1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) sub-system.
23 *
24 * This sub-system is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
ubi_next_sqnum(struct ubi_device * ubi)60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69 }
70
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84 }
85
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
98 {
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
104
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122 }
123
124 /**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
137 {
138 struct ubi_ltree_entry *le, *le1, *le_free;
139
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
192 kfree(le_free);
193 return le;
194 }
195
196 /**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 struct ubi_ltree_entry *le;
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214 }
215
216 /**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 struct ubi_ltree_entry *le;
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
234 }
235 spin_unlock(&ubi->ltree_lock);
236 }
237
238 /**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 struct ubi_ltree_entry *le;
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256 }
257
258 /**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
286 }
287 spin_unlock(&ubi->ltree_lock);
288
289 return 1;
290 }
291
292 /**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 struct ubi_ltree_entry *le;
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
310 }
311 spin_unlock(&ubi->ltree_lock);
312 }
313
314 /**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
326 {
327 int err, pnum, vol_id = vol->vol_id;
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
343 down_read(&ubi->fm_sem);
344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 up_read(&ubi->fm_sem);
346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347
348 out_unlock:
349 leb_write_unlock(ubi, vol_id, lnum);
350 return err;
351 }
352
353 /**
354 * ubi_eba_read_leb - read data.
355 * @ubi: UBI device description object
356 * @vol: volume description object
357 * @lnum: logical eraseblock number
358 * @buf: buffer to store the read data
359 * @offset: offset from where to read
360 * @len: how many bytes to read
361 * @check: data CRC check flag
362 *
363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364 * bytes. The @check flag only makes sense for static volumes and forces
365 * eraseblock data CRC checking.
366 *
367 * In case of success this function returns zero. In case of a static volume,
368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369 * returned for any volume type if an ECC error was detected by the MTD device
370 * driver. Other negative error cored may be returned in case of other errors.
371 */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 void *buf, int offset, int len, int check)
374 {
375 int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 struct ubi_vid_hdr *vid_hdr;
377 uint32_t uninitialized_var(crc);
378
379 err = leb_read_lock(ubi, vol_id, lnum);
380 if (err)
381 return err;
382
383 pnum = vol->eba_tbl[lnum];
384 if (pnum < 0) {
385 /*
386 * The logical eraseblock is not mapped, fill the whole buffer
387 * with 0xFF bytes. The exception is static volumes for which
388 * it is an error to read unmapped logical eraseblocks.
389 */
390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 len, offset, vol_id, lnum);
392 leb_read_unlock(ubi, vol_id, lnum);
393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 memset(buf, 0xFF, len);
395 return 0;
396 }
397
398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 len, offset, vol_id, lnum, pnum);
400
401 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 check = 0;
403
404 retry:
405 if (check) {
406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 if (!vid_hdr) {
408 err = -ENOMEM;
409 goto out_unlock;
410 }
411
412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 if (err && err != UBI_IO_BITFLIPS) {
414 if (err > 0) {
415 /*
416 * The header is either absent or corrupted.
417 * The former case means there is a bug -
418 * switch to read-only mode just in case.
419 * The latter case means a real corruption - we
420 * may try to recover data. FIXME: but this is
421 * not implemented.
422 */
423 if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 err == UBI_IO_BAD_HDR) {
425 ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
426 pnum, vol_id, lnum);
427 err = -EBADMSG;
428 } else {
429 /*
430 * Ending up here in the non-Fastmap case
431 * is a clear bug as the VID header had to
432 * be present at scan time to have it referenced.
433 * With fastmap the story is more complicated.
434 * Fastmap has the mapping info without the need
435 * of a full scan. So the LEB could have been
436 * unmapped, Fastmap cannot know this and keeps
437 * the LEB referenced.
438 * This is valid and works as the layer above UBI
439 * has to do bookkeeping about used/referenced
440 * LEBs in any case.
441 */
442 if (ubi->fast_attach) {
443 err = -EBADMSG;
444 } else {
445 err = -EINVAL;
446 ubi_ro_mode(ubi);
447 }
448 }
449 }
450 goto out_free;
451 } else if (err == UBI_IO_BITFLIPS)
452 scrub = 1;
453
454 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
455 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
456
457 crc = be32_to_cpu(vid_hdr->data_crc);
458 ubi_free_vid_hdr(ubi, vid_hdr);
459 }
460
461 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
462 if (err) {
463 if (err == UBI_IO_BITFLIPS)
464 scrub = 1;
465 else if (mtd_is_eccerr(err)) {
466 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
467 goto out_unlock;
468 scrub = 1;
469 if (!check) {
470 ubi_msg("force data checking");
471 check = 1;
472 goto retry;
473 }
474 } else
475 goto out_unlock;
476 }
477
478 if (check) {
479 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
480 if (crc1 != crc) {
481 ubi_warn("CRC error: calculated %#08x, must be %#08x",
482 crc1, crc);
483 err = -EBADMSG;
484 goto out_unlock;
485 }
486 }
487
488 if (scrub)
489 err = ubi_wl_scrub_peb(ubi, pnum);
490
491 leb_read_unlock(ubi, vol_id, lnum);
492 return err;
493
494 out_free:
495 ubi_free_vid_hdr(ubi, vid_hdr);
496 out_unlock:
497 leb_read_unlock(ubi, vol_id, lnum);
498 return err;
499 }
500
501 /**
502 * recover_peb - recover from write failure.
503 * @ubi: UBI device description object
504 * @pnum: the physical eraseblock to recover
505 * @vol_id: volume ID
506 * @lnum: logical eraseblock number
507 * @buf: data which was not written because of the write failure
508 * @offset: offset of the failed write
509 * @len: how many bytes should have been written
510 *
511 * This function is called in case of a write failure and moves all good data
512 * from the potentially bad physical eraseblock to a good physical eraseblock.
513 * This function also writes the data which was not written due to the failure.
514 * Returns new physical eraseblock number in case of success, and a negative
515 * error code in case of failure.
516 */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)517 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
518 const void *buf, int offset, int len)
519 {
520 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
521 struct ubi_volume *vol = ubi->volumes[idx];
522 struct ubi_vid_hdr *vid_hdr;
523
524 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
525 if (!vid_hdr)
526 return -ENOMEM;
527
528 retry:
529 new_pnum = ubi_wl_get_peb(ubi);
530 if (new_pnum < 0) {
531 ubi_free_vid_hdr(ubi, vid_hdr);
532 return new_pnum;
533 }
534
535 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
536
537 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
538 if (err && err != UBI_IO_BITFLIPS) {
539 if (err > 0)
540 err = -EIO;
541 goto out_put;
542 }
543
544 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
545 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
546 if (err)
547 goto write_error;
548
549 data_size = offset + len;
550 mutex_lock(&ubi->buf_mutex);
551 memset(ubi->peb_buf + offset, 0xFF, len);
552
553 /* Read everything before the area where the write failure happened */
554 if (offset > 0) {
555 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
556 if (err && err != UBI_IO_BITFLIPS)
557 goto out_unlock;
558 }
559
560 memcpy(ubi->peb_buf + offset, buf, len);
561
562 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
563 if (err) {
564 mutex_unlock(&ubi->buf_mutex);
565 goto write_error;
566 }
567
568 mutex_unlock(&ubi->buf_mutex);
569 ubi_free_vid_hdr(ubi, vid_hdr);
570
571 down_read(&ubi->fm_sem);
572 vol->eba_tbl[lnum] = new_pnum;
573 up_read(&ubi->fm_sem);
574 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
575
576 ubi_msg("data was successfully recovered");
577 return 0;
578
579 out_unlock:
580 mutex_unlock(&ubi->buf_mutex);
581 out_put:
582 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
583 ubi_free_vid_hdr(ubi, vid_hdr);
584 return err;
585
586 write_error:
587 /*
588 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
589 * get another one.
590 */
591 ubi_warn("failed to write to PEB %d", new_pnum);
592 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
593 if (++tries > UBI_IO_RETRIES) {
594 ubi_free_vid_hdr(ubi, vid_hdr);
595 return err;
596 }
597 ubi_msg("try again");
598 goto retry;
599 }
600
601 /**
602 * ubi_eba_write_leb - write data to dynamic volume.
603 * @ubi: UBI device description object
604 * @vol: volume description object
605 * @lnum: logical eraseblock number
606 * @buf: the data to write
607 * @offset: offset within the logical eraseblock where to write
608 * @len: how many bytes to write
609 *
610 * This function writes data to logical eraseblock @lnum of a dynamic volume
611 * @vol. Returns zero in case of success and a negative error code in case
612 * of failure. In case of error, it is possible that something was still
613 * written to the flash media, but may be some garbage.
614 */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)615 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
616 const void *buf, int offset, int len)
617 {
618 int err, pnum, tries = 0, vol_id = vol->vol_id;
619 struct ubi_vid_hdr *vid_hdr;
620
621 if (ubi->ro_mode)
622 return -EROFS;
623
624 err = leb_write_lock(ubi, vol_id, lnum);
625 if (err)
626 return err;
627
628 pnum = vol->eba_tbl[lnum];
629 if (pnum >= 0) {
630 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
631 len, offset, vol_id, lnum, pnum);
632
633 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
634 if (err) {
635 ubi_warn("failed to write data to PEB %d", pnum);
636 if (err == -EIO && ubi->bad_allowed)
637 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
638 offset, len);
639 if (err)
640 ubi_ro_mode(ubi);
641 }
642 leb_write_unlock(ubi, vol_id, lnum);
643 return err;
644 }
645
646 /*
647 * The logical eraseblock is not mapped. We have to get a free physical
648 * eraseblock and write the volume identifier header there first.
649 */
650 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
651 if (!vid_hdr) {
652 leb_write_unlock(ubi, vol_id, lnum);
653 return -ENOMEM;
654 }
655
656 vid_hdr->vol_type = UBI_VID_DYNAMIC;
657 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
658 vid_hdr->vol_id = cpu_to_be32(vol_id);
659 vid_hdr->lnum = cpu_to_be32(lnum);
660 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
661 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
662
663 retry:
664 pnum = ubi_wl_get_peb(ubi);
665 if (pnum < 0) {
666 ubi_free_vid_hdr(ubi, vid_hdr);
667 leb_write_unlock(ubi, vol_id, lnum);
668 return pnum;
669 }
670
671 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
672 len, offset, vol_id, lnum, pnum);
673
674 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
675 if (err) {
676 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
677 vol_id, lnum, pnum);
678 goto write_error;
679 }
680
681 if (len) {
682 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
683 if (err) {
684 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
685 len, offset, vol_id, lnum, pnum);
686 goto write_error;
687 }
688 }
689
690 down_read(&ubi->fm_sem);
691 vol->eba_tbl[lnum] = pnum;
692 up_read(&ubi->fm_sem);
693
694 leb_write_unlock(ubi, vol_id, lnum);
695 ubi_free_vid_hdr(ubi, vid_hdr);
696 return 0;
697
698 write_error:
699 if (err != -EIO || !ubi->bad_allowed) {
700 ubi_ro_mode(ubi);
701 leb_write_unlock(ubi, vol_id, lnum);
702 ubi_free_vid_hdr(ubi, vid_hdr);
703 return err;
704 }
705
706 /*
707 * Fortunately, this is the first write operation to this physical
708 * eraseblock, so just put it and request a new one. We assume that if
709 * this physical eraseblock went bad, the erase code will handle that.
710 */
711 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
712 if (err || ++tries > UBI_IO_RETRIES) {
713 ubi_ro_mode(ubi);
714 leb_write_unlock(ubi, vol_id, lnum);
715 ubi_free_vid_hdr(ubi, vid_hdr);
716 return err;
717 }
718
719 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
720 ubi_msg("try another PEB");
721 goto retry;
722 }
723
724 /**
725 * ubi_eba_write_leb_st - write data to static volume.
726 * @ubi: UBI device description object
727 * @vol: volume description object
728 * @lnum: logical eraseblock number
729 * @buf: data to write
730 * @len: how many bytes to write
731 * @used_ebs: how many logical eraseblocks will this volume contain
732 *
733 * This function writes data to logical eraseblock @lnum of static volume
734 * @vol. The @used_ebs argument should contain total number of logical
735 * eraseblock in this static volume.
736 *
737 * When writing to the last logical eraseblock, the @len argument doesn't have
738 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
739 * to the real data size, although the @buf buffer has to contain the
740 * alignment. In all other cases, @len has to be aligned.
741 *
742 * It is prohibited to write more than once to logical eraseblocks of static
743 * volumes. This function returns zero in case of success and a negative error
744 * code in case of failure.
745 */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)746 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
747 int lnum, const void *buf, int len, int used_ebs)
748 {
749 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
750 struct ubi_vid_hdr *vid_hdr;
751 uint32_t crc;
752
753 if (ubi->ro_mode)
754 return -EROFS;
755
756 if (lnum == used_ebs - 1)
757 /* If this is the last LEB @len may be unaligned */
758 len = ALIGN(data_size, ubi->min_io_size);
759 else
760 ubi_assert(!(len & (ubi->min_io_size - 1)));
761
762 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
763 if (!vid_hdr)
764 return -ENOMEM;
765
766 err = leb_write_lock(ubi, vol_id, lnum);
767 if (err) {
768 ubi_free_vid_hdr(ubi, vid_hdr);
769 return err;
770 }
771
772 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
773 vid_hdr->vol_id = cpu_to_be32(vol_id);
774 vid_hdr->lnum = cpu_to_be32(lnum);
775 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
776 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
777
778 crc = crc32(UBI_CRC32_INIT, buf, data_size);
779 vid_hdr->vol_type = UBI_VID_STATIC;
780 vid_hdr->data_size = cpu_to_be32(data_size);
781 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
782 vid_hdr->data_crc = cpu_to_be32(crc);
783
784 retry:
785 pnum = ubi_wl_get_peb(ubi);
786 if (pnum < 0) {
787 ubi_free_vid_hdr(ubi, vid_hdr);
788 leb_write_unlock(ubi, vol_id, lnum);
789 return pnum;
790 }
791
792 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
793 len, vol_id, lnum, pnum, used_ebs);
794
795 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
796 if (err) {
797 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
798 vol_id, lnum, pnum);
799 goto write_error;
800 }
801
802 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
803 if (err) {
804 ubi_warn("failed to write %d bytes of data to PEB %d",
805 len, pnum);
806 goto write_error;
807 }
808
809 ubi_assert(vol->eba_tbl[lnum] < 0);
810 down_read(&ubi->fm_sem);
811 vol->eba_tbl[lnum] = pnum;
812 up_read(&ubi->fm_sem);
813
814 leb_write_unlock(ubi, vol_id, lnum);
815 ubi_free_vid_hdr(ubi, vid_hdr);
816 return 0;
817
818 write_error:
819 if (err != -EIO || !ubi->bad_allowed) {
820 /*
821 * This flash device does not admit of bad eraseblocks or
822 * something nasty and unexpected happened. Switch to read-only
823 * mode just in case.
824 */
825 ubi_ro_mode(ubi);
826 leb_write_unlock(ubi, vol_id, lnum);
827 ubi_free_vid_hdr(ubi, vid_hdr);
828 return err;
829 }
830
831 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
832 if (err || ++tries > UBI_IO_RETRIES) {
833 ubi_ro_mode(ubi);
834 leb_write_unlock(ubi, vol_id, lnum);
835 ubi_free_vid_hdr(ubi, vid_hdr);
836 return err;
837 }
838
839 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
840 ubi_msg("try another PEB");
841 goto retry;
842 }
843
844 /*
845 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
846 * @ubi: UBI device description object
847 * @vol: volume description object
848 * @lnum: logical eraseblock number
849 * @buf: data to write
850 * @len: how many bytes to write
851 *
852 * This function changes the contents of a logical eraseblock atomically. @buf
853 * has to contain new logical eraseblock data, and @len - the length of the
854 * data, which has to be aligned. This function guarantees that in case of an
855 * unclean reboot the old contents is preserved. Returns zero in case of
856 * success and a negative error code in case of failure.
857 *
858 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
859 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
860 */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)861 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
862 int lnum, const void *buf, int len)
863 {
864 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
865 struct ubi_vid_hdr *vid_hdr;
866 uint32_t crc;
867
868 if (ubi->ro_mode)
869 return -EROFS;
870
871 if (len == 0) {
872 /*
873 * Special case when data length is zero. In this case the LEB
874 * has to be unmapped and mapped somewhere else.
875 */
876 err = ubi_eba_unmap_leb(ubi, vol, lnum);
877 if (err)
878 return err;
879 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
880 }
881
882 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
883 if (!vid_hdr)
884 return -ENOMEM;
885
886 mutex_lock(&ubi->alc_mutex);
887 err = leb_write_lock(ubi, vol_id, lnum);
888 if (err)
889 goto out_mutex;
890
891 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
892 vid_hdr->vol_id = cpu_to_be32(vol_id);
893 vid_hdr->lnum = cpu_to_be32(lnum);
894 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
895 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
896
897 crc = crc32(UBI_CRC32_INIT, buf, len);
898 vid_hdr->vol_type = UBI_VID_DYNAMIC;
899 vid_hdr->data_size = cpu_to_be32(len);
900 vid_hdr->copy_flag = 1;
901 vid_hdr->data_crc = cpu_to_be32(crc);
902
903 retry:
904 pnum = ubi_wl_get_peb(ubi);
905 if (pnum < 0) {
906 err = pnum;
907 goto out_leb_unlock;
908 }
909
910 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
911 vol_id, lnum, vol->eba_tbl[lnum], pnum);
912
913 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
914 if (err) {
915 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
916 vol_id, lnum, pnum);
917 goto write_error;
918 }
919
920 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
921 if (err) {
922 ubi_warn("failed to write %d bytes of data to PEB %d",
923 len, pnum);
924 goto write_error;
925 }
926
927 down_read(&ubi->fm_sem);
928 old_pnum = vol->eba_tbl[lnum];
929 vol->eba_tbl[lnum] = pnum;
930 up_read(&ubi->fm_sem);
931
932 if (old_pnum >= 0) {
933 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
934 if (err)
935 goto out_leb_unlock;
936 }
937
938 out_leb_unlock:
939 leb_write_unlock(ubi, vol_id, lnum);
940 out_mutex:
941 mutex_unlock(&ubi->alc_mutex);
942 ubi_free_vid_hdr(ubi, vid_hdr);
943 return err;
944
945 write_error:
946 if (err != -EIO || !ubi->bad_allowed) {
947 /*
948 * This flash device does not admit of bad eraseblocks or
949 * something nasty and unexpected happened. Switch to read-only
950 * mode just in case.
951 */
952 ubi_ro_mode(ubi);
953 goto out_leb_unlock;
954 }
955
956 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
957 if (err || ++tries > UBI_IO_RETRIES) {
958 ubi_ro_mode(ubi);
959 goto out_leb_unlock;
960 }
961
962 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
963 ubi_msg("try another PEB");
964 goto retry;
965 }
966
967 /**
968 * is_error_sane - check whether a read error is sane.
969 * @err: code of the error happened during reading
970 *
971 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
972 * cannot read data from the target PEB (an error @err happened). If the error
973 * code is sane, then we treat this error as non-fatal. Otherwise the error is
974 * fatal and UBI will be switched to R/O mode later.
975 *
976 * The idea is that we try not to switch to R/O mode if the read error is
977 * something which suggests there was a real read problem. E.g., %-EIO. Or a
978 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
979 * mode, simply because we do not know what happened at the MTD level, and we
980 * cannot handle this. E.g., the underlying driver may have become crazy, and
981 * it is safer to switch to R/O mode to preserve the data.
982 *
983 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
984 * which we have just written.
985 */
is_error_sane(int err)986 static int is_error_sane(int err)
987 {
988 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
989 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
990 return 0;
991 return 1;
992 }
993
994 /**
995 * ubi_eba_copy_leb - copy logical eraseblock.
996 * @ubi: UBI device description object
997 * @from: physical eraseblock number from where to copy
998 * @to: physical eraseblock number where to copy
999 * @vid_hdr: VID header of the @from physical eraseblock
1000 *
1001 * This function copies logical eraseblock from physical eraseblock @from to
1002 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1003 * function. Returns:
1004 * o %0 in case of success;
1005 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1006 * o a negative error code in case of failure.
1007 */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_hdr * vid_hdr)1008 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1009 struct ubi_vid_hdr *vid_hdr)
1010 {
1011 int err, vol_id, lnum, data_size, aldata_size, idx;
1012 struct ubi_volume *vol;
1013 uint32_t crc;
1014
1015 vol_id = be32_to_cpu(vid_hdr->vol_id);
1016 lnum = be32_to_cpu(vid_hdr->lnum);
1017
1018 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1019
1020 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1021 data_size = be32_to_cpu(vid_hdr->data_size);
1022 aldata_size = ALIGN(data_size, ubi->min_io_size);
1023 } else
1024 data_size = aldata_size =
1025 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1026
1027 idx = vol_id2idx(ubi, vol_id);
1028 spin_lock(&ubi->volumes_lock);
1029 /*
1030 * Note, we may race with volume deletion, which means that the volume
1031 * this logical eraseblock belongs to might be being deleted. Since the
1032 * volume deletion un-maps all the volume's logical eraseblocks, it will
1033 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1034 */
1035 vol = ubi->volumes[idx];
1036 spin_unlock(&ubi->volumes_lock);
1037 if (!vol) {
1038 /* No need to do further work, cancel */
1039 dbg_wl("volume %d is being removed, cancel", vol_id);
1040 return MOVE_CANCEL_RACE;
1041 }
1042
1043 /*
1044 * We do not want anybody to write to this logical eraseblock while we
1045 * are moving it, so lock it.
1046 *
1047 * Note, we are using non-waiting locking here, because we cannot sleep
1048 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1049 * unmapping the LEB which is mapped to the PEB we are going to move
1050 * (@from). This task locks the LEB and goes sleep in the
1051 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1052 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1053 * LEB is already locked, we just do not move it and return
1054 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1055 * we do not know the reasons of the contention - it may be just a
1056 * normal I/O on this LEB, so we want to re-try.
1057 */
1058 err = leb_write_trylock(ubi, vol_id, lnum);
1059 if (err) {
1060 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1061 return MOVE_RETRY;
1062 }
1063
1064 /*
1065 * The LEB might have been put meanwhile, and the task which put it is
1066 * probably waiting on @ubi->move_mutex. No need to continue the work,
1067 * cancel it.
1068 */
1069 if (vol->eba_tbl[lnum] != from) {
1070 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1071 vol_id, lnum, from, vol->eba_tbl[lnum]);
1072 err = MOVE_CANCEL_RACE;
1073 goto out_unlock_leb;
1074 }
1075
1076 /*
1077 * OK, now the LEB is locked and we can safely start moving it. Since
1078 * this function utilizes the @ubi->peb_buf buffer which is shared
1079 * with some other functions - we lock the buffer by taking the
1080 * @ubi->buf_mutex.
1081 */
1082 mutex_lock(&ubi->buf_mutex);
1083 dbg_wl("read %d bytes of data", aldata_size);
1084 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1085 if (err && err != UBI_IO_BITFLIPS) {
1086 ubi_warn("error %d while reading data from PEB %d",
1087 err, from);
1088 err = MOVE_SOURCE_RD_ERR;
1089 goto out_unlock_buf;
1090 }
1091
1092 /*
1093 * Now we have got to calculate how much data we have to copy. In
1094 * case of a static volume it is fairly easy - the VID header contains
1095 * the data size. In case of a dynamic volume it is more difficult - we
1096 * have to read the contents, cut 0xFF bytes from the end and copy only
1097 * the first part. We must do this to avoid writing 0xFF bytes as it
1098 * may have some side-effects. And not only this. It is important not
1099 * to include those 0xFFs to CRC because later the they may be filled
1100 * by data.
1101 */
1102 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1103 aldata_size = data_size =
1104 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1105
1106 cond_resched();
1107 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1108 cond_resched();
1109
1110 /*
1111 * It may turn out to be that the whole @from physical eraseblock
1112 * contains only 0xFF bytes. Then we have to only write the VID header
1113 * and do not write any data. This also means we should not set
1114 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1115 */
1116 if (data_size > 0) {
1117 vid_hdr->copy_flag = 1;
1118 vid_hdr->data_size = cpu_to_be32(data_size);
1119 vid_hdr->data_crc = cpu_to_be32(crc);
1120 }
1121 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1122
1123 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1124 if (err) {
1125 if (err == -EIO)
1126 err = MOVE_TARGET_WR_ERR;
1127 goto out_unlock_buf;
1128 }
1129
1130 cond_resched();
1131
1132 /* Read the VID header back and check if it was written correctly */
1133 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1134 if (err) {
1135 if (err != UBI_IO_BITFLIPS) {
1136 ubi_warn("error %d while reading VID header back from PEB %d",
1137 err, to);
1138 if (is_error_sane(err))
1139 err = MOVE_TARGET_RD_ERR;
1140 } else
1141 err = MOVE_TARGET_BITFLIPS;
1142 goto out_unlock_buf;
1143 }
1144
1145 if (data_size > 0) {
1146 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1147 if (err) {
1148 if (err == -EIO)
1149 err = MOVE_TARGET_WR_ERR;
1150 goto out_unlock_buf;
1151 }
1152
1153 cond_resched();
1154
1155 /*
1156 * We've written the data and are going to read it back to make
1157 * sure it was written correctly.
1158 */
1159 memset(ubi->peb_buf, 0xFF, aldata_size);
1160 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1161 if (err) {
1162 if (err != UBI_IO_BITFLIPS) {
1163 ubi_warn("error %d while reading data back from PEB %d",
1164 err, to);
1165 if (is_error_sane(err))
1166 err = MOVE_TARGET_RD_ERR;
1167 } else
1168 err = MOVE_TARGET_BITFLIPS;
1169 goto out_unlock_buf;
1170 }
1171
1172 cond_resched();
1173
1174 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1175 ubi_warn("read data back from PEB %d and it is different",
1176 to);
1177 err = -EINVAL;
1178 goto out_unlock_buf;
1179 }
1180 }
1181
1182 ubi_assert(vol->eba_tbl[lnum] == from);
1183 down_read(&ubi->fm_sem);
1184 vol->eba_tbl[lnum] = to;
1185 up_read(&ubi->fm_sem);
1186
1187 out_unlock_buf:
1188 mutex_unlock(&ubi->buf_mutex);
1189 out_unlock_leb:
1190 leb_write_unlock(ubi, vol_id, lnum);
1191 return err;
1192 }
1193
1194 /**
1195 * print_rsvd_warning - warn about not having enough reserved PEBs.
1196 * @ubi: UBI device description object
1197 *
1198 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1199 * cannot reserve enough PEBs for bad block handling. This function makes a
1200 * decision whether we have to print a warning or not. The algorithm is as
1201 * follows:
1202 * o if this is a new UBI image, then just print the warning
1203 * o if this is an UBI image which has already been used for some time, print
1204 * a warning only if we can reserve less than 10% of the expected amount of
1205 * the reserved PEB.
1206 *
1207 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1208 * of PEBs becomes smaller, which is normal and we do not want to scare users
1209 * with a warning every time they attach the MTD device. This was an issue
1210 * reported by real users.
1211 */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1212 static void print_rsvd_warning(struct ubi_device *ubi,
1213 struct ubi_attach_info *ai)
1214 {
1215 /*
1216 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1217 * large number to distinguish between newly flashed and used images.
1218 */
1219 if (ai->max_sqnum > (1 << 18)) {
1220 int min = ubi->beb_rsvd_level / 10;
1221
1222 if (!min)
1223 min = 1;
1224 if (ubi->beb_rsvd_pebs > min)
1225 return;
1226 }
1227
1228 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1229 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1230 if (ubi->corr_peb_count)
1231 ubi_warn("%d PEBs are corrupted and not used",
1232 ubi->corr_peb_count);
1233 }
1234
1235 /**
1236 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1237 * @ubi: UBI device description object
1238 * @ai_fastmap: UBI attach info object created by fastmap
1239 * @ai_scan: UBI attach info object created by scanning
1240 *
1241 * Returns < 0 in case of an internal error, 0 otherwise.
1242 * If a bad EBA table entry was found it will be printed out and
1243 * ubi_assert() triggers.
1244 */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1245 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1246 struct ubi_attach_info *ai_scan)
1247 {
1248 int i, j, num_volumes, ret = 0;
1249 int **scan_eba, **fm_eba;
1250 struct ubi_ainf_volume *av;
1251 struct ubi_volume *vol;
1252 struct ubi_ainf_peb *aeb;
1253 struct rb_node *rb;
1254
1255 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1256
1257 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1258 if (!scan_eba)
1259 return -ENOMEM;
1260
1261 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1262 if (!fm_eba) {
1263 kfree(scan_eba);
1264 return -ENOMEM;
1265 }
1266
1267 for (i = 0; i < num_volumes; i++) {
1268 vol = ubi->volumes[i];
1269 if (!vol)
1270 continue;
1271
1272 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1273 GFP_KERNEL);
1274 if (!scan_eba[i]) {
1275 ret = -ENOMEM;
1276 goto out_free;
1277 }
1278
1279 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1280 GFP_KERNEL);
1281 if (!fm_eba[i]) {
1282 ret = -ENOMEM;
1283 goto out_free;
1284 }
1285
1286 for (j = 0; j < vol->reserved_pebs; j++)
1287 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1288
1289 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1290 if (!av)
1291 continue;
1292
1293 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1294 scan_eba[i][aeb->lnum] = aeb->pnum;
1295
1296 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1297 if (!av)
1298 continue;
1299
1300 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1301 fm_eba[i][aeb->lnum] = aeb->pnum;
1302
1303 for (j = 0; j < vol->reserved_pebs; j++) {
1304 if (scan_eba[i][j] != fm_eba[i][j]) {
1305 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1306 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1307 continue;
1308
1309 ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1310 vol->vol_id, i, fm_eba[i][j],
1311 scan_eba[i][j]);
1312 ubi_assert(0);
1313 }
1314 }
1315 }
1316
1317 out_free:
1318 for (i = 0; i < num_volumes; i++) {
1319 if (!ubi->volumes[i])
1320 continue;
1321
1322 kfree(scan_eba[i]);
1323 kfree(fm_eba[i]);
1324 }
1325
1326 kfree(scan_eba);
1327 kfree(fm_eba);
1328 return ret;
1329 }
1330
1331 /**
1332 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1333 * @ubi: UBI device description object
1334 * @ai: attaching information
1335 *
1336 * This function returns zero in case of success and a negative error code in
1337 * case of failure.
1338 */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1339 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1340 {
1341 int i, j, err, num_volumes;
1342 struct ubi_ainf_volume *av;
1343 struct ubi_volume *vol;
1344 struct ubi_ainf_peb *aeb;
1345 struct rb_node *rb;
1346
1347 dbg_eba("initialize EBA sub-system");
1348
1349 spin_lock_init(&ubi->ltree_lock);
1350 mutex_init(&ubi->alc_mutex);
1351 ubi->ltree = RB_ROOT;
1352
1353 ubi->global_sqnum = ai->max_sqnum + 1;
1354 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1355
1356 for (i = 0; i < num_volumes; i++) {
1357 vol = ubi->volumes[i];
1358 if (!vol)
1359 continue;
1360
1361 cond_resched();
1362
1363 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1364 GFP_KERNEL);
1365 if (!vol->eba_tbl) {
1366 err = -ENOMEM;
1367 goto out_free;
1368 }
1369
1370 for (j = 0; j < vol->reserved_pebs; j++)
1371 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1372
1373 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1374 if (!av)
1375 continue;
1376
1377 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1378 if (aeb->lnum >= vol->reserved_pebs)
1379 /*
1380 * This may happen in case of an unclean reboot
1381 * during re-size.
1382 */
1383 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1384 else
1385 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1386 }
1387 }
1388
1389 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1390 ubi_err("no enough physical eraseblocks (%d, need %d)",
1391 ubi->avail_pebs, EBA_RESERVED_PEBS);
1392 if (ubi->corr_peb_count)
1393 ubi_err("%d PEBs are corrupted and not used",
1394 ubi->corr_peb_count);
1395 err = -ENOSPC;
1396 goto out_free;
1397 }
1398 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1399 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1400
1401 if (ubi->bad_allowed) {
1402 ubi_calculate_reserved(ubi);
1403
1404 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1405 /* No enough free physical eraseblocks */
1406 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1407 print_rsvd_warning(ubi, ai);
1408 } else
1409 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1410
1411 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1412 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1413 }
1414
1415 dbg_eba("EBA sub-system is initialized");
1416 return 0;
1417
1418 out_free:
1419 for (i = 0; i < num_volumes; i++) {
1420 if (!ubi->volumes[i])
1421 continue;
1422 kfree(ubi->volumes[i]->eba_tbl);
1423 ubi->volumes[i]->eba_tbl = NULL;
1424 }
1425 return err;
1426 }
1427