• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
43 
44 #define OFFSET(val,align) ((unsigned long)	\
45 	                   ( (val) & ( (align) - 1)))
46 
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48 
49 /*
50  * Minimum IO TLB size to bother booting with.  Systems with mainly
51  * 64bit capable cards will only lightly use the swiotlb.  If we can't
52  * allocate a contiguous 1MB, we're probably in trouble anyway.
53  */
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55 
56 int swiotlb_force;
57 
58 /*
59  * Used to do a quick range check in swiotlb_tbl_unmap_single and
60  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61  * API.
62  */
63 static phys_addr_t io_tlb_start, io_tlb_end;
64 
65 /*
66  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
68  */
69 static unsigned long io_tlb_nslabs;
70 
71 /*
72  * When the IOMMU overflows we return a fallback buffer. This sets the size.
73  */
74 static unsigned long io_tlb_overflow = 32*1024;
75 
76 static phys_addr_t io_tlb_overflow_buffer;
77 
78 /*
79  * This is a free list describing the number of free entries available from
80  * each index
81  */
82 static unsigned int *io_tlb_list;
83 static unsigned int io_tlb_index;
84 
85 /*
86  * We need to save away the original address corresponding to a mapped entry
87  * for the sync operations.
88  */
89 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
90 static phys_addr_t *io_tlb_orig_addr;
91 
92 /*
93  * Protect the above data structures in the map and unmap calls
94  */
95 static DEFINE_SPINLOCK(io_tlb_lock);
96 
97 static int late_alloc;
98 
99 static int __init
setup_io_tlb_npages(char * str)100 setup_io_tlb_npages(char *str)
101 {
102 	if (isdigit(*str)) {
103 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
104 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
105 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 	}
107 	if (*str == ',')
108 		++str;
109 	if (!strcmp(str, "force"))
110 		swiotlb_force = 1;
111 
112 	return 0;
113 }
114 early_param("swiotlb", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116 
swiotlb_nr_tbl(void)117 unsigned long swiotlb_nr_tbl(void)
118 {
119 	return io_tlb_nslabs;
120 }
121 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
122 
123 /* default to 64MB */
124 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
swiotlb_size_or_default(void)125 unsigned long swiotlb_size_or_default(void)
126 {
127 	unsigned long size;
128 
129 	size = io_tlb_nslabs << IO_TLB_SHIFT;
130 
131 	return size ? size : (IO_TLB_DEFAULT_SIZE);
132 }
133 
134 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)135 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
136 				      volatile void *address)
137 {
138 	return phys_to_dma(hwdev, virt_to_phys(address));
139 }
140 
141 static bool no_iotlb_memory;
142 
swiotlb_print_info(void)143 void swiotlb_print_info(void)
144 {
145 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
146 	unsigned char *vstart, *vend;
147 
148 	if (no_iotlb_memory) {
149 		pr_warn("software IO TLB: No low mem\n");
150 		return;
151 	}
152 
153 	vstart = phys_to_virt(io_tlb_start);
154 	vend = phys_to_virt(io_tlb_end);
155 
156 	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
157 	       (unsigned long long)io_tlb_start,
158 	       (unsigned long long)io_tlb_end,
159 	       bytes >> 20, vstart, vend - 1);
160 }
161 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)162 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
163 {
164 	void *v_overflow_buffer;
165 	unsigned long i, bytes;
166 
167 	bytes = nslabs << IO_TLB_SHIFT;
168 
169 	io_tlb_nslabs = nslabs;
170 	io_tlb_start = __pa(tlb);
171 	io_tlb_end = io_tlb_start + bytes;
172 
173 	/*
174 	 * Get the overflow emergency buffer
175 	 */
176 	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
177 						PAGE_ALIGN(io_tlb_overflow),
178 						PAGE_SIZE);
179 	if (!v_overflow_buffer)
180 		return -ENOMEM;
181 
182 	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
183 
184 	/*
185 	 * Allocate and initialize the free list array.  This array is used
186 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
187 	 * between io_tlb_start and io_tlb_end.
188 	 */
189 	io_tlb_list = memblock_virt_alloc(
190 				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
191 				PAGE_SIZE);
192 	io_tlb_orig_addr = memblock_virt_alloc(
193 				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
194 				PAGE_SIZE);
195 	for (i = 0; i < io_tlb_nslabs; i++) {
196 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
197 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
198 	}
199 	io_tlb_index = 0;
200 
201 	if (verbose)
202 		swiotlb_print_info();
203 
204 	return 0;
205 }
206 
207 /*
208  * Statically reserve bounce buffer space and initialize bounce buffer data
209  * structures for the software IO TLB used to implement the DMA API.
210  */
211 void  __init
swiotlb_init(int verbose)212 swiotlb_init(int verbose)
213 {
214 	size_t default_size = IO_TLB_DEFAULT_SIZE;
215 	unsigned char *vstart;
216 	unsigned long bytes;
217 
218 	if (!io_tlb_nslabs) {
219 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
220 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
221 	}
222 
223 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
224 
225 	/* Get IO TLB memory from the low pages */
226 	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
227 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
228 		return;
229 
230 	if (io_tlb_start)
231 		memblock_free_early(io_tlb_start,
232 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
233 	pr_warn("Cannot allocate SWIOTLB buffer");
234 	no_iotlb_memory = true;
235 }
236 
237 /*
238  * Systems with larger DMA zones (those that don't support ISA) can
239  * initialize the swiotlb later using the slab allocator if needed.
240  * This should be just like above, but with some error catching.
241  */
242 int
swiotlb_late_init_with_default_size(size_t default_size)243 swiotlb_late_init_with_default_size(size_t default_size)
244 {
245 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
246 	unsigned char *vstart = NULL;
247 	unsigned int order;
248 	int rc = 0;
249 
250 	if (!io_tlb_nslabs) {
251 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
252 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
253 	}
254 
255 	/*
256 	 * Get IO TLB memory from the low pages
257 	 */
258 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
259 	io_tlb_nslabs = SLABS_PER_PAGE << order;
260 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
261 
262 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
263 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
264 						  order);
265 		if (vstart)
266 			break;
267 		order--;
268 	}
269 
270 	if (!vstart) {
271 		io_tlb_nslabs = req_nslabs;
272 		return -ENOMEM;
273 	}
274 	if (order != get_order(bytes)) {
275 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
276 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
277 		io_tlb_nslabs = SLABS_PER_PAGE << order;
278 	}
279 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
280 	if (rc)
281 		free_pages((unsigned long)vstart, order);
282 	return rc;
283 }
284 
285 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)286 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
287 {
288 	unsigned long i, bytes;
289 	unsigned char *v_overflow_buffer;
290 
291 	bytes = nslabs << IO_TLB_SHIFT;
292 
293 	io_tlb_nslabs = nslabs;
294 	io_tlb_start = virt_to_phys(tlb);
295 	io_tlb_end = io_tlb_start + bytes;
296 
297 	memset(tlb, 0, bytes);
298 
299 	/*
300 	 * Get the overflow emergency buffer
301 	 */
302 	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
303 						     get_order(io_tlb_overflow));
304 	if (!v_overflow_buffer)
305 		goto cleanup2;
306 
307 	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
308 
309 	/*
310 	 * Allocate and initialize the free list array.  This array is used
311 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
312 	 * between io_tlb_start and io_tlb_end.
313 	 */
314 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
315 	                              get_order(io_tlb_nslabs * sizeof(int)));
316 	if (!io_tlb_list)
317 		goto cleanup3;
318 
319 	io_tlb_orig_addr = (phys_addr_t *)
320 		__get_free_pages(GFP_KERNEL,
321 				 get_order(io_tlb_nslabs *
322 					   sizeof(phys_addr_t)));
323 	if (!io_tlb_orig_addr)
324 		goto cleanup4;
325 
326 	for (i = 0; i < io_tlb_nslabs; i++) {
327 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
328 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
329 	}
330 	io_tlb_index = 0;
331 
332 	swiotlb_print_info();
333 
334 	late_alloc = 1;
335 
336 	return 0;
337 
338 cleanup4:
339 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
340 	                                                 sizeof(int)));
341 	io_tlb_list = NULL;
342 cleanup3:
343 	free_pages((unsigned long)v_overflow_buffer,
344 		   get_order(io_tlb_overflow));
345 	io_tlb_overflow_buffer = 0;
346 cleanup2:
347 	io_tlb_end = 0;
348 	io_tlb_start = 0;
349 	io_tlb_nslabs = 0;
350 	return -ENOMEM;
351 }
352 
swiotlb_free(void)353 void __init swiotlb_free(void)
354 {
355 	if (!io_tlb_orig_addr)
356 		return;
357 
358 	if (late_alloc) {
359 		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
360 			   get_order(io_tlb_overflow));
361 		free_pages((unsigned long)io_tlb_orig_addr,
362 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
363 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
364 								 sizeof(int)));
365 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
366 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
367 	} else {
368 		memblock_free_late(io_tlb_overflow_buffer,
369 				   PAGE_ALIGN(io_tlb_overflow));
370 		memblock_free_late(__pa(io_tlb_orig_addr),
371 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
372 		memblock_free_late(__pa(io_tlb_list),
373 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
374 		memblock_free_late(io_tlb_start,
375 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
376 	}
377 	io_tlb_nslabs = 0;
378 }
379 
is_swiotlb_buffer(phys_addr_t paddr)380 int is_swiotlb_buffer(phys_addr_t paddr)
381 {
382 	return paddr >= io_tlb_start && paddr < io_tlb_end;
383 }
384 
385 /*
386  * Bounce: copy the swiotlb buffer back to the original dma location
387  */
swiotlb_bounce(phys_addr_t orig_addr,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)388 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
389 			   size_t size, enum dma_data_direction dir)
390 {
391 	unsigned long pfn = PFN_DOWN(orig_addr);
392 	unsigned char *vaddr = phys_to_virt(tlb_addr);
393 
394 	if (PageHighMem(pfn_to_page(pfn))) {
395 		/* The buffer does not have a mapping.  Map it in and copy */
396 		unsigned int offset = orig_addr & ~PAGE_MASK;
397 		char *buffer;
398 		unsigned int sz = 0;
399 		unsigned long flags;
400 
401 		while (size) {
402 			sz = min_t(size_t, PAGE_SIZE - offset, size);
403 
404 			local_irq_save(flags);
405 			buffer = kmap_atomic(pfn_to_page(pfn));
406 			if (dir == DMA_TO_DEVICE)
407 				memcpy(vaddr, buffer + offset, sz);
408 			else
409 				memcpy(buffer + offset, vaddr, sz);
410 			kunmap_atomic(buffer);
411 			local_irq_restore(flags);
412 
413 			size -= sz;
414 			pfn++;
415 			vaddr += sz;
416 			offset = 0;
417 		}
418 	} else if (dir == DMA_TO_DEVICE) {
419 		memcpy(vaddr, phys_to_virt(orig_addr), size);
420 	} else {
421 		memcpy(phys_to_virt(orig_addr), vaddr, size);
422 	}
423 }
424 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t orig_addr,size_t size,enum dma_data_direction dir)425 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
426 				   dma_addr_t tbl_dma_addr,
427 				   phys_addr_t orig_addr, size_t size,
428 				   enum dma_data_direction dir)
429 {
430 	unsigned long flags;
431 	phys_addr_t tlb_addr;
432 	unsigned int nslots, stride, index, wrap;
433 	int i;
434 	unsigned long mask;
435 	unsigned long offset_slots;
436 	unsigned long max_slots;
437 
438 	if (no_iotlb_memory)
439 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
440 
441 	mask = dma_get_seg_boundary(hwdev);
442 
443 	tbl_dma_addr &= mask;
444 
445 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
446 
447 	/*
448  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
449  	 */
450 	max_slots = mask + 1
451 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
452 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
453 
454 	/*
455 	 * For mappings greater than a page, we limit the stride (and
456 	 * hence alignment) to a page size.
457 	 */
458 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
459 	if (size > PAGE_SIZE)
460 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
461 	else
462 		stride = 1;
463 
464 	BUG_ON(!nslots);
465 
466 	/*
467 	 * Find suitable number of IO TLB entries size that will fit this
468 	 * request and allocate a buffer from that IO TLB pool.
469 	 */
470 	spin_lock_irqsave(&io_tlb_lock, flags);
471 	index = ALIGN(io_tlb_index, stride);
472 	if (index >= io_tlb_nslabs)
473 		index = 0;
474 	wrap = index;
475 
476 	do {
477 		while (iommu_is_span_boundary(index, nslots, offset_slots,
478 					      max_slots)) {
479 			index += stride;
480 			if (index >= io_tlb_nslabs)
481 				index = 0;
482 			if (index == wrap)
483 				goto not_found;
484 		}
485 
486 		/*
487 		 * If we find a slot that indicates we have 'nslots' number of
488 		 * contiguous buffers, we allocate the buffers from that slot
489 		 * and mark the entries as '0' indicating unavailable.
490 		 */
491 		if (io_tlb_list[index] >= nslots) {
492 			int count = 0;
493 
494 			for (i = index; i < (int) (index + nslots); i++)
495 				io_tlb_list[i] = 0;
496 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
497 				io_tlb_list[i] = ++count;
498 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
499 
500 			/*
501 			 * Update the indices to avoid searching in the next
502 			 * round.
503 			 */
504 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
505 					? (index + nslots) : 0);
506 
507 			goto found;
508 		}
509 		index += stride;
510 		if (index >= io_tlb_nslabs)
511 			index = 0;
512 	} while (index != wrap);
513 
514 not_found:
515 	spin_unlock_irqrestore(&io_tlb_lock, flags);
516 	if (printk_ratelimit())
517 		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
518 	return SWIOTLB_MAP_ERROR;
519 found:
520 	spin_unlock_irqrestore(&io_tlb_lock, flags);
521 
522 	/*
523 	 * Save away the mapping from the original address to the DMA address.
524 	 * This is needed when we sync the memory.  Then we sync the buffer if
525 	 * needed.
526 	 */
527 	for (i = 0; i < nslots; i++)
528 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
529 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
530 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
531 
532 	return tlb_addr;
533 }
534 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
535 
536 /*
537  * Allocates bounce buffer and returns its kernel virtual address.
538  */
539 
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)540 phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
541 		       enum dma_data_direction dir)
542 {
543 	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
544 
545 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
546 }
547 
548 /*
549  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
550  */
swiotlb_tbl_unmap_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)551 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
552 			      size_t size, enum dma_data_direction dir)
553 {
554 	unsigned long flags;
555 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
556 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
557 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
558 
559 	/*
560 	 * First, sync the memory before unmapping the entry
561 	 */
562 	if (orig_addr != INVALID_PHYS_ADDR &&
563 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
564 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
565 
566 	/*
567 	 * Return the buffer to the free list by setting the corresponding
568 	 * entries to indicate the number of contiguous entries available.
569 	 * While returning the entries to the free list, we merge the entries
570 	 * with slots below and above the pool being returned.
571 	 */
572 	spin_lock_irqsave(&io_tlb_lock, flags);
573 	{
574 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
575 			 io_tlb_list[index + nslots] : 0);
576 		/*
577 		 * Step 1: return the slots to the free list, merging the
578 		 * slots with superceeding slots
579 		 */
580 		for (i = index + nslots - 1; i >= index; i--) {
581 			io_tlb_list[i] = ++count;
582 			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
583 		}
584 		/*
585 		 * Step 2: merge the returned slots with the preceding slots,
586 		 * if available (non zero)
587 		 */
588 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
589 			io_tlb_list[i] = ++count;
590 	}
591 	spin_unlock_irqrestore(&io_tlb_lock, flags);
592 }
593 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
594 
swiotlb_tbl_sync_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)595 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
596 			     size_t size, enum dma_data_direction dir,
597 			     enum dma_sync_target target)
598 {
599 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
600 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
601 
602 	if (orig_addr == INVALID_PHYS_ADDR)
603 		return;
604 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
605 
606 	switch (target) {
607 	case SYNC_FOR_CPU:
608 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
609 			swiotlb_bounce(orig_addr, tlb_addr,
610 				       size, DMA_FROM_DEVICE);
611 		else
612 			BUG_ON(dir != DMA_TO_DEVICE);
613 		break;
614 	case SYNC_FOR_DEVICE:
615 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
616 			swiotlb_bounce(orig_addr, tlb_addr,
617 				       size, DMA_TO_DEVICE);
618 		else
619 			BUG_ON(dir != DMA_FROM_DEVICE);
620 		break;
621 	default:
622 		BUG();
623 	}
624 }
625 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
626 
627 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)628 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
629 		       dma_addr_t *dma_handle, gfp_t flags)
630 {
631 	dma_addr_t dev_addr;
632 	void *ret;
633 	int order = get_order(size);
634 	u64 dma_mask = DMA_BIT_MASK(32);
635 
636 	if (hwdev && hwdev->coherent_dma_mask)
637 		dma_mask = hwdev->coherent_dma_mask;
638 
639 	ret = (void *)__get_free_pages(flags, order);
640 	if (ret) {
641 		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
642 		if (dev_addr + size - 1 > dma_mask) {
643 			/*
644 			 * The allocated memory isn't reachable by the device.
645 			 */
646 			free_pages((unsigned long) ret, order);
647 			ret = NULL;
648 		}
649 	}
650 	if (!ret) {
651 		/*
652 		 * We are either out of memory or the device can't DMA to
653 		 * GFP_DMA memory; fall back on map_single(), which
654 		 * will grab memory from the lowest available address range.
655 		 */
656 		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
657 		if (paddr == SWIOTLB_MAP_ERROR)
658 			return NULL;
659 
660 		ret = phys_to_virt(paddr);
661 		dev_addr = phys_to_dma(hwdev, paddr);
662 
663 		/* Confirm address can be DMA'd by device */
664 		if (dev_addr + size - 1 > dma_mask) {
665 			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
666 			       (unsigned long long)dma_mask,
667 			       (unsigned long long)dev_addr);
668 
669 			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
670 			swiotlb_tbl_unmap_single(hwdev, paddr,
671 						 size, DMA_TO_DEVICE);
672 			return NULL;
673 		}
674 	}
675 
676 	*dma_handle = dev_addr;
677 	memset(ret, 0, size);
678 
679 	return ret;
680 }
681 EXPORT_SYMBOL(swiotlb_alloc_coherent);
682 
683 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)684 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
685 		      dma_addr_t dev_addr)
686 {
687 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
688 
689 	WARN_ON(irqs_disabled());
690 	if (!is_swiotlb_buffer(paddr))
691 		free_pages((unsigned long)vaddr, get_order(size));
692 	else
693 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
694 		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
695 }
696 EXPORT_SYMBOL(swiotlb_free_coherent);
697 
698 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)699 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
700 	     int do_panic)
701 {
702 	/*
703 	 * Ran out of IOMMU space for this operation. This is very bad.
704 	 * Unfortunately the drivers cannot handle this operation properly.
705 	 * unless they check for dma_mapping_error (most don't)
706 	 * When the mapping is small enough return a static buffer to limit
707 	 * the damage, or panic when the transfer is too big.
708 	 */
709 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
710 	       "device %s\n", size, dev ? dev_name(dev) : "?");
711 
712 	if (size <= io_tlb_overflow || !do_panic)
713 		return;
714 
715 	if (dir == DMA_BIDIRECTIONAL)
716 		panic("DMA: Random memory could be DMA accessed\n");
717 	if (dir == DMA_FROM_DEVICE)
718 		panic("DMA: Random memory could be DMA written\n");
719 	if (dir == DMA_TO_DEVICE)
720 		panic("DMA: Random memory could be DMA read\n");
721 }
722 
723 /*
724  * Map a single buffer of the indicated size for DMA in streaming mode.  The
725  * physical address to use is returned.
726  *
727  * Once the device is given the dma address, the device owns this memory until
728  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
729  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)730 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
731 			    unsigned long offset, size_t size,
732 			    enum dma_data_direction dir,
733 			    struct dma_attrs *attrs)
734 {
735 	phys_addr_t map, phys = page_to_phys(page) + offset;
736 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
737 
738 	BUG_ON(dir == DMA_NONE);
739 	/*
740 	 * If the address happens to be in the device's DMA window,
741 	 * we can safely return the device addr and not worry about bounce
742 	 * buffering it.
743 	 */
744 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
745 		return dev_addr;
746 
747 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
748 
749 	/* Oh well, have to allocate and map a bounce buffer. */
750 	map = map_single(dev, phys, size, dir);
751 	if (map == SWIOTLB_MAP_ERROR) {
752 		swiotlb_full(dev, size, dir, 1);
753 		return phys_to_dma(dev, io_tlb_overflow_buffer);
754 	}
755 
756 	dev_addr = phys_to_dma(dev, map);
757 
758 	/* Ensure that the address returned is DMA'ble */
759 	if (!dma_capable(dev, dev_addr, size)) {
760 		swiotlb_tbl_unmap_single(dev, map, size, dir);
761 		return phys_to_dma(dev, io_tlb_overflow_buffer);
762 	}
763 
764 	return dev_addr;
765 }
766 EXPORT_SYMBOL_GPL(swiotlb_map_page);
767 
768 /*
769  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
770  * match what was provided for in a previous swiotlb_map_page call.  All
771  * other usages are undefined.
772  *
773  * After this call, reads by the cpu to the buffer are guaranteed to see
774  * whatever the device wrote there.
775  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)776 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
777 			 size_t size, enum dma_data_direction dir)
778 {
779 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
780 
781 	BUG_ON(dir == DMA_NONE);
782 
783 	if (is_swiotlb_buffer(paddr)) {
784 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
785 		return;
786 	}
787 
788 	if (dir != DMA_FROM_DEVICE)
789 		return;
790 
791 	/*
792 	 * phys_to_virt doesn't work with hihgmem page but we could
793 	 * call dma_mark_clean() with hihgmem page here. However, we
794 	 * are fine since dma_mark_clean() is null on POWERPC. We can
795 	 * make dma_mark_clean() take a physical address if necessary.
796 	 */
797 	dma_mark_clean(phys_to_virt(paddr), size);
798 }
799 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)800 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
801 			size_t size, enum dma_data_direction dir,
802 			struct dma_attrs *attrs)
803 {
804 	unmap_single(hwdev, dev_addr, size, dir);
805 }
806 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
807 
808 /*
809  * Make physical memory consistent for a single streaming mode DMA translation
810  * after a transfer.
811  *
812  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
813  * using the cpu, yet do not wish to teardown the dma mapping, you must
814  * call this function before doing so.  At the next point you give the dma
815  * address back to the card, you must first perform a
816  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
817  */
818 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)819 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
820 		    size_t size, enum dma_data_direction dir,
821 		    enum dma_sync_target target)
822 {
823 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
824 
825 	BUG_ON(dir == DMA_NONE);
826 
827 	if (is_swiotlb_buffer(paddr)) {
828 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
829 		return;
830 	}
831 
832 	if (dir != DMA_FROM_DEVICE)
833 		return;
834 
835 	dma_mark_clean(phys_to_virt(paddr), size);
836 }
837 
838 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)839 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
840 			    size_t size, enum dma_data_direction dir)
841 {
842 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
843 }
844 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
845 
846 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)847 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
848 			       size_t size, enum dma_data_direction dir)
849 {
850 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
851 }
852 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
853 
854 /*
855  * Map a set of buffers described by scatterlist in streaming mode for DMA.
856  * This is the scatter-gather version of the above swiotlb_map_page
857  * interface.  Here the scatter gather list elements are each tagged with the
858  * appropriate dma address and length.  They are obtained via
859  * sg_dma_{address,length}(SG).
860  *
861  * NOTE: An implementation may be able to use a smaller number of
862  *       DMA address/length pairs than there are SG table elements.
863  *       (for example via virtual mapping capabilities)
864  *       The routine returns the number of addr/length pairs actually
865  *       used, at most nents.
866  *
867  * Device ownership issues as mentioned above for swiotlb_map_page are the
868  * same here.
869  */
870 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)871 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
872 		     enum dma_data_direction dir, struct dma_attrs *attrs)
873 {
874 	struct scatterlist *sg;
875 	int i;
876 
877 	BUG_ON(dir == DMA_NONE);
878 
879 	for_each_sg(sgl, sg, nelems, i) {
880 		phys_addr_t paddr = sg_phys(sg);
881 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
882 
883 		if (swiotlb_force ||
884 		    !dma_capable(hwdev, dev_addr, sg->length)) {
885 			phys_addr_t map = map_single(hwdev, sg_phys(sg),
886 						     sg->length, dir);
887 			if (map == SWIOTLB_MAP_ERROR) {
888 				/* Don't panic here, we expect map_sg users
889 				   to do proper error handling. */
890 				swiotlb_full(hwdev, sg->length, dir, 0);
891 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
892 						       attrs);
893 				sg_dma_len(sgl) = 0;
894 				return 0;
895 			}
896 			sg->dma_address = phys_to_dma(hwdev, map);
897 		} else
898 			sg->dma_address = dev_addr;
899 		sg_dma_len(sg) = sg->length;
900 	}
901 	return nelems;
902 }
903 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
904 
905 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)906 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
907 	       enum dma_data_direction dir)
908 {
909 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
910 }
911 EXPORT_SYMBOL(swiotlb_map_sg);
912 
913 /*
914  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
915  * concerning calls here are the same as for swiotlb_unmap_page() above.
916  */
917 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)918 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
919 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
920 {
921 	struct scatterlist *sg;
922 	int i;
923 
924 	BUG_ON(dir == DMA_NONE);
925 
926 	for_each_sg(sgl, sg, nelems, i)
927 		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
928 
929 }
930 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
931 
932 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)933 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
934 		 enum dma_data_direction dir)
935 {
936 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
937 }
938 EXPORT_SYMBOL(swiotlb_unmap_sg);
939 
940 /*
941  * Make physical memory consistent for a set of streaming mode DMA translations
942  * after a transfer.
943  *
944  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
945  * and usage.
946  */
947 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)948 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
949 		int nelems, enum dma_data_direction dir,
950 		enum dma_sync_target target)
951 {
952 	struct scatterlist *sg;
953 	int i;
954 
955 	for_each_sg(sgl, sg, nelems, i)
956 		swiotlb_sync_single(hwdev, sg->dma_address,
957 				    sg_dma_len(sg), dir, target);
958 }
959 
960 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)961 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
962 			int nelems, enum dma_data_direction dir)
963 {
964 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
965 }
966 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
967 
968 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)969 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
970 			   int nelems, enum dma_data_direction dir)
971 {
972 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
973 }
974 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
975 
976 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)977 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
978 {
979 	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
980 }
981 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
982 
983 /*
984  * Return whether the given device DMA address mask can be supported
985  * properly.  For example, if your device can only drive the low 24-bits
986  * during bus mastering, then you would pass 0x00ffffff as the mask to
987  * this function.
988  */
989 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)990 swiotlb_dma_supported(struct device *hwdev, u64 mask)
991 {
992 	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
993 }
994 EXPORT_SYMBOL(swiotlb_dma_supported);
995