• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 
23 #include "blk.h"
24 
25 static DEFINE_MUTEX(block_class_lock);
26 struct kobject *block_depr;
27 
28 /* for extended dynamic devt allocation, currently only one major is used */
29 #define NR_EXT_DEVT		(1 << MINORBITS)
30 
31 /* For extended devt allocation.  ext_devt_lock prevents look up
32  * results from going away underneath its user.
33  */
34 static DEFINE_SPINLOCK(ext_devt_lock);
35 static DEFINE_IDR(ext_devt_idr);
36 
37 static struct device_type disk_type;
38 
39 static void disk_check_events(struct disk_events *ev,
40 			      unsigned int *clearing_ptr);
41 static void disk_alloc_events(struct gendisk *disk);
42 static void disk_add_events(struct gendisk *disk);
43 static void disk_del_events(struct gendisk *disk);
44 static void disk_release_events(struct gendisk *disk);
45 
46 /**
47  * disk_get_part - get partition
48  * @disk: disk to look partition from
49  * @partno: partition number
50  *
51  * Look for partition @partno from @disk.  If found, increment
52  * reference count and return it.
53  *
54  * CONTEXT:
55  * Don't care.
56  *
57  * RETURNS:
58  * Pointer to the found partition on success, NULL if not found.
59  */
disk_get_part(struct gendisk * disk,int partno)60 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
61 {
62 	struct hd_struct *part = NULL;
63 	struct disk_part_tbl *ptbl;
64 
65 	if (unlikely(partno < 0))
66 		return NULL;
67 
68 	rcu_read_lock();
69 
70 	ptbl = rcu_dereference(disk->part_tbl);
71 	if (likely(partno < ptbl->len)) {
72 		part = rcu_dereference(ptbl->part[partno]);
73 		if (part)
74 			get_device(part_to_dev(part));
75 	}
76 
77 	rcu_read_unlock();
78 
79 	return part;
80 }
81 EXPORT_SYMBOL_GPL(disk_get_part);
82 
83 /**
84  * disk_part_iter_init - initialize partition iterator
85  * @piter: iterator to initialize
86  * @disk: disk to iterate over
87  * @flags: DISK_PITER_* flags
88  *
89  * Initialize @piter so that it iterates over partitions of @disk.
90  *
91  * CONTEXT:
92  * Don't care.
93  */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)94 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
95 			  unsigned int flags)
96 {
97 	struct disk_part_tbl *ptbl;
98 
99 	rcu_read_lock();
100 	ptbl = rcu_dereference(disk->part_tbl);
101 
102 	piter->disk = disk;
103 	piter->part = NULL;
104 
105 	if (flags & DISK_PITER_REVERSE)
106 		piter->idx = ptbl->len - 1;
107 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
108 		piter->idx = 0;
109 	else
110 		piter->idx = 1;
111 
112 	piter->flags = flags;
113 
114 	rcu_read_unlock();
115 }
116 EXPORT_SYMBOL_GPL(disk_part_iter_init);
117 
118 /**
119  * disk_part_iter_next - proceed iterator to the next partition and return it
120  * @piter: iterator of interest
121  *
122  * Proceed @piter to the next partition and return it.
123  *
124  * CONTEXT:
125  * Don't care.
126  */
disk_part_iter_next(struct disk_part_iter * piter)127 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
128 {
129 	struct disk_part_tbl *ptbl;
130 	int inc, end;
131 
132 	/* put the last partition */
133 	disk_put_part(piter->part);
134 	piter->part = NULL;
135 
136 	/* get part_tbl */
137 	rcu_read_lock();
138 	ptbl = rcu_dereference(piter->disk->part_tbl);
139 
140 	/* determine iteration parameters */
141 	if (piter->flags & DISK_PITER_REVERSE) {
142 		inc = -1;
143 		if (piter->flags & (DISK_PITER_INCL_PART0 |
144 				    DISK_PITER_INCL_EMPTY_PART0))
145 			end = -1;
146 		else
147 			end = 0;
148 	} else {
149 		inc = 1;
150 		end = ptbl->len;
151 	}
152 
153 	/* iterate to the next partition */
154 	for (; piter->idx != end; piter->idx += inc) {
155 		struct hd_struct *part;
156 
157 		part = rcu_dereference(ptbl->part[piter->idx]);
158 		if (!part)
159 			continue;
160 		if (!part_nr_sects_read(part) &&
161 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
162 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
163 		      piter->idx == 0))
164 			continue;
165 
166 		get_device(part_to_dev(part));
167 		piter->part = part;
168 		piter->idx += inc;
169 		break;
170 	}
171 
172 	rcu_read_unlock();
173 
174 	return piter->part;
175 }
176 EXPORT_SYMBOL_GPL(disk_part_iter_next);
177 
178 /**
179  * disk_part_iter_exit - finish up partition iteration
180  * @piter: iter of interest
181  *
182  * Called when iteration is over.  Cleans up @piter.
183  *
184  * CONTEXT:
185  * Don't care.
186  */
disk_part_iter_exit(struct disk_part_iter * piter)187 void disk_part_iter_exit(struct disk_part_iter *piter)
188 {
189 	disk_put_part(piter->part);
190 	piter->part = NULL;
191 }
192 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
193 
sector_in_part(struct hd_struct * part,sector_t sector)194 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
195 {
196 	return part->start_sect <= sector &&
197 		sector < part->start_sect + part_nr_sects_read(part);
198 }
199 
200 /**
201  * disk_map_sector_rcu - map sector to partition
202  * @disk: gendisk of interest
203  * @sector: sector to map
204  *
205  * Find out which partition @sector maps to on @disk.  This is
206  * primarily used for stats accounting.
207  *
208  * CONTEXT:
209  * RCU read locked.  The returned partition pointer is valid only
210  * while preemption is disabled.
211  *
212  * RETURNS:
213  * Found partition on success, part0 is returned if no partition matches
214  */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)215 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
216 {
217 	struct disk_part_tbl *ptbl;
218 	struct hd_struct *part;
219 	int i;
220 
221 	ptbl = rcu_dereference(disk->part_tbl);
222 
223 	part = rcu_dereference(ptbl->last_lookup);
224 	if (part && sector_in_part(part, sector))
225 		return part;
226 
227 	for (i = 1; i < ptbl->len; i++) {
228 		part = rcu_dereference(ptbl->part[i]);
229 
230 		if (part && sector_in_part(part, sector)) {
231 			rcu_assign_pointer(ptbl->last_lookup, part);
232 			return part;
233 		}
234 	}
235 	return &disk->part0;
236 }
237 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
238 
239 /*
240  * Can be deleted altogether. Later.
241  *
242  */
243 static struct blk_major_name {
244 	struct blk_major_name *next;
245 	int major;
246 	char name[16];
247 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
248 
249 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)250 static inline int major_to_index(unsigned major)
251 {
252 	return major % BLKDEV_MAJOR_HASH_SIZE;
253 }
254 
255 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)256 void blkdev_show(struct seq_file *seqf, off_t offset)
257 {
258 	struct blk_major_name *dp;
259 
260 	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
261 		mutex_lock(&block_class_lock);
262 		for (dp = major_names[offset]; dp; dp = dp->next)
263 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
264 		mutex_unlock(&block_class_lock);
265 	}
266 }
267 #endif /* CONFIG_PROC_FS */
268 
269 /**
270  * register_blkdev - register a new block device
271  *
272  * @major: the requested major device number [1..255]. If @major=0, try to
273  *         allocate any unused major number.
274  * @name: the name of the new block device as a zero terminated string
275  *
276  * The @name must be unique within the system.
277  *
278  * The return value depends on the @major input parameter.
279  *  - if a major device number was requested in range [1..255] then the
280  *    function returns zero on success, or a negative error code
281  *  - if any unused major number was requested with @major=0 parameter
282  *    then the return value is the allocated major number in range
283  *    [1..255] or a negative error code otherwise
284  */
register_blkdev(unsigned int major,const char * name)285 int register_blkdev(unsigned int major, const char *name)
286 {
287 	struct blk_major_name **n, *p;
288 	int index, ret = 0;
289 
290 	mutex_lock(&block_class_lock);
291 
292 	/* temporary */
293 	if (major == 0) {
294 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
295 			if (major_names[index] == NULL)
296 				break;
297 		}
298 
299 		if (index == 0) {
300 			printk("register_blkdev: failed to get major for %s\n",
301 			       name);
302 			ret = -EBUSY;
303 			goto out;
304 		}
305 		major = index;
306 		ret = major;
307 	}
308 
309 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
310 	if (p == NULL) {
311 		ret = -ENOMEM;
312 		goto out;
313 	}
314 
315 	p->major = major;
316 	strlcpy(p->name, name, sizeof(p->name));
317 	p->next = NULL;
318 	index = major_to_index(major);
319 
320 	for (n = &major_names[index]; *n; n = &(*n)->next) {
321 		if ((*n)->major == major)
322 			break;
323 	}
324 	if (!*n)
325 		*n = p;
326 	else
327 		ret = -EBUSY;
328 
329 	if (ret < 0) {
330 		printk("register_blkdev: cannot get major %d for %s\n",
331 		       major, name);
332 		kfree(p);
333 	}
334 out:
335 	mutex_unlock(&block_class_lock);
336 	return ret;
337 }
338 
339 EXPORT_SYMBOL(register_blkdev);
340 
unregister_blkdev(unsigned int major,const char * name)341 void unregister_blkdev(unsigned int major, const char *name)
342 {
343 	struct blk_major_name **n;
344 	struct blk_major_name *p = NULL;
345 	int index = major_to_index(major);
346 
347 	mutex_lock(&block_class_lock);
348 	for (n = &major_names[index]; *n; n = &(*n)->next)
349 		if ((*n)->major == major)
350 			break;
351 	if (!*n || strcmp((*n)->name, name)) {
352 		WARN_ON(1);
353 	} else {
354 		p = *n;
355 		*n = p->next;
356 	}
357 	mutex_unlock(&block_class_lock);
358 	kfree(p);
359 }
360 
361 EXPORT_SYMBOL(unregister_blkdev);
362 
363 static struct kobj_map *bdev_map;
364 
365 /**
366  * blk_mangle_minor - scatter minor numbers apart
367  * @minor: minor number to mangle
368  *
369  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
370  * is enabled.  Mangling twice gives the original value.
371  *
372  * RETURNS:
373  * Mangled value.
374  *
375  * CONTEXT:
376  * Don't care.
377  */
blk_mangle_minor(int minor)378 static int blk_mangle_minor(int minor)
379 {
380 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
381 	int i;
382 
383 	for (i = 0; i < MINORBITS / 2; i++) {
384 		int low = minor & (1 << i);
385 		int high = minor & (1 << (MINORBITS - 1 - i));
386 		int distance = MINORBITS - 1 - 2 * i;
387 
388 		minor ^= low | high;	/* clear both bits */
389 		low <<= distance;	/* swap the positions */
390 		high >>= distance;
391 		minor |= low | high;	/* and set */
392 	}
393 #endif
394 	return minor;
395 }
396 
397 /**
398  * blk_alloc_devt - allocate a dev_t for a partition
399  * @part: partition to allocate dev_t for
400  * @devt: out parameter for resulting dev_t
401  *
402  * Allocate a dev_t for block device.
403  *
404  * RETURNS:
405  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
406  * failure.
407  *
408  * CONTEXT:
409  * Might sleep.
410  */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)411 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
412 {
413 	struct gendisk *disk = part_to_disk(part);
414 	int idx;
415 
416 	/* in consecutive minor range? */
417 	if (part->partno < disk->minors) {
418 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
419 		return 0;
420 	}
421 
422 	/* allocate ext devt */
423 	idr_preload(GFP_KERNEL);
424 
425 	spin_lock_bh(&ext_devt_lock);
426 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
427 	spin_unlock_bh(&ext_devt_lock);
428 
429 	idr_preload_end();
430 	if (idx < 0)
431 		return idx == -ENOSPC ? -EBUSY : idx;
432 
433 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
434 	return 0;
435 }
436 
437 /**
438  * blk_free_devt - free a dev_t
439  * @devt: dev_t to free
440  *
441  * Free @devt which was allocated using blk_alloc_devt().
442  *
443  * CONTEXT:
444  * Might sleep.
445  */
blk_free_devt(dev_t devt)446 void blk_free_devt(dev_t devt)
447 {
448 	if (devt == MKDEV(0, 0))
449 		return;
450 
451 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
452 		spin_lock_bh(&ext_devt_lock);
453 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
454 		spin_unlock_bh(&ext_devt_lock);
455 	}
456 }
457 
bdevt_str(dev_t devt,char * buf)458 static char *bdevt_str(dev_t devt, char *buf)
459 {
460 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
461 		char tbuf[BDEVT_SIZE];
462 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
463 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
464 	} else
465 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
466 
467 	return buf;
468 }
469 
470 /*
471  * Register device numbers dev..(dev+range-1)
472  * range must be nonzero
473  * The hash chain is sorted on range, so that subranges can override.
474  */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)475 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
476 			 struct kobject *(*probe)(dev_t, int *, void *),
477 			 int (*lock)(dev_t, void *), void *data)
478 {
479 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
480 }
481 
482 EXPORT_SYMBOL(blk_register_region);
483 
blk_unregister_region(dev_t devt,unsigned long range)484 void blk_unregister_region(dev_t devt, unsigned long range)
485 {
486 	kobj_unmap(bdev_map, devt, range);
487 }
488 
489 EXPORT_SYMBOL(blk_unregister_region);
490 
exact_match(dev_t devt,int * partno,void * data)491 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
492 {
493 	struct gendisk *p = data;
494 
495 	return &disk_to_dev(p)->kobj;
496 }
497 
exact_lock(dev_t devt,void * data)498 static int exact_lock(dev_t devt, void *data)
499 {
500 	struct gendisk *p = data;
501 
502 	if (!get_disk(p))
503 		return -1;
504 	return 0;
505 }
506 
register_disk(struct gendisk * disk)507 static void register_disk(struct gendisk *disk)
508 {
509 	struct device *ddev = disk_to_dev(disk);
510 	struct block_device *bdev;
511 	struct disk_part_iter piter;
512 	struct hd_struct *part;
513 	int err;
514 
515 	ddev->parent = disk->driverfs_dev;
516 
517 	dev_set_name(ddev, "%s", disk->disk_name);
518 
519 	/* delay uevents, until we scanned partition table */
520 	dev_set_uevent_suppress(ddev, 1);
521 
522 	if (device_add(ddev))
523 		return;
524 	if (!sysfs_deprecated) {
525 		err = sysfs_create_link(block_depr, &ddev->kobj,
526 					kobject_name(&ddev->kobj));
527 		if (err) {
528 			device_del(ddev);
529 			return;
530 		}
531 	}
532 
533 	/*
534 	 * avoid probable deadlock caused by allocating memory with
535 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
536 	 * devices
537 	 */
538 	pm_runtime_set_memalloc_noio(ddev, true);
539 
540 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
541 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
542 
543 	/* No minors to use for partitions */
544 	if (!disk_part_scan_enabled(disk))
545 		goto exit;
546 
547 	/* No such device (e.g., media were just removed) */
548 	if (!get_capacity(disk))
549 		goto exit;
550 
551 	bdev = bdget_disk(disk, 0);
552 	if (!bdev)
553 		goto exit;
554 
555 	bdev->bd_invalidated = 1;
556 	err = blkdev_get(bdev, FMODE_READ, NULL);
557 	if (err < 0)
558 		goto exit;
559 	blkdev_put(bdev, FMODE_READ);
560 
561 exit:
562 	/* announce disk after possible partitions are created */
563 	dev_set_uevent_suppress(ddev, 0);
564 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
565 
566 	/* announce possible partitions */
567 	disk_part_iter_init(&piter, disk, 0);
568 	while ((part = disk_part_iter_next(&piter)))
569 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
570 	disk_part_iter_exit(&piter);
571 }
572 
573 /**
574  * add_disk - add partitioning information to kernel list
575  * @disk: per-device partitioning information
576  *
577  * This function registers the partitioning information in @disk
578  * with the kernel.
579  *
580  * FIXME: error handling
581  */
add_disk(struct gendisk * disk)582 void add_disk(struct gendisk *disk)
583 {
584 	struct backing_dev_info *bdi;
585 	dev_t devt;
586 	int retval;
587 
588 	/* minors == 0 indicates to use ext devt from part0 and should
589 	 * be accompanied with EXT_DEVT flag.  Make sure all
590 	 * parameters make sense.
591 	 */
592 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
593 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
594 
595 	disk->flags |= GENHD_FL_UP;
596 
597 	retval = blk_alloc_devt(&disk->part0, &devt);
598 	if (retval) {
599 		WARN_ON(1);
600 		return;
601 	}
602 	disk_to_dev(disk)->devt = devt;
603 
604 	/* ->major and ->first_minor aren't supposed to be
605 	 * dereferenced from here on, but set them just in case.
606 	 */
607 	disk->major = MAJOR(devt);
608 	disk->first_minor = MINOR(devt);
609 
610 	disk_alloc_events(disk);
611 
612 	/* Register BDI before referencing it from bdev */
613 	bdi = &disk->queue->backing_dev_info;
614 	bdi_register_dev(bdi, disk_devt(disk));
615 
616 	blk_register_region(disk_devt(disk), disk->minors, NULL,
617 			    exact_match, exact_lock, disk);
618 	register_disk(disk);
619 	blk_register_queue(disk);
620 
621 	/*
622 	 * Take an extra ref on queue which will be put on disk_release()
623 	 * so that it sticks around as long as @disk is there.
624 	 */
625 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
626 
627 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
628 				   "bdi");
629 	WARN_ON(retval);
630 
631 	disk_add_events(disk);
632 }
633 EXPORT_SYMBOL(add_disk);
634 
del_gendisk(struct gendisk * disk)635 void del_gendisk(struct gendisk *disk)
636 {
637 	struct disk_part_iter piter;
638 	struct hd_struct *part;
639 
640 	disk_del_events(disk);
641 
642 	/* invalidate stuff */
643 	disk_part_iter_init(&piter, disk,
644 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
645 	while ((part = disk_part_iter_next(&piter))) {
646 		invalidate_partition(disk, part->partno);
647 		delete_partition(disk, part->partno);
648 	}
649 	disk_part_iter_exit(&piter);
650 
651 	invalidate_partition(disk, 0);
652 	set_capacity(disk, 0);
653 	disk->flags &= ~GENHD_FL_UP;
654 
655 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
656 	bdi_unregister(&disk->queue->backing_dev_info);
657 	blk_unregister_queue(disk);
658 	blk_unregister_region(disk_devt(disk), disk->minors);
659 
660 	part_stat_set_all(&disk->part0, 0);
661 	disk->part0.stamp = 0;
662 
663 	kobject_put(disk->part0.holder_dir);
664 	kobject_put(disk->slave_dir);
665 	disk->driverfs_dev = NULL;
666 	if (!sysfs_deprecated)
667 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
668 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
669 	device_del(disk_to_dev(disk));
670 }
671 EXPORT_SYMBOL(del_gendisk);
672 
673 /**
674  * get_gendisk - get partitioning information for a given device
675  * @devt: device to get partitioning information for
676  * @partno: returned partition index
677  *
678  * This function gets the structure containing partitioning
679  * information for the given device @devt.
680  */
get_gendisk(dev_t devt,int * partno)681 struct gendisk *get_gendisk(dev_t devt, int *partno)
682 {
683 	struct gendisk *disk = NULL;
684 
685 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
686 		struct kobject *kobj;
687 
688 		kobj = kobj_lookup(bdev_map, devt, partno);
689 		if (kobj)
690 			disk = dev_to_disk(kobj_to_dev(kobj));
691 	} else {
692 		struct hd_struct *part;
693 
694 		spin_lock_bh(&ext_devt_lock);
695 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
696 		if (part && get_disk(part_to_disk(part))) {
697 			*partno = part->partno;
698 			disk = part_to_disk(part);
699 		}
700 		spin_unlock_bh(&ext_devt_lock);
701 	}
702 
703 	return disk;
704 }
705 EXPORT_SYMBOL(get_gendisk);
706 
707 /**
708  * bdget_disk - do bdget() by gendisk and partition number
709  * @disk: gendisk of interest
710  * @partno: partition number
711  *
712  * Find partition @partno from @disk, do bdget() on it.
713  *
714  * CONTEXT:
715  * Don't care.
716  *
717  * RETURNS:
718  * Resulting block_device on success, NULL on failure.
719  */
bdget_disk(struct gendisk * disk,int partno)720 struct block_device *bdget_disk(struct gendisk *disk, int partno)
721 {
722 	struct hd_struct *part;
723 	struct block_device *bdev = NULL;
724 
725 	part = disk_get_part(disk, partno);
726 	if (part)
727 		bdev = bdget(part_devt(part));
728 	disk_put_part(part);
729 
730 	return bdev;
731 }
732 EXPORT_SYMBOL(bdget_disk);
733 
734 /*
735  * print a full list of all partitions - intended for places where the root
736  * filesystem can't be mounted and thus to give the victim some idea of what
737  * went wrong
738  */
printk_all_partitions(void)739 void __init printk_all_partitions(void)
740 {
741 	struct class_dev_iter iter;
742 	struct device *dev;
743 
744 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
745 	while ((dev = class_dev_iter_next(&iter))) {
746 		struct gendisk *disk = dev_to_disk(dev);
747 		struct disk_part_iter piter;
748 		struct hd_struct *part;
749 		char name_buf[BDEVNAME_SIZE];
750 		char devt_buf[BDEVT_SIZE];
751 
752 		/*
753 		 * Don't show empty devices or things that have been
754 		 * suppressed
755 		 */
756 		if (get_capacity(disk) == 0 ||
757 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
758 			continue;
759 
760 		/*
761 		 * Note, unlike /proc/partitions, I am showing the
762 		 * numbers in hex - the same format as the root=
763 		 * option takes.
764 		 */
765 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
766 		while ((part = disk_part_iter_next(&piter))) {
767 			bool is_part0 = part == &disk->part0;
768 
769 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
770 			       bdevt_str(part_devt(part), devt_buf),
771 			       (unsigned long long)part_nr_sects_read(part) >> 1
772 			       , disk_name(disk, part->partno, name_buf),
773 			       part->info ? part->info->uuid : "");
774 			if (is_part0) {
775 				if (disk->driverfs_dev != NULL &&
776 				    disk->driverfs_dev->driver != NULL)
777 					printk(" driver: %s\n",
778 					      disk->driverfs_dev->driver->name);
779 				else
780 					printk(" (driver?)\n");
781 			} else
782 				printk("\n");
783 		}
784 		disk_part_iter_exit(&piter);
785 	}
786 	class_dev_iter_exit(&iter);
787 }
788 
789 #ifdef CONFIG_PROC_FS
790 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)791 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
792 {
793 	loff_t skip = *pos;
794 	struct class_dev_iter *iter;
795 	struct device *dev;
796 
797 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
798 	if (!iter)
799 		return ERR_PTR(-ENOMEM);
800 
801 	seqf->private = iter;
802 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
803 	do {
804 		dev = class_dev_iter_next(iter);
805 		if (!dev)
806 			return NULL;
807 	} while (skip--);
808 
809 	return dev_to_disk(dev);
810 }
811 
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)812 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
813 {
814 	struct device *dev;
815 
816 	(*pos)++;
817 	dev = class_dev_iter_next(seqf->private);
818 	if (dev)
819 		return dev_to_disk(dev);
820 
821 	return NULL;
822 }
823 
disk_seqf_stop(struct seq_file * seqf,void * v)824 static void disk_seqf_stop(struct seq_file *seqf, void *v)
825 {
826 	struct class_dev_iter *iter = seqf->private;
827 
828 	/* stop is called even after start failed :-( */
829 	if (iter) {
830 		class_dev_iter_exit(iter);
831 		kfree(iter);
832 		seqf->private = NULL;
833 	}
834 }
835 
show_partition_start(struct seq_file * seqf,loff_t * pos)836 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
837 {
838 	void *p;
839 
840 	p = disk_seqf_start(seqf, pos);
841 	if (!IS_ERR_OR_NULL(p) && !*pos)
842 		seq_puts(seqf, "major minor  #blocks  name\n\n");
843 	return p;
844 }
845 
show_partition(struct seq_file * seqf,void * v)846 static int show_partition(struct seq_file *seqf, void *v)
847 {
848 	struct gendisk *sgp = v;
849 	struct disk_part_iter piter;
850 	struct hd_struct *part;
851 	char buf[BDEVNAME_SIZE];
852 
853 	/* Don't show non-partitionable removeable devices or empty devices */
854 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
855 				   (sgp->flags & GENHD_FL_REMOVABLE)))
856 		return 0;
857 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
858 		return 0;
859 
860 	/* show the full disk and all non-0 size partitions of it */
861 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
862 	while ((part = disk_part_iter_next(&piter)))
863 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
864 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
865 			   (unsigned long long)part_nr_sects_read(part) >> 1,
866 			   disk_name(sgp, part->partno, buf));
867 	disk_part_iter_exit(&piter);
868 
869 	return 0;
870 }
871 
872 static const struct seq_operations partitions_op = {
873 	.start	= show_partition_start,
874 	.next	= disk_seqf_next,
875 	.stop	= disk_seqf_stop,
876 	.show	= show_partition
877 };
878 
partitions_open(struct inode * inode,struct file * file)879 static int partitions_open(struct inode *inode, struct file *file)
880 {
881 	return seq_open(file, &partitions_op);
882 }
883 
884 static const struct file_operations proc_partitions_operations = {
885 	.open		= partitions_open,
886 	.read		= seq_read,
887 	.llseek		= seq_lseek,
888 	.release	= seq_release,
889 };
890 #endif
891 
892 
base_probe(dev_t devt,int * partno,void * data)893 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
894 {
895 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
896 		/* Make old-style 2.4 aliases work */
897 		request_module("block-major-%d", MAJOR(devt));
898 	return NULL;
899 }
900 
genhd_device_init(void)901 static int __init genhd_device_init(void)
902 {
903 	int error;
904 
905 	block_class.dev_kobj = sysfs_dev_block_kobj;
906 	error = class_register(&block_class);
907 	if (unlikely(error))
908 		return error;
909 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
910 	blk_dev_init();
911 
912 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
913 
914 	/* create top-level block dir */
915 	if (!sysfs_deprecated)
916 		block_depr = kobject_create_and_add("block", NULL);
917 	return 0;
918 }
919 
920 subsys_initcall(genhd_device_init);
921 
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)922 static ssize_t disk_range_show(struct device *dev,
923 			       struct device_attribute *attr, char *buf)
924 {
925 	struct gendisk *disk = dev_to_disk(dev);
926 
927 	return sprintf(buf, "%d\n", disk->minors);
928 }
929 
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t disk_ext_range_show(struct device *dev,
931 				   struct device_attribute *attr, char *buf)
932 {
933 	struct gendisk *disk = dev_to_disk(dev);
934 
935 	return sprintf(buf, "%d\n", disk_max_parts(disk));
936 }
937 
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)938 static ssize_t disk_removable_show(struct device *dev,
939 				   struct device_attribute *attr, char *buf)
940 {
941 	struct gendisk *disk = dev_to_disk(dev);
942 
943 	return sprintf(buf, "%d\n",
944 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
945 }
946 
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)947 static ssize_t disk_ro_show(struct device *dev,
948 				   struct device_attribute *attr, char *buf)
949 {
950 	struct gendisk *disk = dev_to_disk(dev);
951 
952 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
953 }
954 
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)955 static ssize_t disk_capability_show(struct device *dev,
956 				    struct device_attribute *attr, char *buf)
957 {
958 	struct gendisk *disk = dev_to_disk(dev);
959 
960 	return sprintf(buf, "%x\n", disk->flags);
961 }
962 
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)963 static ssize_t disk_alignment_offset_show(struct device *dev,
964 					  struct device_attribute *attr,
965 					  char *buf)
966 {
967 	struct gendisk *disk = dev_to_disk(dev);
968 
969 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
970 }
971 
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)972 static ssize_t disk_discard_alignment_show(struct device *dev,
973 					   struct device_attribute *attr,
974 					   char *buf)
975 {
976 	struct gendisk *disk = dev_to_disk(dev);
977 
978 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
979 }
980 
981 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
982 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
983 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
984 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
985 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
986 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
987 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
988 		   NULL);
989 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
990 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
991 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
992 #ifdef CONFIG_FAIL_MAKE_REQUEST
993 static struct device_attribute dev_attr_fail =
994 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
995 #endif
996 #ifdef CONFIG_FAIL_IO_TIMEOUT
997 static struct device_attribute dev_attr_fail_timeout =
998 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
999 		part_timeout_store);
1000 #endif
1001 
1002 static struct attribute *disk_attrs[] = {
1003 	&dev_attr_range.attr,
1004 	&dev_attr_ext_range.attr,
1005 	&dev_attr_removable.attr,
1006 	&dev_attr_ro.attr,
1007 	&dev_attr_size.attr,
1008 	&dev_attr_alignment_offset.attr,
1009 	&dev_attr_discard_alignment.attr,
1010 	&dev_attr_capability.attr,
1011 	&dev_attr_stat.attr,
1012 	&dev_attr_inflight.attr,
1013 #ifdef CONFIG_FAIL_MAKE_REQUEST
1014 	&dev_attr_fail.attr,
1015 #endif
1016 #ifdef CONFIG_FAIL_IO_TIMEOUT
1017 	&dev_attr_fail_timeout.attr,
1018 #endif
1019 	NULL
1020 };
1021 
1022 static struct attribute_group disk_attr_group = {
1023 	.attrs = disk_attrs,
1024 };
1025 
1026 static const struct attribute_group *disk_attr_groups[] = {
1027 	&disk_attr_group,
1028 	NULL
1029 };
1030 
1031 /**
1032  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1033  * @disk: disk to replace part_tbl for
1034  * @new_ptbl: new part_tbl to install
1035  *
1036  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1037  * original ptbl is freed using RCU callback.
1038  *
1039  * LOCKING:
1040  * Matching bd_mutx locked.
1041  */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1042 static void disk_replace_part_tbl(struct gendisk *disk,
1043 				  struct disk_part_tbl *new_ptbl)
1044 {
1045 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1046 
1047 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1048 
1049 	if (old_ptbl) {
1050 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1051 		kfree_rcu(old_ptbl, rcu_head);
1052 	}
1053 }
1054 
1055 /**
1056  * disk_expand_part_tbl - expand disk->part_tbl
1057  * @disk: disk to expand part_tbl for
1058  * @partno: expand such that this partno can fit in
1059  *
1060  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1061  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1062  *
1063  * LOCKING:
1064  * Matching bd_mutex locked, might sleep.
1065  *
1066  * RETURNS:
1067  * 0 on success, -errno on failure.
1068  */
disk_expand_part_tbl(struct gendisk * disk,int partno)1069 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1070 {
1071 	struct disk_part_tbl *old_ptbl = disk->part_tbl;
1072 	struct disk_part_tbl *new_ptbl;
1073 	int len = old_ptbl ? old_ptbl->len : 0;
1074 	int i, target;
1075 	size_t size;
1076 
1077 	/*
1078 	 * check for int overflow, since we can get here from blkpg_ioctl()
1079 	 * with a user passed 'partno'.
1080 	 */
1081 	target = partno + 1;
1082 	if (target < 0)
1083 		return -EINVAL;
1084 
1085 	/* disk_max_parts() is zero during initialization, ignore if so */
1086 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1087 		return -EINVAL;
1088 
1089 	if (target <= len)
1090 		return 0;
1091 
1092 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1093 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1094 	if (!new_ptbl)
1095 		return -ENOMEM;
1096 
1097 	new_ptbl->len = target;
1098 
1099 	for (i = 0; i < len; i++)
1100 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1101 
1102 	disk_replace_part_tbl(disk, new_ptbl);
1103 	return 0;
1104 }
1105 
disk_release(struct device * dev)1106 static void disk_release(struct device *dev)
1107 {
1108 	struct gendisk *disk = dev_to_disk(dev);
1109 
1110 	blk_free_devt(dev->devt);
1111 	disk_release_events(disk);
1112 	kfree(disk->random);
1113 	disk_replace_part_tbl(disk, NULL);
1114 	free_part_stats(&disk->part0);
1115 	free_part_info(&disk->part0);
1116 	if (disk->queue)
1117 		blk_put_queue(disk->queue);
1118 	kfree(disk);
1119 }
1120 
disk_uevent(struct device * dev,struct kobj_uevent_env * env)1121 static int disk_uevent(struct device *dev, struct kobj_uevent_env *env)
1122 {
1123 	struct gendisk *disk = dev_to_disk(dev);
1124 	struct disk_part_iter piter;
1125 	struct hd_struct *part;
1126 	int cnt = 0;
1127 
1128 	disk_part_iter_init(&piter, disk, 0);
1129 	while((part = disk_part_iter_next(&piter)))
1130 		cnt++;
1131 	disk_part_iter_exit(&piter);
1132 	add_uevent_var(env, "NPARTS=%u", cnt);
1133 	return 0;
1134 }
1135 
1136 struct class block_class = {
1137 	.name		= "block",
1138 };
1139 
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1140 static char *block_devnode(struct device *dev, umode_t *mode,
1141 			   kuid_t *uid, kgid_t *gid)
1142 {
1143 	struct gendisk *disk = dev_to_disk(dev);
1144 
1145 	if (disk->devnode)
1146 		return disk->devnode(disk, mode);
1147 	return NULL;
1148 }
1149 
1150 static struct device_type disk_type = {
1151 	.name		= "disk",
1152 	.groups		= disk_attr_groups,
1153 	.release	= disk_release,
1154 	.devnode	= block_devnode,
1155 	.uevent		= disk_uevent,
1156 };
1157 
1158 #ifdef CONFIG_PROC_FS
1159 /*
1160  * aggregate disk stat collector.  Uses the same stats that the sysfs
1161  * entries do, above, but makes them available through one seq_file.
1162  *
1163  * The output looks suspiciously like /proc/partitions with a bunch of
1164  * extra fields.
1165  */
diskstats_show(struct seq_file * seqf,void * v)1166 static int diskstats_show(struct seq_file *seqf, void *v)
1167 {
1168 	struct gendisk *gp = v;
1169 	struct disk_part_iter piter;
1170 	struct hd_struct *hd;
1171 	char buf[BDEVNAME_SIZE];
1172 	int cpu;
1173 
1174 	/*
1175 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1176 		seq_puts(seqf,	"major minor name"
1177 				"     rio rmerge rsect ruse wio wmerge "
1178 				"wsect wuse running use aveq"
1179 				"\n\n");
1180 	*/
1181 
1182 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1183 	while ((hd = disk_part_iter_next(&piter))) {
1184 		cpu = part_stat_lock();
1185 		part_round_stats(cpu, hd);
1186 		part_stat_unlock();
1187 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1188 			   "%u %lu %lu %lu %u %u %u %u\n",
1189 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1190 			   disk_name(gp, hd->partno, buf),
1191 			   part_stat_read(hd, ios[READ]),
1192 			   part_stat_read(hd, merges[READ]),
1193 			   part_stat_read(hd, sectors[READ]),
1194 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1195 			   part_stat_read(hd, ios[WRITE]),
1196 			   part_stat_read(hd, merges[WRITE]),
1197 			   part_stat_read(hd, sectors[WRITE]),
1198 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1199 			   part_in_flight(hd),
1200 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1201 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1202 			);
1203 	}
1204 	disk_part_iter_exit(&piter);
1205 
1206 	return 0;
1207 }
1208 
1209 static const struct seq_operations diskstats_op = {
1210 	.start	= disk_seqf_start,
1211 	.next	= disk_seqf_next,
1212 	.stop	= disk_seqf_stop,
1213 	.show	= diskstats_show
1214 };
1215 
diskstats_open(struct inode * inode,struct file * file)1216 static int diskstats_open(struct inode *inode, struct file *file)
1217 {
1218 	return seq_open(file, &diskstats_op);
1219 }
1220 
1221 static const struct file_operations proc_diskstats_operations = {
1222 	.open		= diskstats_open,
1223 	.read		= seq_read,
1224 	.llseek		= seq_lseek,
1225 	.release	= seq_release,
1226 };
1227 
proc_genhd_init(void)1228 static int __init proc_genhd_init(void)
1229 {
1230 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1231 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1232 	return 0;
1233 }
1234 module_init(proc_genhd_init);
1235 #endif /* CONFIG_PROC_FS */
1236 
blk_lookup_devt(const char * name,int partno)1237 dev_t blk_lookup_devt(const char *name, int partno)
1238 {
1239 	dev_t devt = MKDEV(0, 0);
1240 	struct class_dev_iter iter;
1241 	struct device *dev;
1242 
1243 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1244 	while ((dev = class_dev_iter_next(&iter))) {
1245 		struct gendisk *disk = dev_to_disk(dev);
1246 		struct hd_struct *part;
1247 
1248 		if (strcmp(dev_name(dev), name))
1249 			continue;
1250 
1251 		if (partno < disk->minors) {
1252 			/* We need to return the right devno, even
1253 			 * if the partition doesn't exist yet.
1254 			 */
1255 			devt = MKDEV(MAJOR(dev->devt),
1256 				     MINOR(dev->devt) + partno);
1257 			break;
1258 		}
1259 		part = disk_get_part(disk, partno);
1260 		if (part) {
1261 			devt = part_devt(part);
1262 			disk_put_part(part);
1263 			break;
1264 		}
1265 		disk_put_part(part);
1266 	}
1267 	class_dev_iter_exit(&iter);
1268 	return devt;
1269 }
1270 EXPORT_SYMBOL(blk_lookup_devt);
1271 
alloc_disk(int minors)1272 struct gendisk *alloc_disk(int minors)
1273 {
1274 	return alloc_disk_node(minors, NUMA_NO_NODE);
1275 }
1276 EXPORT_SYMBOL(alloc_disk);
1277 
alloc_disk_node(int minors,int node_id)1278 struct gendisk *alloc_disk_node(int minors, int node_id)
1279 {
1280 	struct gendisk *disk;
1281 
1282 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1283 	if (disk) {
1284 		if (!init_part_stats(&disk->part0)) {
1285 			kfree(disk);
1286 			return NULL;
1287 		}
1288 		disk->node_id = node_id;
1289 		if (disk_expand_part_tbl(disk, 0)) {
1290 			free_part_stats(&disk->part0);
1291 			kfree(disk);
1292 			return NULL;
1293 		}
1294 		disk->part_tbl->part[0] = &disk->part0;
1295 
1296 		/*
1297 		 * set_capacity() and get_capacity() currently don't use
1298 		 * seqcounter to read/update the part0->nr_sects. Still init
1299 		 * the counter as we can read the sectors in IO submission
1300 		 * patch using seqence counters.
1301 		 *
1302 		 * TODO: Ideally set_capacity() and get_capacity() should be
1303 		 * converted to make use of bd_mutex and sequence counters.
1304 		 */
1305 		seqcount_init(&disk->part0.nr_sects_seq);
1306 		hd_ref_init(&disk->part0);
1307 
1308 		disk->minors = minors;
1309 		rand_initialize_disk(disk);
1310 		disk_to_dev(disk)->class = &block_class;
1311 		disk_to_dev(disk)->type = &disk_type;
1312 		device_initialize(disk_to_dev(disk));
1313 	}
1314 	return disk;
1315 }
1316 EXPORT_SYMBOL(alloc_disk_node);
1317 
get_disk(struct gendisk * disk)1318 struct kobject *get_disk(struct gendisk *disk)
1319 {
1320 	struct module *owner;
1321 	struct kobject *kobj;
1322 
1323 	if (!disk->fops)
1324 		return NULL;
1325 	owner = disk->fops->owner;
1326 	if (owner && !try_module_get(owner))
1327 		return NULL;
1328 	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1329 	if (kobj == NULL) {
1330 		module_put(owner);
1331 		return NULL;
1332 	}
1333 	return kobj;
1334 
1335 }
1336 
1337 EXPORT_SYMBOL(get_disk);
1338 
put_disk(struct gendisk * disk)1339 void put_disk(struct gendisk *disk)
1340 {
1341 	if (disk)
1342 		kobject_put(&disk_to_dev(disk)->kobj);
1343 }
1344 
1345 EXPORT_SYMBOL(put_disk);
1346 
set_disk_ro_uevent(struct gendisk * gd,int ro)1347 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1348 {
1349 	char event[] = "DISK_RO=1";
1350 	char *envp[] = { event, NULL };
1351 
1352 	if (!ro)
1353 		event[8] = '0';
1354 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1355 }
1356 
set_device_ro(struct block_device * bdev,int flag)1357 void set_device_ro(struct block_device *bdev, int flag)
1358 {
1359 	bdev->bd_part->policy = flag;
1360 }
1361 
1362 EXPORT_SYMBOL(set_device_ro);
1363 
set_disk_ro(struct gendisk * disk,int flag)1364 void set_disk_ro(struct gendisk *disk, int flag)
1365 {
1366 	struct disk_part_iter piter;
1367 	struct hd_struct *part;
1368 
1369 	if (disk->part0.policy != flag) {
1370 		set_disk_ro_uevent(disk, flag);
1371 		disk->part0.policy = flag;
1372 	}
1373 
1374 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1375 	while ((part = disk_part_iter_next(&piter)))
1376 		part->policy = flag;
1377 	disk_part_iter_exit(&piter);
1378 }
1379 
1380 EXPORT_SYMBOL(set_disk_ro);
1381 
bdev_read_only(struct block_device * bdev)1382 int bdev_read_only(struct block_device *bdev)
1383 {
1384 	if (!bdev)
1385 		return 0;
1386 	return bdev->bd_part->policy;
1387 }
1388 
1389 EXPORT_SYMBOL(bdev_read_only);
1390 
invalidate_partition(struct gendisk * disk,int partno)1391 int invalidate_partition(struct gendisk *disk, int partno)
1392 {
1393 	int res = 0;
1394 	struct block_device *bdev = bdget_disk(disk, partno);
1395 	if (bdev) {
1396 		fsync_bdev(bdev);
1397 		res = __invalidate_device(bdev, true);
1398 		bdput(bdev);
1399 	}
1400 	return res;
1401 }
1402 
1403 EXPORT_SYMBOL(invalidate_partition);
1404 
1405 /*
1406  * Disk events - monitor disk events like media change and eject request.
1407  */
1408 struct disk_events {
1409 	struct list_head	node;		/* all disk_event's */
1410 	struct gendisk		*disk;		/* the associated disk */
1411 	spinlock_t		lock;
1412 
1413 	struct mutex		block_mutex;	/* protects blocking */
1414 	int			block;		/* event blocking depth */
1415 	unsigned int		pending;	/* events already sent out */
1416 	unsigned int		clearing;	/* events being cleared */
1417 
1418 	long			poll_msecs;	/* interval, -1 for default */
1419 	struct delayed_work	dwork;
1420 };
1421 
1422 static const char *disk_events_strs[] = {
1423 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1424 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1425 };
1426 
1427 static char *disk_uevents[] = {
1428 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1429 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1430 };
1431 
1432 /* list of all disk_events */
1433 static DEFINE_MUTEX(disk_events_mutex);
1434 static LIST_HEAD(disk_events);
1435 
1436 /* disable in-kernel polling by default */
1437 static unsigned long disk_events_dfl_poll_msecs	= 0;
1438 
disk_events_poll_jiffies(struct gendisk * disk)1439 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1440 {
1441 	struct disk_events *ev = disk->ev;
1442 	long intv_msecs = 0;
1443 
1444 	/*
1445 	 * If device-specific poll interval is set, always use it.  If
1446 	 * the default is being used, poll iff there are events which
1447 	 * can't be monitored asynchronously.
1448 	 */
1449 	if (ev->poll_msecs >= 0)
1450 		intv_msecs = ev->poll_msecs;
1451 	else if (disk->events & ~disk->async_events)
1452 		intv_msecs = disk_events_dfl_poll_msecs;
1453 
1454 	return msecs_to_jiffies(intv_msecs);
1455 }
1456 
1457 /**
1458  * disk_block_events - block and flush disk event checking
1459  * @disk: disk to block events for
1460  *
1461  * On return from this function, it is guaranteed that event checking
1462  * isn't in progress and won't happen until unblocked by
1463  * disk_unblock_events().  Events blocking is counted and the actual
1464  * unblocking happens after the matching number of unblocks are done.
1465  *
1466  * Note that this intentionally does not block event checking from
1467  * disk_clear_events().
1468  *
1469  * CONTEXT:
1470  * Might sleep.
1471  */
disk_block_events(struct gendisk * disk)1472 void disk_block_events(struct gendisk *disk)
1473 {
1474 	struct disk_events *ev = disk->ev;
1475 	unsigned long flags;
1476 	bool cancel;
1477 
1478 	if (!ev)
1479 		return;
1480 
1481 	/*
1482 	 * Outer mutex ensures that the first blocker completes canceling
1483 	 * the event work before further blockers are allowed to finish.
1484 	 */
1485 	mutex_lock(&ev->block_mutex);
1486 
1487 	spin_lock_irqsave(&ev->lock, flags);
1488 	cancel = !ev->block++;
1489 	spin_unlock_irqrestore(&ev->lock, flags);
1490 
1491 	if (cancel)
1492 		cancel_delayed_work_sync(&disk->ev->dwork);
1493 
1494 	mutex_unlock(&ev->block_mutex);
1495 }
1496 
__disk_unblock_events(struct gendisk * disk,bool check_now)1497 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1498 {
1499 	struct disk_events *ev = disk->ev;
1500 	unsigned long intv;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&ev->lock, flags);
1504 
1505 	if (WARN_ON_ONCE(ev->block <= 0))
1506 		goto out_unlock;
1507 
1508 	if (--ev->block)
1509 		goto out_unlock;
1510 
1511 	/*
1512 	 * Not exactly a latency critical operation, set poll timer
1513 	 * slack to 25% and kick event check.
1514 	 */
1515 	intv = disk_events_poll_jiffies(disk);
1516 	set_timer_slack(&ev->dwork.timer, intv / 4);
1517 	if (check_now)
1518 		queue_delayed_work(system_freezable_power_efficient_wq,
1519 				&ev->dwork, 0);
1520 	else if (intv)
1521 		queue_delayed_work(system_freezable_power_efficient_wq,
1522 				&ev->dwork, intv);
1523 out_unlock:
1524 	spin_unlock_irqrestore(&ev->lock, flags);
1525 }
1526 
1527 /**
1528  * disk_unblock_events - unblock disk event checking
1529  * @disk: disk to unblock events for
1530  *
1531  * Undo disk_block_events().  When the block count reaches zero, it
1532  * starts events polling if configured.
1533  *
1534  * CONTEXT:
1535  * Don't care.  Safe to call from irq context.
1536  */
disk_unblock_events(struct gendisk * disk)1537 void disk_unblock_events(struct gendisk *disk)
1538 {
1539 	if (disk->ev)
1540 		__disk_unblock_events(disk, false);
1541 }
1542 
1543 /**
1544  * disk_flush_events - schedule immediate event checking and flushing
1545  * @disk: disk to check and flush events for
1546  * @mask: events to flush
1547  *
1548  * Schedule immediate event checking on @disk if not blocked.  Events in
1549  * @mask are scheduled to be cleared from the driver.  Note that this
1550  * doesn't clear the events from @disk->ev.
1551  *
1552  * CONTEXT:
1553  * If @mask is non-zero must be called with bdev->bd_mutex held.
1554  */
disk_flush_events(struct gendisk * disk,unsigned int mask)1555 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1556 {
1557 	struct disk_events *ev = disk->ev;
1558 
1559 	if (!ev)
1560 		return;
1561 
1562 	spin_lock_irq(&ev->lock);
1563 	ev->clearing |= mask;
1564 	if (!ev->block)
1565 		mod_delayed_work(system_freezable_power_efficient_wq,
1566 				&ev->dwork, 0);
1567 	spin_unlock_irq(&ev->lock);
1568 }
1569 
1570 /**
1571  * disk_clear_events - synchronously check, clear and return pending events
1572  * @disk: disk to fetch and clear events from
1573  * @mask: mask of events to be fetched and cleared
1574  *
1575  * Disk events are synchronously checked and pending events in @mask
1576  * are cleared and returned.  This ignores the block count.
1577  *
1578  * CONTEXT:
1579  * Might sleep.
1580  */
disk_clear_events(struct gendisk * disk,unsigned int mask)1581 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1582 {
1583 	const struct block_device_operations *bdops = disk->fops;
1584 	struct disk_events *ev = disk->ev;
1585 	unsigned int pending;
1586 	unsigned int clearing = mask;
1587 
1588 	if (!ev) {
1589 		/* for drivers still using the old ->media_changed method */
1590 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1591 		    bdops->media_changed && bdops->media_changed(disk))
1592 			return DISK_EVENT_MEDIA_CHANGE;
1593 		return 0;
1594 	}
1595 
1596 	disk_block_events(disk);
1597 
1598 	/*
1599 	 * store the union of mask and ev->clearing on the stack so that the
1600 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1601 	 * can still be modified even if events are blocked).
1602 	 */
1603 	spin_lock_irq(&ev->lock);
1604 	clearing |= ev->clearing;
1605 	ev->clearing = 0;
1606 	spin_unlock_irq(&ev->lock);
1607 
1608 	disk_check_events(ev, &clearing);
1609 	/*
1610 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1611 	 * middle of this function, so we want to run the workfn without delay.
1612 	 */
1613 	__disk_unblock_events(disk, ev->clearing ? true : false);
1614 
1615 	/* then, fetch and clear pending events */
1616 	spin_lock_irq(&ev->lock);
1617 	pending = ev->pending & mask;
1618 	ev->pending &= ~mask;
1619 	spin_unlock_irq(&ev->lock);
1620 	WARN_ON_ONCE(clearing & mask);
1621 
1622 	return pending;
1623 }
1624 
1625 /*
1626  * Separate this part out so that a different pointer for clearing_ptr can be
1627  * passed in for disk_clear_events.
1628  */
disk_events_workfn(struct work_struct * work)1629 static void disk_events_workfn(struct work_struct *work)
1630 {
1631 	struct delayed_work *dwork = to_delayed_work(work);
1632 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1633 
1634 	disk_check_events(ev, &ev->clearing);
1635 }
1636 
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1637 static void disk_check_events(struct disk_events *ev,
1638 			      unsigned int *clearing_ptr)
1639 {
1640 	struct gendisk *disk = ev->disk;
1641 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1642 	unsigned int clearing = *clearing_ptr;
1643 	unsigned int events;
1644 	unsigned long intv;
1645 	int nr_events = 0, i;
1646 
1647 	/* check events */
1648 	events = disk->fops->check_events(disk, clearing);
1649 
1650 	/* accumulate pending events and schedule next poll if necessary */
1651 	spin_lock_irq(&ev->lock);
1652 
1653 	events &= ~ev->pending;
1654 	ev->pending |= events;
1655 	*clearing_ptr &= ~clearing;
1656 
1657 	intv = disk_events_poll_jiffies(disk);
1658 	if (!ev->block && intv)
1659 		queue_delayed_work(system_freezable_power_efficient_wq,
1660 				&ev->dwork, intv);
1661 
1662 	spin_unlock_irq(&ev->lock);
1663 
1664 	/*
1665 	 * Tell userland about new events.  Only the events listed in
1666 	 * @disk->events are reported.  Unlisted events are processed the
1667 	 * same internally but never get reported to userland.
1668 	 */
1669 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1670 		if (events & disk->events & (1 << i))
1671 			envp[nr_events++] = disk_uevents[i];
1672 
1673 	if (nr_events)
1674 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1675 }
1676 
1677 /*
1678  * A disk events enabled device has the following sysfs nodes under
1679  * its /sys/block/X/ directory.
1680  *
1681  * events		: list of all supported events
1682  * events_async		: list of events which can be detected w/o polling
1683  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1684  */
__disk_events_show(unsigned int events,char * buf)1685 static ssize_t __disk_events_show(unsigned int events, char *buf)
1686 {
1687 	const char *delim = "";
1688 	ssize_t pos = 0;
1689 	int i;
1690 
1691 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1692 		if (events & (1 << i)) {
1693 			pos += sprintf(buf + pos, "%s%s",
1694 				       delim, disk_events_strs[i]);
1695 			delim = " ";
1696 		}
1697 	if (pos)
1698 		pos += sprintf(buf + pos, "\n");
1699 	return pos;
1700 }
1701 
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1702 static ssize_t disk_events_show(struct device *dev,
1703 				struct device_attribute *attr, char *buf)
1704 {
1705 	struct gendisk *disk = dev_to_disk(dev);
1706 
1707 	return __disk_events_show(disk->events, buf);
1708 }
1709 
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1710 static ssize_t disk_events_async_show(struct device *dev,
1711 				      struct device_attribute *attr, char *buf)
1712 {
1713 	struct gendisk *disk = dev_to_disk(dev);
1714 
1715 	return __disk_events_show(disk->async_events, buf);
1716 }
1717 
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1718 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1719 					   struct device_attribute *attr,
1720 					   char *buf)
1721 {
1722 	struct gendisk *disk = dev_to_disk(dev);
1723 
1724 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1725 }
1726 
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1727 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1728 					    struct device_attribute *attr,
1729 					    const char *buf, size_t count)
1730 {
1731 	struct gendisk *disk = dev_to_disk(dev);
1732 	long intv;
1733 
1734 	if (!count || !sscanf(buf, "%ld", &intv))
1735 		return -EINVAL;
1736 
1737 	if (intv < 0 && intv != -1)
1738 		return -EINVAL;
1739 
1740 	disk_block_events(disk);
1741 	disk->ev->poll_msecs = intv;
1742 	__disk_unblock_events(disk, true);
1743 
1744 	return count;
1745 }
1746 
1747 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1748 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1749 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1750 			 disk_events_poll_msecs_show,
1751 			 disk_events_poll_msecs_store);
1752 
1753 static const struct attribute *disk_events_attrs[] = {
1754 	&dev_attr_events.attr,
1755 	&dev_attr_events_async.attr,
1756 	&dev_attr_events_poll_msecs.attr,
1757 	NULL,
1758 };
1759 
1760 /*
1761  * The default polling interval can be specified by the kernel
1762  * parameter block.events_dfl_poll_msecs which defaults to 0
1763  * (disable).  This can also be modified runtime by writing to
1764  * /sys/module/block/events_dfl_poll_msecs.
1765  */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1766 static int disk_events_set_dfl_poll_msecs(const char *val,
1767 					  const struct kernel_param *kp)
1768 {
1769 	struct disk_events *ev;
1770 	int ret;
1771 
1772 	ret = param_set_ulong(val, kp);
1773 	if (ret < 0)
1774 		return ret;
1775 
1776 	mutex_lock(&disk_events_mutex);
1777 
1778 	list_for_each_entry(ev, &disk_events, node)
1779 		disk_flush_events(ev->disk, 0);
1780 
1781 	mutex_unlock(&disk_events_mutex);
1782 
1783 	return 0;
1784 }
1785 
1786 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1787 	.set	= disk_events_set_dfl_poll_msecs,
1788 	.get	= param_get_ulong,
1789 };
1790 
1791 #undef MODULE_PARAM_PREFIX
1792 #define MODULE_PARAM_PREFIX	"block."
1793 
1794 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1795 		&disk_events_dfl_poll_msecs, 0644);
1796 
1797 /*
1798  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1799  */
disk_alloc_events(struct gendisk * disk)1800 static void disk_alloc_events(struct gendisk *disk)
1801 {
1802 	struct disk_events *ev;
1803 
1804 	if (!disk->fops->check_events)
1805 		return;
1806 
1807 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1808 	if (!ev) {
1809 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1810 		return;
1811 	}
1812 
1813 	INIT_LIST_HEAD(&ev->node);
1814 	ev->disk = disk;
1815 	spin_lock_init(&ev->lock);
1816 	mutex_init(&ev->block_mutex);
1817 	ev->block = 1;
1818 	ev->poll_msecs = -1;
1819 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1820 
1821 	disk->ev = ev;
1822 }
1823 
disk_add_events(struct gendisk * disk)1824 static void disk_add_events(struct gendisk *disk)
1825 {
1826 	if (!disk->ev)
1827 		return;
1828 
1829 	/* FIXME: error handling */
1830 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1831 		pr_warn("%s: failed to create sysfs files for events\n",
1832 			disk->disk_name);
1833 
1834 	mutex_lock(&disk_events_mutex);
1835 	list_add_tail(&disk->ev->node, &disk_events);
1836 	mutex_unlock(&disk_events_mutex);
1837 
1838 	/*
1839 	 * Block count is initialized to 1 and the following initial
1840 	 * unblock kicks it into action.
1841 	 */
1842 	__disk_unblock_events(disk, true);
1843 }
1844 
disk_del_events(struct gendisk * disk)1845 static void disk_del_events(struct gendisk *disk)
1846 {
1847 	if (!disk->ev)
1848 		return;
1849 
1850 	disk_block_events(disk);
1851 
1852 	mutex_lock(&disk_events_mutex);
1853 	list_del_init(&disk->ev->node);
1854 	mutex_unlock(&disk_events_mutex);
1855 
1856 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1857 }
1858 
disk_release_events(struct gendisk * disk)1859 static void disk_release_events(struct gendisk *disk)
1860 {
1861 	/* the block count should be 1 from disk_del_events() */
1862 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1863 	kfree(disk->ev);
1864 }
1865