• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 			 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 			  unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 			     int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 				struct pipe_inode_info *pipe, size_t len,
136 				unsigned int flags);
137 
138 /*
139  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *	in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144 	.owner =	THIS_MODULE,
145 	.llseek =	no_llseek,
146 	.aio_read =	sock_aio_read,
147 	.aio_write =	sock_aio_write,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155 	.release =	sock_close,
156 	.fasync =	sock_fasync,
157 	.sendpage =	sock_sendpage,
158 	.splice_write = generic_splice_sendpage,
159 	.splice_read =	sock_splice_read,
160 };
161 
162 /*
163  *	The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *	Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 	struct socket_wq *wq;
253 
254 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 	if (!ei)
256 		return NULL;
257 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 	if (!wq) {
259 		kmem_cache_free(sock_inode_cachep, ei);
260 		return NULL;
261 	}
262 	init_waitqueue_head(&wq->wait);
263 	wq->fasync_list = NULL;
264 	RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266 	ei->socket.state = SS_UNCONNECTED;
267 	ei->socket.flags = 0;
268 	ei->socket.ops = NULL;
269 	ei->socket.sk = NULL;
270 	ei->socket.file = NULL;
271 
272 	return &ei->vfs_inode;
273 }
274 
sock_destroy_inode(struct inode * inode)275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	kfree_rcu(wq, rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
init_once(void * foo)286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
init_inodecache(void)293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
sock_alloc_file(struct socket * sock,int flags,const char * dname)358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 
364 	if (dname) {
365 		name.name = dname;
366 		name.len = strlen(name.name);
367 	} else if (sock->sk) {
368 		name.name = sock->sk->sk_prot_creator->name;
369 		name.len = strlen(name.name);
370 	}
371 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 	if (unlikely(!path.dentry))
373 		return ERR_PTR(-ENOMEM);
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(IS_ERR(file))) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		return file;
386 	}
387 
388 	sock->file = file;
389 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 	file->private_data = sock;
391 	return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
sock_map_fd(struct socket * sock,int flags)395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = get_unused_fd_flags(flags);
399 	if (unlikely(fd < 0))
400 		return fd;
401 
402 	newfile = sock_alloc_file(sock, flags, NULL);
403 	if (likely(!IS_ERR(newfile))) {
404 		fd_install(fd, newfile);
405 		return fd;
406 	}
407 
408 	put_unused_fd(fd);
409 	return PTR_ERR(newfile);
410 }
411 
sock_from_file(struct file * file,int * err)412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *	sockfd_lookup - Go from a file number to its socket slot
424  *	@fd: file handle
425  *	@err: pointer to an error code return
426  *
427  *	The file handle passed in is locked and the socket it is bound
428  *	too is returned. If an error occurs the err pointer is overwritten
429  *	with a negative errno code and NULL is returned. The function checks
430  *	for both invalid handles and passing a handle which is not a socket.
431  *
432  *	On a success the socket object pointer is returned.
433  */
434 
sockfd_lookup(int fd,int * err)435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 	struct file *file;
438 	struct socket *sock;
439 
440 	file = fget(fd);
441 	if (!file) {
442 		*err = -EBADF;
443 		return NULL;
444 	}
445 
446 	sock = sock_from_file(file, err);
447 	if (!sock)
448 		fput(file);
449 	return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
sockfd_lookup_light(int fd,int * err,int * fput_needed)453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct fd f = fdget(fd);
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	if (f.file) {
460 		sock = sock_from_file(f.file, err);
461 		if (likely(sock)) {
462 			*fput_needed = f.flags;
463 			return sock;
464 		}
465 		fdput(f);
466 	}
467 	return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
sockfs_getxattr(struct dentry * dentry,const char * name,void * value,size_t size)473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 			       const char *name, void *value, size_t size)
475 {
476 	const char *proto_name;
477 	size_t proto_size;
478 	int error;
479 
480 	error = -ENODATA;
481 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 		proto_name = dentry->d_name.name;
483 		proto_size = strlen(proto_name);
484 
485 		if (value) {
486 			error = -ERANGE;
487 			if (proto_size + 1 > size)
488 				goto out;
489 
490 			strncpy(value, proto_name, proto_size + 1);
491 		}
492 		error = proto_size + 1;
493 	}
494 
495 out:
496 	return error;
497 }
498 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 				size_t size)
501 {
502 	ssize_t len;
503 	ssize_t used = 0;
504 
505 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 	if (len < 0)
507 		return len;
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		buffer += len;
513 	}
514 
515 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 		buffer += len;
522 	}
523 
524 	return used;
525 }
526 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)527 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
528 {
529 	int err = simple_setattr(dentry, iattr);
530 
531 	if (!err && (iattr->ia_valid & ATTR_UID)) {
532 		struct socket *sock = SOCKET_I(dentry->d_inode);
533 
534 		sock->sk->sk_uid = iattr->ia_uid;
535 	}
536 
537 	return err;
538 }
539 
540 static const struct inode_operations sockfs_inode_ops = {
541 	.getxattr = sockfs_getxattr,
542 	.listxattr = sockfs_listxattr,
543 	.setattr = sockfs_setattr,
544 };
545 
546 /**
547  *	sock_alloc	-	allocate a socket
548  *
549  *	Allocate a new inode and socket object. The two are bound together
550  *	and initialised. The socket is then returned. If we are out of inodes
551  *	NULL is returned.
552  */
553 
sock_alloc(void)554 static struct socket *sock_alloc(void)
555 {
556 	struct inode *inode;
557 	struct socket *sock;
558 
559 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 	if (!inode)
561 		return NULL;
562 
563 	sock = SOCKET_I(inode);
564 
565 	kmemcheck_annotate_bitfield(sock, type);
566 	inode->i_ino = get_next_ino();
567 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
568 	inode->i_uid = current_fsuid();
569 	inode->i_gid = current_fsgid();
570 	inode->i_op = &sockfs_inode_ops;
571 
572 	this_cpu_add(sockets_in_use, 1);
573 	return sock;
574 }
575 
576 /*
577  *	In theory you can't get an open on this inode, but /proc provides
578  *	a back door. Remember to keep it shut otherwise you'll let the
579  *	creepy crawlies in.
580  */
581 
sock_no_open(struct inode * irrelevant,struct file * dontcare)582 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
583 {
584 	return -ENXIO;
585 }
586 
587 const struct file_operations bad_sock_fops = {
588 	.owner = THIS_MODULE,
589 	.open = sock_no_open,
590 	.llseek = noop_llseek,
591 };
592 
593 /**
594  *	sock_release	-	close a socket
595  *	@sock: socket to close
596  *
597  *	The socket is released from the protocol stack if it has a release
598  *	callback, and the inode is then released if the socket is bound to
599  *	an inode not a file.
600  */
601 
sock_release(struct socket * sock)602 void sock_release(struct socket *sock)
603 {
604 	if (sock->ops) {
605 		struct module *owner = sock->ops->owner;
606 
607 		sock->ops->release(sock);
608 		sock->ops = NULL;
609 		module_put(owner);
610 	}
611 
612 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
613 		pr_err("%s: fasync list not empty!\n", __func__);
614 
615 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
616 		return;
617 
618 	this_cpu_sub(sockets_in_use, 1);
619 	if (!sock->file) {
620 		iput(SOCK_INODE(sock));
621 		return;
622 	}
623 	sock->file = NULL;
624 }
625 EXPORT_SYMBOL(sock_release);
626 
__sock_tx_timestamp(const struct sock * sk,__u8 * tx_flags)627 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
628 {
629 	u8 flags = *tx_flags;
630 
631 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
632 		flags |= SKBTX_HW_TSTAMP;
633 
634 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
635 		flags |= SKBTX_SW_TSTAMP;
636 
637 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
638 		flags |= SKBTX_SCHED_TSTAMP;
639 
640 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
641 		flags |= SKBTX_ACK_TSTAMP;
642 
643 	*tx_flags = flags;
644 }
645 EXPORT_SYMBOL(__sock_tx_timestamp);
646 
__sock_sendmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)647 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
648 				       struct msghdr *msg, size_t size)
649 {
650 	struct sock_iocb *si = kiocb_to_siocb(iocb);
651 
652 	si->sock = sock;
653 	si->scm = NULL;
654 	si->msg = msg;
655 	si->size = size;
656 
657 	return sock->ops->sendmsg(iocb, sock, msg, size);
658 }
659 
__sock_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)660 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
661 				 struct msghdr *msg, size_t size)
662 {
663 	int err = security_socket_sendmsg(sock, msg, size);
664 
665 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
666 }
667 
sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)668 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
669 {
670 	struct kiocb iocb;
671 	struct sock_iocb siocb;
672 	int ret;
673 
674 	init_sync_kiocb(&iocb, NULL);
675 	iocb.private = &siocb;
676 	ret = __sock_sendmsg(&iocb, sock, msg, size);
677 	if (-EIOCBQUEUED == ret)
678 		ret = wait_on_sync_kiocb(&iocb);
679 	return ret;
680 }
681 EXPORT_SYMBOL(sock_sendmsg);
682 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size)683 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
684 {
685 	struct kiocb iocb;
686 	struct sock_iocb siocb;
687 	int ret;
688 
689 	init_sync_kiocb(&iocb, NULL);
690 	iocb.private = &siocb;
691 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
692 	if (-EIOCBQUEUED == ret)
693 		ret = wait_on_sync_kiocb(&iocb);
694 	return ret;
695 }
696 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)697 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
698 		   struct kvec *vec, size_t num, size_t size)
699 {
700 	mm_segment_t oldfs = get_fs();
701 	int result;
702 
703 	set_fs(KERNEL_DS);
704 	/*
705 	 * the following is safe, since for compiler definitions of kvec and
706 	 * iovec are identical, yielding the same in-core layout and alignment
707 	 */
708 	msg->msg_iov = (struct iovec *)vec;
709 	msg->msg_iovlen = num;
710 	result = sock_sendmsg(sock, msg, size);
711 	set_fs(oldfs);
712 	return result;
713 }
714 EXPORT_SYMBOL(kernel_sendmsg);
715 
716 /*
717  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
718  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)719 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
720 	struct sk_buff *skb)
721 {
722 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
723 	struct scm_timestamping tss;
724 	int empty = 1;
725 	struct skb_shared_hwtstamps *shhwtstamps =
726 		skb_hwtstamps(skb);
727 
728 	/* Race occurred between timestamp enabling and packet
729 	   receiving.  Fill in the current time for now. */
730 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
731 		__net_timestamp(skb);
732 
733 	if (need_software_tstamp) {
734 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
735 			struct timeval tv;
736 			skb_get_timestamp(skb, &tv);
737 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
738 				 sizeof(tv), &tv);
739 		} else {
740 			struct timespec ts;
741 			skb_get_timestampns(skb, &ts);
742 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
743 				 sizeof(ts), &ts);
744 		}
745 	}
746 
747 	memset(&tss, 0, sizeof(tss));
748 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
749 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
750 		empty = 0;
751 	if (shhwtstamps &&
752 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
753 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
754 		empty = 0;
755 	if (!empty)
756 		put_cmsg(msg, SOL_SOCKET,
757 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
758 }
759 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
760 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)761 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
762 	struct sk_buff *skb)
763 {
764 	int ack;
765 
766 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
767 		return;
768 	if (!skb->wifi_acked_valid)
769 		return;
770 
771 	ack = skb->wifi_acked;
772 
773 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
774 }
775 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
776 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)777 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
778 				   struct sk_buff *skb)
779 {
780 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
781 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
782 			sizeof(__u32), &skb->dropcount);
783 }
784 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)785 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
786 	struct sk_buff *skb)
787 {
788 	sock_recv_timestamp(msg, sk, skb);
789 	sock_recv_drops(msg, sk, skb);
790 }
791 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
792 
__sock_recvmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)793 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
794 				       struct msghdr *msg, size_t size, int flags)
795 {
796 	struct sock_iocb *si = kiocb_to_siocb(iocb);
797 
798 	si->sock = sock;
799 	si->scm = NULL;
800 	si->msg = msg;
801 	si->size = size;
802 	si->flags = flags;
803 
804 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
805 }
806 
__sock_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)807 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
808 				 struct msghdr *msg, size_t size, int flags)
809 {
810 	int err = security_socket_recvmsg(sock, msg, size, flags);
811 
812 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
813 }
814 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)815 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
816 		 size_t size, int flags)
817 {
818 	struct kiocb iocb;
819 	struct sock_iocb siocb;
820 	int ret;
821 
822 	init_sync_kiocb(&iocb, NULL);
823 	iocb.private = &siocb;
824 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
825 	if (-EIOCBQUEUED == ret)
826 		ret = wait_on_sync_kiocb(&iocb);
827 	return ret;
828 }
829 EXPORT_SYMBOL(sock_recvmsg);
830 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)831 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
832 			      size_t size, int flags)
833 {
834 	struct kiocb iocb;
835 	struct sock_iocb siocb;
836 	int ret;
837 
838 	init_sync_kiocb(&iocb, NULL);
839 	iocb.private = &siocb;
840 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
841 	if (-EIOCBQUEUED == ret)
842 		ret = wait_on_sync_kiocb(&iocb);
843 	return ret;
844 }
845 
846 /**
847  * kernel_recvmsg - Receive a message from a socket (kernel space)
848  * @sock:       The socket to receive the message from
849  * @msg:        Received message
850  * @vec:        Input s/g array for message data
851  * @num:        Size of input s/g array
852  * @size:       Number of bytes to read
853  * @flags:      Message flags (MSG_DONTWAIT, etc...)
854  *
855  * On return the msg structure contains the scatter/gather array passed in the
856  * vec argument. The array is modified so that it consists of the unfilled
857  * portion of the original array.
858  *
859  * The returned value is the total number of bytes received, or an error.
860  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)861 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
862 		   struct kvec *vec, size_t num, size_t size, int flags)
863 {
864 	mm_segment_t oldfs = get_fs();
865 	int result;
866 
867 	set_fs(KERNEL_DS);
868 	/*
869 	 * the following is safe, since for compiler definitions of kvec and
870 	 * iovec are identical, yielding the same in-core layout and alignment
871 	 */
872 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
873 	result = sock_recvmsg(sock, msg, size, flags);
874 	set_fs(oldfs);
875 	return result;
876 }
877 EXPORT_SYMBOL(kernel_recvmsg);
878 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)879 static ssize_t sock_sendpage(struct file *file, struct page *page,
880 			     int offset, size_t size, loff_t *ppos, int more)
881 {
882 	struct socket *sock;
883 	int flags;
884 
885 	sock = file->private_data;
886 
887 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
888 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
889 	flags |= more;
890 
891 	return kernel_sendpage(sock, page, offset, size, flags);
892 }
893 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)894 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
895 				struct pipe_inode_info *pipe, size_t len,
896 				unsigned int flags)
897 {
898 	struct socket *sock = file->private_data;
899 
900 	if (unlikely(!sock->ops->splice_read))
901 		return -EINVAL;
902 
903 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
904 }
905 
alloc_sock_iocb(struct kiocb * iocb,struct sock_iocb * siocb)906 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
907 					 struct sock_iocb *siocb)
908 {
909 	siocb->kiocb = iocb;
910 	iocb->private = siocb;
911 	return siocb;
912 }
913 
do_sock_read(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)914 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
915 		struct file *file, const struct iovec *iov,
916 		unsigned long nr_segs)
917 {
918 	struct socket *sock = file->private_data;
919 	size_t size = 0;
920 	int i;
921 
922 	for (i = 0; i < nr_segs; i++)
923 		size += iov[i].iov_len;
924 
925 	msg->msg_name = NULL;
926 	msg->msg_namelen = 0;
927 	msg->msg_control = NULL;
928 	msg->msg_controllen = 0;
929 	msg->msg_iov = (struct iovec *)iov;
930 	msg->msg_iovlen = nr_segs;
931 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
932 
933 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
934 }
935 
sock_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)936 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
937 				unsigned long nr_segs, loff_t pos)
938 {
939 	struct sock_iocb siocb, *x;
940 
941 	if (pos != 0)
942 		return -ESPIPE;
943 
944 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
945 		return 0;
946 
947 
948 	x = alloc_sock_iocb(iocb, &siocb);
949 	if (!x)
950 		return -ENOMEM;
951 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
952 }
953 
do_sock_write(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)954 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
955 			struct file *file, const struct iovec *iov,
956 			unsigned long nr_segs)
957 {
958 	struct socket *sock = file->private_data;
959 	size_t size = 0;
960 	int i;
961 
962 	for (i = 0; i < nr_segs; i++)
963 		size += iov[i].iov_len;
964 
965 	msg->msg_name = NULL;
966 	msg->msg_namelen = 0;
967 	msg->msg_control = NULL;
968 	msg->msg_controllen = 0;
969 	msg->msg_iov = (struct iovec *)iov;
970 	msg->msg_iovlen = nr_segs;
971 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
972 	if (sock->type == SOCK_SEQPACKET)
973 		msg->msg_flags |= MSG_EOR;
974 
975 	return __sock_sendmsg(iocb, sock, msg, size);
976 }
977 
sock_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)978 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
979 			  unsigned long nr_segs, loff_t pos)
980 {
981 	struct sock_iocb siocb, *x;
982 
983 	if (pos != 0)
984 		return -ESPIPE;
985 
986 	x = alloc_sock_iocb(iocb, &siocb);
987 	if (!x)
988 		return -ENOMEM;
989 
990 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
991 }
992 
993 /*
994  * Atomic setting of ioctl hooks to avoid race
995  * with module unload.
996  */
997 
998 static DEFINE_MUTEX(br_ioctl_mutex);
999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1000 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1002 {
1003 	mutex_lock(&br_ioctl_mutex);
1004 	br_ioctl_hook = hook;
1005 	mutex_unlock(&br_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(brioctl_set);
1008 
1009 static DEFINE_MUTEX(vlan_ioctl_mutex);
1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1011 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1013 {
1014 	mutex_lock(&vlan_ioctl_mutex);
1015 	vlan_ioctl_hook = hook;
1016 	mutex_unlock(&vlan_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(vlan_ioctl_set);
1019 
1020 static DEFINE_MUTEX(dlci_ioctl_mutex);
1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1022 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1024 {
1025 	mutex_lock(&dlci_ioctl_mutex);
1026 	dlci_ioctl_hook = hook;
1027 	mutex_unlock(&dlci_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(dlci_ioctl_set);
1030 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1031 static long sock_do_ioctl(struct net *net, struct socket *sock,
1032 				 unsigned int cmd, unsigned long arg)
1033 {
1034 	int err;
1035 	void __user *argp = (void __user *)arg;
1036 
1037 	err = sock->ops->ioctl(sock, cmd, arg);
1038 
1039 	/*
1040 	 * If this ioctl is unknown try to hand it down
1041 	 * to the NIC driver.
1042 	 */
1043 	if (err == -ENOIOCTLCMD)
1044 		err = dev_ioctl(net, cmd, argp);
1045 
1046 	return err;
1047 }
1048 
1049 /*
1050  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1051  *	what to do with it - that's up to the protocol still.
1052  */
1053 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1054 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1055 {
1056 	struct socket *sock;
1057 	struct sock *sk;
1058 	void __user *argp = (void __user *)arg;
1059 	int pid, err;
1060 	struct net *net;
1061 
1062 	sock = file->private_data;
1063 	sk = sock->sk;
1064 	net = sock_net(sk);
1065 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1066 		err = dev_ioctl(net, cmd, argp);
1067 	} else
1068 #ifdef CONFIG_WEXT_CORE
1069 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1070 		err = dev_ioctl(net, cmd, argp);
1071 	} else
1072 #endif
1073 		switch (cmd) {
1074 		case FIOSETOWN:
1075 		case SIOCSPGRP:
1076 			err = -EFAULT;
1077 			if (get_user(pid, (int __user *)argp))
1078 				break;
1079 			f_setown(sock->file, pid, 1);
1080 			err = 0;
1081 			break;
1082 		case FIOGETOWN:
1083 		case SIOCGPGRP:
1084 			err = put_user(f_getown(sock->file),
1085 				       (int __user *)argp);
1086 			break;
1087 		case SIOCGIFBR:
1088 		case SIOCSIFBR:
1089 		case SIOCBRADDBR:
1090 		case SIOCBRDELBR:
1091 			err = -ENOPKG;
1092 			if (!br_ioctl_hook)
1093 				request_module("bridge");
1094 
1095 			mutex_lock(&br_ioctl_mutex);
1096 			if (br_ioctl_hook)
1097 				err = br_ioctl_hook(net, cmd, argp);
1098 			mutex_unlock(&br_ioctl_mutex);
1099 			break;
1100 		case SIOCGIFVLAN:
1101 		case SIOCSIFVLAN:
1102 			err = -ENOPKG;
1103 			if (!vlan_ioctl_hook)
1104 				request_module("8021q");
1105 
1106 			mutex_lock(&vlan_ioctl_mutex);
1107 			if (vlan_ioctl_hook)
1108 				err = vlan_ioctl_hook(net, argp);
1109 			mutex_unlock(&vlan_ioctl_mutex);
1110 			break;
1111 		case SIOCADDDLCI:
1112 		case SIOCDELDLCI:
1113 			err = -ENOPKG;
1114 			if (!dlci_ioctl_hook)
1115 				request_module("dlci");
1116 
1117 			mutex_lock(&dlci_ioctl_mutex);
1118 			if (dlci_ioctl_hook)
1119 				err = dlci_ioctl_hook(cmd, argp);
1120 			mutex_unlock(&dlci_ioctl_mutex);
1121 			break;
1122 		default:
1123 			err = sock_do_ioctl(net, sock, cmd, arg);
1124 			break;
1125 		}
1126 	return err;
1127 }
1128 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1129 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1130 {
1131 	int err;
1132 	struct socket *sock = NULL;
1133 
1134 	err = security_socket_create(family, type, protocol, 1);
1135 	if (err)
1136 		goto out;
1137 
1138 	sock = sock_alloc();
1139 	if (!sock) {
1140 		err = -ENOMEM;
1141 		goto out;
1142 	}
1143 
1144 	sock->type = type;
1145 	err = security_socket_post_create(sock, family, type, protocol, 1);
1146 	if (err)
1147 		goto out_release;
1148 
1149 out:
1150 	*res = sock;
1151 	return err;
1152 out_release:
1153 	sock_release(sock);
1154 	sock = NULL;
1155 	goto out;
1156 }
1157 EXPORT_SYMBOL(sock_create_lite);
1158 
1159 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1160 static unsigned int sock_poll(struct file *file, poll_table *wait)
1161 {
1162 	unsigned int busy_flag = 0;
1163 	struct socket *sock;
1164 
1165 	/*
1166 	 *      We can't return errors to poll, so it's either yes or no.
1167 	 */
1168 	sock = file->private_data;
1169 
1170 	if (sk_can_busy_loop(sock->sk)) {
1171 		/* this socket can poll_ll so tell the system call */
1172 		busy_flag = POLL_BUSY_LOOP;
1173 
1174 		/* once, only if requested by syscall */
1175 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1176 			sk_busy_loop(sock->sk, 1);
1177 	}
1178 
1179 	return busy_flag | sock->ops->poll(file, sock, wait);
1180 }
1181 
sock_mmap(struct file * file,struct vm_area_struct * vma)1182 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1183 {
1184 	struct socket *sock = file->private_data;
1185 
1186 	return sock->ops->mmap(file, sock, vma);
1187 }
1188 
sock_close(struct inode * inode,struct file * filp)1189 static int sock_close(struct inode *inode, struct file *filp)
1190 {
1191 	sock_release(SOCKET_I(inode));
1192 	return 0;
1193 }
1194 
1195 /*
1196  *	Update the socket async list
1197  *
1198  *	Fasync_list locking strategy.
1199  *
1200  *	1. fasync_list is modified only under process context socket lock
1201  *	   i.e. under semaphore.
1202  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1203  *	   or under socket lock
1204  */
1205 
sock_fasync(int fd,struct file * filp,int on)1206 static int sock_fasync(int fd, struct file *filp, int on)
1207 {
1208 	struct socket *sock = filp->private_data;
1209 	struct sock *sk = sock->sk;
1210 	struct socket_wq *wq;
1211 
1212 	if (sk == NULL)
1213 		return -EINVAL;
1214 
1215 	lock_sock(sk);
1216 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1217 	fasync_helper(fd, filp, on, &wq->fasync_list);
1218 
1219 	if (!wq->fasync_list)
1220 		sock_reset_flag(sk, SOCK_FASYNC);
1221 	else
1222 		sock_set_flag(sk, SOCK_FASYNC);
1223 
1224 	release_sock(sk);
1225 	return 0;
1226 }
1227 
1228 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1229 
sock_wake_async(struct socket * sock,int how,int band)1230 int sock_wake_async(struct socket *sock, int how, int band)
1231 {
1232 	struct socket_wq *wq;
1233 
1234 	if (!sock)
1235 		return -1;
1236 	rcu_read_lock();
1237 	wq = rcu_dereference(sock->wq);
1238 	if (!wq || !wq->fasync_list) {
1239 		rcu_read_unlock();
1240 		return -1;
1241 	}
1242 	switch (how) {
1243 	case SOCK_WAKE_WAITD:
1244 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1245 			break;
1246 		goto call_kill;
1247 	case SOCK_WAKE_SPACE:
1248 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1249 			break;
1250 		/* fall through */
1251 	case SOCK_WAKE_IO:
1252 call_kill:
1253 		kill_fasync(&wq->fasync_list, SIGIO, band);
1254 		break;
1255 	case SOCK_WAKE_URG:
1256 		kill_fasync(&wq->fasync_list, SIGURG, band);
1257 	}
1258 	rcu_read_unlock();
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(sock_wake_async);
1262 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1263 int __sock_create(struct net *net, int family, int type, int protocol,
1264 			 struct socket **res, int kern)
1265 {
1266 	int err;
1267 	struct socket *sock;
1268 	const struct net_proto_family *pf;
1269 
1270 	/*
1271 	 *      Check protocol is in range
1272 	 */
1273 	if (family < 0 || family >= NPROTO)
1274 		return -EAFNOSUPPORT;
1275 	if (type < 0 || type >= SOCK_MAX)
1276 		return -EINVAL;
1277 
1278 	/* Compatibility.
1279 
1280 	   This uglymoron is moved from INET layer to here to avoid
1281 	   deadlock in module load.
1282 	 */
1283 	if (family == PF_INET && type == SOCK_PACKET) {
1284 		static int warned;
1285 		if (!warned) {
1286 			warned = 1;
1287 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1288 				current->comm);
1289 		}
1290 		family = PF_PACKET;
1291 	}
1292 
1293 	err = security_socket_create(family, type, protocol, kern);
1294 	if (err)
1295 		return err;
1296 
1297 	/*
1298 	 *	Allocate the socket and allow the family to set things up. if
1299 	 *	the protocol is 0, the family is instructed to select an appropriate
1300 	 *	default.
1301 	 */
1302 	sock = sock_alloc();
1303 	if (!sock) {
1304 		net_warn_ratelimited("socket: no more sockets\n");
1305 		return -ENFILE;	/* Not exactly a match, but its the
1306 				   closest posix thing */
1307 	}
1308 
1309 	sock->type = type;
1310 
1311 #ifdef CONFIG_MODULES
1312 	/* Attempt to load a protocol module if the find failed.
1313 	 *
1314 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1315 	 * requested real, full-featured networking support upon configuration.
1316 	 * Otherwise module support will break!
1317 	 */
1318 	if (rcu_access_pointer(net_families[family]) == NULL)
1319 		request_module("net-pf-%d", family);
1320 #endif
1321 
1322 	rcu_read_lock();
1323 	pf = rcu_dereference(net_families[family]);
1324 	err = -EAFNOSUPPORT;
1325 	if (!pf)
1326 		goto out_release;
1327 
1328 	/*
1329 	 * We will call the ->create function, that possibly is in a loadable
1330 	 * module, so we have to bump that loadable module refcnt first.
1331 	 */
1332 	if (!try_module_get(pf->owner))
1333 		goto out_release;
1334 
1335 	/* Now protected by module ref count */
1336 	rcu_read_unlock();
1337 
1338 	err = pf->create(net, sock, protocol, kern);
1339 	if (err < 0)
1340 		goto out_module_put;
1341 
1342 	/*
1343 	 * Now to bump the refcnt of the [loadable] module that owns this
1344 	 * socket at sock_release time we decrement its refcnt.
1345 	 */
1346 	if (!try_module_get(sock->ops->owner))
1347 		goto out_module_busy;
1348 
1349 	/*
1350 	 * Now that we're done with the ->create function, the [loadable]
1351 	 * module can have its refcnt decremented
1352 	 */
1353 	module_put(pf->owner);
1354 	err = security_socket_post_create(sock, family, type, protocol, kern);
1355 	if (err)
1356 		goto out_sock_release;
1357 	*res = sock;
1358 
1359 	return 0;
1360 
1361 out_module_busy:
1362 	err = -EAFNOSUPPORT;
1363 out_module_put:
1364 	sock->ops = NULL;
1365 	module_put(pf->owner);
1366 out_sock_release:
1367 	sock_release(sock);
1368 	return err;
1369 
1370 out_release:
1371 	rcu_read_unlock();
1372 	goto out_sock_release;
1373 }
1374 EXPORT_SYMBOL(__sock_create);
1375 
sock_create(int family,int type,int protocol,struct socket ** res)1376 int sock_create(int family, int type, int protocol, struct socket **res)
1377 {
1378 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1379 }
1380 EXPORT_SYMBOL(sock_create);
1381 
sock_create_kern(int family,int type,int protocol,struct socket ** res)1382 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1383 {
1384 	return __sock_create(&init_net, family, type, protocol, res, 1);
1385 }
1386 EXPORT_SYMBOL(sock_create_kern);
1387 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1388 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1389 {
1390 	int retval;
1391 	struct socket *sock;
1392 	int flags;
1393 
1394 	/* Check the SOCK_* constants for consistency.  */
1395 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1396 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1397 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1398 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1399 
1400 	flags = type & ~SOCK_TYPE_MASK;
1401 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1402 		return -EINVAL;
1403 	type &= SOCK_TYPE_MASK;
1404 
1405 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1406 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1407 
1408 	retval = sock_create(family, type, protocol, &sock);
1409 	if (retval < 0)
1410 		goto out;
1411 
1412 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1413 	if (retval < 0)
1414 		goto out_release;
1415 
1416 out:
1417 	/* It may be already another descriptor 8) Not kernel problem. */
1418 	return retval;
1419 
1420 out_release:
1421 	sock_release(sock);
1422 	return retval;
1423 }
1424 
1425 /*
1426  *	Create a pair of connected sockets.
1427  */
1428 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1429 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1430 		int __user *, usockvec)
1431 {
1432 	struct socket *sock1, *sock2;
1433 	int fd1, fd2, err;
1434 	struct file *newfile1, *newfile2;
1435 	int flags;
1436 
1437 	flags = type & ~SOCK_TYPE_MASK;
1438 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439 		return -EINVAL;
1440 	type &= SOCK_TYPE_MASK;
1441 
1442 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1443 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444 
1445 	/*
1446 	 * Obtain the first socket and check if the underlying protocol
1447 	 * supports the socketpair call.
1448 	 */
1449 
1450 	err = sock_create(family, type, protocol, &sock1);
1451 	if (err < 0)
1452 		goto out;
1453 
1454 	err = sock_create(family, type, protocol, &sock2);
1455 	if (err < 0)
1456 		goto out_release_1;
1457 
1458 	err = sock1->ops->socketpair(sock1, sock2);
1459 	if (err < 0)
1460 		goto out_release_both;
1461 
1462 	fd1 = get_unused_fd_flags(flags);
1463 	if (unlikely(fd1 < 0)) {
1464 		err = fd1;
1465 		goto out_release_both;
1466 	}
1467 
1468 	fd2 = get_unused_fd_flags(flags);
1469 	if (unlikely(fd2 < 0)) {
1470 		err = fd2;
1471 		goto out_put_unused_1;
1472 	}
1473 
1474 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1475 	if (unlikely(IS_ERR(newfile1))) {
1476 		err = PTR_ERR(newfile1);
1477 		goto out_put_unused_both;
1478 	}
1479 
1480 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1481 	if (IS_ERR(newfile2)) {
1482 		err = PTR_ERR(newfile2);
1483 		goto out_fput_1;
1484 	}
1485 
1486 	err = put_user(fd1, &usockvec[0]);
1487 	if (err)
1488 		goto out_fput_both;
1489 
1490 	err = put_user(fd2, &usockvec[1]);
1491 	if (err)
1492 		goto out_fput_both;
1493 
1494 	audit_fd_pair(fd1, fd2);
1495 
1496 	fd_install(fd1, newfile1);
1497 	fd_install(fd2, newfile2);
1498 	/* fd1 and fd2 may be already another descriptors.
1499 	 * Not kernel problem.
1500 	 */
1501 
1502 	return 0;
1503 
1504 out_fput_both:
1505 	fput(newfile2);
1506 	fput(newfile1);
1507 	put_unused_fd(fd2);
1508 	put_unused_fd(fd1);
1509 	goto out;
1510 
1511 out_fput_1:
1512 	fput(newfile1);
1513 	put_unused_fd(fd2);
1514 	put_unused_fd(fd1);
1515 	sock_release(sock2);
1516 	goto out;
1517 
1518 out_put_unused_both:
1519 	put_unused_fd(fd2);
1520 out_put_unused_1:
1521 	put_unused_fd(fd1);
1522 out_release_both:
1523 	sock_release(sock2);
1524 out_release_1:
1525 	sock_release(sock1);
1526 out:
1527 	return err;
1528 }
1529 
1530 /*
1531  *	Bind a name to a socket. Nothing much to do here since it's
1532  *	the protocol's responsibility to handle the local address.
1533  *
1534  *	We move the socket address to kernel space before we call
1535  *	the protocol layer (having also checked the address is ok).
1536  */
1537 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1538 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1539 {
1540 	struct socket *sock;
1541 	struct sockaddr_storage address;
1542 	int err, fput_needed;
1543 
1544 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1545 	if (sock) {
1546 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1547 		if (err >= 0) {
1548 			err = security_socket_bind(sock,
1549 						   (struct sockaddr *)&address,
1550 						   addrlen);
1551 			if (!err)
1552 				err = sock->ops->bind(sock,
1553 						      (struct sockaddr *)
1554 						      &address, addrlen);
1555 		}
1556 		fput_light(sock->file, fput_needed);
1557 	}
1558 	return err;
1559 }
1560 
1561 /*
1562  *	Perform a listen. Basically, we allow the protocol to do anything
1563  *	necessary for a listen, and if that works, we mark the socket as
1564  *	ready for listening.
1565  */
1566 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1567 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1568 {
1569 	struct socket *sock;
1570 	int err, fput_needed;
1571 	int somaxconn;
1572 
1573 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1574 	if (sock) {
1575 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1576 		if ((unsigned int)backlog > somaxconn)
1577 			backlog = somaxconn;
1578 
1579 		err = security_socket_listen(sock, backlog);
1580 		if (!err)
1581 			err = sock->ops->listen(sock, backlog);
1582 
1583 		fput_light(sock->file, fput_needed);
1584 	}
1585 	return err;
1586 }
1587 
1588 /*
1589  *	For accept, we attempt to create a new socket, set up the link
1590  *	with the client, wake up the client, then return the new
1591  *	connected fd. We collect the address of the connector in kernel
1592  *	space and move it to user at the very end. This is unclean because
1593  *	we open the socket then return an error.
1594  *
1595  *	1003.1g adds the ability to recvmsg() to query connection pending
1596  *	status to recvmsg. We need to add that support in a way thats
1597  *	clean when we restucture accept also.
1598  */
1599 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1600 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1601 		int __user *, upeer_addrlen, int, flags)
1602 {
1603 	struct socket *sock, *newsock;
1604 	struct file *newfile;
1605 	int err, len, newfd, fput_needed;
1606 	struct sockaddr_storage address;
1607 
1608 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1609 		return -EINVAL;
1610 
1611 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1612 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1613 
1614 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1615 	if (!sock)
1616 		goto out;
1617 
1618 	err = -ENFILE;
1619 	newsock = sock_alloc();
1620 	if (!newsock)
1621 		goto out_put;
1622 
1623 	newsock->type = sock->type;
1624 	newsock->ops = sock->ops;
1625 
1626 	/*
1627 	 * We don't need try_module_get here, as the listening socket (sock)
1628 	 * has the protocol module (sock->ops->owner) held.
1629 	 */
1630 	__module_get(newsock->ops->owner);
1631 
1632 	newfd = get_unused_fd_flags(flags);
1633 	if (unlikely(newfd < 0)) {
1634 		err = newfd;
1635 		sock_release(newsock);
1636 		goto out_put;
1637 	}
1638 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1639 	if (unlikely(IS_ERR(newfile))) {
1640 		err = PTR_ERR(newfile);
1641 		put_unused_fd(newfd);
1642 		sock_release(newsock);
1643 		goto out_put;
1644 	}
1645 
1646 	err = security_socket_accept(sock, newsock);
1647 	if (err)
1648 		goto out_fd;
1649 
1650 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1651 	if (err < 0)
1652 		goto out_fd;
1653 
1654 	if (upeer_sockaddr) {
1655 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1656 					  &len, 2) < 0) {
1657 			err = -ECONNABORTED;
1658 			goto out_fd;
1659 		}
1660 		err = move_addr_to_user(&address,
1661 					len, upeer_sockaddr, upeer_addrlen);
1662 		if (err < 0)
1663 			goto out_fd;
1664 	}
1665 
1666 	/* File flags are not inherited via accept() unlike another OSes. */
1667 
1668 	fd_install(newfd, newfile);
1669 	err = newfd;
1670 
1671 out_put:
1672 	fput_light(sock->file, fput_needed);
1673 out:
1674 	return err;
1675 out_fd:
1676 	fput(newfile);
1677 	put_unused_fd(newfd);
1678 	goto out_put;
1679 }
1680 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1681 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1682 		int __user *, upeer_addrlen)
1683 {
1684 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1685 }
1686 
1687 /*
1688  *	Attempt to connect to a socket with the server address.  The address
1689  *	is in user space so we verify it is OK and move it to kernel space.
1690  *
1691  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1692  *	break bindings
1693  *
1694  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1695  *	other SEQPACKET protocols that take time to connect() as it doesn't
1696  *	include the -EINPROGRESS status for such sockets.
1697  */
1698 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1699 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1700 		int, addrlen)
1701 {
1702 	struct socket *sock;
1703 	struct sockaddr_storage address;
1704 	int err, fput_needed;
1705 
1706 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 	if (!sock)
1708 		goto out;
1709 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1710 	if (err < 0)
1711 		goto out_put;
1712 
1713 	err =
1714 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1715 	if (err)
1716 		goto out_put;
1717 
1718 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1719 				 sock->file->f_flags);
1720 out_put:
1721 	fput_light(sock->file, fput_needed);
1722 out:
1723 	return err;
1724 }
1725 
1726 /*
1727  *	Get the local address ('name') of a socket object. Move the obtained
1728  *	name to user space.
1729  */
1730 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1731 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1732 		int __user *, usockaddr_len)
1733 {
1734 	struct socket *sock;
1735 	struct sockaddr_storage address;
1736 	int len, err, fput_needed;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (!sock)
1740 		goto out;
1741 
1742 	err = security_socket_getsockname(sock);
1743 	if (err)
1744 		goto out_put;
1745 
1746 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1747 	if (err)
1748 		goto out_put;
1749 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1750 
1751 out_put:
1752 	fput_light(sock->file, fput_needed);
1753 out:
1754 	return err;
1755 }
1756 
1757 /*
1758  *	Get the remote address ('name') of a socket object. Move the obtained
1759  *	name to user space.
1760  */
1761 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1762 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1763 		int __user *, usockaddr_len)
1764 {
1765 	struct socket *sock;
1766 	struct sockaddr_storage address;
1767 	int len, err, fput_needed;
1768 
1769 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 	if (sock != NULL) {
1771 		err = security_socket_getpeername(sock);
1772 		if (err) {
1773 			fput_light(sock->file, fput_needed);
1774 			return err;
1775 		}
1776 
1777 		err =
1778 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1779 				       1);
1780 		if (!err)
1781 			err = move_addr_to_user(&address, len, usockaddr,
1782 						usockaddr_len);
1783 		fput_light(sock->file, fput_needed);
1784 	}
1785 	return err;
1786 }
1787 
1788 /*
1789  *	Send a datagram to a given address. We move the address into kernel
1790  *	space and check the user space data area is readable before invoking
1791  *	the protocol.
1792  */
1793 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1794 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1795 		unsigned int, flags, struct sockaddr __user *, addr,
1796 		int, addr_len)
1797 {
1798 	struct socket *sock;
1799 	struct sockaddr_storage address;
1800 	int err;
1801 	struct msghdr msg;
1802 	struct iovec iov;
1803 	int fput_needed;
1804 
1805 	if (len > INT_MAX)
1806 		len = INT_MAX;
1807 	if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1808 		return -EFAULT;
1809 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1810 	if (!sock)
1811 		goto out;
1812 
1813 	iov.iov_base = buff;
1814 	iov.iov_len = len;
1815 	msg.msg_name = NULL;
1816 	msg.msg_iov = &iov;
1817 	msg.msg_iovlen = 1;
1818 	msg.msg_control = NULL;
1819 	msg.msg_controllen = 0;
1820 	msg.msg_namelen = 0;
1821 	if (addr) {
1822 		err = move_addr_to_kernel(addr, addr_len, &address);
1823 		if (err < 0)
1824 			goto out_put;
1825 		msg.msg_name = (struct sockaddr *)&address;
1826 		msg.msg_namelen = addr_len;
1827 	}
1828 	if (sock->file->f_flags & O_NONBLOCK)
1829 		flags |= MSG_DONTWAIT;
1830 	msg.msg_flags = flags;
1831 	err = sock_sendmsg(sock, &msg, len);
1832 
1833 out_put:
1834 	fput_light(sock->file, fput_needed);
1835 out:
1836 	return err;
1837 }
1838 
1839 /*
1840  *	Send a datagram down a socket.
1841  */
1842 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1843 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1844 		unsigned int, flags)
1845 {
1846 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1847 }
1848 
1849 /*
1850  *	Receive a frame from the socket and optionally record the address of the
1851  *	sender. We verify the buffers are writable and if needed move the
1852  *	sender address from kernel to user space.
1853  */
1854 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1855 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1856 		unsigned int, flags, struct sockaddr __user *, addr,
1857 		int __user *, addr_len)
1858 {
1859 	struct socket *sock;
1860 	struct iovec iov;
1861 	struct msghdr msg;
1862 	struct sockaddr_storage address;
1863 	int err, err2;
1864 	int fput_needed;
1865 
1866 	if (size > INT_MAX)
1867 		size = INT_MAX;
1868 	if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1869 		return -EFAULT;
1870 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1871 	if (!sock)
1872 		goto out;
1873 
1874 	msg.msg_control = NULL;
1875 	msg.msg_controllen = 0;
1876 	msg.msg_iovlen = 1;
1877 	msg.msg_iov = &iov;
1878 	iov.iov_len = size;
1879 	iov.iov_base = ubuf;
1880 	/* Save some cycles and don't copy the address if not needed */
1881 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1882 	/* We assume all kernel code knows the size of sockaddr_storage */
1883 	msg.msg_namelen = 0;
1884 	if (sock->file->f_flags & O_NONBLOCK)
1885 		flags |= MSG_DONTWAIT;
1886 	err = sock_recvmsg(sock, &msg, size, flags);
1887 
1888 	if (err >= 0 && addr != NULL) {
1889 		err2 = move_addr_to_user(&address,
1890 					 msg.msg_namelen, addr, addr_len);
1891 		if (err2 < 0)
1892 			err = err2;
1893 	}
1894 
1895 	fput_light(sock->file, fput_needed);
1896 out:
1897 	return err;
1898 }
1899 
1900 /*
1901  *	Receive a datagram from a socket.
1902  */
1903 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)1904 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1905 		unsigned int, flags)
1906 {
1907 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1908 }
1909 
1910 /*
1911  *	Set a socket option. Because we don't know the option lengths we have
1912  *	to pass the user mode parameter for the protocols to sort out.
1913  */
1914 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1915 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1916 		char __user *, optval, int, optlen)
1917 {
1918 	int err, fput_needed;
1919 	struct socket *sock;
1920 
1921 	if (optlen < 0)
1922 		return -EINVAL;
1923 
1924 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1925 	if (sock != NULL) {
1926 		err = security_socket_setsockopt(sock, level, optname);
1927 		if (err)
1928 			goto out_put;
1929 
1930 		if (level == SOL_SOCKET)
1931 			err =
1932 			    sock_setsockopt(sock, level, optname, optval,
1933 					    optlen);
1934 		else
1935 			err =
1936 			    sock->ops->setsockopt(sock, level, optname, optval,
1937 						  optlen);
1938 out_put:
1939 		fput_light(sock->file, fput_needed);
1940 	}
1941 	return err;
1942 }
1943 
1944 /*
1945  *	Get a socket option. Because we don't know the option lengths we have
1946  *	to pass a user mode parameter for the protocols to sort out.
1947  */
1948 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1949 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1950 		char __user *, optval, int __user *, optlen)
1951 {
1952 	int err, fput_needed;
1953 	struct socket *sock;
1954 
1955 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1956 	if (sock != NULL) {
1957 		err = security_socket_getsockopt(sock, level, optname);
1958 		if (err)
1959 			goto out_put;
1960 
1961 		if (level == SOL_SOCKET)
1962 			err =
1963 			    sock_getsockopt(sock, level, optname, optval,
1964 					    optlen);
1965 		else
1966 			err =
1967 			    sock->ops->getsockopt(sock, level, optname, optval,
1968 						  optlen);
1969 out_put:
1970 		fput_light(sock->file, fput_needed);
1971 	}
1972 	return err;
1973 }
1974 
1975 /*
1976  *	Shutdown a socket.
1977  */
1978 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1979 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1980 {
1981 	int err, fput_needed;
1982 	struct socket *sock;
1983 
1984 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985 	if (sock != NULL) {
1986 		err = security_socket_shutdown(sock, how);
1987 		if (!err)
1988 			err = sock->ops->shutdown(sock, how);
1989 		fput_light(sock->file, fput_needed);
1990 	}
1991 	return err;
1992 }
1993 
1994 /* A couple of helpful macros for getting the address of the 32/64 bit
1995  * fields which are the same type (int / unsigned) on our platforms.
1996  */
1997 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1998 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1999 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2000 
2001 struct used_address {
2002 	struct sockaddr_storage name;
2003 	unsigned int name_len;
2004 };
2005 
copy_msghdr_from_user(struct msghdr * kmsg,struct msghdr __user * umsg)2006 static int copy_msghdr_from_user(struct msghdr *kmsg,
2007 				 struct msghdr __user *umsg)
2008 {
2009 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
2010 		return -EFAULT;
2011 
2012 	if (kmsg->msg_name == NULL)
2013 		kmsg->msg_namelen = 0;
2014 
2015 	if (kmsg->msg_namelen < 0)
2016 		return -EINVAL;
2017 
2018 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2019 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2020 	return 0;
2021 }
2022 
___sys_sendmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address)2023 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2024 			 struct msghdr *msg_sys, unsigned int flags,
2025 			 struct used_address *used_address)
2026 {
2027 	struct compat_msghdr __user *msg_compat =
2028 	    (struct compat_msghdr __user *)msg;
2029 	struct sockaddr_storage address;
2030 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2031 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2032 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2033 	/* 20 is size of ipv6_pktinfo */
2034 	unsigned char *ctl_buf = ctl;
2035 	int err, ctl_len, total_len;
2036 
2037 	err = -EFAULT;
2038 	if (MSG_CMSG_COMPAT & flags)
2039 		err = get_compat_msghdr(msg_sys, msg_compat);
2040 	else
2041 		err = copy_msghdr_from_user(msg_sys, msg);
2042 	if (err)
2043 		return err;
2044 
2045 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2046 		err = -EMSGSIZE;
2047 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2048 			goto out;
2049 		err = -ENOMEM;
2050 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2051 			      GFP_KERNEL);
2052 		if (!iov)
2053 			goto out;
2054 	}
2055 
2056 	/* This will also move the address data into kernel space */
2057 	if (MSG_CMSG_COMPAT & flags) {
2058 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2059 	} else
2060 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2061 	if (err < 0)
2062 		goto out_freeiov;
2063 	total_len = err;
2064 
2065 	err = -ENOBUFS;
2066 
2067 	if (msg_sys->msg_controllen > INT_MAX)
2068 		goto out_freeiov;
2069 	ctl_len = msg_sys->msg_controllen;
2070 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2071 		err =
2072 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2073 						     sizeof(ctl));
2074 		if (err)
2075 			goto out_freeiov;
2076 		ctl_buf = msg_sys->msg_control;
2077 		ctl_len = msg_sys->msg_controllen;
2078 	} else if (ctl_len) {
2079 		if (ctl_len > sizeof(ctl)) {
2080 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2081 			if (ctl_buf == NULL)
2082 				goto out_freeiov;
2083 		}
2084 		err = -EFAULT;
2085 		/*
2086 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2087 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2088 		 * checking falls down on this.
2089 		 */
2090 		if (copy_from_user(ctl_buf,
2091 				   (void __user __force *)msg_sys->msg_control,
2092 				   ctl_len))
2093 			goto out_freectl;
2094 		msg_sys->msg_control = ctl_buf;
2095 	}
2096 	msg_sys->msg_flags = flags;
2097 
2098 	if (sock->file->f_flags & O_NONBLOCK)
2099 		msg_sys->msg_flags |= MSG_DONTWAIT;
2100 	/*
2101 	 * If this is sendmmsg() and current destination address is same as
2102 	 * previously succeeded address, omit asking LSM's decision.
2103 	 * used_address->name_len is initialized to UINT_MAX so that the first
2104 	 * destination address never matches.
2105 	 */
2106 	if (used_address && msg_sys->msg_name &&
2107 	    used_address->name_len == msg_sys->msg_namelen &&
2108 	    !memcmp(&used_address->name, msg_sys->msg_name,
2109 		    used_address->name_len)) {
2110 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2111 		goto out_freectl;
2112 	}
2113 	err = sock_sendmsg(sock, msg_sys, total_len);
2114 	/*
2115 	 * If this is sendmmsg() and sending to current destination address was
2116 	 * successful, remember it.
2117 	 */
2118 	if (used_address && err >= 0) {
2119 		used_address->name_len = msg_sys->msg_namelen;
2120 		if (msg_sys->msg_name)
2121 			memcpy(&used_address->name, msg_sys->msg_name,
2122 			       used_address->name_len);
2123 	}
2124 
2125 out_freectl:
2126 	if (ctl_buf != ctl)
2127 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2128 out_freeiov:
2129 	if (iov != iovstack)
2130 		kfree(iov);
2131 out:
2132 	return err;
2133 }
2134 
2135 /*
2136  *	BSD sendmsg interface
2137  */
2138 
__sys_sendmsg(int fd,struct msghdr __user * msg,unsigned flags)2139 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2140 {
2141 	int fput_needed, err;
2142 	struct msghdr msg_sys;
2143 	struct socket *sock;
2144 
2145 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 	if (!sock)
2147 		goto out;
2148 
2149 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2150 
2151 	fput_light(sock->file, fput_needed);
2152 out:
2153 	return err;
2154 }
2155 
SYSCALL_DEFINE3(sendmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2156 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2157 {
2158 	if (flags & MSG_CMSG_COMPAT)
2159 		return -EINVAL;
2160 	return __sys_sendmsg(fd, msg, flags);
2161 }
2162 
2163 /*
2164  *	Linux sendmmsg interface
2165  */
2166 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2167 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2168 		   unsigned int flags)
2169 {
2170 	int fput_needed, err, datagrams;
2171 	struct socket *sock;
2172 	struct mmsghdr __user *entry;
2173 	struct compat_mmsghdr __user *compat_entry;
2174 	struct msghdr msg_sys;
2175 	struct used_address used_address;
2176 
2177 	if (vlen > UIO_MAXIOV)
2178 		vlen = UIO_MAXIOV;
2179 
2180 	datagrams = 0;
2181 
2182 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2183 	if (!sock)
2184 		return err;
2185 
2186 	used_address.name_len = UINT_MAX;
2187 	entry = mmsg;
2188 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2189 	err = 0;
2190 
2191 	while (datagrams < vlen) {
2192 		if (MSG_CMSG_COMPAT & flags) {
2193 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2194 					     &msg_sys, flags, &used_address);
2195 			if (err < 0)
2196 				break;
2197 			err = __put_user(err, &compat_entry->msg_len);
2198 			++compat_entry;
2199 		} else {
2200 			err = ___sys_sendmsg(sock,
2201 					     (struct msghdr __user *)entry,
2202 					     &msg_sys, flags, &used_address);
2203 			if (err < 0)
2204 				break;
2205 			err = put_user(err, &entry->msg_len);
2206 			++entry;
2207 		}
2208 
2209 		if (err)
2210 			break;
2211 		++datagrams;
2212 	}
2213 
2214 	fput_light(sock->file, fput_needed);
2215 
2216 	/* We only return an error if no datagrams were able to be sent */
2217 	if (datagrams != 0)
2218 		return datagrams;
2219 
2220 	return err;
2221 }
2222 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2223 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2224 		unsigned int, vlen, unsigned int, flags)
2225 {
2226 	if (flags & MSG_CMSG_COMPAT)
2227 		return -EINVAL;
2228 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2229 }
2230 
___sys_recvmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2231 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2232 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2233 {
2234 	struct compat_msghdr __user *msg_compat =
2235 	    (struct compat_msghdr __user *)msg;
2236 	struct iovec iovstack[UIO_FASTIOV];
2237 	struct iovec *iov = iovstack;
2238 	unsigned long cmsg_ptr;
2239 	int err, total_len, len;
2240 
2241 	/* kernel mode address */
2242 	struct sockaddr_storage addr;
2243 
2244 	/* user mode address pointers */
2245 	struct sockaddr __user *uaddr;
2246 	int __user *uaddr_len;
2247 
2248 	if (MSG_CMSG_COMPAT & flags)
2249 		err = get_compat_msghdr(msg_sys, msg_compat);
2250 	else
2251 		err = copy_msghdr_from_user(msg_sys, msg);
2252 	if (err)
2253 		return err;
2254 
2255 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2256 		err = -EMSGSIZE;
2257 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2258 			goto out;
2259 		err = -ENOMEM;
2260 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2261 			      GFP_KERNEL);
2262 		if (!iov)
2263 			goto out;
2264 	}
2265 
2266 	/* Save the user-mode address (verify_iovec will change the
2267 	 * kernel msghdr to use the kernel address space)
2268 	 */
2269 	uaddr = (__force void __user *)msg_sys->msg_name;
2270 	uaddr_len = COMPAT_NAMELEN(msg);
2271 	if (MSG_CMSG_COMPAT & flags)
2272 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2273 	else
2274 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2275 	if (err < 0)
2276 		goto out_freeiov;
2277 	total_len = err;
2278 
2279 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2280 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2281 
2282 	/* We assume all kernel code knows the size of sockaddr_storage */
2283 	msg_sys->msg_namelen = 0;
2284 
2285 	if (sock->file->f_flags & O_NONBLOCK)
2286 		flags |= MSG_DONTWAIT;
2287 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2288 							  total_len, flags);
2289 	if (err < 0)
2290 		goto out_freeiov;
2291 	len = err;
2292 
2293 	if (uaddr != NULL) {
2294 		err = move_addr_to_user(&addr,
2295 					msg_sys->msg_namelen, uaddr,
2296 					uaddr_len);
2297 		if (err < 0)
2298 			goto out_freeiov;
2299 	}
2300 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2301 			 COMPAT_FLAGS(msg));
2302 	if (err)
2303 		goto out_freeiov;
2304 	if (MSG_CMSG_COMPAT & flags)
2305 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2306 				 &msg_compat->msg_controllen);
2307 	else
2308 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2309 				 &msg->msg_controllen);
2310 	if (err)
2311 		goto out_freeiov;
2312 	err = len;
2313 
2314 out_freeiov:
2315 	if (iov != iovstack)
2316 		kfree(iov);
2317 out:
2318 	return err;
2319 }
2320 
2321 /*
2322  *	BSD recvmsg interface
2323  */
2324 
__sys_recvmsg(int fd,struct msghdr __user * msg,unsigned flags)2325 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2326 {
2327 	int fput_needed, err;
2328 	struct msghdr msg_sys;
2329 	struct socket *sock;
2330 
2331 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332 	if (!sock)
2333 		goto out;
2334 
2335 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2336 
2337 	fput_light(sock->file, fput_needed);
2338 out:
2339 	return err;
2340 }
2341 
SYSCALL_DEFINE3(recvmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2342 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2343 		unsigned int, flags)
2344 {
2345 	if (flags & MSG_CMSG_COMPAT)
2346 		return -EINVAL;
2347 	return __sys_recvmsg(fd, msg, flags);
2348 }
2349 
2350 /*
2351  *     Linux recvmmsg interface
2352  */
2353 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2354 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2355 		   unsigned int flags, struct timespec *timeout)
2356 {
2357 	int fput_needed, err, datagrams;
2358 	struct socket *sock;
2359 	struct mmsghdr __user *entry;
2360 	struct compat_mmsghdr __user *compat_entry;
2361 	struct msghdr msg_sys;
2362 	struct timespec end_time;
2363 
2364 	if (timeout &&
2365 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2366 				    timeout->tv_nsec))
2367 		return -EINVAL;
2368 
2369 	datagrams = 0;
2370 
2371 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2372 	if (!sock)
2373 		return err;
2374 
2375 	err = sock_error(sock->sk);
2376 	if (err) {
2377 		datagrams = err;
2378 		goto out_put;
2379 	}
2380 
2381 	entry = mmsg;
2382 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2383 
2384 	while (datagrams < vlen) {
2385 		/*
2386 		 * No need to ask LSM for more than the first datagram.
2387 		 */
2388 		if (MSG_CMSG_COMPAT & flags) {
2389 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2390 					     &msg_sys, flags & ~MSG_WAITFORONE,
2391 					     datagrams);
2392 			if (err < 0)
2393 				break;
2394 			err = __put_user(err, &compat_entry->msg_len);
2395 			++compat_entry;
2396 		} else {
2397 			err = ___sys_recvmsg(sock,
2398 					     (struct msghdr __user *)entry,
2399 					     &msg_sys, flags & ~MSG_WAITFORONE,
2400 					     datagrams);
2401 			if (err < 0)
2402 				break;
2403 			err = put_user(err, &entry->msg_len);
2404 			++entry;
2405 		}
2406 
2407 		if (err)
2408 			break;
2409 		++datagrams;
2410 
2411 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2412 		if (flags & MSG_WAITFORONE)
2413 			flags |= MSG_DONTWAIT;
2414 
2415 		if (timeout) {
2416 			ktime_get_ts(timeout);
2417 			*timeout = timespec_sub(end_time, *timeout);
2418 			if (timeout->tv_sec < 0) {
2419 				timeout->tv_sec = timeout->tv_nsec = 0;
2420 				break;
2421 			}
2422 
2423 			/* Timeout, return less than vlen datagrams */
2424 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2425 				break;
2426 		}
2427 
2428 		/* Out of band data, return right away */
2429 		if (msg_sys.msg_flags & MSG_OOB)
2430 			break;
2431 	}
2432 
2433 	if (err == 0)
2434 		goto out_put;
2435 
2436 	if (datagrams == 0) {
2437 		datagrams = err;
2438 		goto out_put;
2439 	}
2440 
2441 	/*
2442 	 * We may return less entries than requested (vlen) if the
2443 	 * sock is non block and there aren't enough datagrams...
2444 	 */
2445 	if (err != -EAGAIN) {
2446 		/*
2447 		 * ... or  if recvmsg returns an error after we
2448 		 * received some datagrams, where we record the
2449 		 * error to return on the next call or if the
2450 		 * app asks about it using getsockopt(SO_ERROR).
2451 		 */
2452 		sock->sk->sk_err = -err;
2453 	}
2454 out_put:
2455 	fput_light(sock->file, fput_needed);
2456 
2457 	return datagrams;
2458 }
2459 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2460 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2461 		unsigned int, vlen, unsigned int, flags,
2462 		struct timespec __user *, timeout)
2463 {
2464 	int datagrams;
2465 	struct timespec timeout_sys;
2466 
2467 	if (flags & MSG_CMSG_COMPAT)
2468 		return -EINVAL;
2469 
2470 	if (!timeout)
2471 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2472 
2473 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2474 		return -EFAULT;
2475 
2476 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2477 
2478 	if (datagrams > 0 &&
2479 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2480 		datagrams = -EFAULT;
2481 
2482 	return datagrams;
2483 }
2484 
2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2486 /* Argument list sizes for sys_socketcall */
2487 #define AL(x) ((x) * sizeof(unsigned long))
2488 static const unsigned char nargs[21] = {
2489 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2490 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2491 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2492 	AL(4), AL(5), AL(4)
2493 };
2494 
2495 #undef AL
2496 
2497 /*
2498  *	System call vectors.
2499  *
2500  *	Argument checking cleaned up. Saved 20% in size.
2501  *  This function doesn't need to set the kernel lock because
2502  *  it is set by the callees.
2503  */
2504 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2505 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2506 {
2507 	unsigned long a[AUDITSC_ARGS];
2508 	unsigned long a0, a1;
2509 	int err;
2510 	unsigned int len;
2511 
2512 	if (call < 1 || call > SYS_SENDMMSG)
2513 		return -EINVAL;
2514 
2515 	len = nargs[call];
2516 	if (len > sizeof(a))
2517 		return -EINVAL;
2518 
2519 	/* copy_from_user should be SMP safe. */
2520 	if (copy_from_user(a, args, len))
2521 		return -EFAULT;
2522 
2523 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2524 	if (err)
2525 		return err;
2526 
2527 	a0 = a[0];
2528 	a1 = a[1];
2529 
2530 	switch (call) {
2531 	case SYS_SOCKET:
2532 		err = sys_socket(a0, a1, a[2]);
2533 		break;
2534 	case SYS_BIND:
2535 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2536 		break;
2537 	case SYS_CONNECT:
2538 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2539 		break;
2540 	case SYS_LISTEN:
2541 		err = sys_listen(a0, a1);
2542 		break;
2543 	case SYS_ACCEPT:
2544 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2545 				  (int __user *)a[2], 0);
2546 		break;
2547 	case SYS_GETSOCKNAME:
2548 		err =
2549 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2550 				    (int __user *)a[2]);
2551 		break;
2552 	case SYS_GETPEERNAME:
2553 		err =
2554 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2555 				    (int __user *)a[2]);
2556 		break;
2557 	case SYS_SOCKETPAIR:
2558 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2559 		break;
2560 	case SYS_SEND:
2561 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2562 		break;
2563 	case SYS_SENDTO:
2564 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565 				 (struct sockaddr __user *)a[4], a[5]);
2566 		break;
2567 	case SYS_RECV:
2568 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2569 		break;
2570 	case SYS_RECVFROM:
2571 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2572 				   (struct sockaddr __user *)a[4],
2573 				   (int __user *)a[5]);
2574 		break;
2575 	case SYS_SHUTDOWN:
2576 		err = sys_shutdown(a0, a1);
2577 		break;
2578 	case SYS_SETSOCKOPT:
2579 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2580 		break;
2581 	case SYS_GETSOCKOPT:
2582 		err =
2583 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2584 				   (int __user *)a[4]);
2585 		break;
2586 	case SYS_SENDMSG:
2587 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2588 		break;
2589 	case SYS_SENDMMSG:
2590 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2591 		break;
2592 	case SYS_RECVMSG:
2593 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2594 		break;
2595 	case SYS_RECVMMSG:
2596 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2597 				   (struct timespec __user *)a[4]);
2598 		break;
2599 	case SYS_ACCEPT4:
2600 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2601 				  (int __user *)a[2], a[3]);
2602 		break;
2603 	default:
2604 		err = -EINVAL;
2605 		break;
2606 	}
2607 	return err;
2608 }
2609 
2610 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2611 
2612 /**
2613  *	sock_register - add a socket protocol handler
2614  *	@ops: description of protocol
2615  *
2616  *	This function is called by a protocol handler that wants to
2617  *	advertise its address family, and have it linked into the
2618  *	socket interface. The value ops->family corresponds to the
2619  *	socket system call protocol family.
2620  */
sock_register(const struct net_proto_family * ops)2621 int sock_register(const struct net_proto_family *ops)
2622 {
2623 	int err;
2624 
2625 	if (ops->family >= NPROTO) {
2626 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2627 		return -ENOBUFS;
2628 	}
2629 
2630 	spin_lock(&net_family_lock);
2631 	if (rcu_dereference_protected(net_families[ops->family],
2632 				      lockdep_is_held(&net_family_lock)))
2633 		err = -EEXIST;
2634 	else {
2635 		rcu_assign_pointer(net_families[ops->family], ops);
2636 		err = 0;
2637 	}
2638 	spin_unlock(&net_family_lock);
2639 
2640 	pr_info("NET: Registered protocol family %d\n", ops->family);
2641 	return err;
2642 }
2643 EXPORT_SYMBOL(sock_register);
2644 
2645 /**
2646  *	sock_unregister - remove a protocol handler
2647  *	@family: protocol family to remove
2648  *
2649  *	This function is called by a protocol handler that wants to
2650  *	remove its address family, and have it unlinked from the
2651  *	new socket creation.
2652  *
2653  *	If protocol handler is a module, then it can use module reference
2654  *	counts to protect against new references. If protocol handler is not
2655  *	a module then it needs to provide its own protection in
2656  *	the ops->create routine.
2657  */
sock_unregister(int family)2658 void sock_unregister(int family)
2659 {
2660 	BUG_ON(family < 0 || family >= NPROTO);
2661 
2662 	spin_lock(&net_family_lock);
2663 	RCU_INIT_POINTER(net_families[family], NULL);
2664 	spin_unlock(&net_family_lock);
2665 
2666 	synchronize_rcu();
2667 
2668 	pr_info("NET: Unregistered protocol family %d\n", family);
2669 }
2670 EXPORT_SYMBOL(sock_unregister);
2671 
sock_init(void)2672 static int __init sock_init(void)
2673 {
2674 	int err;
2675 	/*
2676 	 *      Initialize the network sysctl infrastructure.
2677 	 */
2678 	err = net_sysctl_init();
2679 	if (err)
2680 		goto out;
2681 
2682 	/*
2683 	 *      Initialize skbuff SLAB cache
2684 	 */
2685 	skb_init();
2686 
2687 	/*
2688 	 *      Initialize the protocols module.
2689 	 */
2690 
2691 	init_inodecache();
2692 
2693 	err = register_filesystem(&sock_fs_type);
2694 	if (err)
2695 		goto out_fs;
2696 	sock_mnt = kern_mount(&sock_fs_type);
2697 	if (IS_ERR(sock_mnt)) {
2698 		err = PTR_ERR(sock_mnt);
2699 		goto out_mount;
2700 	}
2701 
2702 	/* The real protocol initialization is performed in later initcalls.
2703 	 */
2704 
2705 #ifdef CONFIG_NETFILTER
2706 	err = netfilter_init();
2707 	if (err)
2708 		goto out;
2709 #endif
2710 
2711 	ptp_classifier_init();
2712 
2713 out:
2714 	return err;
2715 
2716 out_mount:
2717 	unregister_filesystem(&sock_fs_type);
2718 out_fs:
2719 	goto out;
2720 }
2721 
2722 core_initcall(sock_init);	/* early initcall */
2723 
2724 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2725 void socket_seq_show(struct seq_file *seq)
2726 {
2727 	int cpu;
2728 	int counter = 0;
2729 
2730 	for_each_possible_cpu(cpu)
2731 	    counter += per_cpu(sockets_in_use, cpu);
2732 
2733 	/* It can be negative, by the way. 8) */
2734 	if (counter < 0)
2735 		counter = 0;
2736 
2737 	seq_printf(seq, "sockets: used %d\n", counter);
2738 }
2739 #endif				/* CONFIG_PROC_FS */
2740 
2741 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2742 static int do_siocgstamp(struct net *net, struct socket *sock,
2743 			 unsigned int cmd, void __user *up)
2744 {
2745 	mm_segment_t old_fs = get_fs();
2746 	struct timeval ktv;
2747 	int err;
2748 
2749 	set_fs(KERNEL_DS);
2750 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2751 	set_fs(old_fs);
2752 	if (!err)
2753 		err = compat_put_timeval(&ktv, up);
2754 
2755 	return err;
2756 }
2757 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2758 static int do_siocgstampns(struct net *net, struct socket *sock,
2759 			   unsigned int cmd, void __user *up)
2760 {
2761 	mm_segment_t old_fs = get_fs();
2762 	struct timespec kts;
2763 	int err;
2764 
2765 	set_fs(KERNEL_DS);
2766 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2767 	set_fs(old_fs);
2768 	if (!err)
2769 		err = compat_put_timespec(&kts, up);
2770 
2771 	return err;
2772 }
2773 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2774 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2775 {
2776 	struct ifreq __user *uifr;
2777 	int err;
2778 
2779 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2780 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2781 		return -EFAULT;
2782 
2783 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2784 	if (err)
2785 		return err;
2786 
2787 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2788 		return -EFAULT;
2789 
2790 	return 0;
2791 }
2792 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2793 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2794 {
2795 	struct compat_ifconf ifc32;
2796 	struct ifconf ifc;
2797 	struct ifconf __user *uifc;
2798 	struct compat_ifreq __user *ifr32;
2799 	struct ifreq __user *ifr;
2800 	unsigned int i, j;
2801 	int err;
2802 
2803 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2804 		return -EFAULT;
2805 
2806 	memset(&ifc, 0, sizeof(ifc));
2807 	if (ifc32.ifcbuf == 0) {
2808 		ifc32.ifc_len = 0;
2809 		ifc.ifc_len = 0;
2810 		ifc.ifc_req = NULL;
2811 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2812 	} else {
2813 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2814 			sizeof(struct ifreq);
2815 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2816 		ifc.ifc_len = len;
2817 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2818 		ifr32 = compat_ptr(ifc32.ifcbuf);
2819 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2820 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2821 				return -EFAULT;
2822 			ifr++;
2823 			ifr32++;
2824 		}
2825 	}
2826 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2827 		return -EFAULT;
2828 
2829 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2830 	if (err)
2831 		return err;
2832 
2833 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2834 		return -EFAULT;
2835 
2836 	ifr = ifc.ifc_req;
2837 	ifr32 = compat_ptr(ifc32.ifcbuf);
2838 	for (i = 0, j = 0;
2839 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2840 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2841 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2842 			return -EFAULT;
2843 		ifr32++;
2844 		ifr++;
2845 	}
2846 
2847 	if (ifc32.ifcbuf == 0) {
2848 		/* Translate from 64-bit structure multiple to
2849 		 * a 32-bit one.
2850 		 */
2851 		i = ifc.ifc_len;
2852 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2853 		ifc32.ifc_len = i;
2854 	} else {
2855 		ifc32.ifc_len = i;
2856 	}
2857 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2858 		return -EFAULT;
2859 
2860 	return 0;
2861 }
2862 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2863 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2864 {
2865 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2866 	bool convert_in = false, convert_out = false;
2867 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2868 	struct ethtool_rxnfc __user *rxnfc;
2869 	struct ifreq __user *ifr;
2870 	u32 rule_cnt = 0, actual_rule_cnt;
2871 	u32 ethcmd;
2872 	u32 data;
2873 	int ret;
2874 
2875 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2876 		return -EFAULT;
2877 
2878 	compat_rxnfc = compat_ptr(data);
2879 
2880 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2881 		return -EFAULT;
2882 
2883 	/* Most ethtool structures are defined without padding.
2884 	 * Unfortunately struct ethtool_rxnfc is an exception.
2885 	 */
2886 	switch (ethcmd) {
2887 	default:
2888 		break;
2889 	case ETHTOOL_GRXCLSRLALL:
2890 		/* Buffer size is variable */
2891 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2892 			return -EFAULT;
2893 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2894 			return -ENOMEM;
2895 		buf_size += rule_cnt * sizeof(u32);
2896 		/* fall through */
2897 	case ETHTOOL_GRXRINGS:
2898 	case ETHTOOL_GRXCLSRLCNT:
2899 	case ETHTOOL_GRXCLSRULE:
2900 	case ETHTOOL_SRXCLSRLINS:
2901 		convert_out = true;
2902 		/* fall through */
2903 	case ETHTOOL_SRXCLSRLDEL:
2904 		buf_size += sizeof(struct ethtool_rxnfc);
2905 		convert_in = true;
2906 		break;
2907 	}
2908 
2909 	ifr = compat_alloc_user_space(buf_size);
2910 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2911 
2912 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2913 		return -EFAULT;
2914 
2915 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2916 		     &ifr->ifr_ifru.ifru_data))
2917 		return -EFAULT;
2918 
2919 	if (convert_in) {
2920 		/* We expect there to be holes between fs.m_ext and
2921 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2922 		 */
2923 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2924 			     sizeof(compat_rxnfc->fs.m_ext) !=
2925 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2926 			     sizeof(rxnfc->fs.m_ext));
2927 		BUILD_BUG_ON(
2928 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2929 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2930 			offsetof(struct ethtool_rxnfc, fs.location) -
2931 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2932 
2933 		if (copy_in_user(rxnfc, compat_rxnfc,
2934 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2935 				 (void __user *)rxnfc) ||
2936 		    copy_in_user(&rxnfc->fs.ring_cookie,
2937 				 &compat_rxnfc->fs.ring_cookie,
2938 				 (void __user *)(&rxnfc->fs.location + 1) -
2939 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2940 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2941 				 sizeof(rxnfc->rule_cnt)))
2942 			return -EFAULT;
2943 	}
2944 
2945 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2946 	if (ret)
2947 		return ret;
2948 
2949 	if (convert_out) {
2950 		if (copy_in_user(compat_rxnfc, rxnfc,
2951 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2952 				 (const void __user *)rxnfc) ||
2953 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2954 				 &rxnfc->fs.ring_cookie,
2955 				 (const void __user *)(&rxnfc->fs.location + 1) -
2956 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2957 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2958 				 sizeof(rxnfc->rule_cnt)))
2959 			return -EFAULT;
2960 
2961 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2962 			/* As an optimisation, we only copy the actual
2963 			 * number of rules that the underlying
2964 			 * function returned.  Since Mallory might
2965 			 * change the rule count in user memory, we
2966 			 * check that it is less than the rule count
2967 			 * originally given (as the user buffer size),
2968 			 * which has been range-checked.
2969 			 */
2970 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2971 				return -EFAULT;
2972 			if (actual_rule_cnt < rule_cnt)
2973 				rule_cnt = actual_rule_cnt;
2974 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2975 					 &rxnfc->rule_locs[0],
2976 					 rule_cnt * sizeof(u32)))
2977 				return -EFAULT;
2978 		}
2979 	}
2980 
2981 	return 0;
2982 }
2983 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2984 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2985 {
2986 	void __user *uptr;
2987 	compat_uptr_t uptr32;
2988 	struct ifreq __user *uifr;
2989 
2990 	uifr = compat_alloc_user_space(sizeof(*uifr));
2991 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2992 		return -EFAULT;
2993 
2994 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2995 		return -EFAULT;
2996 
2997 	uptr = compat_ptr(uptr32);
2998 
2999 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
3000 		return -EFAULT;
3001 
3002 	return dev_ioctl(net, SIOCWANDEV, uifr);
3003 }
3004 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)3005 static int bond_ioctl(struct net *net, unsigned int cmd,
3006 			 struct compat_ifreq __user *ifr32)
3007 {
3008 	struct ifreq kifr;
3009 	mm_segment_t old_fs;
3010 	int err;
3011 
3012 	switch (cmd) {
3013 	case SIOCBONDENSLAVE:
3014 	case SIOCBONDRELEASE:
3015 	case SIOCBONDSETHWADDR:
3016 	case SIOCBONDCHANGEACTIVE:
3017 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3018 			return -EFAULT;
3019 
3020 		old_fs = get_fs();
3021 		set_fs(KERNEL_DS);
3022 		err = dev_ioctl(net, cmd,
3023 				(struct ifreq __user __force *) &kifr);
3024 		set_fs(old_fs);
3025 
3026 		return err;
3027 	default:
3028 		return -ENOIOCTLCMD;
3029 	}
3030 }
3031 
3032 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3033 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3034 				 struct compat_ifreq __user *u_ifreq32)
3035 {
3036 	struct ifreq __user *u_ifreq64;
3037 	char tmp_buf[IFNAMSIZ];
3038 	void __user *data64;
3039 	u32 data32;
3040 
3041 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3042 			   IFNAMSIZ))
3043 		return -EFAULT;
3044 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3045 		return -EFAULT;
3046 	data64 = compat_ptr(data32);
3047 
3048 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3049 
3050 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3051 			 IFNAMSIZ))
3052 		return -EFAULT;
3053 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3054 		return -EFAULT;
3055 
3056 	return dev_ioctl(net, cmd, u_ifreq64);
3057 }
3058 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3059 static int dev_ifsioc(struct net *net, struct socket *sock,
3060 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3061 {
3062 	struct ifreq __user *uifr;
3063 	int err;
3064 
3065 	uifr = compat_alloc_user_space(sizeof(*uifr));
3066 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3067 		return -EFAULT;
3068 
3069 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3070 
3071 	if (!err) {
3072 		switch (cmd) {
3073 		case SIOCGIFFLAGS:
3074 		case SIOCGIFMETRIC:
3075 		case SIOCGIFMTU:
3076 		case SIOCGIFMEM:
3077 		case SIOCGIFHWADDR:
3078 		case SIOCGIFINDEX:
3079 		case SIOCGIFADDR:
3080 		case SIOCGIFBRDADDR:
3081 		case SIOCGIFDSTADDR:
3082 		case SIOCGIFNETMASK:
3083 		case SIOCGIFPFLAGS:
3084 		case SIOCGIFTXQLEN:
3085 		case SIOCGMIIPHY:
3086 		case SIOCGMIIREG:
3087 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3088 				err = -EFAULT;
3089 			break;
3090 		}
3091 	}
3092 	return err;
3093 }
3094 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3095 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3096 			struct compat_ifreq __user *uifr32)
3097 {
3098 	struct ifreq ifr;
3099 	struct compat_ifmap __user *uifmap32;
3100 	mm_segment_t old_fs;
3101 	int err;
3102 
3103 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3104 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3105 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3106 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3107 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3108 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3109 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3110 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3111 	if (err)
3112 		return -EFAULT;
3113 
3114 	old_fs = get_fs();
3115 	set_fs(KERNEL_DS);
3116 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3117 	set_fs(old_fs);
3118 
3119 	if (cmd == SIOCGIFMAP && !err) {
3120 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3121 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3122 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3123 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3124 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3125 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3126 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3127 		if (err)
3128 			err = -EFAULT;
3129 	}
3130 	return err;
3131 }
3132 
3133 struct rtentry32 {
3134 	u32		rt_pad1;
3135 	struct sockaddr rt_dst;         /* target address               */
3136 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3137 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3138 	unsigned short	rt_flags;
3139 	short		rt_pad2;
3140 	u32		rt_pad3;
3141 	unsigned char	rt_tos;
3142 	unsigned char	rt_class;
3143 	short		rt_pad4;
3144 	short		rt_metric;      /* +1 for binary compatibility! */
3145 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3146 	u32		rt_mtu;         /* per route MTU/Window         */
3147 	u32		rt_window;      /* Window clamping              */
3148 	unsigned short  rt_irtt;        /* Initial RTT                  */
3149 };
3150 
3151 struct in6_rtmsg32 {
3152 	struct in6_addr		rtmsg_dst;
3153 	struct in6_addr		rtmsg_src;
3154 	struct in6_addr		rtmsg_gateway;
3155 	u32			rtmsg_type;
3156 	u16			rtmsg_dst_len;
3157 	u16			rtmsg_src_len;
3158 	u32			rtmsg_metric;
3159 	u32			rtmsg_info;
3160 	u32			rtmsg_flags;
3161 	s32			rtmsg_ifindex;
3162 };
3163 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3164 static int routing_ioctl(struct net *net, struct socket *sock,
3165 			 unsigned int cmd, void __user *argp)
3166 {
3167 	int ret;
3168 	void *r = NULL;
3169 	struct in6_rtmsg r6;
3170 	struct rtentry r4;
3171 	char devname[16];
3172 	u32 rtdev;
3173 	mm_segment_t old_fs = get_fs();
3174 
3175 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3176 		struct in6_rtmsg32 __user *ur6 = argp;
3177 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3178 			3 * sizeof(struct in6_addr));
3179 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3180 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3181 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3182 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3183 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3184 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3185 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3186 
3187 		r = (void *) &r6;
3188 	} else { /* ipv4 */
3189 		struct rtentry32 __user *ur4 = argp;
3190 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3191 					3 * sizeof(struct sockaddr));
3192 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3193 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3194 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3195 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3196 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3197 		ret |= get_user(rtdev, &(ur4->rt_dev));
3198 		if (rtdev) {
3199 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3200 			r4.rt_dev = (char __user __force *)devname;
3201 			devname[15] = 0;
3202 		} else
3203 			r4.rt_dev = NULL;
3204 
3205 		r = (void *) &r4;
3206 	}
3207 
3208 	if (ret) {
3209 		ret = -EFAULT;
3210 		goto out;
3211 	}
3212 
3213 	set_fs(KERNEL_DS);
3214 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3215 	set_fs(old_fs);
3216 
3217 out:
3218 	return ret;
3219 }
3220 
3221 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3222  * for some operations; this forces use of the newer bridge-utils that
3223  * use compatible ioctls
3224  */
old_bridge_ioctl(compat_ulong_t __user * argp)3225 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3226 {
3227 	compat_ulong_t tmp;
3228 
3229 	if (get_user(tmp, argp))
3230 		return -EFAULT;
3231 	if (tmp == BRCTL_GET_VERSION)
3232 		return BRCTL_VERSION + 1;
3233 	return -EINVAL;
3234 }
3235 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3236 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3237 			 unsigned int cmd, unsigned long arg)
3238 {
3239 	void __user *argp = compat_ptr(arg);
3240 	struct sock *sk = sock->sk;
3241 	struct net *net = sock_net(sk);
3242 
3243 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3244 		return compat_ifr_data_ioctl(net, cmd, argp);
3245 
3246 	switch (cmd) {
3247 	case SIOCSIFBR:
3248 	case SIOCGIFBR:
3249 		return old_bridge_ioctl(argp);
3250 	case SIOCGIFNAME:
3251 		return dev_ifname32(net, argp);
3252 	case SIOCGIFCONF:
3253 		return dev_ifconf(net, argp);
3254 	case SIOCETHTOOL:
3255 		return ethtool_ioctl(net, argp);
3256 	case SIOCWANDEV:
3257 		return compat_siocwandev(net, argp);
3258 	case SIOCGIFMAP:
3259 	case SIOCSIFMAP:
3260 		return compat_sioc_ifmap(net, cmd, argp);
3261 	case SIOCBONDENSLAVE:
3262 	case SIOCBONDRELEASE:
3263 	case SIOCBONDSETHWADDR:
3264 	case SIOCBONDCHANGEACTIVE:
3265 		return bond_ioctl(net, cmd, argp);
3266 	case SIOCADDRT:
3267 	case SIOCDELRT:
3268 		return routing_ioctl(net, sock, cmd, argp);
3269 	case SIOCGSTAMP:
3270 		return do_siocgstamp(net, sock, cmd, argp);
3271 	case SIOCGSTAMPNS:
3272 		return do_siocgstampns(net, sock, cmd, argp);
3273 	case SIOCBONDSLAVEINFOQUERY:
3274 	case SIOCBONDINFOQUERY:
3275 	case SIOCSHWTSTAMP:
3276 	case SIOCGHWTSTAMP:
3277 		return compat_ifr_data_ioctl(net, cmd, argp);
3278 
3279 	case FIOSETOWN:
3280 	case SIOCSPGRP:
3281 	case FIOGETOWN:
3282 	case SIOCGPGRP:
3283 	case SIOCBRADDBR:
3284 	case SIOCBRDELBR:
3285 	case SIOCGIFVLAN:
3286 	case SIOCSIFVLAN:
3287 	case SIOCADDDLCI:
3288 	case SIOCDELDLCI:
3289 		return sock_ioctl(file, cmd, arg);
3290 
3291 	case SIOCGIFFLAGS:
3292 	case SIOCSIFFLAGS:
3293 	case SIOCGIFMETRIC:
3294 	case SIOCSIFMETRIC:
3295 	case SIOCGIFMTU:
3296 	case SIOCSIFMTU:
3297 	case SIOCGIFMEM:
3298 	case SIOCSIFMEM:
3299 	case SIOCGIFHWADDR:
3300 	case SIOCSIFHWADDR:
3301 	case SIOCADDMULTI:
3302 	case SIOCDELMULTI:
3303 	case SIOCGIFINDEX:
3304 	case SIOCGIFADDR:
3305 	case SIOCSIFADDR:
3306 	case SIOCSIFHWBROADCAST:
3307 	case SIOCDIFADDR:
3308 	case SIOCGIFBRDADDR:
3309 	case SIOCSIFBRDADDR:
3310 	case SIOCGIFDSTADDR:
3311 	case SIOCSIFDSTADDR:
3312 	case SIOCGIFNETMASK:
3313 	case SIOCSIFNETMASK:
3314 	case SIOCSIFPFLAGS:
3315 	case SIOCGIFPFLAGS:
3316 	case SIOCGIFTXQLEN:
3317 	case SIOCSIFTXQLEN:
3318 	case SIOCBRADDIF:
3319 	case SIOCBRDELIF:
3320 	case SIOCSIFNAME:
3321 	case SIOCGMIIPHY:
3322 	case SIOCGMIIREG:
3323 	case SIOCSMIIREG:
3324 		return dev_ifsioc(net, sock, cmd, argp);
3325 
3326 	case SIOCSARP:
3327 	case SIOCGARP:
3328 	case SIOCDARP:
3329 	case SIOCATMARK:
3330 		return sock_do_ioctl(net, sock, cmd, arg);
3331 	}
3332 
3333 	return -ENOIOCTLCMD;
3334 }
3335 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3336 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3337 			      unsigned long arg)
3338 {
3339 	struct socket *sock = file->private_data;
3340 	int ret = -ENOIOCTLCMD;
3341 	struct sock *sk;
3342 	struct net *net;
3343 
3344 	sk = sock->sk;
3345 	net = sock_net(sk);
3346 
3347 	if (sock->ops->compat_ioctl)
3348 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3349 
3350 	if (ret == -ENOIOCTLCMD &&
3351 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3352 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3353 
3354 	if (ret == -ENOIOCTLCMD)
3355 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3356 
3357 	return ret;
3358 }
3359 #endif
3360 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3361 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3362 {
3363 	return sock->ops->bind(sock, addr, addrlen);
3364 }
3365 EXPORT_SYMBOL(kernel_bind);
3366 
kernel_listen(struct socket * sock,int backlog)3367 int kernel_listen(struct socket *sock, int backlog)
3368 {
3369 	return sock->ops->listen(sock, backlog);
3370 }
3371 EXPORT_SYMBOL(kernel_listen);
3372 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3373 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3374 {
3375 	struct sock *sk = sock->sk;
3376 	int err;
3377 
3378 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3379 			       newsock);
3380 	if (err < 0)
3381 		goto done;
3382 
3383 	err = sock->ops->accept(sock, *newsock, flags);
3384 	if (err < 0) {
3385 		sock_release(*newsock);
3386 		*newsock = NULL;
3387 		goto done;
3388 	}
3389 
3390 	(*newsock)->ops = sock->ops;
3391 	__module_get((*newsock)->ops->owner);
3392 
3393 done:
3394 	return err;
3395 }
3396 EXPORT_SYMBOL(kernel_accept);
3397 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3398 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3399 		   int flags)
3400 {
3401 	return sock->ops->connect(sock, addr, addrlen, flags);
3402 }
3403 EXPORT_SYMBOL(kernel_connect);
3404 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3405 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3406 			 int *addrlen)
3407 {
3408 	return sock->ops->getname(sock, addr, addrlen, 0);
3409 }
3410 EXPORT_SYMBOL(kernel_getsockname);
3411 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3412 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3413 			 int *addrlen)
3414 {
3415 	return sock->ops->getname(sock, addr, addrlen, 1);
3416 }
3417 EXPORT_SYMBOL(kernel_getpeername);
3418 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3419 int kernel_getsockopt(struct socket *sock, int level, int optname,
3420 			char *optval, int *optlen)
3421 {
3422 	mm_segment_t oldfs = get_fs();
3423 	char __user *uoptval;
3424 	int __user *uoptlen;
3425 	int err;
3426 
3427 	uoptval = (char __user __force *) optval;
3428 	uoptlen = (int __user __force *) optlen;
3429 
3430 	set_fs(KERNEL_DS);
3431 	if (level == SOL_SOCKET)
3432 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3433 	else
3434 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3435 					    uoptlen);
3436 	set_fs(oldfs);
3437 	return err;
3438 }
3439 EXPORT_SYMBOL(kernel_getsockopt);
3440 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3441 int kernel_setsockopt(struct socket *sock, int level, int optname,
3442 			char *optval, unsigned int optlen)
3443 {
3444 	mm_segment_t oldfs = get_fs();
3445 	char __user *uoptval;
3446 	int err;
3447 
3448 	uoptval = (char __user __force *) optval;
3449 
3450 	set_fs(KERNEL_DS);
3451 	if (level == SOL_SOCKET)
3452 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3453 	else
3454 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3455 					    optlen);
3456 	set_fs(oldfs);
3457 	return err;
3458 }
3459 EXPORT_SYMBOL(kernel_setsockopt);
3460 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3461 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3462 		    size_t size, int flags)
3463 {
3464 	if (sock->ops->sendpage)
3465 		return sock->ops->sendpage(sock, page, offset, size, flags);
3466 
3467 	return sock_no_sendpage(sock, page, offset, size, flags);
3468 }
3469 EXPORT_SYMBOL(kernel_sendpage);
3470 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3471 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3472 {
3473 	mm_segment_t oldfs = get_fs();
3474 	int err;
3475 
3476 	set_fs(KERNEL_DS);
3477 	err = sock->ops->ioctl(sock, cmd, arg);
3478 	set_fs(oldfs);
3479 
3480 	return err;
3481 }
3482 EXPORT_SYMBOL(kernel_sock_ioctl);
3483 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3484 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3485 {
3486 	return sock->ops->shutdown(sock, how);
3487 }
3488 EXPORT_SYMBOL(kernel_sock_shutdown);
3489