• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include "sched/tune.h"
59 
60 #include <asm/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64 
65 static void exit_mm(struct task_struct *tsk);
66 
__unhash_process(struct task_struct * p,bool group_dead)67 static void __unhash_process(struct task_struct *p, bool group_dead)
68 {
69 	nr_threads--;
70 	detach_pid(p, PIDTYPE_PID);
71 	if (group_dead) {
72 		detach_pid(p, PIDTYPE_PGID);
73 		detach_pid(p, PIDTYPE_SID);
74 
75 		list_del_rcu(&p->tasks);
76 		list_del_init(&p->sibling);
77 		__this_cpu_dec(process_counts);
78 	}
79 	list_del_rcu(&p->thread_group);
80 	list_del_rcu(&p->thread_node);
81 }
82 
83 /*
84  * This function expects the tasklist_lock write-locked.
85  */
__exit_signal(struct task_struct * tsk)86 static void __exit_signal(struct task_struct *tsk)
87 {
88 	struct signal_struct *sig = tsk->signal;
89 	bool group_dead = thread_group_leader(tsk);
90 	struct sighand_struct *sighand;
91 	struct tty_struct *uninitialized_var(tty);
92 	cputime_t utime, stime;
93 
94 	sighand = rcu_dereference_check(tsk->sighand,
95 					lockdep_tasklist_lock_is_held());
96 	spin_lock(&sighand->siglock);
97 
98 	posix_cpu_timers_exit(tsk);
99 	if (group_dead) {
100 		posix_cpu_timers_exit_group(tsk);
101 		tty = sig->tty;
102 		sig->tty = NULL;
103 	} else {
104 		/*
105 		 * This can only happen if the caller is de_thread().
106 		 * FIXME: this is the temporary hack, we should teach
107 		 * posix-cpu-timers to handle this case correctly.
108 		 */
109 		if (unlikely(has_group_leader_pid(tsk)))
110 			posix_cpu_timers_exit_group(tsk);
111 
112 		/*
113 		 * If there is any task waiting for the group exit
114 		 * then notify it:
115 		 */
116 		if (sig->notify_count > 0 && !--sig->notify_count)
117 			wake_up_process(sig->group_exit_task);
118 
119 		if (tsk == sig->curr_target)
120 			sig->curr_target = next_thread(tsk);
121 	}
122 
123 	/*
124 	 * Accumulate here the counters for all threads but the group leader
125 	 * as they die, so they can be added into the process-wide totals
126 	 * when those are taken.  The group leader stays around as a zombie as
127 	 * long as there are other threads.  When it gets reaped, the exit.c
128 	 * code will add its counts into these totals.  We won't ever get here
129 	 * for the group leader, since it will have been the last reference on
130 	 * the signal_struct.
131 	 */
132 	task_cputime(tsk, &utime, &stime);
133 	write_seqlock(&sig->stats_lock);
134 	sig->utime += utime;
135 	sig->stime += stime;
136 	sig->gtime += task_gtime(tsk);
137 	sig->min_flt += tsk->min_flt;
138 	sig->maj_flt += tsk->maj_flt;
139 	sig->nvcsw += tsk->nvcsw;
140 	sig->nivcsw += tsk->nivcsw;
141 	sig->inblock += task_io_get_inblock(tsk);
142 	sig->oublock += task_io_get_oublock(tsk);
143 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
144 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
145 	sig->nr_threads--;
146 	__unhash_process(tsk, group_dead);
147 	write_sequnlock(&sig->stats_lock);
148 
149 	/*
150 	 * Do this under ->siglock, we can race with another thread
151 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
152 	 */
153 	flush_sigqueue(&tsk->pending);
154 	tsk->sighand = NULL;
155 	spin_unlock(&sighand->siglock);
156 
157 	__cleanup_sighand(sighand);
158 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
159 	if (group_dead) {
160 		flush_sigqueue(&sig->shared_pending);
161 		tty_kref_put(tty);
162 	}
163 }
164 
delayed_put_task_struct(struct rcu_head * rhp)165 static void delayed_put_task_struct(struct rcu_head *rhp)
166 {
167 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
168 
169 	perf_event_delayed_put(tsk);
170 	trace_sched_process_free(tsk);
171 	put_task_struct(tsk);
172 }
173 
174 
release_task(struct task_struct * p)175 void release_task(struct task_struct *p)
176 {
177 	struct task_struct *leader;
178 	int zap_leader;
179 repeat:
180 	/* don't need to get the RCU readlock here - the process is dead and
181 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
182 	rcu_read_lock();
183 	atomic_dec(&__task_cred(p)->user->processes);
184 	rcu_read_unlock();
185 
186 	proc_flush_task(p);
187 
188 	write_lock_irq(&tasklist_lock);
189 	ptrace_release_task(p);
190 	__exit_signal(p);
191 
192 	/*
193 	 * If we are the last non-leader member of the thread
194 	 * group, and the leader is zombie, then notify the
195 	 * group leader's parent process. (if it wants notification.)
196 	 */
197 	zap_leader = 0;
198 	leader = p->group_leader;
199 	if (leader != p && thread_group_empty(leader)
200 			&& leader->exit_state == EXIT_ZOMBIE) {
201 		/*
202 		 * If we were the last child thread and the leader has
203 		 * exited already, and the leader's parent ignores SIGCHLD,
204 		 * then we are the one who should release the leader.
205 		 */
206 		zap_leader = do_notify_parent(leader, leader->exit_signal);
207 		if (zap_leader)
208 			leader->exit_state = EXIT_DEAD;
209 	}
210 
211 	write_unlock_irq(&tasklist_lock);
212 	release_thread(p);
213 	call_rcu(&p->rcu, delayed_put_task_struct);
214 
215 	p = leader;
216 	if (unlikely(zap_leader))
217 		goto repeat;
218 }
219 
220 /*
221  * This checks not only the pgrp, but falls back on the pid if no
222  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
223  * without this...
224  *
225  * The caller must hold rcu lock or the tasklist lock.
226  */
session_of_pgrp(struct pid * pgrp)227 struct pid *session_of_pgrp(struct pid *pgrp)
228 {
229 	struct task_struct *p;
230 	struct pid *sid = NULL;
231 
232 	p = pid_task(pgrp, PIDTYPE_PGID);
233 	if (p == NULL)
234 		p = pid_task(pgrp, PIDTYPE_PID);
235 	if (p != NULL)
236 		sid = task_session(p);
237 
238 	return sid;
239 }
240 
241 /*
242  * Determine if a process group is "orphaned", according to the POSIX
243  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
244  * by terminal-generated stop signals.  Newly orphaned process groups are
245  * to receive a SIGHUP and a SIGCONT.
246  *
247  * "I ask you, have you ever known what it is to be an orphan?"
248  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)249 static int will_become_orphaned_pgrp(struct pid *pgrp,
250 					struct task_struct *ignored_task)
251 {
252 	struct task_struct *p;
253 
254 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 		if ((p == ignored_task) ||
256 		    (p->exit_state && thread_group_empty(p)) ||
257 		    is_global_init(p->real_parent))
258 			continue;
259 
260 		if (task_pgrp(p->real_parent) != pgrp &&
261 		    task_session(p->real_parent) == task_session(p))
262 			return 0;
263 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
264 
265 	return 1;
266 }
267 
is_current_pgrp_orphaned(void)268 int is_current_pgrp_orphaned(void)
269 {
270 	int retval;
271 
272 	read_lock(&tasklist_lock);
273 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
274 	read_unlock(&tasklist_lock);
275 
276 	return retval;
277 }
278 
has_stopped_jobs(struct pid * pgrp)279 static bool has_stopped_jobs(struct pid *pgrp)
280 {
281 	struct task_struct *p;
282 
283 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
284 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
285 			return true;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 
288 	return false;
289 }
290 
291 /*
292  * Check to see if any process groups have become orphaned as
293  * a result of our exiting, and if they have any stopped jobs,
294  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295  */
296 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 	struct pid *pgrp = task_pgrp(tsk);
300 	struct task_struct *ignored_task = tsk;
301 
302 	if (!parent)
303 		/* exit: our father is in a different pgrp than
304 		 * we are and we were the only connection outside.
305 		 */
306 		parent = tsk->real_parent;
307 	else
308 		/* reparent: our child is in a different pgrp than
309 		 * we are, and it was the only connection outside.
310 		 */
311 		ignored_task = NULL;
312 
313 	if (task_pgrp(parent) != pgrp &&
314 	    task_session(parent) == task_session(tsk) &&
315 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 	    has_stopped_jobs(pgrp)) {
317 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 	}
320 }
321 
322 #ifdef CONFIG_MEMCG
323 /*
324  * A task is exiting.   If it owned this mm, find a new owner for the mm.
325  */
mm_update_next_owner(struct mm_struct * mm)326 void mm_update_next_owner(struct mm_struct *mm)
327 {
328 	struct task_struct *c, *g, *p = current;
329 
330 retry:
331 	/*
332 	 * If the exiting or execing task is not the owner, it's
333 	 * someone else's problem.
334 	 */
335 	if (mm->owner != p)
336 		return;
337 	/*
338 	 * The current owner is exiting/execing and there are no other
339 	 * candidates.  Do not leave the mm pointing to a possibly
340 	 * freed task structure.
341 	 */
342 	if (atomic_read(&mm->mm_users) <= 1) {
343 		mm->owner = NULL;
344 		return;
345 	}
346 
347 	read_lock(&tasklist_lock);
348 	/*
349 	 * Search in the children
350 	 */
351 	list_for_each_entry(c, &p->children, sibling) {
352 		if (c->mm == mm)
353 			goto assign_new_owner;
354 	}
355 
356 	/*
357 	 * Search in the siblings
358 	 */
359 	list_for_each_entry(c, &p->real_parent->children, sibling) {
360 		if (c->mm == mm)
361 			goto assign_new_owner;
362 	}
363 
364 	/*
365 	 * Search through everything else, we should not get here often.
366 	 */
367 	for_each_process(g) {
368 		if (g->flags & PF_KTHREAD)
369 			continue;
370 		for_each_thread(g, c) {
371 			if (c->mm == mm)
372 				goto assign_new_owner;
373 			if (c->mm)
374 				break;
375 		}
376 	}
377 	read_unlock(&tasklist_lock);
378 	/*
379 	 * We found no owner yet mm_users > 1: this implies that we are
380 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
381 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
382 	 */
383 	mm->owner = NULL;
384 	return;
385 
386 assign_new_owner:
387 	BUG_ON(c == p);
388 	get_task_struct(c);
389 	/*
390 	 * The task_lock protects c->mm from changing.
391 	 * We always want mm->owner->mm == mm
392 	 */
393 	task_lock(c);
394 	/*
395 	 * Delay read_unlock() till we have the task_lock()
396 	 * to ensure that c does not slip away underneath us
397 	 */
398 	read_unlock(&tasklist_lock);
399 	if (c->mm != mm) {
400 		task_unlock(c);
401 		put_task_struct(c);
402 		goto retry;
403 	}
404 	mm->owner = c;
405 	task_unlock(c);
406 	put_task_struct(c);
407 }
408 #endif /* CONFIG_MEMCG */
409 
410 /*
411  * Turn us into a lazy TLB process if we
412  * aren't already..
413  */
exit_mm(struct task_struct * tsk)414 static void exit_mm(struct task_struct *tsk)
415 {
416 	struct mm_struct *mm = tsk->mm;
417 	struct core_state *core_state;
418 
419 	mm_release(tsk, mm);
420 	if (!mm)
421 		return;
422 	sync_mm_rss(mm);
423 	/*
424 	 * Serialize with any possible pending coredump.
425 	 * We must hold mmap_sem around checking core_state
426 	 * and clearing tsk->mm.  The core-inducing thread
427 	 * will increment ->nr_threads for each thread in the
428 	 * group with ->mm != NULL.
429 	 */
430 	down_read(&mm->mmap_sem);
431 	core_state = mm->core_state;
432 	if (core_state) {
433 		struct core_thread self;
434 
435 		up_read(&mm->mmap_sem);
436 
437 		self.task = tsk;
438 		self.next = xchg(&core_state->dumper.next, &self);
439 		/*
440 		 * Implies mb(), the result of xchg() must be visible
441 		 * to core_state->dumper.
442 		 */
443 		if (atomic_dec_and_test(&core_state->nr_threads))
444 			complete(&core_state->startup);
445 
446 		for (;;) {
447 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
448 			if (!self.task) /* see coredump_finish() */
449 				break;
450 			freezable_schedule();
451 		}
452 		__set_task_state(tsk, TASK_RUNNING);
453 		down_read(&mm->mmap_sem);
454 	}
455 	atomic_inc(&mm->mm_count);
456 	BUG_ON(mm != tsk->active_mm);
457 	/* more a memory barrier than a real lock */
458 	task_lock(tsk);
459 	tsk->mm = NULL;
460 	up_read(&mm->mmap_sem);
461 	enter_lazy_tlb(mm, current);
462 	task_unlock(tsk);
463 	mm_update_next_owner(mm);
464 	mmput(mm);
465 	clear_thread_flag(TIF_MEMDIE);
466 }
467 
468 /*
469  * When we die, we re-parent all our children, and try to:
470  * 1. give them to another thread in our thread group, if such a member exists
471  * 2. give it to the first ancestor process which prctl'd itself as a
472  *    child_subreaper for its children (like a service manager)
473  * 3. give it to the init process (PID 1) in our pid namespace
474  */
find_new_reaper(struct task_struct * father)475 static struct task_struct *find_new_reaper(struct task_struct *father)
476 	__releases(&tasklist_lock)
477 	__acquires(&tasklist_lock)
478 {
479 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
480 	struct task_struct *thread;
481 
482 	thread = father;
483 	while_each_thread(father, thread) {
484 		if (thread->flags & PF_EXITING)
485 			continue;
486 		if (unlikely(pid_ns->child_reaper == father))
487 			pid_ns->child_reaper = thread;
488 		return thread;
489 	}
490 
491 	if (unlikely(pid_ns->child_reaper == father)) {
492 		write_unlock_irq(&tasklist_lock);
493 		if (unlikely(pid_ns == &init_pid_ns)) {
494 			panic("Attempted to kill init! exitcode=0x%08x\n",
495 				father->signal->group_exit_code ?:
496 					father->exit_code);
497 		}
498 
499 		zap_pid_ns_processes(pid_ns);
500 		write_lock_irq(&tasklist_lock);
501 	} else if (father->signal->has_child_subreaper) {
502 		struct task_struct *reaper;
503 
504 		/*
505 		 * Find the first ancestor marked as child_subreaper.
506 		 * Note that the code below checks same_thread_group(reaper,
507 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
508 		 * PID namespace. However we still need the check above, see
509 		 * http://marc.info/?l=linux-kernel&m=131385460420380
510 		 */
511 		for (reaper = father->real_parent;
512 		     reaper != &init_task;
513 		     reaper = reaper->real_parent) {
514 			if (same_thread_group(reaper, pid_ns->child_reaper))
515 				break;
516 			if (!reaper->signal->is_child_subreaper)
517 				continue;
518 			thread = reaper;
519 			do {
520 				if (!(thread->flags & PF_EXITING))
521 					return reaper;
522 			} while_each_thread(reaper, thread);
523 		}
524 	}
525 
526 	return pid_ns->child_reaper;
527 }
528 
529 /*
530 * Any that need to be release_task'd are put on the @dead list.
531  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)532 static void reparent_leader(struct task_struct *father, struct task_struct *p,
533 				struct list_head *dead)
534 {
535 	list_move_tail(&p->sibling, &p->real_parent->children);
536 
537 	if (p->exit_state == EXIT_DEAD)
538 		return;
539 	/*
540 	 * If this is a threaded reparent there is no need to
541 	 * notify anyone anything has happened.
542 	 */
543 	if (same_thread_group(p->real_parent, father))
544 		return;
545 
546 	/* We don't want people slaying init. */
547 	p->exit_signal = SIGCHLD;
548 
549 	/* If it has exited notify the new parent about this child's death. */
550 	if (!p->ptrace &&
551 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
552 		if (do_notify_parent(p, p->exit_signal)) {
553 			p->exit_state = EXIT_DEAD;
554 			list_move_tail(&p->sibling, dead);
555 		}
556 	}
557 
558 	kill_orphaned_pgrp(p, father);
559 }
560 
forget_original_parent(struct task_struct * father)561 static void forget_original_parent(struct task_struct *father)
562 {
563 	struct task_struct *p, *n, *reaper;
564 	LIST_HEAD(dead_children);
565 
566 	write_lock_irq(&tasklist_lock);
567 	/*
568 	 * Note that exit_ptrace() and find_new_reaper() might
569 	 * drop tasklist_lock and reacquire it.
570 	 */
571 	exit_ptrace(father);
572 	reaper = find_new_reaper(father);
573 
574 	list_for_each_entry_safe(p, n, &father->children, sibling) {
575 		struct task_struct *t = p;
576 
577 		do {
578 			t->real_parent = reaper;
579 			if (t->parent == father) {
580 				BUG_ON(t->ptrace);
581 				t->parent = t->real_parent;
582 			}
583 			if (t->pdeath_signal)
584 				group_send_sig_info(t->pdeath_signal,
585 						    SEND_SIG_NOINFO, t);
586 		} while_each_thread(p, t);
587 		reparent_leader(father, p, &dead_children);
588 	}
589 	write_unlock_irq(&tasklist_lock);
590 
591 	BUG_ON(!list_empty(&father->children));
592 
593 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
594 		list_del_init(&p->sibling);
595 		release_task(p);
596 	}
597 }
598 
599 /*
600  * Send signals to all our closest relatives so that they know
601  * to properly mourn us..
602  */
exit_notify(struct task_struct * tsk,int group_dead)603 static void exit_notify(struct task_struct *tsk, int group_dead)
604 {
605 	bool autoreap;
606 
607 	/*
608 	 * This does two things:
609 	 *
610 	 * A.  Make init inherit all the child processes
611 	 * B.  Check to see if any process groups have become orphaned
612 	 *	as a result of our exiting, and if they have any stopped
613 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
614 	 */
615 	forget_original_parent(tsk);
616 
617 	write_lock_irq(&tasklist_lock);
618 	if (group_dead)
619 		kill_orphaned_pgrp(tsk->group_leader, NULL);
620 
621 	if (unlikely(tsk->ptrace)) {
622 		int sig = thread_group_leader(tsk) &&
623 				thread_group_empty(tsk) &&
624 				!ptrace_reparented(tsk) ?
625 			tsk->exit_signal : SIGCHLD;
626 		autoreap = do_notify_parent(tsk, sig);
627 	} else if (thread_group_leader(tsk)) {
628 		autoreap = thread_group_empty(tsk) &&
629 			do_notify_parent(tsk, tsk->exit_signal);
630 	} else {
631 		autoreap = true;
632 	}
633 
634 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
635 
636 	/* mt-exec, de_thread() is waiting for group leader */
637 	if (unlikely(tsk->signal->notify_count < 0))
638 		wake_up_process(tsk->signal->group_exit_task);
639 	write_unlock_irq(&tasklist_lock);
640 
641 	/* If the process is dead, release it - nobody will wait for it */
642 	if (autoreap)
643 		release_task(tsk);
644 }
645 
646 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)647 static void check_stack_usage(void)
648 {
649 	static DEFINE_SPINLOCK(low_water_lock);
650 	static int lowest_to_date = THREAD_SIZE;
651 	unsigned long free;
652 
653 	free = stack_not_used(current);
654 
655 	if (free >= lowest_to_date)
656 		return;
657 
658 	spin_lock(&low_water_lock);
659 	if (free < lowest_to_date) {
660 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
661 			current->comm, task_pid_nr(current), free);
662 		lowest_to_date = free;
663 	}
664 	spin_unlock(&low_water_lock);
665 }
666 #else
check_stack_usage(void)667 static inline void check_stack_usage(void) {}
668 #endif
669 
do_exit(long code)670 void do_exit(long code)
671 {
672 	struct task_struct *tsk = current;
673 	int group_dead;
674 	TASKS_RCU(int tasks_rcu_i);
675 
676 	profile_task_exit(tsk);
677 	kcov_task_exit(tsk);
678 
679 	WARN_ON(blk_needs_flush_plug(tsk));
680 
681 	if (unlikely(in_interrupt()))
682 		panic("Aiee, killing interrupt handler!");
683 	if (unlikely(!tsk->pid))
684 		panic("Attempted to kill the idle task!");
685 
686 	/*
687 	 * If do_exit is called because this processes oopsed, it's possible
688 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
689 	 * continuing. Amongst other possible reasons, this is to prevent
690 	 * mm_release()->clear_child_tid() from writing to a user-controlled
691 	 * kernel address.
692 	 */
693 	set_fs(USER_DS);
694 
695 	ptrace_event(PTRACE_EVENT_EXIT, code);
696 
697 	validate_creds_for_do_exit(tsk);
698 
699 	/*
700 	 * We're taking recursive faults here in do_exit. Safest is to just
701 	 * leave this task alone and wait for reboot.
702 	 */
703 	if (unlikely(tsk->flags & PF_EXITING)) {
704 		pr_alert("Fixing recursive fault but reboot is needed!\n");
705 		/*
706 		 * We can do this unlocked here. The futex code uses
707 		 * this flag just to verify whether the pi state
708 		 * cleanup has been done or not. In the worst case it
709 		 * loops once more. We pretend that the cleanup was
710 		 * done as there is no way to return. Either the
711 		 * OWNER_DIED bit is set by now or we push the blocked
712 		 * task into the wait for ever nirwana as well.
713 		 */
714 		tsk->flags |= PF_EXITPIDONE;
715 		set_current_state(TASK_UNINTERRUPTIBLE);
716 		schedule();
717 	}
718 
719 	exit_signals(tsk);  /* sets PF_EXITING */
720 
721 	schedtune_exit_task(tsk);
722 
723 	/*
724 	 * tsk->flags are checked in the futex code to protect against
725 	 * an exiting task cleaning up the robust pi futexes.
726 	 */
727 	smp_mb();
728 	raw_spin_unlock_wait(&tsk->pi_lock);
729 
730 	if (unlikely(in_atomic()))
731 		pr_info("note: %s[%d] exited with preempt_count %d\n",
732 			current->comm, task_pid_nr(current),
733 			preempt_count());
734 
735 	acct_update_integrals(tsk);
736 	/* sync mm's RSS info before statistics gathering */
737 	if (tsk->mm)
738 		sync_mm_rss(tsk->mm);
739 	group_dead = atomic_dec_and_test(&tsk->signal->live);
740 	if (group_dead) {
741 		hrtimer_cancel(&tsk->signal->real_timer);
742 		exit_itimers(tsk->signal);
743 		if (tsk->mm)
744 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
745 	}
746 	acct_collect(code, group_dead);
747 	if (group_dead)
748 		tty_audit_exit();
749 	audit_free(tsk);
750 
751 	tsk->exit_code = code;
752 	taskstats_exit(tsk, group_dead);
753 
754 	exit_mm(tsk);
755 
756 	if (group_dead)
757 		acct_process();
758 	trace_sched_process_exit(tsk);
759 
760 	exit_sem(tsk);
761 	exit_shm(tsk);
762 	exit_files(tsk);
763 	exit_fs(tsk);
764 	if (group_dead)
765 		disassociate_ctty(1);
766 	exit_task_namespaces(tsk);
767 	exit_task_work(tsk);
768 	exit_thread(tsk);
769 
770 	/*
771 	 * Flush inherited counters to the parent - before the parent
772 	 * gets woken up by child-exit notifications.
773 	 *
774 	 * because of cgroup mode, must be called before cgroup_exit()
775 	 */
776 	perf_event_exit_task(tsk);
777 
778 	cgroup_exit(tsk);
779 
780 	module_put(task_thread_info(tsk)->exec_domain->module);
781 
782 	/*
783 	 * FIXME: do that only when needed, using sched_exit tracepoint
784 	 */
785 	flush_ptrace_hw_breakpoint(tsk);
786 
787 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
788 	exit_notify(tsk, group_dead);
789 	proc_exit_connector(tsk);
790 #ifdef CONFIG_NUMA
791 	task_lock(tsk);
792 	mpol_put(tsk->mempolicy);
793 	tsk->mempolicy = NULL;
794 	task_unlock(tsk);
795 #endif
796 #ifdef CONFIG_FUTEX
797 	if (unlikely(current->pi_state_cache))
798 		kfree(current->pi_state_cache);
799 #endif
800 	/*
801 	 * Make sure we are holding no locks:
802 	 */
803 	debug_check_no_locks_held();
804 	/*
805 	 * We can do this unlocked here. The futex code uses this flag
806 	 * just to verify whether the pi state cleanup has been done
807 	 * or not. In the worst case it loops once more.
808 	 */
809 	tsk->flags |= PF_EXITPIDONE;
810 
811 	if (tsk->io_context)
812 		exit_io_context(tsk);
813 
814 	if (tsk->splice_pipe)
815 		free_pipe_info(tsk->splice_pipe);
816 
817 	if (tsk->task_frag.page)
818 		put_page(tsk->task_frag.page);
819 
820 	validate_creds_for_do_exit(tsk);
821 
822 	check_stack_usage();
823 	preempt_disable();
824 	if (tsk->nr_dirtied)
825 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
826 	exit_rcu();
827 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
828 
829 	/*
830 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
831 	 * when the following two conditions become true.
832 	 *   - There is race condition of mmap_sem (It is acquired by
833 	 *     exit_mm()), and
834 	 *   - SMI occurs before setting TASK_RUNINNG.
835 	 *     (or hypervisor of virtual machine switches to other guest)
836 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
837 	 *
838 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
839 	 * is held by try_to_wake_up()
840 	 */
841 	smp_mb();
842 	raw_spin_unlock_wait(&tsk->pi_lock);
843 
844 	/* causes final put_task_struct in finish_task_switch(). */
845 	tsk->state = TASK_DEAD;
846 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
847 	schedule();
848 	BUG();
849 	/* Avoid "noreturn function does return".  */
850 	for (;;)
851 		cpu_relax();	/* For when BUG is null */
852 }
853 EXPORT_SYMBOL_GPL(do_exit);
854 
complete_and_exit(struct completion * comp,long code)855 void complete_and_exit(struct completion *comp, long code)
856 {
857 	if (comp)
858 		complete(comp);
859 
860 	do_exit(code);
861 }
862 EXPORT_SYMBOL(complete_and_exit);
863 
SYSCALL_DEFINE1(exit,int,error_code)864 SYSCALL_DEFINE1(exit, int, error_code)
865 {
866 	do_exit((error_code&0xff)<<8);
867 }
868 
869 /*
870  * Take down every thread in the group.  This is called by fatal signals
871  * as well as by sys_exit_group (below).
872  */
873 void
do_group_exit(int exit_code)874 do_group_exit(int exit_code)
875 {
876 	struct signal_struct *sig = current->signal;
877 
878 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
879 
880 	if (signal_group_exit(sig))
881 		exit_code = sig->group_exit_code;
882 	else if (!thread_group_empty(current)) {
883 		struct sighand_struct *const sighand = current->sighand;
884 
885 		spin_lock_irq(&sighand->siglock);
886 		if (signal_group_exit(sig))
887 			/* Another thread got here before we took the lock.  */
888 			exit_code = sig->group_exit_code;
889 		else {
890 			sig->group_exit_code = exit_code;
891 			sig->flags = SIGNAL_GROUP_EXIT;
892 			zap_other_threads(current);
893 		}
894 		spin_unlock_irq(&sighand->siglock);
895 	}
896 
897 	do_exit(exit_code);
898 	/* NOTREACHED */
899 }
900 
901 /*
902  * this kills every thread in the thread group. Note that any externally
903  * wait4()-ing process will get the correct exit code - even if this
904  * thread is not the thread group leader.
905  */
SYSCALL_DEFINE1(exit_group,int,error_code)906 SYSCALL_DEFINE1(exit_group, int, error_code)
907 {
908 	do_group_exit((error_code & 0xff) << 8);
909 	/* NOTREACHED */
910 	return 0;
911 }
912 
913 struct wait_opts {
914 	enum pid_type		wo_type;
915 	int			wo_flags;
916 	struct pid		*wo_pid;
917 
918 	struct siginfo __user	*wo_info;
919 	int __user		*wo_stat;
920 	struct rusage __user	*wo_rusage;
921 
922 	wait_queue_t		child_wait;
923 	int			notask_error;
924 };
925 
926 static inline
task_pid_type(struct task_struct * task,enum pid_type type)927 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
928 {
929 	if (type != PIDTYPE_PID)
930 		task = task->group_leader;
931 	return task->pids[type].pid;
932 }
933 
eligible_pid(struct wait_opts * wo,struct task_struct * p)934 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
935 {
936 	return	wo->wo_type == PIDTYPE_MAX ||
937 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
938 }
939 
940 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)941 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
942 {
943 	if (!eligible_pid(wo, p))
944 		return 0;
945 
946 	/*
947 	 * Wait for all children (clone and not) if __WALL is set or
948 	 * if it is traced by us.
949 	 */
950 	if (ptrace || (wo->wo_flags & __WALL))
951 		return 1;
952 
953 	/*
954 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
955 	 * otherwise, wait for non-clone children *only*.
956 	 *
957 	 * Note: a "clone" child here is one that reports to its parent
958 	 * using a signal other than SIGCHLD, or a non-leader thread which
959 	 * we can only see if it is traced by us.
960 	 */
961 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
962 		return 0;
963 
964 	return 1;
965 }
966 
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)967 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
968 				pid_t pid, uid_t uid, int why, int status)
969 {
970 	struct siginfo __user *infop;
971 	int retval = wo->wo_rusage
972 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
973 
974 	put_task_struct(p);
975 	infop = wo->wo_info;
976 	if (infop) {
977 		if (!retval)
978 			retval = put_user(SIGCHLD, &infop->si_signo);
979 		if (!retval)
980 			retval = put_user(0, &infop->si_errno);
981 		if (!retval)
982 			retval = put_user((short)why, &infop->si_code);
983 		if (!retval)
984 			retval = put_user(pid, &infop->si_pid);
985 		if (!retval)
986 			retval = put_user(uid, &infop->si_uid);
987 		if (!retval)
988 			retval = put_user(status, &infop->si_status);
989 	}
990 	if (!retval)
991 		retval = pid;
992 	return retval;
993 }
994 
995 /*
996  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
997  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
998  * the lock and this task is uninteresting.  If we return nonzero, we have
999  * released the lock and the system call should return.
1000  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1001 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1002 {
1003 	unsigned long state;
1004 	int retval, status, traced;
1005 	pid_t pid = task_pid_vnr(p);
1006 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1007 	struct siginfo __user *infop;
1008 
1009 	if (!likely(wo->wo_flags & WEXITED))
1010 		return 0;
1011 
1012 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1013 		int exit_code = p->exit_code;
1014 		int why;
1015 
1016 		get_task_struct(p);
1017 		read_unlock(&tasklist_lock);
1018 		if ((exit_code & 0x7f) == 0) {
1019 			why = CLD_EXITED;
1020 			status = exit_code >> 8;
1021 		} else {
1022 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1023 			status = exit_code & 0x7f;
1024 		}
1025 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1026 	}
1027 
1028 	traced = ptrace_reparented(p);
1029 	/*
1030 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1031 	 */
1032 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1033 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1034 		return 0;
1035 	/*
1036 	 * It can be ptraced but not reparented, check
1037 	 * thread_group_leader() to filter out sub-threads.
1038 	 */
1039 	if (likely(!traced) && thread_group_leader(p)) {
1040 		struct signal_struct *psig;
1041 		struct signal_struct *sig;
1042 		unsigned long maxrss;
1043 		cputime_t tgutime, tgstime;
1044 
1045 		/*
1046 		 * The resource counters for the group leader are in its
1047 		 * own task_struct.  Those for dead threads in the group
1048 		 * are in its signal_struct, as are those for the child
1049 		 * processes it has previously reaped.  All these
1050 		 * accumulate in the parent's signal_struct c* fields.
1051 		 *
1052 		 * We don't bother to take a lock here to protect these
1053 		 * p->signal fields, because they are only touched by
1054 		 * __exit_signal, which runs with tasklist_lock
1055 		 * write-locked anyway, and so is excluded here.  We do
1056 		 * need to protect the access to parent->signal fields,
1057 		 * as other threads in the parent group can be right
1058 		 * here reaping other children at the same time.
1059 		 *
1060 		 * We use thread_group_cputime_adjusted() to get times for
1061 		 * the thread group, which consolidates times for all threads
1062 		 * in the group including the group leader.
1063 		 */
1064 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1065 		spin_lock_irq(&p->real_parent->sighand->siglock);
1066 		psig = p->real_parent->signal;
1067 		sig = p->signal;
1068 		write_seqlock(&psig->stats_lock);
1069 		psig->cutime += tgutime + sig->cutime;
1070 		psig->cstime += tgstime + sig->cstime;
1071 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1072 		psig->cmin_flt +=
1073 			p->min_flt + sig->min_flt + sig->cmin_flt;
1074 		psig->cmaj_flt +=
1075 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1076 		psig->cnvcsw +=
1077 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1078 		psig->cnivcsw +=
1079 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1080 		psig->cinblock +=
1081 			task_io_get_inblock(p) +
1082 			sig->inblock + sig->cinblock;
1083 		psig->coublock +=
1084 			task_io_get_oublock(p) +
1085 			sig->oublock + sig->coublock;
1086 		maxrss = max(sig->maxrss, sig->cmaxrss);
1087 		if (psig->cmaxrss < maxrss)
1088 			psig->cmaxrss = maxrss;
1089 		task_io_accounting_add(&psig->ioac, &p->ioac);
1090 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1091 		write_sequnlock(&psig->stats_lock);
1092 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1093 	}
1094 
1095 	/*
1096 	 * Now we are sure this task is interesting, and no other
1097 	 * thread can reap it because we its state == DEAD/TRACE.
1098 	 */
1099 	read_unlock(&tasklist_lock);
1100 
1101 	retval = wo->wo_rusage
1102 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1103 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1104 		? p->signal->group_exit_code : p->exit_code;
1105 	if (!retval && wo->wo_stat)
1106 		retval = put_user(status, wo->wo_stat);
1107 
1108 	infop = wo->wo_info;
1109 	if (!retval && infop)
1110 		retval = put_user(SIGCHLD, &infop->si_signo);
1111 	if (!retval && infop)
1112 		retval = put_user(0, &infop->si_errno);
1113 	if (!retval && infop) {
1114 		int why;
1115 
1116 		if ((status & 0x7f) == 0) {
1117 			why = CLD_EXITED;
1118 			status >>= 8;
1119 		} else {
1120 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1121 			status &= 0x7f;
1122 		}
1123 		retval = put_user((short)why, &infop->si_code);
1124 		if (!retval)
1125 			retval = put_user(status, &infop->si_status);
1126 	}
1127 	if (!retval && infop)
1128 		retval = put_user(pid, &infop->si_pid);
1129 	if (!retval && infop)
1130 		retval = put_user(uid, &infop->si_uid);
1131 	if (!retval)
1132 		retval = pid;
1133 
1134 	if (state == EXIT_TRACE) {
1135 		write_lock_irq(&tasklist_lock);
1136 		/* We dropped tasklist, ptracer could die and untrace */
1137 		ptrace_unlink(p);
1138 
1139 		/* If parent wants a zombie, don't release it now */
1140 		state = EXIT_ZOMBIE;
1141 		if (do_notify_parent(p, p->exit_signal))
1142 			state = EXIT_DEAD;
1143 		p->exit_state = state;
1144 		write_unlock_irq(&tasklist_lock);
1145 	}
1146 	if (state == EXIT_DEAD)
1147 		release_task(p);
1148 
1149 	return retval;
1150 }
1151 
task_stopped_code(struct task_struct * p,bool ptrace)1152 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1153 {
1154 	if (ptrace) {
1155 		if (task_is_stopped_or_traced(p) &&
1156 		    !(p->jobctl & JOBCTL_LISTENING))
1157 			return &p->exit_code;
1158 	} else {
1159 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1160 			return &p->signal->group_exit_code;
1161 	}
1162 	return NULL;
1163 }
1164 
1165 /**
1166  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1167  * @wo: wait options
1168  * @ptrace: is the wait for ptrace
1169  * @p: task to wait for
1170  *
1171  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1172  *
1173  * CONTEXT:
1174  * read_lock(&tasklist_lock), which is released if return value is
1175  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1176  *
1177  * RETURNS:
1178  * 0 if wait condition didn't exist and search for other wait conditions
1179  * should continue.  Non-zero return, -errno on failure and @p's pid on
1180  * success, implies that tasklist_lock is released and wait condition
1181  * search should terminate.
1182  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1183 static int wait_task_stopped(struct wait_opts *wo,
1184 				int ptrace, struct task_struct *p)
1185 {
1186 	struct siginfo __user *infop;
1187 	int retval, exit_code, *p_code, why;
1188 	uid_t uid = 0; /* unneeded, required by compiler */
1189 	pid_t pid;
1190 
1191 	/*
1192 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1193 	 */
1194 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1195 		return 0;
1196 
1197 	if (!task_stopped_code(p, ptrace))
1198 		return 0;
1199 
1200 	exit_code = 0;
1201 	spin_lock_irq(&p->sighand->siglock);
1202 
1203 	p_code = task_stopped_code(p, ptrace);
1204 	if (unlikely(!p_code))
1205 		goto unlock_sig;
1206 
1207 	exit_code = *p_code;
1208 	if (!exit_code)
1209 		goto unlock_sig;
1210 
1211 	if (!unlikely(wo->wo_flags & WNOWAIT))
1212 		*p_code = 0;
1213 
1214 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1215 unlock_sig:
1216 	spin_unlock_irq(&p->sighand->siglock);
1217 	if (!exit_code)
1218 		return 0;
1219 
1220 	/*
1221 	 * Now we are pretty sure this task is interesting.
1222 	 * Make sure it doesn't get reaped out from under us while we
1223 	 * give up the lock and then examine it below.  We don't want to
1224 	 * keep holding onto the tasklist_lock while we call getrusage and
1225 	 * possibly take page faults for user memory.
1226 	 */
1227 	get_task_struct(p);
1228 	pid = task_pid_vnr(p);
1229 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1230 	read_unlock(&tasklist_lock);
1231 
1232 	if (unlikely(wo->wo_flags & WNOWAIT))
1233 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1234 
1235 	retval = wo->wo_rusage
1236 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1237 	if (!retval && wo->wo_stat)
1238 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1239 
1240 	infop = wo->wo_info;
1241 	if (!retval && infop)
1242 		retval = put_user(SIGCHLD, &infop->si_signo);
1243 	if (!retval && infop)
1244 		retval = put_user(0, &infop->si_errno);
1245 	if (!retval && infop)
1246 		retval = put_user((short)why, &infop->si_code);
1247 	if (!retval && infop)
1248 		retval = put_user(exit_code, &infop->si_status);
1249 	if (!retval && infop)
1250 		retval = put_user(pid, &infop->si_pid);
1251 	if (!retval && infop)
1252 		retval = put_user(uid, &infop->si_uid);
1253 	if (!retval)
1254 		retval = pid;
1255 	put_task_struct(p);
1256 
1257 	BUG_ON(!retval);
1258 	return retval;
1259 }
1260 
1261 /*
1262  * Handle do_wait work for one task in a live, non-stopped state.
1263  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1264  * the lock and this task is uninteresting.  If we return nonzero, we have
1265  * released the lock and the system call should return.
1266  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1267 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1268 {
1269 	int retval;
1270 	pid_t pid;
1271 	uid_t uid;
1272 
1273 	if (!unlikely(wo->wo_flags & WCONTINUED))
1274 		return 0;
1275 
1276 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1277 		return 0;
1278 
1279 	spin_lock_irq(&p->sighand->siglock);
1280 	/* Re-check with the lock held.  */
1281 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1282 		spin_unlock_irq(&p->sighand->siglock);
1283 		return 0;
1284 	}
1285 	if (!unlikely(wo->wo_flags & WNOWAIT))
1286 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1287 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1288 	spin_unlock_irq(&p->sighand->siglock);
1289 
1290 	pid = task_pid_vnr(p);
1291 	get_task_struct(p);
1292 	read_unlock(&tasklist_lock);
1293 
1294 	if (!wo->wo_info) {
1295 		retval = wo->wo_rusage
1296 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1297 		put_task_struct(p);
1298 		if (!retval && wo->wo_stat)
1299 			retval = put_user(0xffff, wo->wo_stat);
1300 		if (!retval)
1301 			retval = pid;
1302 	} else {
1303 		retval = wait_noreap_copyout(wo, p, pid, uid,
1304 					     CLD_CONTINUED, SIGCONT);
1305 		BUG_ON(retval == 0);
1306 	}
1307 
1308 	return retval;
1309 }
1310 
1311 /*
1312  * Consider @p for a wait by @parent.
1313  *
1314  * -ECHILD should be in ->notask_error before the first call.
1315  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1316  * Returns zero if the search for a child should continue;
1317  * then ->notask_error is 0 if @p is an eligible child,
1318  * or another error from security_task_wait(), or still -ECHILD.
1319  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1320 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1321 				struct task_struct *p)
1322 {
1323 	/*
1324 	 * We can race with wait_task_zombie() from another thread.
1325 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1326 	 * can't confuse the checks below.
1327 	 */
1328 	int exit_state = ACCESS_ONCE(p->exit_state);
1329 	int ret;
1330 
1331 	if (unlikely(exit_state == EXIT_DEAD))
1332 		return 0;
1333 
1334 	ret = eligible_child(wo, ptrace, p);
1335 	if (!ret)
1336 		return ret;
1337 
1338 	ret = security_task_wait(p);
1339 	if (unlikely(ret < 0)) {
1340 		/*
1341 		 * If we have not yet seen any eligible child,
1342 		 * then let this error code replace -ECHILD.
1343 		 * A permission error will give the user a clue
1344 		 * to look for security policy problems, rather
1345 		 * than for mysterious wait bugs.
1346 		 */
1347 		if (wo->notask_error)
1348 			wo->notask_error = ret;
1349 		return 0;
1350 	}
1351 
1352 	if (unlikely(exit_state == EXIT_TRACE)) {
1353 		/*
1354 		 * ptrace == 0 means we are the natural parent. In this case
1355 		 * we should clear notask_error, debugger will notify us.
1356 		 */
1357 		if (likely(!ptrace))
1358 			wo->notask_error = 0;
1359 		return 0;
1360 	}
1361 
1362 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1363 		/*
1364 		 * If it is traced by its real parent's group, just pretend
1365 		 * the caller is ptrace_do_wait() and reap this child if it
1366 		 * is zombie.
1367 		 *
1368 		 * This also hides group stop state from real parent; otherwise
1369 		 * a single stop can be reported twice as group and ptrace stop.
1370 		 * If a ptracer wants to distinguish these two events for its
1371 		 * own children it should create a separate process which takes
1372 		 * the role of real parent.
1373 		 */
1374 		if (!ptrace_reparented(p))
1375 			ptrace = 1;
1376 	}
1377 
1378 	/* slay zombie? */
1379 	if (exit_state == EXIT_ZOMBIE) {
1380 		/* we don't reap group leaders with subthreads */
1381 		if (!delay_group_leader(p)) {
1382 			/*
1383 			 * A zombie ptracee is only visible to its ptracer.
1384 			 * Notification and reaping will be cascaded to the
1385 			 * real parent when the ptracer detaches.
1386 			 */
1387 			if (unlikely(ptrace) || likely(!p->ptrace))
1388 				return wait_task_zombie(wo, p);
1389 		}
1390 
1391 		/*
1392 		 * Allow access to stopped/continued state via zombie by
1393 		 * falling through.  Clearing of notask_error is complex.
1394 		 *
1395 		 * When !@ptrace:
1396 		 *
1397 		 * If WEXITED is set, notask_error should naturally be
1398 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1399 		 * so, if there are live subthreads, there are events to
1400 		 * wait for.  If all subthreads are dead, it's still safe
1401 		 * to clear - this function will be called again in finite
1402 		 * amount time once all the subthreads are released and
1403 		 * will then return without clearing.
1404 		 *
1405 		 * When @ptrace:
1406 		 *
1407 		 * Stopped state is per-task and thus can't change once the
1408 		 * target task dies.  Only continued and exited can happen.
1409 		 * Clear notask_error if WCONTINUED | WEXITED.
1410 		 */
1411 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1412 			wo->notask_error = 0;
1413 	} else {
1414 		/*
1415 		 * @p is alive and it's gonna stop, continue or exit, so
1416 		 * there always is something to wait for.
1417 		 */
1418 		wo->notask_error = 0;
1419 	}
1420 
1421 	/*
1422 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1423 	 * is used and the two don't interact with each other.
1424 	 */
1425 	ret = wait_task_stopped(wo, ptrace, p);
1426 	if (ret)
1427 		return ret;
1428 
1429 	/*
1430 	 * Wait for continued.  There's only one continued state and the
1431 	 * ptracer can consume it which can confuse the real parent.  Don't
1432 	 * use WCONTINUED from ptracer.  You don't need or want it.
1433 	 */
1434 	return wait_task_continued(wo, p);
1435 }
1436 
1437 /*
1438  * Do the work of do_wait() for one thread in the group, @tsk.
1439  *
1440  * -ECHILD should be in ->notask_error before the first call.
1441  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1442  * Returns zero if the search for a child should continue; then
1443  * ->notask_error is 0 if there were any eligible children,
1444  * or another error from security_task_wait(), or still -ECHILD.
1445  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1446 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1447 {
1448 	struct task_struct *p;
1449 
1450 	list_for_each_entry(p, &tsk->children, sibling) {
1451 		int ret = wait_consider_task(wo, 0, p);
1452 
1453 		if (ret)
1454 			return ret;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1460 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1461 {
1462 	struct task_struct *p;
1463 
1464 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1465 		int ret = wait_consider_task(wo, 1, p);
1466 
1467 		if (ret)
1468 			return ret;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1474 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1475 				int sync, void *key)
1476 {
1477 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1478 						child_wait);
1479 	struct task_struct *p = key;
1480 
1481 	if (!eligible_pid(wo, p))
1482 		return 0;
1483 
1484 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1485 		return 0;
1486 
1487 	return default_wake_function(wait, mode, sync, key);
1488 }
1489 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1490 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1491 {
1492 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1493 				TASK_INTERRUPTIBLE, 1, p);
1494 }
1495 
do_wait(struct wait_opts * wo)1496 static long do_wait(struct wait_opts *wo)
1497 {
1498 	struct task_struct *tsk;
1499 	int retval;
1500 
1501 	trace_sched_process_wait(wo->wo_pid);
1502 
1503 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504 	wo->child_wait.private = current;
1505 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506 repeat:
1507 	/*
1508 	 * If there is nothing that can match our critiera just get out.
1509 	 * We will clear ->notask_error to zero if we see any child that
1510 	 * might later match our criteria, even if we are not able to reap
1511 	 * it yet.
1512 	 */
1513 	wo->notask_error = -ECHILD;
1514 	if ((wo->wo_type < PIDTYPE_MAX) &&
1515 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1516 		goto notask;
1517 
1518 	set_current_state(TASK_INTERRUPTIBLE);
1519 	read_lock(&tasklist_lock);
1520 	tsk = current;
1521 	do {
1522 		retval = do_wait_thread(wo, tsk);
1523 		if (retval)
1524 			goto end;
1525 
1526 		retval = ptrace_do_wait(wo, tsk);
1527 		if (retval)
1528 			goto end;
1529 
1530 		if (wo->wo_flags & __WNOTHREAD)
1531 			break;
1532 	} while_each_thread(current, tsk);
1533 	read_unlock(&tasklist_lock);
1534 
1535 notask:
1536 	retval = wo->notask_error;
1537 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1538 		retval = -ERESTARTSYS;
1539 		if (!signal_pending(current)) {
1540 			schedule();
1541 			goto repeat;
1542 		}
1543 	}
1544 end:
1545 	__set_current_state(TASK_RUNNING);
1546 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547 	return retval;
1548 }
1549 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1550 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1551 		infop, int, options, struct rusage __user *, ru)
1552 {
1553 	struct wait_opts wo;
1554 	struct pid *pid = NULL;
1555 	enum pid_type type;
1556 	long ret;
1557 
1558 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1559 		return -EINVAL;
1560 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1561 		return -EINVAL;
1562 
1563 	switch (which) {
1564 	case P_ALL:
1565 		type = PIDTYPE_MAX;
1566 		break;
1567 	case P_PID:
1568 		type = PIDTYPE_PID;
1569 		if (upid <= 0)
1570 			return -EINVAL;
1571 		break;
1572 	case P_PGID:
1573 		type = PIDTYPE_PGID;
1574 		if (upid <= 0)
1575 			return -EINVAL;
1576 		break;
1577 	default:
1578 		return -EINVAL;
1579 	}
1580 
1581 	if (type < PIDTYPE_MAX)
1582 		pid = find_get_pid(upid);
1583 
1584 	wo.wo_type	= type;
1585 	wo.wo_pid	= pid;
1586 	wo.wo_flags	= options;
1587 	wo.wo_info	= infop;
1588 	wo.wo_stat	= NULL;
1589 	wo.wo_rusage	= ru;
1590 	ret = do_wait(&wo);
1591 
1592 	if (ret > 0) {
1593 		ret = 0;
1594 	} else if (infop) {
1595 		/*
1596 		 * For a WNOHANG return, clear out all the fields
1597 		 * we would set so the user can easily tell the
1598 		 * difference.
1599 		 */
1600 		if (!ret)
1601 			ret = put_user(0, &infop->si_signo);
1602 		if (!ret)
1603 			ret = put_user(0, &infop->si_errno);
1604 		if (!ret)
1605 			ret = put_user(0, &infop->si_code);
1606 		if (!ret)
1607 			ret = put_user(0, &infop->si_pid);
1608 		if (!ret)
1609 			ret = put_user(0, &infop->si_uid);
1610 		if (!ret)
1611 			ret = put_user(0, &infop->si_status);
1612 	}
1613 
1614 	put_pid(pid);
1615 	return ret;
1616 }
1617 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1618 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1619 		int, options, struct rusage __user *, ru)
1620 {
1621 	struct wait_opts wo;
1622 	struct pid *pid = NULL;
1623 	enum pid_type type;
1624 	long ret;
1625 
1626 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1627 			__WNOTHREAD|__WCLONE|__WALL))
1628 		return -EINVAL;
1629 
1630 	if (upid == -1)
1631 		type = PIDTYPE_MAX;
1632 	else if (upid < 0) {
1633 		type = PIDTYPE_PGID;
1634 		pid = find_get_pid(-upid);
1635 	} else if (upid == 0) {
1636 		type = PIDTYPE_PGID;
1637 		pid = get_task_pid(current, PIDTYPE_PGID);
1638 	} else /* upid > 0 */ {
1639 		type = PIDTYPE_PID;
1640 		pid = find_get_pid(upid);
1641 	}
1642 
1643 	wo.wo_type	= type;
1644 	wo.wo_pid	= pid;
1645 	wo.wo_flags	= options | WEXITED;
1646 	wo.wo_info	= NULL;
1647 	wo.wo_stat	= stat_addr;
1648 	wo.wo_rusage	= ru;
1649 	ret = do_wait(&wo);
1650 	put_pid(pid);
1651 
1652 	return ret;
1653 }
1654 
1655 #ifdef __ARCH_WANT_SYS_WAITPID
1656 
1657 /*
1658  * sys_waitpid() remains for compatibility. waitpid() should be
1659  * implemented by calling sys_wait4() from libc.a.
1660  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1661 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1662 {
1663 	return sys_wait4(pid, stat_addr, options, NULL);
1664 }
1665 
1666 #endif
1667