atomicity. Since the display format
1712 * used, list of ranges of sequential numbers, is variable length,
1713 * and since these maps can change value dynamically, one could read
1714 * gibberish by doing partial reads while a list was changing.
1715 */
cpuset_common_seq_show(struct seq_file * sf,void * v)1716 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1717 {
1718 struct cpuset *cs = css_cs(seq_css(sf));
1719 cpuset_filetype_t type = seq_cft(sf)->private;
1720 ssize_t count;
1721 char *buf, *s;
1722 int ret = 0;
1723
1724 count = seq_get_buf(sf, &buf);
1725 s = buf;
1726
1727 mutex_lock(&callback_mutex);
1728
1729 switch (type) {
1730 case FILE_CPULIST:
1731 s += cpulist_scnprintf(s, count, cs->cpus_requested);
1732 break;
1733 case FILE_MEMLIST:
1734 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1735 break;
1736 case FILE_EFFECTIVE_CPULIST:
1737 s += cpulist_scnprintf(s, count, cs->effective_cpus);
1738 break;
1739 case FILE_EFFECTIVE_MEMLIST:
1740 s += nodelist_scnprintf(s, count, cs->effective_mems);
1741 break;
1742 default:
1743 ret = -EINVAL;
1744 goto out_unlock;
1745 }
1746
1747 if (s < buf + count - 1) {
1748 *s++ = '\n';
1749 seq_commit(sf, s - buf);
1750 } else {
1751 seq_commit(sf, -1);
1752 }
1753 out_unlock:
1754 mutex_unlock(&callback_mutex);
1755 return ret;
1756 }
1757
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1758 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1759 {
1760 struct cpuset *cs = css_cs(css);
1761 cpuset_filetype_t type = cft->private;
1762 switch (type) {
1763 case FILE_CPU_EXCLUSIVE:
1764 return is_cpu_exclusive(cs);
1765 case FILE_MEM_EXCLUSIVE:
1766 return is_mem_exclusive(cs);
1767 case FILE_MEM_HARDWALL:
1768 return is_mem_hardwall(cs);
1769 case FILE_SCHED_LOAD_BALANCE:
1770 return is_sched_load_balance(cs);
1771 case FILE_MEMORY_MIGRATE:
1772 return is_memory_migrate(cs);
1773 case FILE_MEMORY_PRESSURE_ENABLED:
1774 return cpuset_memory_pressure_enabled;
1775 case FILE_MEMORY_PRESSURE:
1776 return fmeter_getrate(&cs->fmeter);
1777 case FILE_SPREAD_PAGE:
1778 return is_spread_page(cs);
1779 case FILE_SPREAD_SLAB:
1780 return is_spread_slab(cs);
1781 default:
1782 BUG();
1783 }
1784
1785 /* Unreachable but makes gcc happy */
1786 return 0;
1787 }
1788
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)1789 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1790 {
1791 struct cpuset *cs = css_cs(css);
1792 cpuset_filetype_t type = cft->private;
1793 switch (type) {
1794 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1795 return cs->relax_domain_level;
1796 default:
1797 BUG();
1798 }
1799
1800 /* Unrechable but makes gcc happy */
1801 return 0;
1802 }
1803
1804
1805 /*
1806 * for the common functions, 'private' gives the type of file
1807 */
1808
1809 static struct cftype files[] = {
1810 {
1811 .name = "cpus",
1812 .seq_show = cpuset_common_seq_show,
1813 .write = cpuset_write_resmask,
1814 .max_write_len = (100U + 6 * NR_CPUS),
1815 .private = FILE_CPULIST,
1816 },
1817
1818 {
1819 .name = "mems",
1820 .seq_show = cpuset_common_seq_show,
1821 .write = cpuset_write_resmask,
1822 .max_write_len = (100U + 6 * MAX_NUMNODES),
1823 .private = FILE_MEMLIST,
1824 },
1825
1826 {
1827 .name = "effective_cpus",
1828 .seq_show = cpuset_common_seq_show,
1829 .private = FILE_EFFECTIVE_CPULIST,
1830 },
1831
1832 {
1833 .name = "effective_mems",
1834 .seq_show = cpuset_common_seq_show,
1835 .private = FILE_EFFECTIVE_MEMLIST,
1836 },
1837
1838 {
1839 .name = "cpu_exclusive",
1840 .read_u64 = cpuset_read_u64,
1841 .write_u64 = cpuset_write_u64,
1842 .private = FILE_CPU_EXCLUSIVE,
1843 },
1844
1845 {
1846 .name = "mem_exclusive",
1847 .read_u64 = cpuset_read_u64,
1848 .write_u64 = cpuset_write_u64,
1849 .private = FILE_MEM_EXCLUSIVE,
1850 },
1851
1852 {
1853 .name = "mem_hardwall",
1854 .read_u64 = cpuset_read_u64,
1855 .write_u64 = cpuset_write_u64,
1856 .private = FILE_MEM_HARDWALL,
1857 },
1858
1859 {
1860 .name = "sched_load_balance",
1861 .read_u64 = cpuset_read_u64,
1862 .write_u64 = cpuset_write_u64,
1863 .private = FILE_SCHED_LOAD_BALANCE,
1864 },
1865
1866 {
1867 .name = "sched_relax_domain_level",
1868 .read_s64 = cpuset_read_s64,
1869 .write_s64 = cpuset_write_s64,
1870 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1871 },
1872
1873 {
1874 .name = "memory_migrate",
1875 .read_u64 = cpuset_read_u64,
1876 .write_u64 = cpuset_write_u64,
1877 .private = FILE_MEMORY_MIGRATE,
1878 },
1879
1880 {
1881 .name = "memory_pressure",
1882 .read_u64 = cpuset_read_u64,
1883 .write_u64 = cpuset_write_u64,
1884 .private = FILE_MEMORY_PRESSURE,
1885 .mode = S_IRUGO,
1886 },
1887
1888 {
1889 .name = "memory_spread_page",
1890 .read_u64 = cpuset_read_u64,
1891 .write_u64 = cpuset_write_u64,
1892 .private = FILE_SPREAD_PAGE,
1893 },
1894
1895 {
1896 .name = "memory_spread_slab",
1897 .read_u64 = cpuset_read_u64,
1898 .write_u64 = cpuset_write_u64,
1899 .private = FILE_SPREAD_SLAB,
1900 },
1901
1902 {
1903 .name = "memory_pressure_enabled",
1904 .flags = CFTYPE_ONLY_ON_ROOT,
1905 .read_u64 = cpuset_read_u64,
1906 .write_u64 = cpuset_write_u64,
1907 .private = FILE_MEMORY_PRESSURE_ENABLED,
1908 },
1909
1910 { } /* terminate */
1911 };
1912
1913 /*
1914 * cpuset_css_alloc - allocate a cpuset css
1915 * cgrp: control group that the new cpuset will be part of
1916 */
1917
1918 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)1919 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1920 {
1921 struct cpuset *cs;
1922
1923 if (!parent_css)
1924 return &top_cpuset.css;
1925
1926 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1927 if (!cs)
1928 return ERR_PTR(-ENOMEM);
1929 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1930 goto free_cs;
1931 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1932 goto free_allowed;
1933 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1934 goto free_requested;
1935
1936 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1937 cpumask_clear(cs->cpus_allowed);
1938 cpumask_clear(cs->cpus_requested);
1939 nodes_clear(cs->mems_allowed);
1940 cpumask_clear(cs->effective_cpus);
1941 nodes_clear(cs->effective_mems);
1942 fmeter_init(&cs->fmeter);
1943 cs->relax_domain_level = -1;
1944
1945 return &cs->css;
1946
1947 free_requested:
1948 free_cpumask_var(cs->cpus_requested);
1949 free_allowed:
1950 free_cpumask_var(cs->cpus_allowed);
1951 free_cs:
1952 kfree(cs);
1953 return ERR_PTR(-ENOMEM);
1954 }
1955
cpuset_css_online(struct cgroup_subsys_state * css)1956 static int cpuset_css_online(struct cgroup_subsys_state *css)
1957 {
1958 struct cpuset *cs = css_cs(css);
1959 struct cpuset *parent = parent_cs(cs);
1960 struct cpuset *tmp_cs;
1961 struct cgroup_subsys_state *pos_css;
1962
1963 if (!parent)
1964 return 0;
1965
1966 mutex_lock(&cpuset_mutex);
1967
1968 set_bit(CS_ONLINE, &cs->flags);
1969 if (is_spread_page(parent))
1970 set_bit(CS_SPREAD_PAGE, &cs->flags);
1971 if (is_spread_slab(parent))
1972 set_bit(CS_SPREAD_SLAB, &cs->flags);
1973
1974 cpuset_inc();
1975
1976 mutex_lock(&callback_mutex);
1977 if (cgroup_on_dfl(cs->css.cgroup)) {
1978 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1979 cs->effective_mems = parent->effective_mems;
1980 }
1981 mutex_unlock(&callback_mutex);
1982
1983 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1984 goto out_unlock;
1985
1986 /*
1987 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1988 * set. This flag handling is implemented in cgroup core for
1989 * histrical reasons - the flag may be specified during mount.
1990 *
1991 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1992 * refuse to clone the configuration - thereby refusing the task to
1993 * be entered, and as a result refusing the sys_unshare() or
1994 * clone() which initiated it. If this becomes a problem for some
1995 * users who wish to allow that scenario, then this could be
1996 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1997 * (and likewise for mems) to the new cgroup.
1998 */
1999 rcu_read_lock();
2000 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2001 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2002 rcu_read_unlock();
2003 goto out_unlock;
2004 }
2005 }
2006 rcu_read_unlock();
2007
2008 mutex_lock(&callback_mutex);
2009 cs->mems_allowed = parent->mems_allowed;
2010 cs->effective_mems = parent->mems_allowed;
2011 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2012 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2013 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2014 mutex_unlock(&callback_mutex);
2015 out_unlock:
2016 mutex_unlock(&cpuset_mutex);
2017 return 0;
2018 }
2019
2020 /*
2021 * If the cpuset being removed has its flag 'sched_load_balance'
2022 * enabled, then simulate turning sched_load_balance off, which
2023 * will call rebuild_sched_domains_locked().
2024 */
2025
cpuset_css_offline(struct cgroup_subsys_state * css)2026 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2027 {
2028 struct cpuset *cs = css_cs(css);
2029
2030 mutex_lock(&cpuset_mutex);
2031
2032 if (is_sched_load_balance(cs))
2033 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2034
2035 cpuset_dec();
2036 clear_bit(CS_ONLINE, &cs->flags);
2037
2038 mutex_unlock(&cpuset_mutex);
2039 }
2040
cpuset_css_free(struct cgroup_subsys_state * css)2041 static void cpuset_css_free(struct cgroup_subsys_state *css)
2042 {
2043 struct cpuset *cs = css_cs(css);
2044
2045 free_cpumask_var(cs->effective_cpus);
2046 free_cpumask_var(cs->cpus_allowed);
2047 free_cpumask_var(cs->cpus_requested);
2048 kfree(cs);
2049 }
2050
cpuset_bind(struct cgroup_subsys_state * root_css)2051 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2052 {
2053 mutex_lock(&cpuset_mutex);
2054 mutex_lock(&callback_mutex);
2055
2056 if (cgroup_on_dfl(root_css->cgroup)) {
2057 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2058 top_cpuset.mems_allowed = node_possible_map;
2059 } else {
2060 cpumask_copy(top_cpuset.cpus_allowed,
2061 top_cpuset.effective_cpus);
2062 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2063 }
2064
2065 mutex_unlock(&callback_mutex);
2066 mutex_unlock(&cpuset_mutex);
2067 }
2068
2069 /*
2070 * Make sure the new task conform to the current state of its parent,
2071 * which could have been changed by cpuset just after it inherits the
2072 * state from the parent and before it sits on the cgroup's task list.
2073 */
cpuset_fork(struct task_struct * task)2074 void cpuset_fork(struct task_struct *task)
2075 {
2076 if (task_css_is_root(task, cpuset_cgrp_id))
2077 return;
2078
2079 set_cpus_allowed_ptr(task, ¤t->cpus_allowed);
2080 task->mems_allowed = current->mems_allowed;
2081 }
2082
2083 struct cgroup_subsys cpuset_cgrp_subsys = {
2084 .css_alloc = cpuset_css_alloc,
2085 .css_online = cpuset_css_online,
2086 .css_offline = cpuset_css_offline,
2087 .css_free = cpuset_css_free,
2088 .can_attach = cpuset_can_attach,
2089 .cancel_attach = cpuset_cancel_attach,
2090 .attach = cpuset_attach,
2091 .bind = cpuset_bind,
2092 .fork = cpuset_fork,
2093 .legacy_cftypes = files,
2094 .early_init = 1,
2095 };
2096
2097 /**
2098 * cpuset_init - initialize cpusets at system boot
2099 *
2100 * Description: Initialize top_cpuset and the cpuset internal file system,
2101 **/
2102
cpuset_init(void)2103 int __init cpuset_init(void)
2104 {
2105 int err = 0;
2106
2107 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2108 BUG();
2109 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2110 BUG();
2111 if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2112 BUG();
2113
2114 cpumask_setall(top_cpuset.cpus_allowed);
2115 cpumask_setall(top_cpuset.cpus_requested);
2116 nodes_setall(top_cpuset.mems_allowed);
2117 cpumask_setall(top_cpuset.effective_cpus);
2118 nodes_setall(top_cpuset.effective_mems);
2119
2120 fmeter_init(&top_cpuset.fmeter);
2121 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2122 top_cpuset.relax_domain_level = -1;
2123
2124 err = register_filesystem(&cpuset_fs_type);
2125 if (err < 0)
2126 return err;
2127
2128 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2129 BUG();
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2136 * or memory nodes, we need to walk over the cpuset hierarchy,
2137 * removing that CPU or node from all cpusets. If this removes the
2138 * last CPU or node from a cpuset, then move the tasks in the empty
2139 * cpuset to its next-highest non-empty parent.
2140 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2141 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2142 {
2143 struct cpuset *parent;
2144
2145 /*
2146 * Find its next-highest non-empty parent, (top cpuset
2147 * has online cpus, so can't be empty).
2148 */
2149 parent = parent_cs(cs);
2150 while (cpumask_empty(parent->cpus_allowed) ||
2151 nodes_empty(parent->mems_allowed))
2152 parent = parent_cs(parent);
2153
2154 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2155 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2156 pr_cont_cgroup_name(cs->css.cgroup);
2157 pr_cont("\n");
2158 }
2159 }
2160
2161 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2162 hotplug_update_tasks_legacy(struct cpuset *cs,
2163 struct cpumask *new_cpus, nodemask_t *new_mems,
2164 bool cpus_updated, bool mems_updated)
2165 {
2166 bool is_empty;
2167
2168 mutex_lock(&callback_mutex);
2169 cpumask_copy(cs->cpus_allowed, new_cpus);
2170 cpumask_copy(cs->effective_cpus, new_cpus);
2171 cs->mems_allowed = *new_mems;
2172 cs->effective_mems = *new_mems;
2173 mutex_unlock(&callback_mutex);
2174
2175 /*
2176 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2177 * as the tasks will be migratecd to an ancestor.
2178 */
2179 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2180 update_tasks_cpumask(cs);
2181 if (mems_updated && !nodes_empty(cs->mems_allowed))
2182 update_tasks_nodemask(cs);
2183
2184 is_empty = cpumask_empty(cs->cpus_allowed) ||
2185 nodes_empty(cs->mems_allowed);
2186
2187 mutex_unlock(&cpuset_mutex);
2188
2189 /*
2190 * Move tasks to the nearest ancestor with execution resources,
2191 * This is full cgroup operation which will also call back into
2192 * cpuset. Should be done outside any lock.
2193 */
2194 if (is_empty)
2195 remove_tasks_in_empty_cpuset(cs);
2196
2197 mutex_lock(&cpuset_mutex);
2198 }
2199
2200 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2201 hotplug_update_tasks(struct cpuset *cs,
2202 struct cpumask *new_cpus, nodemask_t *new_mems,
2203 bool cpus_updated, bool mems_updated)
2204 {
2205 if (cpumask_empty(new_cpus))
2206 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2207 if (nodes_empty(*new_mems))
2208 *new_mems = parent_cs(cs)->effective_mems;
2209
2210 mutex_lock(&callback_mutex);
2211 cpumask_copy(cs->effective_cpus, new_cpus);
2212 cs->effective_mems = *new_mems;
2213 mutex_unlock(&callback_mutex);
2214
2215 if (cpus_updated)
2216 update_tasks_cpumask(cs);
2217 if (mems_updated)
2218 update_tasks_nodemask(cs);
2219 }
2220
2221 /**
2222 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2223 * @cs: cpuset in interest
2224 *
2225 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2226 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2227 * all its tasks are moved to the nearest ancestor with both resources.
2228 */
cpuset_hotplug_update_tasks(struct cpuset * cs)2229 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2230 {
2231 static cpumask_t new_cpus;
2232 static nodemask_t new_mems;
2233 bool cpus_updated;
2234 bool mems_updated;
2235 retry:
2236 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2237
2238 mutex_lock(&cpuset_mutex);
2239
2240 /*
2241 * We have raced with task attaching. We wait until attaching
2242 * is finished, so we won't attach a task to an empty cpuset.
2243 */
2244 if (cs->attach_in_progress) {
2245 mutex_unlock(&cpuset_mutex);
2246 goto retry;
2247 }
2248
2249 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
2250 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2251
2252 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2253 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2254
2255 if (cgroup_on_dfl(cs->css.cgroup))
2256 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2257 cpus_updated, mems_updated);
2258 else
2259 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2260 cpus_updated, mems_updated);
2261
2262 mutex_unlock(&cpuset_mutex);
2263 }
2264
2265 /**
2266 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2267 *
2268 * This function is called after either CPU or memory configuration has
2269 * changed and updates cpuset accordingly. The top_cpuset is always
2270 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2271 * order to make cpusets transparent (of no affect) on systems that are
2272 * actively using CPU hotplug but making no active use of cpusets.
2273 *
2274 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2275 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2276 * all descendants.
2277 *
2278 * Note that CPU offlining during suspend is ignored. We don't modify
2279 * cpusets across suspend/resume cycles at all.
2280 */
cpuset_hotplug_workfn(struct work_struct * work)2281 static void cpuset_hotplug_workfn(struct work_struct *work)
2282 {
2283 static cpumask_t new_cpus;
2284 static nodemask_t new_mems;
2285 bool cpus_updated, mems_updated;
2286 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2287
2288 mutex_lock(&cpuset_mutex);
2289
2290 /* fetch the available cpus/mems and find out which changed how */
2291 cpumask_copy(&new_cpus, cpu_active_mask);
2292 new_mems = node_states[N_MEMORY];
2293
2294 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2295 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2296
2297 /* synchronize cpus_allowed to cpu_active_mask */
2298 if (cpus_updated) {
2299 mutex_lock(&callback_mutex);
2300 if (!on_dfl)
2301 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2302 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2303 mutex_unlock(&callback_mutex);
2304 /* we don't mess with cpumasks of tasks in top_cpuset */
2305 }
2306
2307 /* synchronize mems_allowed to N_MEMORY */
2308 if (mems_updated) {
2309 mutex_lock(&callback_mutex);
2310 if (!on_dfl)
2311 top_cpuset.mems_allowed = new_mems;
2312 top_cpuset.effective_mems = new_mems;
2313 mutex_unlock(&callback_mutex);
2314 update_tasks_nodemask(&top_cpuset);
2315 }
2316
2317 mutex_unlock(&cpuset_mutex);
2318
2319 /* if cpus or mems changed, we need to propagate to descendants */
2320 if (cpus_updated || mems_updated) {
2321 struct cpuset *cs;
2322 struct cgroup_subsys_state *pos_css;
2323
2324 rcu_read_lock();
2325 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2326 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2327 continue;
2328 rcu_read_unlock();
2329
2330 cpuset_hotplug_update_tasks(cs);
2331
2332 rcu_read_lock();
2333 css_put(&cs->css);
2334 }
2335 rcu_read_unlock();
2336 }
2337
2338 /* rebuild sched domains if cpus_allowed has changed */
2339 if (cpus_updated)
2340 rebuild_sched_domains();
2341 }
2342
cpuset_update_active_cpus(bool cpu_online)2343 void cpuset_update_active_cpus(bool cpu_online)
2344 {
2345 /*
2346 * We're inside cpu hotplug critical region which usually nests
2347 * inside cgroup synchronization. Bounce actual hotplug processing
2348 * to a work item to avoid reverse locking order.
2349 *
2350 * We still need to do partition_sched_domains() synchronously;
2351 * otherwise, the scheduler will get confused and put tasks to the
2352 * dead CPU. Fall back to the default single domain.
2353 * cpuset_hotplug_workfn() will rebuild it as necessary.
2354 */
2355 partition_sched_domains(1, NULL, NULL);
2356 schedule_work(&cpuset_hotplug_work);
2357 }
2358
2359 /*
2360 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2361 * Call this routine anytime after node_states[N_MEMORY] changes.
2362 * See cpuset_update_active_cpus() for CPU hotplug handling.
2363 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2364 static int cpuset_track_online_nodes(struct notifier_block *self,
2365 unsigned long action, void *arg)
2366 {
2367 schedule_work(&cpuset_hotplug_work);
2368 return NOTIFY_OK;
2369 }
2370
2371 static struct notifier_block cpuset_track_online_nodes_nb = {
2372 .notifier_call = cpuset_track_online_nodes,
2373 .priority = 10, /* ??! */
2374 };
2375
2376 /**
2377 * cpuset_init_smp - initialize cpus_allowed
2378 *
2379 * Description: Finish top cpuset after cpu, node maps are initialized
2380 */
cpuset_init_smp(void)2381 void __init cpuset_init_smp(void)
2382 {
2383 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2384 top_cpuset.mems_allowed = node_states[N_MEMORY];
2385 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2386
2387 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2388 top_cpuset.effective_mems = node_states[N_MEMORY];
2389
2390 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2391 }
2392
2393 /**
2394 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2395 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2396 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2397 *
2398 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2399 * attached to the specified @tsk. Guaranteed to return some non-empty
2400 * subset of cpu_online_mask, even if this means going outside the
2401 * tasks cpuset.
2402 **/
2403
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2404 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2405 {
2406 mutex_lock(&callback_mutex);
2407 rcu_read_lock();
2408 guarantee_online_cpus(task_cs(tsk), pmask);
2409 rcu_read_unlock();
2410 mutex_unlock(&callback_mutex);
2411 }
2412
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2413 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2414 {
2415 rcu_read_lock();
2416 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2417 rcu_read_unlock();
2418
2419 /*
2420 * We own tsk->cpus_allowed, nobody can change it under us.
2421 *
2422 * But we used cs && cs->cpus_allowed lockless and thus can
2423 * race with cgroup_attach_task() or update_cpumask() and get
2424 * the wrong tsk->cpus_allowed. However, both cases imply the
2425 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2426 * which takes task_rq_lock().
2427 *
2428 * If we are called after it dropped the lock we must see all
2429 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2430 * set any mask even if it is not right from task_cs() pov,
2431 * the pending set_cpus_allowed_ptr() will fix things.
2432 *
2433 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2434 * if required.
2435 */
2436 }
2437
cpuset_init_current_mems_allowed(void)2438 void cpuset_init_current_mems_allowed(void)
2439 {
2440 nodes_setall(current->mems_allowed);
2441 }
2442
2443 /**
2444 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2445 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2446 *
2447 * Description: Returns the nodemask_t mems_allowed of the cpuset
2448 * attached to the specified @tsk. Guaranteed to return some non-empty
2449 * subset of node_states[N_MEMORY], even if this means going outside the
2450 * tasks cpuset.
2451 **/
2452
cpuset_mems_allowed(struct task_struct * tsk)2453 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2454 {
2455 nodemask_t mask;
2456
2457 mutex_lock(&callback_mutex);
2458 rcu_read_lock();
2459 guarantee_online_mems(task_cs(tsk), &mask);
2460 rcu_read_unlock();
2461 mutex_unlock(&callback_mutex);
2462
2463 return mask;
2464 }
2465
2466 /**
2467 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2468 * @nodemask: the nodemask to be checked
2469 *
2470 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2471 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2472 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2473 {
2474 return nodes_intersects(*nodemask, current->mems_allowed);
2475 }
2476
2477 /*
2478 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2479 * mem_hardwall ancestor to the specified cpuset. Call holding
2480 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2481 * (an unusual configuration), then returns the root cpuset.
2482 */
nearest_hardwall_ancestor(struct cpuset * cs)2483 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2484 {
2485 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2486 cs = parent_cs(cs);
2487 return cs;
2488 }
2489
2490 /**
2491 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2492 * @node: is this an allowed node?
2493 * @gfp_mask: memory allocation flags
2494 *
2495 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2496 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2497 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2498 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2499 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2500 * flag, yes.
2501 * Otherwise, no.
2502 *
2503 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2504 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2505 * might sleep, and might allow a node from an enclosing cpuset.
2506 *
2507 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2508 * cpusets, and never sleeps.
2509 *
2510 * The __GFP_THISNODE placement logic is really handled elsewhere,
2511 * by forcibly using a zonelist starting at a specified node, and by
2512 * (in get_page_from_freelist()) refusing to consider the zones for
2513 * any node on the zonelist except the first. By the time any such
2514 * calls get to this routine, we should just shut up and say 'yes'.
2515 *
2516 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2517 * and do not allow allocations outside the current tasks cpuset
2518 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2519 * GFP_KERNEL allocations are not so marked, so can escape to the
2520 * nearest enclosing hardwalled ancestor cpuset.
2521 *
2522 * Scanning up parent cpusets requires callback_mutex. The
2523 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2524 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2525 * current tasks mems_allowed came up empty on the first pass over
2526 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2527 * cpuset are short of memory, might require taking the callback_mutex
2528 * mutex.
2529 *
2530 * The first call here from mm/page_alloc:get_page_from_freelist()
2531 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2532 * so no allocation on a node outside the cpuset is allowed (unless
2533 * in interrupt, of course).
2534 *
2535 * The second pass through get_page_from_freelist() doesn't even call
2536 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2537 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2538 * in alloc_flags. That logic and the checks below have the combined
2539 * affect that:
2540 * in_interrupt - any node ok (current task context irrelevant)
2541 * GFP_ATOMIC - any node ok
2542 * TIF_MEMDIE - any node ok
2543 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2544 * GFP_USER - only nodes in current tasks mems allowed ok.
2545 *
2546 * Rule:
2547 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2548 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2549 * the code that might scan up ancestor cpusets and sleep.
2550 */
__cpuset_node_allowed_softwall(int node,gfp_t gfp_mask)2551 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2552 {
2553 struct cpuset *cs; /* current cpuset ancestors */
2554 int allowed; /* is allocation in zone z allowed? */
2555
2556 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2557 return 1;
2558 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2559 if (node_isset(node, current->mems_allowed))
2560 return 1;
2561 /*
2562 * Allow tasks that have access to memory reserves because they have
2563 * been OOM killed to get memory anywhere.
2564 */
2565 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2566 return 1;
2567 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2568 return 0;
2569
2570 if (current->flags & PF_EXITING) /* Let dying task have memory */
2571 return 1;
2572
2573 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2574 mutex_lock(&callback_mutex);
2575
2576 rcu_read_lock();
2577 cs = nearest_hardwall_ancestor(task_cs(current));
2578 allowed = node_isset(node, cs->mems_allowed);
2579 rcu_read_unlock();
2580
2581 mutex_unlock(&callback_mutex);
2582 return allowed;
2583 }
2584
2585 /*
2586 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2587 * @node: is this an allowed node?
2588 * @gfp_mask: memory allocation flags
2589 *
2590 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2591 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2592 * yes. If the task has been OOM killed and has access to memory reserves as
2593 * specified by the TIF_MEMDIE flag, yes.
2594 * Otherwise, no.
2595 *
2596 * The __GFP_THISNODE placement logic is really handled elsewhere,
2597 * by forcibly using a zonelist starting at a specified node, and by
2598 * (in get_page_from_freelist()) refusing to consider the zones for
2599 * any node on the zonelist except the first. By the time any such
2600 * calls get to this routine, we should just shut up and say 'yes'.
2601 *
2602 * Unlike the cpuset_node_allowed_softwall() variant, above,
2603 * this variant requires that the node be in the current task's
2604 * mems_allowed or that we're in interrupt. It does not scan up the
2605 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2606 * It never sleeps.
2607 */
__cpuset_node_allowed_hardwall(int node,gfp_t gfp_mask)2608 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2609 {
2610 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2611 return 1;
2612 if (node_isset(node, current->mems_allowed))
2613 return 1;
2614 /*
2615 * Allow tasks that have access to memory reserves because they have
2616 * been OOM killed to get memory anywhere.
2617 */
2618 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2619 return 1;
2620 return 0;
2621 }
2622
2623 /**
2624 * cpuset_mem_spread_node() - On which node to begin search for a file page
2625 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2626 *
2627 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2628 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2629 * and if the memory allocation used cpuset_mem_spread_node()
2630 * to determine on which node to start looking, as it will for
2631 * certain page cache or slab cache pages such as used for file
2632 * system buffers and inode caches, then instead of starting on the
2633 * local node to look for a free page, rather spread the starting
2634 * node around the tasks mems_allowed nodes.
2635 *
2636 * We don't have to worry about the returned node being offline
2637 * because "it can't happen", and even if it did, it would be ok.
2638 *
2639 * The routines calling guarantee_online_mems() are careful to
2640 * only set nodes in task->mems_allowed that are online. So it
2641 * should not be possible for the following code to return an
2642 * offline node. But if it did, that would be ok, as this routine
2643 * is not returning the node where the allocation must be, only
2644 * the node where the search should start. The zonelist passed to
2645 * __alloc_pages() will include all nodes. If the slab allocator
2646 * is passed an offline node, it will fall back to the local node.
2647 * See kmem_cache_alloc_node().
2648 */
2649
cpuset_spread_node(int * rotor)2650 static int cpuset_spread_node(int *rotor)
2651 {
2652 int node;
2653
2654 node = next_node(*rotor, current->mems_allowed);
2655 if (node == MAX_NUMNODES)
2656 node = first_node(current->mems_allowed);
2657 *rotor = node;
2658 return node;
2659 }
2660
cpuset_mem_spread_node(void)2661 int cpuset_mem_spread_node(void)
2662 {
2663 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2664 current->cpuset_mem_spread_rotor =
2665 node_random(¤t->mems_allowed);
2666
2667 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
2668 }
2669
cpuset_slab_spread_node(void)2670 int cpuset_slab_spread_node(void)
2671 {
2672 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2673 current->cpuset_slab_spread_rotor =
2674 node_random(¤t->mems_allowed);
2675
2676 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
2677 }
2678
2679 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2680
2681 /**
2682 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2683 * @tsk1: pointer to task_struct of some task.
2684 * @tsk2: pointer to task_struct of some other task.
2685 *
2686 * Description: Return true if @tsk1's mems_allowed intersects the
2687 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2688 * one of the task's memory usage might impact the memory available
2689 * to the other.
2690 **/
2691
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2692 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2693 const struct task_struct *tsk2)
2694 {
2695 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2696 }
2697
2698 #define CPUSET_NODELIST_LEN (256)
2699
2700 /**
2701 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2702 * @tsk: pointer to task_struct of some task.
2703 *
2704 * Description: Prints @task's name, cpuset name, and cached copy of its
2705 * mems_allowed to the kernel log.
2706 */
cpuset_print_task_mems_allowed(struct task_struct * tsk)2707 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2708 {
2709 /* Statically allocated to prevent using excess stack. */
2710 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2711 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2712 struct cgroup *cgrp;
2713
2714 spin_lock(&cpuset_buffer_lock);
2715 rcu_read_lock();
2716
2717 cgrp = task_cs(tsk)->css.cgroup;
2718 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2719 tsk->mems_allowed);
2720 pr_info("%s cpuset=", tsk->comm);
2721 pr_cont_cgroup_name(cgrp);
2722 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2723
2724 rcu_read_unlock();
2725 spin_unlock(&cpuset_buffer_lock);
2726 }
2727
2728 /*
2729 * Collection of memory_pressure is suppressed unless
2730 * this flag is enabled by writing "1" to the special
2731 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2732 */
2733
2734 int cpuset_memory_pressure_enabled __read_mostly;
2735
2736 /**
2737 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2738 *
2739 * Keep a running average of the rate of synchronous (direct)
2740 * page reclaim efforts initiated by tasks in each cpuset.
2741 *
2742 * This represents the rate at which some task in the cpuset
2743 * ran low on memory on all nodes it was allowed to use, and
2744 * had to enter the kernels page reclaim code in an effort to
2745 * create more free memory by tossing clean pages or swapping
2746 * or writing dirty pages.
2747 *
2748 * Display to user space in the per-cpuset read-only file
2749 * "memory_pressure". Value displayed is an integer
2750 * representing the recent rate of entry into the synchronous
2751 * (direct) page reclaim by any task attached to the cpuset.
2752 **/
2753
__cpuset_memory_pressure_bump(void)2754 void __cpuset_memory_pressure_bump(void)
2755 {
2756 rcu_read_lock();
2757 fmeter_markevent(&task_cs(current)->fmeter);
2758 rcu_read_unlock();
2759 }
2760
2761 #ifdef CONFIG_PROC_PID_CPUSET
2762 /*
2763 * proc_cpuset_show()
2764 * - Print tasks cpuset path into seq_file.
2765 * - Used for /proc/<pid>/cpuset.
2766 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2767 * doesn't really matter if tsk->cpuset changes after we read it,
2768 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2769 * anyway.
2770 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)2771 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2772 struct pid *pid, struct task_struct *tsk)
2773 {
2774 char *buf, *p;
2775 struct cgroup_subsys_state *css;
2776 int retval;
2777
2778 retval = -ENOMEM;
2779 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2780 if (!buf)
2781 goto out;
2782
2783 retval = -ENAMETOOLONG;
2784 rcu_read_lock();
2785 css = task_css(tsk, cpuset_cgrp_id);
2786 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2787 rcu_read_unlock();
2788 if (!p)
2789 goto out_free;
2790 seq_puts(m, p);
2791 seq_putc(m, '\n');
2792 retval = 0;
2793 out_free:
2794 kfree(buf);
2795 out:
2796 return retval;
2797 }
2798 #endif /* CONFIG_PROC_PID_CPUSET */
2799
2800 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2801 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2802 {
2803 seq_puts(m, "Mems_allowed:\t");
2804 seq_nodemask(m, &task->mems_allowed);
2805 seq_puts(m, "\n");
2806 seq_puts(m, "Mems_allowed_list:\t");
2807 seq_nodemask_list(m, &task->mems_allowed);
2808 seq_puts(m, "\n");
2809 }
2810