• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * Support the cycle counter clocksource and tile timer clock event device.
15  */
16 
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/clocksource.h>
20 #include <linux/clockchips.h>
21 #include <linux/hardirq.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/timekeeper_internal.h>
27 #include <asm/irq_regs.h>
28 #include <asm/traps.h>
29 #include <asm/vdso.h>
30 #include <hv/hypervisor.h>
31 #include <arch/interrupts.h>
32 #include <arch/spr_def.h>
33 
34 
35 /*
36  * Define the cycle counter clock source.
37  */
38 
39 /* How many cycles per second we are running at. */
40 static cycles_t cycles_per_sec __write_once;
41 
get_clock_rate(void)42 cycles_t get_clock_rate(void)
43 {
44 	return cycles_per_sec;
45 }
46 
47 #if CHIP_HAS_SPLIT_CYCLE()
get_cycles(void)48 cycles_t get_cycles(void)
49 {
50 	unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
51 	unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
52 	unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
53 
54 	while (unlikely(high != high2)) {
55 		low = __insn_mfspr(SPR_CYCLE_LOW);
56 		high = high2;
57 		high2 = __insn_mfspr(SPR_CYCLE_HIGH);
58 	}
59 
60 	return (((cycles_t)high) << 32) | low;
61 }
62 EXPORT_SYMBOL(get_cycles);
63 #endif
64 
65 /*
66  * We use a relatively small shift value so that sched_clock()
67  * won't wrap around very often.
68  */
69 #define SCHED_CLOCK_SHIFT 10
70 
71 static unsigned long sched_clock_mult __write_once;
72 
clocksource_get_cycles(struct clocksource * cs)73 static cycles_t clocksource_get_cycles(struct clocksource *cs)
74 {
75 	return get_cycles();
76 }
77 
78 static struct clocksource cycle_counter_cs = {
79 	.name = "cycle counter",
80 	.rating = 300,
81 	.read = clocksource_get_cycles,
82 	.mask = CLOCKSOURCE_MASK(64),
83 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 };
85 
86 /*
87  * Called very early from setup_arch() to set cycles_per_sec.
88  * We initialize it early so we can use it to set up loops_per_jiffy.
89  */
setup_clock(void)90 void __init setup_clock(void)
91 {
92 	cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
93 	sched_clock_mult =
94 		clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
95 }
96 
calibrate_delay(void)97 void __init calibrate_delay(void)
98 {
99 	loops_per_jiffy = get_clock_rate() / HZ;
100 	pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
101 		loops_per_jiffy/(500000/HZ),
102 		(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
103 }
104 
105 /* Called fairly late in init/main.c, but before we go smp. */
time_init(void)106 void __init time_init(void)
107 {
108 	/* Initialize and register the clock source. */
109 	clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
110 
111 	/* Start up the tile-timer interrupt source on the boot cpu. */
112 	setup_tile_timer();
113 }
114 
115 /*
116  * Define the tile timer clock event device.  The timer is driven by
117  * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
118  * counter, plus bit 31, which signifies that the counter has wrapped
119  * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be
120  * raised as long as bit 31 is set.
121  *
122  * The TILE_MINSEC value represents the largest range of real-time
123  * we can possibly cover with the timer, based on MAX_TICK combined
124  * with the slowest reasonable clock rate we might run at.
125  */
126 
127 #define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */
128 #define TILE_MINSEC 5         /* timer covers no more than 5 seconds */
129 
tile_timer_set_next_event(unsigned long ticks,struct clock_event_device * evt)130 static int tile_timer_set_next_event(unsigned long ticks,
131 				     struct clock_event_device *evt)
132 {
133 	BUG_ON(ticks > MAX_TICK);
134 	__insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
135 	arch_local_irq_unmask_now(INT_TILE_TIMER);
136 	return 0;
137 }
138 
139 /*
140  * Whenever anyone tries to change modes, we just mask interrupts
141  * and wait for the next event to get set.
142  */
tile_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)143 static void tile_timer_set_mode(enum clock_event_mode mode,
144 				struct clock_event_device *evt)
145 {
146 	arch_local_irq_mask_now(INT_TILE_TIMER);
147 }
148 
149 /*
150  * Set min_delta_ns to 1 microsecond, since it takes about
151  * that long to fire the interrupt.
152  */
153 static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
154 	.name = "tile timer",
155 	.features = CLOCK_EVT_FEAT_ONESHOT,
156 	.min_delta_ns = 1000,
157 	.rating = 100,
158 	.irq = -1,
159 	.set_next_event = tile_timer_set_next_event,
160 	.set_mode = tile_timer_set_mode,
161 };
162 
setup_tile_timer(void)163 void setup_tile_timer(void)
164 {
165 	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
166 
167 	/* Fill in fields that are speed-specific. */
168 	clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
169 	evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
170 
171 	/* Mark as being for this cpu only. */
172 	evt->cpumask = cpumask_of(smp_processor_id());
173 
174 	/* Start out with timer not firing. */
175 	arch_local_irq_mask_now(INT_TILE_TIMER);
176 
177 	/* Register tile timer. */
178 	clockevents_register_device(evt);
179 }
180 
181 /* Called from the interrupt vector. */
do_timer_interrupt(struct pt_regs * regs,int fault_num)182 void do_timer_interrupt(struct pt_regs *regs, int fault_num)
183 {
184 	struct pt_regs *old_regs = set_irq_regs(regs);
185 	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
186 
187 	/*
188 	 * Mask the timer interrupt here, since we are a oneshot timer
189 	 * and there are now by definition no events pending.
190 	 */
191 	arch_local_irq_mask(INT_TILE_TIMER);
192 
193 	/* Track time spent here in an interrupt context */
194 	irq_enter();
195 
196 	/* Track interrupt count. */
197 	__this_cpu_inc(irq_stat.irq_timer_count);
198 
199 	/* Call the generic timer handler */
200 	evt->event_handler(evt);
201 
202 	/*
203 	 * Track time spent against the current process again and
204 	 * process any softirqs if they are waiting.
205 	 */
206 	irq_exit();
207 
208 	set_irq_regs(old_regs);
209 }
210 
211 /*
212  * Scheduler clock - returns current time in nanosec units.
213  * Note that with LOCKDEP, this is called during lockdep_init(), and
214  * we will claim that sched_clock() is zero for a little while, until
215  * we run setup_clock(), above.
216  */
sched_clock(void)217 unsigned long long sched_clock(void)
218 {
219 	return clocksource_cyc2ns(get_cycles(),
220 				  sched_clock_mult, SCHED_CLOCK_SHIFT);
221 }
222 
setup_profiling_timer(unsigned int multiplier)223 int setup_profiling_timer(unsigned int multiplier)
224 {
225 	return -EINVAL;
226 }
227 
228 /*
229  * Use the tile timer to convert nsecs to core clock cycles, relying
230  * on it having the same frequency as SPR_CYCLE.
231  */
ns2cycles(unsigned long nsecs)232 cycles_t ns2cycles(unsigned long nsecs)
233 {
234 	/*
235 	 * We do not have to disable preemption here as each core has the same
236 	 * clock frequency.
237 	 */
238 	struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
239 
240 	/*
241 	 * as in clocksource.h and x86's timer.h, we split the calculation
242 	 * into 2 parts to avoid unecessary overflow of the intermediate
243 	 * value. This will not lead to any loss of precision.
244 	 */
245 	u64 quot = (u64)nsecs >> dev->shift;
246 	u64 rem  = (u64)nsecs & ((1ULL << dev->shift) - 1);
247 	return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
248 }
249 
update_vsyscall_tz(void)250 void update_vsyscall_tz(void)
251 {
252 	write_seqcount_begin(&vdso_data->tz_seq);
253 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
254 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
255 	write_seqcount_end(&vdso_data->tz_seq);
256 }
257 
update_vsyscall(struct timekeeper * tk)258 void update_vsyscall(struct timekeeper *tk)
259 {
260 	if (tk->tkr_mono.clock != &cycle_counter_cs)
261 		return;
262 
263 	write_seqcount_begin(&vdso_data->tb_seq);
264 
265 	vdso_data->cycle_last		= tk->tkr_mono.cycle_last;
266 	vdso_data->mask			= tk->tkr_mono.mask;
267 	vdso_data->mult			= tk->tkr_mono.mult;
268 	vdso_data->shift		= tk->tkr_mono.shift;
269 
270 	vdso_data->wall_time_sec	= tk->xtime_sec;
271 	vdso_data->wall_time_snsec	= tk->tkr_mono.xtime_nsec;
272 
273 	vdso_data->monotonic_time_sec	= tk->xtime_sec
274 					+ tk->wall_to_monotonic.tv_sec;
275 	vdso_data->monotonic_time_snsec	= tk->tkr_mono.xtime_nsec
276 					+ ((u64)tk->wall_to_monotonic.tv_nsec
277 						<< tk->tkr_mono.shift);
278 	while (vdso_data->monotonic_time_snsec >=
279 					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
280 		vdso_data->monotonic_time_snsec -=
281 					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
282 		vdso_data->monotonic_time_sec++;
283 	}
284 
285 	vdso_data->wall_time_coarse_sec	= tk->xtime_sec;
286 	vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
287 						 tk->tkr_mono.shift);
288 
289 	vdso_data->monotonic_time_coarse_sec =
290 		vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
291 	vdso_data->monotonic_time_coarse_nsec =
292 		vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
293 
294 	while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
295 		vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
296 		vdso_data->monotonic_time_coarse_sec++;
297 	}
298 
299 	write_seqcount_end(&vdso_data->tb_seq);
300 }
301