1/* 2 * Low-level CPU initialisation 3 * Based on arch/arm/kernel/head.S 4 * 5 * Copyright (C) 1994-2002 Russell King 6 * Copyright (C) 2003-2012 ARM Ltd. 7 * Authors: Catalin Marinas <catalin.marinas@arm.com> 8 * Will Deacon <will.deacon@arm.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 */ 22 23#include <linux/linkage.h> 24#include <linux/init.h> 25#include <linux/irqchip/arm-gic-v3.h> 26 27#include <asm/assembler.h> 28#include <asm/ptrace.h> 29#include <asm/asm-offsets.h> 30#include <asm/cache.h> 31#include <asm/cputype.h> 32#include <asm/kernel-pgtable.h> 33#include <asm/memory.h> 34#include <asm/thread_info.h> 35#include <asm/pgtable-hwdef.h> 36#include <asm/pgtable.h> 37#include <asm/page.h> 38#include <asm/virt.h> 39 40#define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET) 41 42#if (TEXT_OFFSET & 0xfff) != 0 43#error TEXT_OFFSET must be at least 4KB aligned 44#elif (PAGE_OFFSET & 0x1fffff) != 0 45#error PAGE_OFFSET must be at least 2MB aligned 46#elif TEXT_OFFSET > 0x1fffff 47#error TEXT_OFFSET must be less than 2MB 48#endif 49 50#define KERNEL_START _text 51#define KERNEL_END _end 52 53/* 54 * Kernel startup entry point. 55 * --------------------------- 56 * 57 * The requirements are: 58 * MMU = off, D-cache = off, I-cache = on or off, 59 * x0 = physical address to the FDT blob. 60 * 61 * This code is mostly position independent so you call this at 62 * __pa(PAGE_OFFSET + TEXT_OFFSET). 63 * 64 * Note that the callee-saved registers are used for storing variables 65 * that are useful before the MMU is enabled. The allocations are described 66 * in the entry routines. 67 */ 68 __HEAD 69 70 /* 71 * DO NOT MODIFY. Image header expected by Linux boot-loaders. 72 */ 73#ifdef CONFIG_EFI 74efi_head: 75 /* 76 * This add instruction has no meaningful effect except that 77 * its opcode forms the magic "MZ" signature required by UEFI. 78 */ 79 add x13, x18, #0x16 80 b stext 81#else 82 b stext // branch to kernel start, magic 83 .long 0 // reserved 84#endif 85 .quad _kernel_offset_le // Image load offset from start of RAM, little-endian 86 .quad _kernel_size_le // Effective size of kernel image, little-endian 87 .quad _kernel_flags_le // Informative flags, little-endian 88 .quad 0 // reserved 89 .quad 0 // reserved 90 .quad 0 // reserved 91 .byte 0x41 // Magic number, "ARM\x64" 92 .byte 0x52 93 .byte 0x4d 94 .byte 0x64 95#ifdef CONFIG_EFI 96 .long pe_header - efi_head // Offset to the PE header. 97#else 98 .word 0 // reserved 99#endif 100 101#ifdef CONFIG_EFI 102 .globl stext_offset 103 .set stext_offset, stext - efi_head 104 .align 3 105pe_header: 106 .ascii "PE" 107 .short 0 108coff_header: 109 .short 0xaa64 // AArch64 110 .short 2 // nr_sections 111 .long 0 // TimeDateStamp 112 .long 0 // PointerToSymbolTable 113 .long 1 // NumberOfSymbols 114 .short section_table - optional_header // SizeOfOptionalHeader 115 .short 0x206 // Characteristics. 116 // IMAGE_FILE_DEBUG_STRIPPED | 117 // IMAGE_FILE_EXECUTABLE_IMAGE | 118 // IMAGE_FILE_LINE_NUMS_STRIPPED 119optional_header: 120 .short 0x20b // PE32+ format 121 .byte 0x02 // MajorLinkerVersion 122 .byte 0x14 // MinorLinkerVersion 123 .long _end - stext // SizeOfCode 124 .long 0 // SizeOfInitializedData 125 .long 0 // SizeOfUninitializedData 126 .long efi_stub_entry - efi_head // AddressOfEntryPoint 127 .long stext_offset // BaseOfCode 128 129extra_header_fields: 130 .quad 0 // ImageBase 131 .long 0x1000 // SectionAlignment 132 .long PECOFF_FILE_ALIGNMENT // FileAlignment 133 .short 0 // MajorOperatingSystemVersion 134 .short 0 // MinorOperatingSystemVersion 135 .short 0 // MajorImageVersion 136 .short 0 // MinorImageVersion 137 .short 0 // MajorSubsystemVersion 138 .short 0 // MinorSubsystemVersion 139 .long 0 // Win32VersionValue 140 141 .long _end - efi_head // SizeOfImage 142 143 // Everything before the kernel image is considered part of the header 144 .long stext_offset // SizeOfHeaders 145 .long 0 // CheckSum 146 .short 0xa // Subsystem (EFI application) 147 .short 0 // DllCharacteristics 148 .quad 0 // SizeOfStackReserve 149 .quad 0 // SizeOfStackCommit 150 .quad 0 // SizeOfHeapReserve 151 .quad 0 // SizeOfHeapCommit 152 .long 0 // LoaderFlags 153 .long 0x6 // NumberOfRvaAndSizes 154 155 .quad 0 // ExportTable 156 .quad 0 // ImportTable 157 .quad 0 // ResourceTable 158 .quad 0 // ExceptionTable 159 .quad 0 // CertificationTable 160 .quad 0 // BaseRelocationTable 161 162 // Section table 163section_table: 164 165 /* 166 * The EFI application loader requires a relocation section 167 * because EFI applications must be relocatable. This is a 168 * dummy section as far as we are concerned. 169 */ 170 .ascii ".reloc" 171 .byte 0 172 .byte 0 // end of 0 padding of section name 173 .long 0 174 .long 0 175 .long 0 // SizeOfRawData 176 .long 0 // PointerToRawData 177 .long 0 // PointerToRelocations 178 .long 0 // PointerToLineNumbers 179 .short 0 // NumberOfRelocations 180 .short 0 // NumberOfLineNumbers 181 .long 0x42100040 // Characteristics (section flags) 182 183 184 .ascii ".text" 185 .byte 0 186 .byte 0 187 .byte 0 // end of 0 padding of section name 188 .long _end - stext // VirtualSize 189 .long stext_offset // VirtualAddress 190 .long _edata - stext // SizeOfRawData 191 .long stext_offset // PointerToRawData 192 193 .long 0 // PointerToRelocations (0 for executables) 194 .long 0 // PointerToLineNumbers (0 for executables) 195 .short 0 // NumberOfRelocations (0 for executables) 196 .short 0 // NumberOfLineNumbers (0 for executables) 197 .long 0xe0500020 // Characteristics (section flags) 198 199 /* 200 * EFI will load stext onwards at the 4k section alignment 201 * described in the PE/COFF header. To ensure that instruction 202 * sequences using an adrp and a :lo12: immediate will function 203 * correctly at this alignment, we must ensure that stext is 204 * placed at a 4k boundary in the Image to begin with. 205 */ 206 .align 12 207#endif 208 209ENTRY(stext) 210 bl preserve_boot_args 211 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 212 adrp x24, __PHYS_OFFSET 213 bl set_cpu_boot_mode_flag 214 215 bl __vet_fdt 216 bl __create_page_tables // x25=TTBR0, x26=TTBR1 217 /* 218 * The following calls CPU setup code, see arch/arm64/mm/proc.S for 219 * details. 220 * On return, the CPU will be ready for the MMU to be turned on and 221 * the TCR will have been set. 222 */ 223 ldr x27, =__mmap_switched // address to jump to after 224 // MMU has been enabled 225 adr_l lr, __enable_mmu // return (PIC) address 226 b __cpu_setup // initialise processor 227ENDPROC(stext) 228 229/* 230 * Preserve the arguments passed by the bootloader in x0 .. x3 231 */ 232preserve_boot_args: 233 mov x21, x0 // x21=FDT 234 235 adr_l x0, boot_args // record the contents of 236 stp x21, x1, [x0] // x0 .. x3 at kernel entry 237 stp x2, x3, [x0, #16] 238 239 dmb sy // needed before dc ivac with 240 // MMU off 241 242 add x1, x0, #0x20 // 4 x 8 bytes 243 b __inval_cache_range // tail call 244ENDPROC(preserve_boot_args) 245 246/* 247 * Determine validity of the x21 FDT pointer. 248 * The dtb must be 8-byte aligned and live in the first 512M of memory. 249 */ 250__vet_fdt: 251 tst x21, #0x7 252 b.ne 1f 253 cmp x21, x24 254 b.lt 1f 255 mov x0, #(1 << 29) 256 add x0, x0, x24 257 cmp x21, x0 258 b.ge 1f 259 ret 2601: 261 mov x21, #0 262 ret 263ENDPROC(__vet_fdt) 264/* 265 * Macro to create a table entry to the next page. 266 * 267 * tbl: page table address 268 * virt: virtual address 269 * shift: #imm page table shift 270 * ptrs: #imm pointers per table page 271 * 272 * Preserves: virt 273 * Corrupts: tmp1, tmp2 274 * Returns: tbl -> next level table page address 275 */ 276 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 277 lsr \tmp1, \virt, #\shift 278 and \tmp1, \tmp1, #\ptrs - 1 // table index 279 add \tmp2, \tbl, #PAGE_SIZE 280 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type 281 str \tmp2, [\tbl, \tmp1, lsl #3] 282 add \tbl, \tbl, #PAGE_SIZE // next level table page 283 .endm 284 285/* 286 * Macro to populate the PGD (and possibily PUD) for the corresponding 287 * block entry in the next level (tbl) for the given virtual address. 288 * 289 * Preserves: tbl, next, virt 290 * Corrupts: tmp1, tmp2 291 */ 292 .macro create_pgd_entry, tbl, virt, tmp1, tmp2 293 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2 294#if SWAPPER_PGTABLE_LEVELS == 3 295 create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2 296#endif 297 .endm 298 299/* 300 * Macro to populate block entries in the page table for the start..end 301 * virtual range (inclusive). 302 * 303 * Preserves: tbl, flags 304 * Corrupts: phys, start, end, pstate 305 */ 306 .macro create_block_map, tbl, flags, phys, start, end 307 lsr \phys, \phys, #SWAPPER_BLOCK_SHIFT 308 lsr \start, \start, #SWAPPER_BLOCK_SHIFT 309 and \start, \start, #PTRS_PER_PTE - 1 // table index 310 orr \phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT // table entry 311 lsr \end, \end, #SWAPPER_BLOCK_SHIFT 312 and \end, \end, #PTRS_PER_PTE - 1 // table end index 3139999: str \phys, [\tbl, \start, lsl #3] // store the entry 314 add \start, \start, #1 // next entry 315 add \phys, \phys, #SWAPPER_BLOCK_SIZE // next block 316 cmp \start, \end 317 b.ls 9999b 318 .endm 319 320/* 321 * Setup the initial page tables. We only setup the barest amount which is 322 * required to get the kernel running. The following sections are required: 323 * - identity mapping to enable the MMU (low address, TTBR0) 324 * - first few MB of the kernel linear mapping to jump to once the MMU has 325 * been enabled, including the FDT blob (TTBR1) 326 * - pgd entry for fixed mappings (TTBR1) 327 */ 328__create_page_tables: 329 adrp x25, idmap_pg_dir 330 adrp x26, swapper_pg_dir 331 mov x27, lr 332 333 /* 334 * Invalidate the idmap and swapper page tables to avoid potential 335 * dirty cache lines being evicted. 336 */ 337 mov x0, x25 338 add x1, x26, #SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE 339 bl __inval_cache_range 340 341 /* 342 * Clear the idmap and swapper page tables. 343 */ 344 mov x0, x25 345 add x6, x26, #SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE 3461: stp xzr, xzr, [x0], #16 347 stp xzr, xzr, [x0], #16 348 stp xzr, xzr, [x0], #16 349 stp xzr, xzr, [x0], #16 350 cmp x0, x6 351 b.lo 1b 352 353 ldr x7, =SWAPPER_MM_MMUFLAGS 354 355 /* 356 * Create the identity mapping. 357 */ 358 mov x0, x25 // idmap_pg_dir 359 adrp x3, KERNEL_START // __pa(KERNEL_START) 360 361#ifndef CONFIG_ARM64_VA_BITS_48 362#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) 363#define EXTRA_PTRS (1 << (48 - EXTRA_SHIFT)) 364 365 /* 366 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be 367 * created that covers system RAM if that is located sufficiently high 368 * in the physical address space. So for the ID map, use an extended 369 * virtual range in that case, by configuring an additional translation 370 * level. 371 * First, we have to verify our assumption that the current value of 372 * VA_BITS was chosen such that all translation levels are fully 373 * utilised, and that lowering T0SZ will always result in an additional 374 * translation level to be configured. 375 */ 376#if VA_BITS != EXTRA_SHIFT 377#error "Mismatch between VA_BITS and page size/number of translation levels" 378#endif 379 380 /* 381 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the 382 * entire kernel image can be ID mapped. As T0SZ == (64 - #bits used), 383 * this number conveniently equals the number of leading zeroes in 384 * the physical address of KERNEL_END. 385 */ 386 adrp x5, KERNEL_END 387 clz x5, x5 388 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough? 389 b.ge 1f // .. then skip additional level 390 391 adr_l x6, idmap_t0sz 392 str x5, [x6] 393 dmb sy 394 dc ivac, x6 // Invalidate potentially stale cache line 395 396 create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6 3971: 398#endif 399 400 create_pgd_entry x0, x3, x5, x6 401 mov x5, x3 // __pa(KERNEL_START) 402 adr_l x6, KERNEL_END // __pa(KERNEL_END) 403 create_block_map x0, x7, x3, x5, x6 404 405 /* 406 * Map the kernel image (starting with PHYS_OFFSET). 407 */ 408 mov x0, x26 // swapper_pg_dir 409 mov x5, #PAGE_OFFSET 410 create_pgd_entry x0, x5, x3, x6 411 ldr x6, =KERNEL_END // __va(KERNEL_END) 412 mov x3, x24 // phys offset 413 create_block_map x0, x7, x3, x5, x6 414 415 /* 416 * Map the FDT blob (maximum 2MB; must be within 512MB of 417 * PHYS_OFFSET). 418 */ 419 mov x3, x21 // FDT phys address 420 and x3, x3, #~((1 << 21) - 1) // 2MB aligned 421 mov x6, #PAGE_OFFSET 422 sub x5, x3, x24 // subtract PHYS_OFFSET 423 tst x5, #~((1 << 29) - 1) // within 512MB? 424 csel x21, xzr, x21, ne // zero the FDT pointer 425 b.ne 1f 426 add x5, x5, x6 // __va(FDT blob) 427 add x6, x5, #1 << 21 // 2MB for the FDT blob 428 sub x6, x6, #1 // inclusive range 429 create_block_map x0, x7, x3, x5, x6 4301: 431 /* 432 * Since the page tables have been populated with non-cacheable 433 * accesses (MMU disabled), invalidate the idmap and swapper page 434 * tables again to remove any speculatively loaded cache lines. 435 */ 436 mov x0, x25 437 add x1, x26, #SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE 438 dmb sy 439 bl __inval_cache_range 440 441 mov lr, x27 442 ret 443ENDPROC(__create_page_tables) 444 .ltorg 445 446/* 447 * The following fragment of code is executed with the MMU enabled. 448 */ 449 .set initial_sp, init_thread_union + THREAD_START_SP 450__mmap_switched: 451 // Clear BSS 452 adr_l x0, __bss_start 453 mov x1, xzr 454 adr_l x2, __bss_stop 455 sub x2, x2, x0 456 bl __pi_memset 457 dsb ishst // Make zero page visible to PTW 458 459 adr_l sp, initial_sp, x4 460 mov x4, sp 461 and x4, x4, #~(THREAD_SIZE - 1) 462 msr sp_el0, x4 // Save thread_info 463 str_l x21, __fdt_pointer, x5 // Save FDT pointer 464 str_l x24, memstart_addr, x6 // Save PHYS_OFFSET 465 mov x29, #0 466 b start_kernel 467ENDPROC(__mmap_switched) 468 469/* 470 * end early head section, begin head code that is also used for 471 * hotplug and needs to have the same protections as the text region 472 */ 473 .section ".text","ax" 474/* 475 * If we're fortunate enough to boot at EL2, ensure that the world is 476 * sane before dropping to EL1. 477 * 478 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if 479 * booted in EL1 or EL2 respectively. 480 */ 481ENTRY(el2_setup) 482 msr SPsel, #1 // We want to use SP_EL{1,2} 483 mrs x0, CurrentEL 484 cmp x0, #CurrentEL_EL2 485 b.ne 1f 486 mrs x0, sctlr_el2 487CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2 488CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2 489 msr sctlr_el2, x0 490 b 2f 4911: mrs x0, sctlr_el1 492CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1 493CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1 494 msr sctlr_el1, x0 495 mov w20, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 496 isb 497 ret 498 499 /* Hyp configuration. */ 5002: mov x0, #(1 << 31) // 64-bit EL1 501 msr hcr_el2, x0 502 503 /* Generic timers. */ 504 mrs x0, cnthctl_el2 505 orr x0, x0, #3 // Enable EL1 physical timers 506 msr cnthctl_el2, x0 507 msr cntvoff_el2, xzr // Clear virtual offset 508 509#ifdef CONFIG_ARM_GIC_V3 510 /* GICv3 system register access */ 511 mrs x0, id_aa64pfr0_el1 512 ubfx x0, x0, #24, #4 513 cmp x0, #1 514 b.ne 3f 515 516 mrs_s x0, ICC_SRE_EL2 517 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 518 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 519 msr_s ICC_SRE_EL2, x0 520 isb // Make sure SRE is now set 521 msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults 522 5233: 524#endif 525 526 /* Populate ID registers. */ 527 mrs x0, midr_el1 528 mrs x1, mpidr_el1 529 msr vpidr_el2, x0 530 msr vmpidr_el2, x1 531 532 /* sctlr_el1 */ 533 mov x0, #0x0800 // Set/clear RES{1,0} bits 534CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems 535CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems 536 msr sctlr_el1, x0 537 538 /* Coprocessor traps. */ 539 mov x0, #0x33ff 540 msr cptr_el2, x0 // Disable copro. traps to EL2 541 542#ifdef CONFIG_COMPAT 543 msr hstr_el2, xzr // Disable CP15 traps to EL2 544#endif 545 546 /* EL2 debug */ 547 mrs x0, pmcr_el0 // Disable debug access traps 548 ubfx x0, x0, #11, #5 // to EL2 and allow access to 549 msr mdcr_el2, x0 // all PMU counters from EL1 550 551 /* Stage-2 translation */ 552 msr vttbr_el2, xzr 553 554 /* Hypervisor stub */ 555 adrp x0, __hyp_stub_vectors 556 add x0, x0, #:lo12:__hyp_stub_vectors 557 msr vbar_el2, x0 558 559 /* spsr */ 560 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ 561 PSR_MODE_EL1h) 562 msr spsr_el2, x0 563 msr elr_el2, lr 564 mov w20, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 565 eret 566ENDPROC(el2_setup) 567 568/* 569 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed 570 * in x20. See arch/arm64/include/asm/virt.h for more info. 571 */ 572ENTRY(set_cpu_boot_mode_flag) 573 adr_l x1, __boot_cpu_mode 574 cmp w20, #BOOT_CPU_MODE_EL2 575 b.ne 1f 576 add x1, x1, #4 5771: str w20, [x1] // This CPU has booted in EL1 578 dmb sy 579 dc ivac, x1 // Invalidate potentially stale cache line 580 ret 581ENDPROC(set_cpu_boot_mode_flag) 582 583/* 584 * We need to find out the CPU boot mode long after boot, so we need to 585 * store it in a writable variable. 586 * 587 * This is not in .bss, because we set it sufficiently early that the boot-time 588 * zeroing of .bss would clobber it. 589 */ 590 .pushsection .data..cacheline_aligned 591ENTRY(__boot_cpu_mode) 592 .align L1_CACHE_SHIFT 593 .long BOOT_CPU_MODE_EL2 594 .long 0 595 .popsection 596 597 .align 3 5981: .quad . 599 .quad secondary_holding_pen_release 600 601 /* 602 * This provides a "holding pen" for platforms to hold all secondary 603 * cores are held until we're ready for them to initialise. 604 */ 605ENTRY(secondary_holding_pen) 606 bl el2_setup // Drop to EL1, w20=cpu_boot_mode 607 bl set_cpu_boot_mode_flag 608 mrs x0, mpidr_el1 609 ldr x1, =MPIDR_HWID_BITMASK 610 and x0, x0, x1 611 adr_l x3, secondary_holding_pen_release 612pen: ldr x4, [x3] 613 cmp x4, x0 614 b.eq secondary_startup 615 wfe 616 b pen 617ENDPROC(secondary_holding_pen) 618 619 /* 620 * Secondary entry point that jumps straight into the kernel. Only to 621 * be used where CPUs are brought online dynamically by the kernel. 622 */ 623ENTRY(secondary_entry) 624 bl el2_setup // Drop to EL1 625 bl set_cpu_boot_mode_flag 626 b secondary_startup 627ENDPROC(secondary_entry) 628 629ENTRY(secondary_startup) 630 /* 631 * Common entry point for secondary CPUs. 632 */ 633 adrp x25, idmap_pg_dir 634 adrp x26, swapper_pg_dir 635 bl __cpu_setup // initialise processor 636 637 ldr x21, =secondary_data 638 ldr x27, =__secondary_switched // address to jump to after enabling the MMU 639 b __enable_mmu 640ENDPROC(secondary_startup) 641 642ENTRY(__secondary_switched) 643 ldr x0, [x21] // get secondary_data.stack 644 mov sp, x0 645 and x0, x0, #~(THREAD_SIZE - 1) 646 msr sp_el0, x0 // save thread_info 647 mov x29, #0 648 b secondary_start_kernel 649ENDPROC(__secondary_switched) 650 651/* 652 * Enable the MMU. 653 * 654 * x0 = SCTLR_EL1 value for turning on the MMU. 655 * x27 = *virtual* address to jump to upon completion 656 * 657 * other registers depend on the function called upon completion 658 */ 659__enable_mmu: 660 ldr x5, =vectors 661 msr vbar_el1, x5 662 msr ttbr0_el1, x25 // load TTBR0 663 msr ttbr1_el1, x26 // load TTBR1 664 isb 665 msr sctlr_el1, x0 666 isb 667 /* 668 * Invalidate the local I-cache so that any instructions fetched 669 * speculatively from the PoC are discarded, since they may have 670 * been dynamically patched at the PoU. 671 */ 672 ic iallu 673 dsb nsh 674 isb 675 br x27 676ENDPROC(__enable_mmu) 677