• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
32 
33 /**
34  * typedef dma_cookie_t - an opaque DMA cookie
35  *
36  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37  */
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE	1
40 
dma_submit_error(dma_cookie_t cookie)41 static inline int dma_submit_error(dma_cookie_t cookie)
42 {
43 	return cookie < 0 ? cookie : 0;
44 }
45 
46 /**
47  * enum dma_status - DMA transaction status
48  * @DMA_COMPLETE: transaction completed
49  * @DMA_IN_PROGRESS: transaction not yet processed
50  * @DMA_PAUSED: transaction is paused
51  * @DMA_ERROR: transaction failed
52  */
53 enum dma_status {
54 	DMA_COMPLETE,
55 	DMA_IN_PROGRESS,
56 	DMA_PAUSED,
57 	DMA_ERROR,
58 };
59 
60 /**
61  * enum dma_transaction_type - DMA transaction types/indexes
62  *
63  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
64  * automatically set as dma devices are registered.
65  */
66 enum dma_transaction_type {
67 	DMA_MEMCPY,
68 	DMA_XOR,
69 	DMA_PQ,
70 	DMA_XOR_VAL,
71 	DMA_PQ_VAL,
72 	DMA_INTERRUPT,
73 	DMA_SG,
74 	DMA_PRIVATE,
75 	DMA_ASYNC_TX,
76 	DMA_SLAVE,
77 	DMA_CYCLIC,
78 	DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80 	DMA_TX_TYPE_END,
81 };
82 
83 /**
84  * enum dma_transfer_direction - dma transfer mode and direction indicator
85  * @DMA_MEM_TO_MEM: Async/Memcpy mode
86  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89  */
90 enum dma_transfer_direction {
91 	DMA_MEM_TO_MEM,
92 	DMA_MEM_TO_DEV,
93 	DMA_DEV_TO_MEM,
94 	DMA_DEV_TO_DEV,
95 	DMA_TRANS_NONE,
96 };
97 
98 /**
99  * Interleaved Transfer Request
100  * ----------------------------
101  * A chunk is collection of contiguous bytes to be transfered.
102  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103  * ICGs may or maynot change between chunks.
104  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105  *  that when repeated an integral number of times, specifies the transfer.
106  * A transfer template is specification of a Frame, the number of times
107  *  it is to be repeated and other per-transfer attributes.
108  *
109  * Practically, a client driver would have ready a template for each
110  *  type of transfer it is going to need during its lifetime and
111  *  set only 'src_start' and 'dst_start' before submitting the requests.
112  *
113  *
114  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
115  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116  *
117  *    ==  Chunk size
118  *    ... ICG
119  */
120 
121 /**
122  * struct data_chunk - Element of scatter-gather list that makes a frame.
123  * @size: Number of bytes to read from source.
124  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
125  * @icg: Number of bytes to jump after last src/dst address of this
126  *	 chunk and before first src/dst address for next chunk.
127  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129  */
130 struct data_chunk {
131 	size_t size;
132 	size_t icg;
133 };
134 
135 /**
136  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137  *	 and attributes.
138  * @src_start: Bus address of source for the first chunk.
139  * @dst_start: Bus address of destination for the first chunk.
140  * @dir: Specifies the type of Source and Destination.
141  * @src_inc: If the source address increments after reading from it.
142  * @dst_inc: If the destination address increments after writing to it.
143  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144  *		Otherwise, source is read contiguously (icg ignored).
145  *		Ignored if src_inc is false.
146  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147  *		Otherwise, destination is filled contiguously (icg ignored).
148  *		Ignored if dst_inc is false.
149  * @numf: Number of frames in this template.
150  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151  * @sgl: Array of {chunk,icg} pairs that make up a frame.
152  */
153 struct dma_interleaved_template {
154 	dma_addr_t src_start;
155 	dma_addr_t dst_start;
156 	enum dma_transfer_direction dir;
157 	bool src_inc;
158 	bool dst_inc;
159 	bool src_sgl;
160 	bool dst_sgl;
161 	size_t numf;
162 	size_t frame_size;
163 	struct data_chunk sgl[0];
164 };
165 
166 /**
167  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168  *  control completion, and communicate status.
169  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170  *  this transaction
171  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172  *  acknowledges receipt, i.e. has has a chance to establish any dependency
173  *  chains
174  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177  *  sources that were the result of a previous operation, in the case of a PQ
178  *  operation it continues the calculation with new sources
179  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180  *  on the result of this operation
181  */
182 enum dma_ctrl_flags {
183 	DMA_PREP_INTERRUPT = (1 << 0),
184 	DMA_CTRL_ACK = (1 << 1),
185 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 	DMA_PREP_CONTINUE = (1 << 4),
188 	DMA_PREP_FENCE = (1 << 5),
189 };
190 
191 /**
192  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
193  * on a running channel.
194  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
195  * @DMA_PAUSE: pause ongoing transfers
196  * @DMA_RESUME: resume paused transfer
197  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
198  * that need to runtime reconfigure the slave channels (as opposed to passing
199  * configuration data in statically from the platform). An additional
200  * argument of struct dma_slave_config must be passed in with this
201  * command.
202  */
203 enum dma_ctrl_cmd {
204 	DMA_TERMINATE_ALL,
205 	DMA_PAUSE,
206 	DMA_RESUME,
207 	DMA_SLAVE_CONFIG,
208 };
209 
210 /**
211  * enum sum_check_bits - bit position of pq_check_flags
212  */
213 enum sum_check_bits {
214 	SUM_CHECK_P = 0,
215 	SUM_CHECK_Q = 1,
216 };
217 
218 /**
219  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
220  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
221  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
222  */
223 enum sum_check_flags {
224 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
225 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
226 };
227 
228 
229 /**
230  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
231  * See linux/cpumask.h
232  */
233 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
234 
235 /**
236  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
237  * @memcpy_count: transaction counter
238  * @bytes_transferred: byte counter
239  */
240 
241 struct dma_chan_percpu {
242 	/* stats */
243 	unsigned long memcpy_count;
244 	unsigned long bytes_transferred;
245 };
246 
247 /**
248  * struct dma_chan - devices supply DMA channels, clients use them
249  * @device: ptr to the dma device who supplies this channel, always !%NULL
250  * @cookie: last cookie value returned to client
251  * @completed_cookie: last completed cookie for this channel
252  * @chan_id: channel ID for sysfs
253  * @dev: class device for sysfs
254  * @device_node: used to add this to the device chan list
255  * @local: per-cpu pointer to a struct dma_chan_percpu
256  * @client_count: how many clients are using this channel
257  * @table_count: number of appearances in the mem-to-mem allocation table
258  * @private: private data for certain client-channel associations
259  */
260 struct dma_chan {
261 	struct dma_device *device;
262 	dma_cookie_t cookie;
263 	dma_cookie_t completed_cookie;
264 
265 	/* sysfs */
266 	int chan_id;
267 	struct dma_chan_dev *dev;
268 
269 	struct list_head device_node;
270 	struct dma_chan_percpu __percpu *local;
271 	int client_count;
272 	int table_count;
273 	void *private;
274 };
275 
276 /**
277  * struct dma_chan_dev - relate sysfs device node to backing channel device
278  * @chan: driver channel device
279  * @device: sysfs device
280  * @dev_id: parent dma_device dev_id
281  * @idr_ref: reference count to gate release of dma_device dev_id
282  */
283 struct dma_chan_dev {
284 	struct dma_chan *chan;
285 	struct device device;
286 	int dev_id;
287 	atomic_t *idr_ref;
288 };
289 
290 /**
291  * enum dma_slave_buswidth - defines bus width of the DMA slave
292  * device, source or target buses
293  */
294 enum dma_slave_buswidth {
295 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
296 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
297 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
298 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
299 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
300 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
301 };
302 
303 /**
304  * struct dma_slave_config - dma slave channel runtime config
305  * @direction: whether the data shall go in or out on this slave
306  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
307  * legal values. DEPRECATED, drivers should use the direction argument
308  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
309  * the dir field in the dma_interleaved_template structure.
310  * @src_addr: this is the physical address where DMA slave data
311  * should be read (RX), if the source is memory this argument is
312  * ignored.
313  * @dst_addr: this is the physical address where DMA slave data
314  * should be written (TX), if the source is memory this argument
315  * is ignored.
316  * @src_addr_width: this is the width in bytes of the source (RX)
317  * register where DMA data shall be read. If the source
318  * is memory this may be ignored depending on architecture.
319  * Legal values: 1, 2, 4, 8.
320  * @dst_addr_width: same as src_addr_width but for destination
321  * target (TX) mutatis mutandis.
322  * @src_maxburst: the maximum number of words (note: words, as in
323  * units of the src_addr_width member, not bytes) that can be sent
324  * in one burst to the device. Typically something like half the
325  * FIFO depth on I/O peripherals so you don't overflow it. This
326  * may or may not be applicable on memory sources.
327  * @dst_maxburst: same as src_maxburst but for destination target
328  * mutatis mutandis.
329  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
330  * with 'true' if peripheral should be flow controller. Direction will be
331  * selected at Runtime.
332  * @slave_id: Slave requester id. Only valid for slave channels. The dma
333  * slave peripheral will have unique id as dma requester which need to be
334  * pass as slave config.
335  *
336  * This struct is passed in as configuration data to a DMA engine
337  * in order to set up a certain channel for DMA transport at runtime.
338  * The DMA device/engine has to provide support for an additional
339  * command in the channel config interface, DMA_SLAVE_CONFIG
340  * and this struct will then be passed in as an argument to the
341  * DMA engine device_control() function.
342  *
343  * The rationale for adding configuration information to this struct is as
344  * follows: if it is likely that more than one DMA slave controllers in
345  * the world will support the configuration option, then make it generic.
346  * If not: if it is fixed so that it be sent in static from the platform
347  * data, then prefer to do that.
348  */
349 struct dma_slave_config {
350 	enum dma_transfer_direction direction;
351 	dma_addr_t src_addr;
352 	dma_addr_t dst_addr;
353 	enum dma_slave_buswidth src_addr_width;
354 	enum dma_slave_buswidth dst_addr_width;
355 	u32 src_maxburst;
356 	u32 dst_maxburst;
357 	bool device_fc;
358 	unsigned int slave_id;
359 };
360 
361 /**
362  * enum dma_residue_granularity - Granularity of the reported transfer residue
363  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
364  *  DMA channel is only able to tell whether a descriptor has been completed or
365  *  not, which means residue reporting is not supported by this channel. The
366  *  residue field of the dma_tx_state field will always be 0.
367  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
368  *  completed segment of the transfer (For cyclic transfers this is after each
369  *  period). This is typically implemented by having the hardware generate an
370  *  interrupt after each transferred segment and then the drivers updates the
371  *  outstanding residue by the size of the segment. Another possibility is if
372  *  the hardware supports scatter-gather and the segment descriptor has a field
373  *  which gets set after the segment has been completed. The driver then counts
374  *  the number of segments without the flag set to compute the residue.
375  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
376  *  burst. This is typically only supported if the hardware has a progress
377  *  register of some sort (E.g. a register with the current read/write address
378  *  or a register with the amount of bursts/beats/bytes that have been
379  *  transferred or still need to be transferred).
380  */
381 enum dma_residue_granularity {
382 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
383 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
384 	DMA_RESIDUE_GRANULARITY_BURST = 2,
385 };
386 
387 /* struct dma_slave_caps - expose capabilities of a slave channel only
388  *
389  * @src_addr_widths: bit mask of src addr widths the channel supports
390  * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
391  * @directions: bit mask of slave direction the channel supported
392  * 	since the enum dma_transfer_direction is not defined as bits for each
393  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
394  * 	should be checked by controller as well
395  * @cmd_pause: true, if pause and thereby resume is supported
396  * @cmd_terminate: true, if terminate cmd is supported
397  * @residue_granularity: granularity of the reported transfer residue
398  */
399 struct dma_slave_caps {
400 	u32 src_addr_widths;
401 	u32 dstn_addr_widths;
402 	u32 directions;
403 	bool cmd_pause;
404 	bool cmd_terminate;
405 	enum dma_residue_granularity residue_granularity;
406 };
407 
dma_chan_name(struct dma_chan * chan)408 static inline const char *dma_chan_name(struct dma_chan *chan)
409 {
410 	return dev_name(&chan->dev->device);
411 }
412 
413 void dma_chan_cleanup(struct kref *kref);
414 
415 /**
416  * typedef dma_filter_fn - callback filter for dma_request_channel
417  * @chan: channel to be reviewed
418  * @filter_param: opaque parameter passed through dma_request_channel
419  *
420  * When this optional parameter is specified in a call to dma_request_channel a
421  * suitable channel is passed to this routine for further dispositioning before
422  * being returned.  Where 'suitable' indicates a non-busy channel that
423  * satisfies the given capability mask.  It returns 'true' to indicate that the
424  * channel is suitable.
425  */
426 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
427 
428 typedef void (*dma_async_tx_callback)(void *dma_async_param);
429 
430 struct dmaengine_unmap_data {
431 	u8 map_cnt;
432 	u8 to_cnt;
433 	u8 from_cnt;
434 	u8 bidi_cnt;
435 	struct device *dev;
436 	struct kref kref;
437 	size_t len;
438 	dma_addr_t addr[0];
439 };
440 
441 /**
442  * struct dma_async_tx_descriptor - async transaction descriptor
443  * ---dma generic offload fields---
444  * @cookie: tracking cookie for this transaction, set to -EBUSY if
445  *	this tx is sitting on a dependency list
446  * @flags: flags to augment operation preparation, control completion, and
447  * 	communicate status
448  * @phys: physical address of the descriptor
449  * @chan: target channel for this operation
450  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
451  * @callback: routine to call after this operation is complete
452  * @callback_param: general parameter to pass to the callback routine
453  * ---async_tx api specific fields---
454  * @next: at completion submit this descriptor
455  * @parent: pointer to the next level up in the dependency chain
456  * @lock: protect the parent and next pointers
457  */
458 struct dma_async_tx_descriptor {
459 	dma_cookie_t cookie;
460 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
461 	dma_addr_t phys;
462 	struct dma_chan *chan;
463 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
464 	dma_async_tx_callback callback;
465 	void *callback_param;
466 	struct dmaengine_unmap_data *unmap;
467 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
468 	struct dma_async_tx_descriptor *next;
469 	struct dma_async_tx_descriptor *parent;
470 	spinlock_t lock;
471 #endif
472 };
473 
474 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)475 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
476 				 struct dmaengine_unmap_data *unmap)
477 {
478 	kref_get(&unmap->kref);
479 	tx->unmap = unmap;
480 }
481 
482 struct dmaengine_unmap_data *
483 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
484 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
485 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)486 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
487 				 struct dmaengine_unmap_data *unmap)
488 {
489 }
490 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)491 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
492 {
493 	return NULL;
494 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)495 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
496 {
497 }
498 #endif
499 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)500 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
501 {
502 	if (tx->unmap) {
503 		dmaengine_unmap_put(tx->unmap);
504 		tx->unmap = NULL;
505 	}
506 }
507 
508 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)509 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
510 {
511 }
txd_unlock(struct dma_async_tx_descriptor * txd)512 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
513 {
514 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)515 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
516 {
517 	BUG();
518 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)519 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
520 {
521 }
txd_clear_next(struct dma_async_tx_descriptor * txd)522 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
523 {
524 }
txd_next(struct dma_async_tx_descriptor * txd)525 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
526 {
527 	return NULL;
528 }
txd_parent(struct dma_async_tx_descriptor * txd)529 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
530 {
531 	return NULL;
532 }
533 
534 #else
txd_lock(struct dma_async_tx_descriptor * txd)535 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
536 {
537 	spin_lock_bh(&txd->lock);
538 }
txd_unlock(struct dma_async_tx_descriptor * txd)539 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
540 {
541 	spin_unlock_bh(&txd->lock);
542 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)543 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
544 {
545 	txd->next = next;
546 	next->parent = txd;
547 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)548 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
549 {
550 	txd->parent = NULL;
551 }
txd_clear_next(struct dma_async_tx_descriptor * txd)552 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
553 {
554 	txd->next = NULL;
555 }
txd_parent(struct dma_async_tx_descriptor * txd)556 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
557 {
558 	return txd->parent;
559 }
txd_next(struct dma_async_tx_descriptor * txd)560 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
561 {
562 	return txd->next;
563 }
564 #endif
565 
566 /**
567  * struct dma_tx_state - filled in to report the status of
568  * a transfer.
569  * @last: last completed DMA cookie
570  * @used: last issued DMA cookie (i.e. the one in progress)
571  * @residue: the remaining number of bytes left to transmit
572  *	on the selected transfer for states DMA_IN_PROGRESS and
573  *	DMA_PAUSED if this is implemented in the driver, else 0
574  */
575 struct dma_tx_state {
576 	dma_cookie_t last;
577 	dma_cookie_t used;
578 	u32 residue;
579 };
580 
581 /**
582  * struct dma_device - info on the entity supplying DMA services
583  * @chancnt: how many DMA channels are supported
584  * @privatecnt: how many DMA channels are requested by dma_request_channel
585  * @channels: the list of struct dma_chan
586  * @global_node: list_head for global dma_device_list
587  * @cap_mask: one or more dma_capability flags
588  * @max_xor: maximum number of xor sources, 0 if no capability
589  * @max_pq: maximum number of PQ sources and PQ-continue capability
590  * @copy_align: alignment shift for memcpy operations
591  * @xor_align: alignment shift for xor operations
592  * @pq_align: alignment shift for pq operations
593  * @fill_align: alignment shift for memset operations
594  * @dev_id: unique device ID
595  * @dev: struct device reference for dma mapping api
596  * @device_alloc_chan_resources: allocate resources and return the
597  *	number of allocated descriptors
598  * @device_free_chan_resources: release DMA channel's resources
599  * @device_prep_dma_memcpy: prepares a memcpy operation
600  * @device_prep_dma_xor: prepares a xor operation
601  * @device_prep_dma_xor_val: prepares a xor validation operation
602  * @device_prep_dma_pq: prepares a pq operation
603  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
604  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
605  * @device_prep_slave_sg: prepares a slave dma operation
606  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
607  *	The function takes a buffer of size buf_len. The callback function will
608  *	be called after period_len bytes have been transferred.
609  * @device_prep_interleaved_dma: Transfer expression in a generic way.
610  * @device_control: manipulate all pending operations on a channel, returns
611  *	zero or error code
612  * @device_tx_status: poll for transaction completion, the optional
613  *	txstate parameter can be supplied with a pointer to get a
614  *	struct with auxiliary transfer status information, otherwise the call
615  *	will just return a simple status code
616  * @device_issue_pending: push pending transactions to hardware
617  * @device_slave_caps: return the slave channel capabilities
618  */
619 struct dma_device {
620 
621 	unsigned int chancnt;
622 	unsigned int privatecnt;
623 	struct list_head channels;
624 	struct list_head global_node;
625 	dma_cap_mask_t  cap_mask;
626 	unsigned short max_xor;
627 	unsigned short max_pq;
628 	u8 copy_align;
629 	u8 xor_align;
630 	u8 pq_align;
631 	u8 fill_align;
632 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
633 
634 	int dev_id;
635 	struct device *dev;
636 
637 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
638 	void (*device_free_chan_resources)(struct dma_chan *chan);
639 
640 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
641 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
642 		size_t len, unsigned long flags);
643 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
644 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
645 		unsigned int src_cnt, size_t len, unsigned long flags);
646 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
647 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
648 		size_t len, enum sum_check_flags *result, unsigned long flags);
649 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
650 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
651 		unsigned int src_cnt, const unsigned char *scf,
652 		size_t len, unsigned long flags);
653 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
654 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
655 		unsigned int src_cnt, const unsigned char *scf, size_t len,
656 		enum sum_check_flags *pqres, unsigned long flags);
657 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
658 		struct dma_chan *chan, unsigned long flags);
659 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
660 		struct dma_chan *chan,
661 		struct scatterlist *dst_sg, unsigned int dst_nents,
662 		struct scatterlist *src_sg, unsigned int src_nents,
663 		unsigned long flags);
664 
665 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
666 		struct dma_chan *chan, struct scatterlist *sgl,
667 		unsigned int sg_len, enum dma_transfer_direction direction,
668 		unsigned long flags, void *context);
669 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
670 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
671 		size_t period_len, enum dma_transfer_direction direction,
672 		unsigned long flags);
673 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
674 		struct dma_chan *chan, struct dma_interleaved_template *xt,
675 		unsigned long flags);
676 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
677 		unsigned long arg);
678 
679 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
680 					    dma_cookie_t cookie,
681 					    struct dma_tx_state *txstate);
682 	void (*device_issue_pending)(struct dma_chan *chan);
683 	int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
684 };
685 
dmaengine_device_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)686 static inline int dmaengine_device_control(struct dma_chan *chan,
687 					   enum dma_ctrl_cmd cmd,
688 					   unsigned long arg)
689 {
690 	if (chan->device->device_control)
691 		return chan->device->device_control(chan, cmd, arg);
692 
693 	return -ENOSYS;
694 }
695 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)696 static inline int dmaengine_slave_config(struct dma_chan *chan,
697 					  struct dma_slave_config *config)
698 {
699 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
700 			(unsigned long)config);
701 }
702 
is_slave_direction(enum dma_transfer_direction direction)703 static inline bool is_slave_direction(enum dma_transfer_direction direction)
704 {
705 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
706 }
707 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)708 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
709 	struct dma_chan *chan, dma_addr_t buf, size_t len,
710 	enum dma_transfer_direction dir, unsigned long flags)
711 {
712 	struct scatterlist sg;
713 	sg_init_table(&sg, 1);
714 	sg_dma_address(&sg) = buf;
715 	sg_dma_len(&sg) = len;
716 
717 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
718 						  dir, flags, NULL);
719 }
720 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)721 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
722 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
723 	enum dma_transfer_direction dir, unsigned long flags)
724 {
725 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
726 						  dir, flags, NULL);
727 }
728 
729 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
730 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)731 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
732 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
733 	enum dma_transfer_direction dir, unsigned long flags,
734 	struct rio_dma_ext *rio_ext)
735 {
736 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
737 						  dir, flags, rio_ext);
738 }
739 #endif
740 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)741 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
742 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
743 		size_t period_len, enum dma_transfer_direction dir,
744 		unsigned long flags)
745 {
746 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
747 						period_len, dir, flags);
748 }
749 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)750 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
751 		struct dma_chan *chan, struct dma_interleaved_template *xt,
752 		unsigned long flags)
753 {
754 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
755 }
756 
dmaengine_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)757 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
758 		struct dma_chan *chan,
759 		struct scatterlist *dst_sg, unsigned int dst_nents,
760 		struct scatterlist *src_sg, unsigned int src_nents,
761 		unsigned long flags)
762 {
763 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
764 			src_sg, src_nents, flags);
765 }
766 
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)767 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
768 {
769 	if (!chan || !caps)
770 		return -EINVAL;
771 
772 	/* check if the channel supports slave transactions */
773 	if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
774 		return -ENXIO;
775 
776 	if (chan->device->device_slave_caps)
777 		return chan->device->device_slave_caps(chan, caps);
778 
779 	return -ENXIO;
780 }
781 
dmaengine_terminate_all(struct dma_chan * chan)782 static inline int dmaengine_terminate_all(struct dma_chan *chan)
783 {
784 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
785 }
786 
dmaengine_pause(struct dma_chan * chan)787 static inline int dmaengine_pause(struct dma_chan *chan)
788 {
789 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
790 }
791 
dmaengine_resume(struct dma_chan * chan)792 static inline int dmaengine_resume(struct dma_chan *chan)
793 {
794 	return dmaengine_device_control(chan, DMA_RESUME, 0);
795 }
796 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)797 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
798 	dma_cookie_t cookie, struct dma_tx_state *state)
799 {
800 	return chan->device->device_tx_status(chan, cookie, state);
801 }
802 
dmaengine_submit(struct dma_async_tx_descriptor * desc)803 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
804 {
805 	return desc->tx_submit(desc);
806 }
807 
dmaengine_check_align(u8 align,size_t off1,size_t off2,size_t len)808 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
809 {
810 	size_t mask;
811 
812 	if (!align)
813 		return true;
814 	mask = (1 << align) - 1;
815 	if (mask & (off1 | off2 | len))
816 		return false;
817 	return true;
818 }
819 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)820 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
821 				       size_t off2, size_t len)
822 {
823 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
824 }
825 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)826 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
827 				      size_t off2, size_t len)
828 {
829 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
830 }
831 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)832 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
833 				     size_t off2, size_t len)
834 {
835 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
836 }
837 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)838 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
839 				       size_t off2, size_t len)
840 {
841 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
842 }
843 
844 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)845 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
846 {
847 	dma->max_pq = maxpq;
848 	if (has_pq_continue)
849 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
850 }
851 
dmaf_continue(enum dma_ctrl_flags flags)852 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
853 {
854 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
855 }
856 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)857 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
858 {
859 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
860 
861 	return (flags & mask) == mask;
862 }
863 
dma_dev_has_pq_continue(struct dma_device * dma)864 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
865 {
866 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
867 }
868 
dma_dev_to_maxpq(struct dma_device * dma)869 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
870 {
871 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
872 }
873 
874 /* dma_maxpq - reduce maxpq in the face of continued operations
875  * @dma - dma device with PQ capability
876  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
877  *
878  * When an engine does not support native continuation we need 3 extra
879  * source slots to reuse P and Q with the following coefficients:
880  * 1/ {00} * P : remove P from Q', but use it as a source for P'
881  * 2/ {01} * Q : use Q to continue Q' calculation
882  * 3/ {00} * Q : subtract Q from P' to cancel (2)
883  *
884  * In the case where P is disabled we only need 1 extra source:
885  * 1/ {01} * Q : use Q to continue Q' calculation
886  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)887 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
888 {
889 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
890 		return dma_dev_to_maxpq(dma);
891 	else if (dmaf_p_disabled_continue(flags))
892 		return dma_dev_to_maxpq(dma) - 1;
893 	else if (dmaf_continue(flags))
894 		return dma_dev_to_maxpq(dma) - 3;
895 	BUG();
896 }
897 
898 /* --- public DMA engine API --- */
899 
900 #ifdef CONFIG_DMA_ENGINE
901 void dmaengine_get(void);
902 void dmaengine_put(void);
903 #else
dmaengine_get(void)904 static inline void dmaengine_get(void)
905 {
906 }
dmaengine_put(void)907 static inline void dmaengine_put(void)
908 {
909 }
910 #endif
911 
912 #ifdef CONFIG_ASYNC_TX_DMA
913 #define async_dmaengine_get()	dmaengine_get()
914 #define async_dmaengine_put()	dmaengine_put()
915 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
916 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
917 #else
918 #define async_dma_find_channel(type) dma_find_channel(type)
919 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
920 #else
async_dmaengine_get(void)921 static inline void async_dmaengine_get(void)
922 {
923 }
async_dmaengine_put(void)924 static inline void async_dmaengine_put(void)
925 {
926 }
927 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)928 async_dma_find_channel(enum dma_transaction_type type)
929 {
930 	return NULL;
931 }
932 #endif /* CONFIG_ASYNC_TX_DMA */
933 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
934 				  struct dma_chan *chan);
935 
async_tx_ack(struct dma_async_tx_descriptor * tx)936 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
937 {
938 	tx->flags |= DMA_CTRL_ACK;
939 }
940 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)941 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
942 {
943 	tx->flags &= ~DMA_CTRL_ACK;
944 }
945 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)946 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
947 {
948 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
949 }
950 
951 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
952 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)953 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
954 {
955 	set_bit(tx_type, dstp->bits);
956 }
957 
958 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
959 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)960 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
961 {
962 	clear_bit(tx_type, dstp->bits);
963 }
964 
965 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)966 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
967 {
968 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
969 }
970 
971 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
972 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)973 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
974 {
975 	return test_bit(tx_type, srcp->bits);
976 }
977 
978 #define for_each_dma_cap_mask(cap, mask) \
979 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
980 
981 /**
982  * dma_async_issue_pending - flush pending transactions to HW
983  * @chan: target DMA channel
984  *
985  * This allows drivers to push copies to HW in batches,
986  * reducing MMIO writes where possible.
987  */
dma_async_issue_pending(struct dma_chan * chan)988 static inline void dma_async_issue_pending(struct dma_chan *chan)
989 {
990 	chan->device->device_issue_pending(chan);
991 }
992 
993 /**
994  * dma_async_is_tx_complete - poll for transaction completion
995  * @chan: DMA channel
996  * @cookie: transaction identifier to check status of
997  * @last: returns last completed cookie, can be NULL
998  * @used: returns last issued cookie, can be NULL
999  *
1000  * If @last and @used are passed in, upon return they reflect the driver
1001  * internal state and can be used with dma_async_is_complete() to check
1002  * the status of multiple cookies without re-checking hardware state.
1003  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1004 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1005 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1006 {
1007 	struct dma_tx_state state;
1008 	enum dma_status status;
1009 
1010 	status = chan->device->device_tx_status(chan, cookie, &state);
1011 	if (last)
1012 		*last = state.last;
1013 	if (used)
1014 		*used = state.used;
1015 	return status;
1016 }
1017 
1018 /**
1019  * dma_async_is_complete - test a cookie against chan state
1020  * @cookie: transaction identifier to test status of
1021  * @last_complete: last know completed transaction
1022  * @last_used: last cookie value handed out
1023  *
1024  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1025  * the test logic is separated for lightweight testing of multiple cookies
1026  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1027 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1028 			dma_cookie_t last_complete, dma_cookie_t last_used)
1029 {
1030 	if (last_complete <= last_used) {
1031 		if ((cookie <= last_complete) || (cookie > last_used))
1032 			return DMA_COMPLETE;
1033 	} else {
1034 		if ((cookie <= last_complete) && (cookie > last_used))
1035 			return DMA_COMPLETE;
1036 	}
1037 	return DMA_IN_PROGRESS;
1038 }
1039 
1040 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1041 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1042 {
1043 	if (st) {
1044 		st->last = last;
1045 		st->used = used;
1046 		st->residue = residue;
1047 	}
1048 }
1049 
1050 #ifdef CONFIG_DMA_ENGINE
1051 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1052 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1053 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1054 void dma_issue_pending_all(void);
1055 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1056 					dma_filter_fn fn, void *fn_param);
1057 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1058 						  const char *name);
1059 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1060 void dma_release_channel(struct dma_chan *chan);
1061 #else
dma_find_channel(enum dma_transaction_type tx_type)1062 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1063 {
1064 	return NULL;
1065 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1066 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1067 {
1068 	return DMA_COMPLETE;
1069 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1070 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1071 {
1072 	return DMA_COMPLETE;
1073 }
dma_issue_pending_all(void)1074 static inline void dma_issue_pending_all(void)
1075 {
1076 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1077 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1078 					      dma_filter_fn fn, void *fn_param)
1079 {
1080 	return NULL;
1081 }
dma_request_slave_channel_reason(struct device * dev,const char * name)1082 static inline struct dma_chan *dma_request_slave_channel_reason(
1083 					struct device *dev, const char *name)
1084 {
1085 	return ERR_PTR(-ENODEV);
1086 }
dma_request_slave_channel(struct device * dev,const char * name)1087 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1088 							 const char *name)
1089 {
1090 	return NULL;
1091 }
dma_release_channel(struct dma_chan * chan)1092 static inline void dma_release_channel(struct dma_chan *chan)
1093 {
1094 }
1095 #endif
1096 
1097 /* --- DMA device --- */
1098 
1099 int dma_async_device_register(struct dma_device *device);
1100 void dma_async_device_unregister(struct dma_device *device);
1101 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1102 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1103 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1104 struct dma_chan *net_dma_find_channel(void);
1105 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1106 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1107 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1108 
1109 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,char * name)1110 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1111 				  dma_filter_fn fn, void *fn_param,
1112 				  struct device *dev, char *name)
1113 {
1114 	struct dma_chan *chan;
1115 
1116 	chan = dma_request_slave_channel(dev, name);
1117 	if (chan)
1118 		return chan;
1119 
1120 	return __dma_request_channel(mask, fn, fn_param);
1121 }
1122 
1123 /* --- Helper iov-locking functions --- */
1124 
1125 struct dma_page_list {
1126 	char __user *base_address;
1127 	int nr_pages;
1128 	struct page **pages;
1129 };
1130 
1131 struct dma_pinned_list {
1132 	int nr_iovecs;
1133 	struct dma_page_list page_list[0];
1134 };
1135 
1136 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1137 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1138 
1139 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1140 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1141 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1142 	struct dma_pinned_list *pinned_list, struct page *page,
1143 	unsigned int offset, size_t len);
1144 
1145 #endif /* DMAENGINE_H */
1146