1 #include <linux/cpufreq.h>
2 #include <linux/export.h>
3 #include <linux/sched.h>
4 #include <linux/tsacct_kern.h>
5 #include <linux/kernel_stat.h>
6 #include <linux/static_key.h>
7 #include <linux/context_tracking.h>
8 #include "sched.h"
9 #include "walt.h"
10
11
12 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13
14 /*
15 * There are no locks covering percpu hardirq/softirq time.
16 * They are only modified in vtime_account, on corresponding CPU
17 * with interrupts disabled. So, writes are safe.
18 * They are read and saved off onto struct rq in update_rq_clock().
19 * This may result in other CPU reading this CPU's irq time and can
20 * race with irq/vtime_account on this CPU. We would either get old
21 * or new value with a side effect of accounting a slice of irq time to wrong
22 * task when irq is in progress while we read rq->clock. That is a worthy
23 * compromise in place of having locks on each irq in account_system_time.
24 */
25 DEFINE_PER_CPU(u64, cpu_hardirq_time);
26 DEFINE_PER_CPU(u64, cpu_softirq_time);
27
28 static DEFINE_PER_CPU(u64, irq_start_time);
29 static int sched_clock_irqtime;
30
enable_sched_clock_irqtime(void)31 void enable_sched_clock_irqtime(void)
32 {
33 sched_clock_irqtime = 1;
34 }
35
disable_sched_clock_irqtime(void)36 void disable_sched_clock_irqtime(void)
37 {
38 sched_clock_irqtime = 0;
39 }
40
41 #ifndef CONFIG_64BIT
42 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
43 #endif /* CONFIG_64BIT */
44
45 /*
46 * Called before incrementing preempt_count on {soft,}irq_enter
47 * and before decrementing preempt_count on {soft,}irq_exit.
48 */
irqtime_account_irq(struct task_struct * curr)49 void irqtime_account_irq(struct task_struct *curr)
50 {
51 unsigned long flags;
52 s64 delta;
53 int cpu;
54 #ifdef CONFIG_SCHED_WALT
55 u64 wallclock;
56 bool account = true;
57 #endif
58
59 if (!sched_clock_irqtime)
60 return;
61
62 local_irq_save(flags);
63
64 cpu = smp_processor_id();
65 #ifdef CONFIG_SCHED_WALT
66 wallclock = sched_clock_cpu(cpu);
67 #endif
68 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
69 __this_cpu_add(irq_start_time, delta);
70
71 irq_time_write_begin();
72 /*
73 * We do not account for softirq time from ksoftirqd here.
74 * We want to continue accounting softirq time to ksoftirqd thread
75 * in that case, so as not to confuse scheduler with a special task
76 * that do not consume any time, but still wants to run.
77 */
78 if (hardirq_count())
79 __this_cpu_add(cpu_hardirq_time, delta);
80 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
81 __this_cpu_add(cpu_softirq_time, delta);
82 #ifdef CONFIG_SCHED_WALT
83 else
84 account = false;
85 #endif
86
87 irq_time_write_end();
88 #ifdef CONFIG_SCHED_WALT
89 if (account)
90 walt_account_irqtime(cpu, curr, delta, wallclock);
91 #endif
92 local_irq_restore(flags);
93 }
94 EXPORT_SYMBOL_GPL(irqtime_account_irq);
95
irqtime_account_hi_update(void)96 static int irqtime_account_hi_update(void)
97 {
98 u64 *cpustat = kcpustat_this_cpu->cpustat;
99 unsigned long flags;
100 u64 latest_ns;
101 int ret = 0;
102
103 local_irq_save(flags);
104 latest_ns = this_cpu_read(cpu_hardirq_time);
105 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
106 ret = 1;
107 local_irq_restore(flags);
108 return ret;
109 }
110
irqtime_account_si_update(void)111 static int irqtime_account_si_update(void)
112 {
113 u64 *cpustat = kcpustat_this_cpu->cpustat;
114 unsigned long flags;
115 u64 latest_ns;
116 int ret = 0;
117
118 local_irq_save(flags);
119 latest_ns = this_cpu_read(cpu_softirq_time);
120 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
121 ret = 1;
122 local_irq_restore(flags);
123 return ret;
124 }
125
126 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
127
128 #define sched_clock_irqtime (0)
129
130 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
131
task_group_account_field(struct task_struct * p,int index,u64 tmp)132 static inline void task_group_account_field(struct task_struct *p, int index,
133 u64 tmp)
134 {
135 /*
136 * Since all updates are sure to touch the root cgroup, we
137 * get ourselves ahead and touch it first. If the root cgroup
138 * is the only cgroup, then nothing else should be necessary.
139 *
140 */
141 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
142
143 cpuacct_account_field(p, index, tmp);
144 }
145
146 /*
147 * Account user cpu time to a process.
148 * @p: the process that the cpu time gets accounted to
149 * @cputime: the cpu time spent in user space since the last update
150 * @cputime_scaled: cputime scaled by cpu frequency
151 */
account_user_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)152 void account_user_time(struct task_struct *p, cputime_t cputime,
153 cputime_t cputime_scaled)
154 {
155 int index;
156
157 /* Add user time to process. */
158 p->utime += cputime;
159 p->utimescaled += cputime_scaled;
160 account_group_user_time(p, cputime);
161
162 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
163
164 /* Add user time to cpustat. */
165 task_group_account_field(p, index, (__force u64) cputime);
166
167 /* Account for user time used */
168 acct_account_cputime(p);
169
170 #ifdef CONFIG_CPU_FREQ_STAT
171 /* Account power usage for user time */
172 acct_update_power(p, cputime);
173 #endif
174 }
175
176 /*
177 * Account guest cpu time to a process.
178 * @p: the process that the cpu time gets accounted to
179 * @cputime: the cpu time spent in virtual machine since the last update
180 * @cputime_scaled: cputime scaled by cpu frequency
181 */
account_guest_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)182 static void account_guest_time(struct task_struct *p, cputime_t cputime,
183 cputime_t cputime_scaled)
184 {
185 u64 *cpustat = kcpustat_this_cpu->cpustat;
186
187 /* Add guest time to process. */
188 p->utime += cputime;
189 p->utimescaled += cputime_scaled;
190 account_group_user_time(p, cputime);
191 p->gtime += cputime;
192
193 /* Add guest time to cpustat. */
194 if (task_nice(p) > 0) {
195 cpustat[CPUTIME_NICE] += (__force u64) cputime;
196 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
197 } else {
198 cpustat[CPUTIME_USER] += (__force u64) cputime;
199 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
200 }
201 }
202
203 /*
204 * Account system cpu time to a process and desired cpustat field
205 * @p: the process that the cpu time gets accounted to
206 * @cputime: the cpu time spent in kernel space since the last update
207 * @cputime_scaled: cputime scaled by cpu frequency
208 * @target_cputime64: pointer to cpustat field that has to be updated
209 */
210 static inline
__account_system_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled,int index)211 void __account_system_time(struct task_struct *p, cputime_t cputime,
212 cputime_t cputime_scaled, int index)
213 {
214 /* Add system time to process. */
215 p->stime += cputime;
216 p->stimescaled += cputime_scaled;
217 account_group_system_time(p, cputime);
218
219 /* Add system time to cpustat. */
220 task_group_account_field(p, index, (__force u64) cputime);
221
222 /* Account for system time used */
223 acct_account_cputime(p);
224
225 #ifdef CONFIG_CPU_FREQ_STAT
226 /* Account power usage for system time */
227 acct_update_power(p, cputime);
228 #endif
229 }
230
231 /*
232 * Account system cpu time to a process.
233 * @p: the process that the cpu time gets accounted to
234 * @hardirq_offset: the offset to subtract from hardirq_count()
235 * @cputime: the cpu time spent in kernel space since the last update
236 * @cputime_scaled: cputime scaled by cpu frequency
237 */
account_system_time(struct task_struct * p,int hardirq_offset,cputime_t cputime,cputime_t cputime_scaled)238 void account_system_time(struct task_struct *p, int hardirq_offset,
239 cputime_t cputime, cputime_t cputime_scaled)
240 {
241 int index;
242
243 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
244 account_guest_time(p, cputime, cputime_scaled);
245 return;
246 }
247
248 if (hardirq_count() - hardirq_offset)
249 index = CPUTIME_IRQ;
250 else if (in_serving_softirq())
251 index = CPUTIME_SOFTIRQ;
252 else
253 index = CPUTIME_SYSTEM;
254
255 __account_system_time(p, cputime, cputime_scaled, index);
256 }
257
258 /*
259 * Account for involuntary wait time.
260 * @cputime: the cpu time spent in involuntary wait
261 */
account_steal_time(cputime_t cputime)262 void account_steal_time(cputime_t cputime)
263 {
264 u64 *cpustat = kcpustat_this_cpu->cpustat;
265
266 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
267 }
268
269 /*
270 * Account for idle time.
271 * @cputime: the cpu time spent in idle wait
272 */
account_idle_time(cputime_t cputime)273 void account_idle_time(cputime_t cputime)
274 {
275 u64 *cpustat = kcpustat_this_cpu->cpustat;
276 struct rq *rq = this_rq();
277
278 if (atomic_read(&rq->nr_iowait) > 0)
279 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
280 else
281 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
282 }
283
steal_account_process_tick(void)284 static __always_inline bool steal_account_process_tick(void)
285 {
286 #ifdef CONFIG_PARAVIRT
287 if (static_key_false(¶virt_steal_enabled)) {
288 u64 steal;
289 unsigned long steal_jiffies;
290
291 steal = paravirt_steal_clock(smp_processor_id());
292 steal -= this_rq()->prev_steal_time;
293
294 /*
295 * steal is in nsecs but our caller is expecting steal
296 * time in jiffies. Lets cast the result to jiffies
297 * granularity and account the rest on the next rounds.
298 */
299 steal_jiffies = nsecs_to_jiffies(steal);
300 this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
301
302 account_steal_time(jiffies_to_cputime(steal_jiffies));
303 return steal_jiffies;
304 }
305 #endif
306 return false;
307 }
308
309 /*
310 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
311 * tasks (sum on group iteration) belonging to @tsk's group.
312 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)313 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
314 {
315 struct signal_struct *sig = tsk->signal;
316 cputime_t utime, stime;
317 struct task_struct *t;
318 unsigned int seq, nextseq;
319 unsigned long flags;
320
321 rcu_read_lock();
322 /* Attempt a lockless read on the first round. */
323 nextseq = 0;
324 do {
325 seq = nextseq;
326 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
327 times->utime = sig->utime;
328 times->stime = sig->stime;
329 times->sum_exec_runtime = sig->sum_sched_runtime;
330
331 for_each_thread(tsk, t) {
332 task_cputime(t, &utime, &stime);
333 times->utime += utime;
334 times->stime += stime;
335 times->sum_exec_runtime += task_sched_runtime(t);
336 }
337 /* If lockless access failed, take the lock. */
338 nextseq = 1;
339 } while (need_seqretry(&sig->stats_lock, seq));
340 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
341 rcu_read_unlock();
342 }
343
344 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
345 /*
346 * Account a tick to a process and cpustat
347 * @p: the process that the cpu time gets accounted to
348 * @user_tick: is the tick from userspace
349 * @rq: the pointer to rq
350 *
351 * Tick demultiplexing follows the order
352 * - pending hardirq update
353 * - pending softirq update
354 * - user_time
355 * - idle_time
356 * - system time
357 * - check for guest_time
358 * - else account as system_time
359 *
360 * Check for hardirq is done both for system and user time as there is
361 * no timer going off while we are on hardirq and hence we may never get an
362 * opportunity to update it solely in system time.
363 * p->stime and friends are only updated on system time and not on irq
364 * softirq as those do not count in task exec_runtime any more.
365 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)366 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
367 struct rq *rq, int ticks)
368 {
369 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
370 u64 cputime = (__force u64) cputime_one_jiffy;
371 u64 *cpustat = kcpustat_this_cpu->cpustat;
372
373 if (steal_account_process_tick())
374 return;
375
376 cputime *= ticks;
377 scaled *= ticks;
378
379 if (irqtime_account_hi_update()) {
380 cpustat[CPUTIME_IRQ] += cputime;
381 } else if (irqtime_account_si_update()) {
382 cpustat[CPUTIME_SOFTIRQ] += cputime;
383 } else if (this_cpu_ksoftirqd() == p) {
384 /*
385 * ksoftirqd time do not get accounted in cpu_softirq_time.
386 * So, we have to handle it separately here.
387 * Also, p->stime needs to be updated for ksoftirqd.
388 */
389 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
390 } else if (user_tick) {
391 account_user_time(p, cputime, scaled);
392 } else if (p == rq->idle) {
393 account_idle_time(cputime);
394 } else if (p->flags & PF_VCPU) { /* System time or guest time */
395 account_guest_time(p, cputime, scaled);
396 } else {
397 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
398 }
399 }
400
irqtime_account_idle_ticks(int ticks)401 static void irqtime_account_idle_ticks(int ticks)
402 {
403 struct rq *rq = this_rq();
404
405 irqtime_account_process_tick(current, 0, rq, ticks);
406 }
407 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)408 static inline void irqtime_account_idle_ticks(int ticks) {}
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)409 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
410 struct rq *rq, int nr_ticks) {}
411 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
412
413 /*
414 * Use precise platform statistics if available:
415 */
416 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
417
418 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)419 void vtime_common_task_switch(struct task_struct *prev)
420 {
421 if (is_idle_task(prev))
422 vtime_account_idle(prev);
423 else
424 vtime_account_system(prev);
425
426 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
427 vtime_account_user(prev);
428 #endif
429 arch_vtime_task_switch(prev);
430 }
431 #endif
432
433 /*
434 * Archs that account the whole time spent in the idle task
435 * (outside irq) as idle time can rely on this and just implement
436 * vtime_account_system() and vtime_account_idle(). Archs that
437 * have other meaning of the idle time (s390 only includes the
438 * time spent by the CPU when it's in low power mode) must override
439 * vtime_account().
440 */
441 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_common_account_irq_enter(struct task_struct * tsk)442 void vtime_common_account_irq_enter(struct task_struct *tsk)
443 {
444 if (!in_interrupt()) {
445 /*
446 * If we interrupted user, context_tracking_in_user()
447 * is 1 because the context tracking don't hook
448 * on irq entry/exit. This way we know if
449 * we need to flush user time on kernel entry.
450 */
451 if (context_tracking_in_user()) {
452 vtime_account_user(tsk);
453 return;
454 }
455
456 if (is_idle_task(tsk)) {
457 vtime_account_idle(tsk);
458 return;
459 }
460 }
461 vtime_account_system(tsk);
462 }
463 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
464 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
465 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
466
467
468 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)469 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
470 {
471 *ut = p->utime;
472 *st = p->stime;
473 }
474
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)475 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
476 {
477 struct task_cputime cputime;
478
479 thread_group_cputime(p, &cputime);
480
481 *ut = cputime.utime;
482 *st = cputime.stime;
483 }
484 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
485 /*
486 * Account a single tick of cpu time.
487 * @p: the process that the cpu time gets accounted to
488 * @user_tick: indicates if the tick is a user or a system tick
489 */
account_process_tick(struct task_struct * p,int user_tick)490 void account_process_tick(struct task_struct *p, int user_tick)
491 {
492 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
493 struct rq *rq = this_rq();
494
495 if (vtime_accounting_enabled())
496 return;
497
498 if (sched_clock_irqtime) {
499 irqtime_account_process_tick(p, user_tick, rq, 1);
500 return;
501 }
502
503 if (steal_account_process_tick())
504 return;
505
506 if (user_tick)
507 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
508 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
509 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
510 one_jiffy_scaled);
511 else
512 account_idle_time(cputime_one_jiffy);
513 }
514
515 /*
516 * Account multiple ticks of steal time.
517 * @p: the process from which the cpu time has been stolen
518 * @ticks: number of stolen ticks
519 */
account_steal_ticks(unsigned long ticks)520 void account_steal_ticks(unsigned long ticks)
521 {
522 account_steal_time(jiffies_to_cputime(ticks));
523 }
524
525 /*
526 * Account multiple ticks of idle time.
527 * @ticks: number of stolen ticks
528 */
account_idle_ticks(unsigned long ticks)529 void account_idle_ticks(unsigned long ticks)
530 {
531
532 if (sched_clock_irqtime) {
533 irqtime_account_idle_ticks(ticks);
534 return;
535 }
536
537 account_idle_time(jiffies_to_cputime(ticks));
538 }
539
540 /*
541 * Perform (stime * rtime) / total, but avoid multiplication overflow by
542 * loosing precision when the numbers are big.
543 */
scale_stime(u64 stime,u64 rtime,u64 total)544 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
545 {
546 u64 scaled;
547
548 for (;;) {
549 /* Make sure "rtime" is the bigger of stime/rtime */
550 if (stime > rtime)
551 swap(rtime, stime);
552
553 /* Make sure 'total' fits in 32 bits */
554 if (total >> 32)
555 goto drop_precision;
556
557 /* Does rtime (and thus stime) fit in 32 bits? */
558 if (!(rtime >> 32))
559 break;
560
561 /* Can we just balance rtime/stime rather than dropping bits? */
562 if (stime >> 31)
563 goto drop_precision;
564
565 /* We can grow stime and shrink rtime and try to make them both fit */
566 stime <<= 1;
567 rtime >>= 1;
568 continue;
569
570 drop_precision:
571 /* We drop from rtime, it has more bits than stime */
572 rtime >>= 1;
573 total >>= 1;
574 }
575
576 /*
577 * Make sure gcc understands that this is a 32x32->64 multiply,
578 * followed by a 64/32->64 divide.
579 */
580 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
581 return (__force cputime_t) scaled;
582 }
583
584 /*
585 * Atomically advance counter to the new value. Interrupts, vcpu
586 * scheduling, and scaling inaccuracies can cause cputime_advance
587 * to be occasionally called with a new value smaller than counter.
588 * Let's enforce atomicity.
589 *
590 * Normally a caller will only go through this loop once, or not
591 * at all in case a previous caller updated counter the same jiffy.
592 */
cputime_advance(cputime_t * counter,cputime_t new)593 static void cputime_advance(cputime_t *counter, cputime_t new)
594 {
595 cputime_t old;
596
597 while (new > (old = READ_ONCE(*counter)))
598 cmpxchg_cputime(counter, old, new);
599 }
600
601 /*
602 * Adjust tick based cputime random precision against scheduler
603 * runtime accounting.
604 */
cputime_adjust(struct task_cputime * curr,struct cputime * prev,cputime_t * ut,cputime_t * st)605 static void cputime_adjust(struct task_cputime *curr,
606 struct cputime *prev,
607 cputime_t *ut, cputime_t *st)
608 {
609 cputime_t rtime, stime, utime;
610
611 /*
612 * Tick based cputime accounting depend on random scheduling
613 * timeslices of a task to be interrupted or not by the timer.
614 * Depending on these circumstances, the number of these interrupts
615 * may be over or under-optimistic, matching the real user and system
616 * cputime with a variable precision.
617 *
618 * Fix this by scaling these tick based values against the total
619 * runtime accounted by the CFS scheduler.
620 */
621 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
622
623 /*
624 * Update userspace visible utime/stime values only if actual execution
625 * time is bigger than already exported. Note that can happen, that we
626 * provided bigger values due to scaling inaccuracy on big numbers.
627 */
628 if (prev->stime + prev->utime >= rtime)
629 goto out;
630
631 stime = curr->stime;
632 utime = curr->utime;
633
634 if (utime == 0) {
635 stime = rtime;
636 } else if (stime == 0) {
637 utime = rtime;
638 } else {
639 cputime_t total = stime + utime;
640
641 stime = scale_stime((__force u64)stime,
642 (__force u64)rtime, (__force u64)total);
643 utime = rtime - stime;
644 }
645
646 cputime_advance(&prev->stime, stime);
647 cputime_advance(&prev->utime, utime);
648
649 out:
650 *ut = prev->utime;
651 *st = prev->stime;
652 }
653
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)654 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
655 {
656 struct task_cputime cputime = {
657 .sum_exec_runtime = p->se.sum_exec_runtime,
658 };
659
660 task_cputime(p, &cputime.utime, &cputime.stime);
661 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
662 }
663
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)664 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
665 {
666 struct task_cputime cputime;
667
668 thread_group_cputime(p, &cputime);
669 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
670 }
671 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
672
673 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct task_struct * tsk)674 static unsigned long long vtime_delta(struct task_struct *tsk)
675 {
676 unsigned long long clock;
677
678 clock = local_clock();
679 if (clock < tsk->vtime_snap)
680 return 0;
681
682 return clock - tsk->vtime_snap;
683 }
684
get_vtime_delta(struct task_struct * tsk)685 static cputime_t get_vtime_delta(struct task_struct *tsk)
686 {
687 unsigned long long delta = vtime_delta(tsk);
688
689 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
690 tsk->vtime_snap += delta;
691
692 /* CHECKME: always safe to convert nsecs to cputime? */
693 return nsecs_to_cputime(delta);
694 }
695
__vtime_account_system(struct task_struct * tsk)696 static void __vtime_account_system(struct task_struct *tsk)
697 {
698 cputime_t delta_cpu = get_vtime_delta(tsk);
699
700 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
701 }
702
vtime_account_system(struct task_struct * tsk)703 void vtime_account_system(struct task_struct *tsk)
704 {
705 write_seqlock(&tsk->vtime_seqlock);
706 __vtime_account_system(tsk);
707 write_sequnlock(&tsk->vtime_seqlock);
708 }
709
vtime_gen_account_irq_exit(struct task_struct * tsk)710 void vtime_gen_account_irq_exit(struct task_struct *tsk)
711 {
712 write_seqlock(&tsk->vtime_seqlock);
713 __vtime_account_system(tsk);
714 if (context_tracking_in_user())
715 tsk->vtime_snap_whence = VTIME_USER;
716 write_sequnlock(&tsk->vtime_seqlock);
717 }
718
vtime_account_user(struct task_struct * tsk)719 void vtime_account_user(struct task_struct *tsk)
720 {
721 cputime_t delta_cpu;
722
723 write_seqlock(&tsk->vtime_seqlock);
724 delta_cpu = get_vtime_delta(tsk);
725 tsk->vtime_snap_whence = VTIME_SYS;
726 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
727 write_sequnlock(&tsk->vtime_seqlock);
728 }
729
vtime_user_enter(struct task_struct * tsk)730 void vtime_user_enter(struct task_struct *tsk)
731 {
732 write_seqlock(&tsk->vtime_seqlock);
733 __vtime_account_system(tsk);
734 tsk->vtime_snap_whence = VTIME_USER;
735 write_sequnlock(&tsk->vtime_seqlock);
736 }
737
vtime_guest_enter(struct task_struct * tsk)738 void vtime_guest_enter(struct task_struct *tsk)
739 {
740 /*
741 * The flags must be updated under the lock with
742 * the vtime_snap flush and update.
743 * That enforces a right ordering and update sequence
744 * synchronization against the reader (task_gtime())
745 * that can thus safely catch up with a tickless delta.
746 */
747 write_seqlock(&tsk->vtime_seqlock);
748 __vtime_account_system(tsk);
749 current->flags |= PF_VCPU;
750 write_sequnlock(&tsk->vtime_seqlock);
751 }
752 EXPORT_SYMBOL_GPL(vtime_guest_enter);
753
vtime_guest_exit(struct task_struct * tsk)754 void vtime_guest_exit(struct task_struct *tsk)
755 {
756 write_seqlock(&tsk->vtime_seqlock);
757 __vtime_account_system(tsk);
758 current->flags &= ~PF_VCPU;
759 write_sequnlock(&tsk->vtime_seqlock);
760 }
761 EXPORT_SYMBOL_GPL(vtime_guest_exit);
762
vtime_account_idle(struct task_struct * tsk)763 void vtime_account_idle(struct task_struct *tsk)
764 {
765 cputime_t delta_cpu = get_vtime_delta(tsk);
766
767 account_idle_time(delta_cpu);
768 }
769
arch_vtime_task_switch(struct task_struct * prev)770 void arch_vtime_task_switch(struct task_struct *prev)
771 {
772 write_seqlock(&prev->vtime_seqlock);
773 prev->vtime_snap_whence = VTIME_SLEEPING;
774 write_sequnlock(&prev->vtime_seqlock);
775
776 write_seqlock(¤t->vtime_seqlock);
777 current->vtime_snap_whence = VTIME_SYS;
778 current->vtime_snap = sched_clock_cpu(smp_processor_id());
779 write_sequnlock(¤t->vtime_seqlock);
780 }
781
vtime_init_idle(struct task_struct * t,int cpu)782 void vtime_init_idle(struct task_struct *t, int cpu)
783 {
784 unsigned long flags;
785
786 write_seqlock_irqsave(&t->vtime_seqlock, flags);
787 t->vtime_snap_whence = VTIME_SYS;
788 t->vtime_snap = sched_clock_cpu(cpu);
789 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
790 }
791
task_gtime(struct task_struct * t)792 cputime_t task_gtime(struct task_struct *t)
793 {
794 unsigned int seq;
795 cputime_t gtime;
796
797 do {
798 seq = read_seqbegin(&t->vtime_seqlock);
799
800 gtime = t->gtime;
801 if (t->flags & PF_VCPU)
802 gtime += vtime_delta(t);
803
804 } while (read_seqretry(&t->vtime_seqlock, seq));
805
806 return gtime;
807 }
808
809 /*
810 * Fetch cputime raw values from fields of task_struct and
811 * add up the pending nohz execution time since the last
812 * cputime snapshot.
813 */
814 static void
fetch_task_cputime(struct task_struct * t,cputime_t * u_dst,cputime_t * s_dst,cputime_t * u_src,cputime_t * s_src,cputime_t * udelta,cputime_t * sdelta)815 fetch_task_cputime(struct task_struct *t,
816 cputime_t *u_dst, cputime_t *s_dst,
817 cputime_t *u_src, cputime_t *s_src,
818 cputime_t *udelta, cputime_t *sdelta)
819 {
820 unsigned int seq;
821 unsigned long long delta;
822
823 do {
824 *udelta = 0;
825 *sdelta = 0;
826
827 seq = read_seqbegin(&t->vtime_seqlock);
828
829 if (u_dst)
830 *u_dst = *u_src;
831 if (s_dst)
832 *s_dst = *s_src;
833
834 /* Task is sleeping, nothing to add */
835 if (t->vtime_snap_whence == VTIME_SLEEPING ||
836 is_idle_task(t))
837 continue;
838
839 delta = vtime_delta(t);
840
841 /*
842 * Task runs either in user or kernel space, add pending nohz time to
843 * the right place.
844 */
845 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
846 *udelta = delta;
847 } else {
848 if (t->vtime_snap_whence == VTIME_SYS)
849 *sdelta = delta;
850 }
851 } while (read_seqretry(&t->vtime_seqlock, seq));
852 }
853
854
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)855 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
856 {
857 cputime_t udelta, sdelta;
858
859 fetch_task_cputime(t, utime, stime, &t->utime,
860 &t->stime, &udelta, &sdelta);
861 if (utime)
862 *utime += udelta;
863 if (stime)
864 *stime += sdelta;
865 }
866
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)867 void task_cputime_scaled(struct task_struct *t,
868 cputime_t *utimescaled, cputime_t *stimescaled)
869 {
870 cputime_t udelta, sdelta;
871
872 fetch_task_cputime(t, utimescaled, stimescaled,
873 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
874 if (utimescaled)
875 *utimescaled += cputime_to_scaled(udelta);
876 if (stimescaled)
877 *stimescaled += cputime_to_scaled(sdelta);
878 }
879 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
880