1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34
35 #include "internal.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
46
47 /*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
__page_cache_release(struct page * page)51 static void __page_cache_release(struct page *page)
52 {
53 if (PageLRU(page)) {
54 struct zone *zone = page_zone(page);
55 struct lruvec *lruvec;
56 unsigned long flags;
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
59 lruvec = mem_cgroup_page_lruvec(page, zone);
60 VM_BUG_ON_PAGE(!PageLRU(page), page);
61 __ClearPageLRU(page);
62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
65 mem_cgroup_uncharge(page);
66 }
67
__put_single_page(struct page * page)68 static void __put_single_page(struct page *page)
69 {
70 __page_cache_release(page);
71 free_hot_cold_page(page, false);
72 }
73
__put_compound_page(struct page * page)74 static void __put_compound_page(struct page *page)
75 {
76 compound_page_dtor *dtor;
77
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
80 (*dtor)(page);
81 }
82
83 /**
84 * Two special cases here: we could avoid taking compound_lock_irqsave
85 * and could skip the tail refcounting(in _mapcount).
86 *
87 * 1. Hugetlbfs page:
88 *
89 * PageHeadHuge will remain true until the compound page
90 * is released and enters the buddy allocator, and it could
91 * not be split by __split_huge_page_refcount().
92 *
93 * So if we see PageHeadHuge set, and we have the tail page pin,
94 * then we could safely put head page.
95 *
96 * 2. Slab THP page:
97 *
98 * PG_slab is cleared before the slab frees the head page, and
99 * tail pin cannot be the last reference left on the head page,
100 * because the slab code is free to reuse the compound page
101 * after a kfree/kmem_cache_free without having to check if
102 * there's any tail pin left. In turn all tail pinsmust be always
103 * released while the head is still pinned by the slab code
104 * and so we know PG_slab will be still set too.
105 *
106 * So if we see PageSlab set, and we have the tail page pin,
107 * then we could safely put head page.
108 */
109 static __always_inline
put_unrefcounted_compound_page(struct page * page_head,struct page * page)110 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
111 {
112 /*
113 * If @page is a THP tail, we must read the tail page
114 * flags after the head page flags. The
115 * __split_huge_page_refcount side enforces write memory barriers
116 * between clearing PageTail and before the head page
117 * can be freed and reallocated.
118 */
119 smp_rmb();
120 if (likely(PageTail(page))) {
121 /*
122 * __split_huge_page_refcount cannot race
123 * here, see the comment above this function.
124 */
125 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
126 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
127 if (put_page_testzero(page_head)) {
128 /*
129 * If this is the tail of a slab THP page,
130 * the tail pin must not be the last reference
131 * held on the page, because the PG_slab cannot
132 * be cleared before all tail pins (which skips
133 * the _mapcount tail refcounting) have been
134 * released.
135 *
136 * If this is the tail of a hugetlbfs page,
137 * the tail pin may be the last reference on
138 * the page instead, because PageHeadHuge will
139 * not go away until the compound page enters
140 * the buddy allocator.
141 */
142 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
143 __put_compound_page(page_head);
144 }
145 } else
146 /*
147 * __split_huge_page_refcount run before us,
148 * @page was a THP tail. The split @page_head
149 * has been freed and reallocated as slab or
150 * hugetlbfs page of smaller order (only
151 * possible if reallocated as slab on x86).
152 */
153 if (put_page_testzero(page))
154 __put_single_page(page);
155 }
156
157 static __always_inline
put_refcounted_compound_page(struct page * page_head,struct page * page)158 void put_refcounted_compound_page(struct page *page_head, struct page *page)
159 {
160 if (likely(page != page_head && get_page_unless_zero(page_head))) {
161 unsigned long flags;
162
163 /*
164 * @page_head wasn't a dangling pointer but it may not
165 * be a head page anymore by the time we obtain the
166 * lock. That is ok as long as it can't be freed from
167 * under us.
168 */
169 flags = compound_lock_irqsave(page_head);
170 if (unlikely(!PageTail(page))) {
171 /* __split_huge_page_refcount run before us */
172 compound_unlock_irqrestore(page_head, flags);
173 if (put_page_testzero(page_head)) {
174 /*
175 * The @page_head may have been freed
176 * and reallocated as a compound page
177 * of smaller order and then freed
178 * again. All we know is that it
179 * cannot have become: a THP page, a
180 * compound page of higher order, a
181 * tail page. That is because we
182 * still hold the refcount of the
183 * split THP tail and page_head was
184 * the THP head before the split.
185 */
186 if (PageHead(page_head))
187 __put_compound_page(page_head);
188 else
189 __put_single_page(page_head);
190 }
191 out_put_single:
192 if (put_page_testzero(page))
193 __put_single_page(page);
194 return;
195 }
196 VM_BUG_ON_PAGE(page_head != page->first_page, page);
197 /*
198 * We can release the refcount taken by
199 * get_page_unless_zero() now that
200 * __split_huge_page_refcount() is blocked on the
201 * compound_lock.
202 */
203 if (put_page_testzero(page_head))
204 VM_BUG_ON_PAGE(1, page_head);
205 /* __split_huge_page_refcount will wait now */
206 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
207 atomic_dec(&page->_mapcount);
208 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
209 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
210 compound_unlock_irqrestore(page_head, flags);
211
212 if (put_page_testzero(page_head)) {
213 if (PageHead(page_head))
214 __put_compound_page(page_head);
215 else
216 __put_single_page(page_head);
217 }
218 } else {
219 /* @page_head is a dangling pointer */
220 VM_BUG_ON_PAGE(PageTail(page), page);
221 goto out_put_single;
222 }
223 }
224
put_compound_page(struct page * page)225 static void put_compound_page(struct page *page)
226 {
227 struct page *page_head;
228
229 /*
230 * We see the PageCompound set and PageTail not set, so @page maybe:
231 * 1. hugetlbfs head page, or
232 * 2. THP head page.
233 */
234 if (likely(!PageTail(page))) {
235 if (put_page_testzero(page)) {
236 /*
237 * By the time all refcounts have been released
238 * split_huge_page cannot run anymore from under us.
239 */
240 if (PageHead(page))
241 __put_compound_page(page);
242 else
243 __put_single_page(page);
244 }
245 return;
246 }
247
248 /*
249 * We see the PageCompound set and PageTail set, so @page maybe:
250 * 1. a tail hugetlbfs page, or
251 * 2. a tail THP page, or
252 * 3. a split THP page.
253 *
254 * Case 3 is possible, as we may race with
255 * __split_huge_page_refcount tearing down a THP page.
256 */
257 page_head = compound_head_by_tail(page);
258 if (!__compound_tail_refcounted(page_head))
259 put_unrefcounted_compound_page(page_head, page);
260 else
261 put_refcounted_compound_page(page_head, page);
262 }
263
put_page(struct page * page)264 void put_page(struct page *page)
265 {
266 if (unlikely(PageCompound(page)))
267 put_compound_page(page);
268 else if (put_page_testzero(page))
269 __put_single_page(page);
270 }
271 EXPORT_SYMBOL(put_page);
272
273 /*
274 * This function is exported but must not be called by anything other
275 * than get_page(). It implements the slow path of get_page().
276 */
__get_page_tail(struct page * page)277 bool __get_page_tail(struct page *page)
278 {
279 /*
280 * This takes care of get_page() if run on a tail page
281 * returned by one of the get_user_pages/follow_page variants.
282 * get_user_pages/follow_page itself doesn't need the compound
283 * lock because it runs __get_page_tail_foll() under the
284 * proper PT lock that already serializes against
285 * split_huge_page().
286 */
287 unsigned long flags;
288 bool got;
289 struct page *page_head = compound_head(page);
290
291 /* Ref to put_compound_page() comment. */
292 if (!__compound_tail_refcounted(page_head)) {
293 smp_rmb();
294 if (likely(PageTail(page))) {
295 /*
296 * This is a hugetlbfs page or a slab
297 * page. __split_huge_page_refcount
298 * cannot race here.
299 */
300 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
301 __get_page_tail_foll(page, true);
302 return true;
303 } else {
304 /*
305 * __split_huge_page_refcount run
306 * before us, "page" was a THP
307 * tail. The split page_head has been
308 * freed and reallocated as slab or
309 * hugetlbfs page of smaller order
310 * (only possible if reallocated as
311 * slab on x86).
312 */
313 return false;
314 }
315 }
316
317 got = false;
318 if (likely(page != page_head && get_page_unless_zero(page_head))) {
319 /*
320 * page_head wasn't a dangling pointer but it
321 * may not be a head page anymore by the time
322 * we obtain the lock. That is ok as long as it
323 * can't be freed from under us.
324 */
325 flags = compound_lock_irqsave(page_head);
326 /* here __split_huge_page_refcount won't run anymore */
327 if (likely(PageTail(page))) {
328 __get_page_tail_foll(page, false);
329 got = true;
330 }
331 compound_unlock_irqrestore(page_head, flags);
332 if (unlikely(!got))
333 put_page(page_head);
334 }
335 return got;
336 }
337 EXPORT_SYMBOL(__get_page_tail);
338
339 /**
340 * put_pages_list() - release a list of pages
341 * @pages: list of pages threaded on page->lru
342 *
343 * Release a list of pages which are strung together on page.lru. Currently
344 * used by read_cache_pages() and related error recovery code.
345 */
put_pages_list(struct list_head * pages)346 void put_pages_list(struct list_head *pages)
347 {
348 while (!list_empty(pages)) {
349 struct page *victim;
350
351 victim = list_entry(pages->prev, struct page, lru);
352 list_del(&victim->lru);
353 page_cache_release(victim);
354 }
355 }
356 EXPORT_SYMBOL(put_pages_list);
357
358 /*
359 * get_kernel_pages() - pin kernel pages in memory
360 * @kiov: An array of struct kvec structures
361 * @nr_segs: number of segments to pin
362 * @write: pinning for read/write, currently ignored
363 * @pages: array that receives pointers to the pages pinned.
364 * Should be at least nr_segs long.
365 *
366 * Returns number of pages pinned. This may be fewer than the number
367 * requested. If nr_pages is 0 or negative, returns 0. If no pages
368 * were pinned, returns -errno. Each page returned must be released
369 * with a put_page() call when it is finished with.
370 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)371 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
372 struct page **pages)
373 {
374 int seg;
375
376 for (seg = 0; seg < nr_segs; seg++) {
377 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
378 return seg;
379
380 pages[seg] = kmap_to_page(kiov[seg].iov_base);
381 page_cache_get(pages[seg]);
382 }
383
384 return seg;
385 }
386 EXPORT_SYMBOL_GPL(get_kernel_pages);
387
388 /*
389 * get_kernel_page() - pin a kernel page in memory
390 * @start: starting kernel address
391 * @write: pinning for read/write, currently ignored
392 * @pages: array that receives pointer to the page pinned.
393 * Must be at least nr_segs long.
394 *
395 * Returns 1 if page is pinned. If the page was not pinned, returns
396 * -errno. The page returned must be released with a put_page() call
397 * when it is finished with.
398 */
get_kernel_page(unsigned long start,int write,struct page ** pages)399 int get_kernel_page(unsigned long start, int write, struct page **pages)
400 {
401 const struct kvec kiov = {
402 .iov_base = (void *)start,
403 .iov_len = PAGE_SIZE
404 };
405
406 return get_kernel_pages(&kiov, 1, write, pages);
407 }
408 EXPORT_SYMBOL_GPL(get_kernel_page);
409
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)410 static void pagevec_lru_move_fn(struct pagevec *pvec,
411 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
412 void *arg)
413 {
414 int i;
415 struct zone *zone = NULL;
416 struct lruvec *lruvec;
417 unsigned long flags = 0;
418
419 for (i = 0; i < pagevec_count(pvec); i++) {
420 struct page *page = pvec->pages[i];
421 struct zone *pagezone = page_zone(page);
422
423 if (pagezone != zone) {
424 if (zone)
425 spin_unlock_irqrestore(&zone->lru_lock, flags);
426 zone = pagezone;
427 spin_lock_irqsave(&zone->lru_lock, flags);
428 }
429
430 lruvec = mem_cgroup_page_lruvec(page, zone);
431 (*move_fn)(page, lruvec, arg);
432 }
433 if (zone)
434 spin_unlock_irqrestore(&zone->lru_lock, flags);
435 release_pages(pvec->pages, pvec->nr, pvec->cold);
436 pagevec_reinit(pvec);
437 }
438
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)439 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
440 void *arg)
441 {
442 int *pgmoved = arg;
443
444 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
445 enum lru_list lru = page_lru_base_type(page);
446 list_move_tail(&page->lru, &lruvec->lists[lru]);
447 (*pgmoved)++;
448 }
449 }
450
451 /*
452 * pagevec_move_tail() must be called with IRQ disabled.
453 * Otherwise this may cause nasty races.
454 */
pagevec_move_tail(struct pagevec * pvec)455 static void pagevec_move_tail(struct pagevec *pvec)
456 {
457 int pgmoved = 0;
458
459 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
460 __count_vm_events(PGROTATED, pgmoved);
461 }
462
463 /*
464 * Writeback is about to end against a page which has been marked for immediate
465 * reclaim. If it still appears to be reclaimable, move it to the tail of the
466 * inactive list.
467 */
rotate_reclaimable_page(struct page * page)468 void rotate_reclaimable_page(struct page *page)
469 {
470 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
471 !PageUnevictable(page) && PageLRU(page)) {
472 struct pagevec *pvec;
473 unsigned long flags;
474
475 page_cache_get(page);
476 local_irq_save(flags);
477 pvec = this_cpu_ptr(&lru_rotate_pvecs);
478 if (!pagevec_add(pvec, page) || PageCompound(page))
479 pagevec_move_tail(pvec);
480 local_irq_restore(flags);
481 }
482 }
483
update_page_reclaim_stat(struct lruvec * lruvec,int file,int rotated)484 static void update_page_reclaim_stat(struct lruvec *lruvec,
485 int file, int rotated)
486 {
487 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
488
489 reclaim_stat->recent_scanned[file]++;
490 if (rotated)
491 reclaim_stat->recent_rotated[file]++;
492 }
493
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)494 static void __activate_page(struct page *page, struct lruvec *lruvec,
495 void *arg)
496 {
497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
498 int file = page_is_file_cache(page);
499 int lru = page_lru_base_type(page);
500
501 del_page_from_lru_list(page, lruvec, lru);
502 SetPageActive(page);
503 lru += LRU_ACTIVE;
504 add_page_to_lru_list(page, lruvec, lru);
505 trace_mm_lru_activate(page);
506
507 __count_vm_event(PGACTIVATE);
508 update_page_reclaim_stat(lruvec, file, 1);
509 }
510 }
511
512 #ifdef CONFIG_SMP
513 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
514
activate_page_drain(int cpu)515 static void activate_page_drain(int cpu)
516 {
517 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
518
519 if (pagevec_count(pvec))
520 pagevec_lru_move_fn(pvec, __activate_page, NULL);
521 }
522
need_activate_page_drain(int cpu)523 static bool need_activate_page_drain(int cpu)
524 {
525 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
526 }
527
activate_page(struct page * page)528 void activate_page(struct page *page)
529 {
530 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
531 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
532
533 page_cache_get(page);
534 if (!pagevec_add(pvec, page) || PageCompound(page))
535 pagevec_lru_move_fn(pvec, __activate_page, NULL);
536 put_cpu_var(activate_page_pvecs);
537 }
538 }
539
540 #else
activate_page_drain(int cpu)541 static inline void activate_page_drain(int cpu)
542 {
543 }
544
need_activate_page_drain(int cpu)545 static bool need_activate_page_drain(int cpu)
546 {
547 return false;
548 }
549
activate_page(struct page * page)550 void activate_page(struct page *page)
551 {
552 struct zone *zone = page_zone(page);
553
554 spin_lock_irq(&zone->lru_lock);
555 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
556 spin_unlock_irq(&zone->lru_lock);
557 }
558 #endif
559
__lru_cache_activate_page(struct page * page)560 static void __lru_cache_activate_page(struct page *page)
561 {
562 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
563 int i;
564
565 /*
566 * Search backwards on the optimistic assumption that the page being
567 * activated has just been added to this pagevec. Note that only
568 * the local pagevec is examined as a !PageLRU page could be in the
569 * process of being released, reclaimed, migrated or on a remote
570 * pagevec that is currently being drained. Furthermore, marking
571 * a remote pagevec's page PageActive potentially hits a race where
572 * a page is marked PageActive just after it is added to the inactive
573 * list causing accounting errors and BUG_ON checks to trigger.
574 */
575 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
576 struct page *pagevec_page = pvec->pages[i];
577
578 if (pagevec_page == page) {
579 SetPageActive(page);
580 break;
581 }
582 }
583
584 put_cpu_var(lru_add_pvec);
585 }
586
587 /*
588 * Mark a page as having seen activity.
589 *
590 * inactive,unreferenced -> inactive,referenced
591 * inactive,referenced -> active,unreferenced
592 * active,unreferenced -> active,referenced
593 *
594 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
595 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
596 */
mark_page_accessed(struct page * page)597 void mark_page_accessed(struct page *page)
598 {
599 if (!PageActive(page) && !PageUnevictable(page) &&
600 PageReferenced(page)) {
601
602 /*
603 * If the page is on the LRU, queue it for activation via
604 * activate_page_pvecs. Otherwise, assume the page is on a
605 * pagevec, mark it active and it'll be moved to the active
606 * LRU on the next drain.
607 */
608 if (PageLRU(page))
609 activate_page(page);
610 else
611 __lru_cache_activate_page(page);
612 ClearPageReferenced(page);
613 if (page_is_file_cache(page))
614 workingset_activation(page);
615 } else if (!PageReferenced(page)) {
616 SetPageReferenced(page);
617 }
618 }
619 EXPORT_SYMBOL(mark_page_accessed);
620
__lru_cache_add(struct page * page)621 static void __lru_cache_add(struct page *page)
622 {
623 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
624
625 page_cache_get(page);
626 if (!pagevec_add(pvec, page) || PageCompound(page))
627 __pagevec_lru_add(pvec);
628 put_cpu_var(lru_add_pvec);
629 }
630
631 /**
632 * lru_cache_add: add a page to the page lists
633 * @page: the page to add
634 */
lru_cache_add_anon(struct page * page)635 void lru_cache_add_anon(struct page *page)
636 {
637 if (PageActive(page))
638 ClearPageActive(page);
639 __lru_cache_add(page);
640 }
641
lru_cache_add_file(struct page * page)642 void lru_cache_add_file(struct page *page)
643 {
644 if (PageActive(page))
645 ClearPageActive(page);
646 __lru_cache_add(page);
647 }
648 EXPORT_SYMBOL(lru_cache_add_file);
649
650 /**
651 * lru_cache_add - add a page to a page list
652 * @page: the page to be added to the LRU.
653 *
654 * Queue the page for addition to the LRU via pagevec. The decision on whether
655 * to add the page to the [in]active [file|anon] list is deferred until the
656 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
657 * have the page added to the active list using mark_page_accessed().
658 */
lru_cache_add(struct page * page)659 void lru_cache_add(struct page *page)
660 {
661 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
662 VM_BUG_ON_PAGE(PageLRU(page), page);
663 __lru_cache_add(page);
664 }
665
666 /**
667 * add_page_to_unevictable_list - add a page to the unevictable list
668 * @page: the page to be added to the unevictable list
669 *
670 * Add page directly to its zone's unevictable list. To avoid races with
671 * tasks that might be making the page evictable, through eg. munlock,
672 * munmap or exit, while it's not on the lru, we want to add the page
673 * while it's locked or otherwise "invisible" to other tasks. This is
674 * difficult to do when using the pagevec cache, so bypass that.
675 */
add_page_to_unevictable_list(struct page * page)676 void add_page_to_unevictable_list(struct page *page)
677 {
678 struct zone *zone = page_zone(page);
679 struct lruvec *lruvec;
680
681 spin_lock_irq(&zone->lru_lock);
682 lruvec = mem_cgroup_page_lruvec(page, zone);
683 ClearPageActive(page);
684 SetPageUnevictable(page);
685 SetPageLRU(page);
686 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
687 spin_unlock_irq(&zone->lru_lock);
688 }
689
690 /**
691 * lru_cache_add_active_or_unevictable
692 * @page: the page to be added to LRU
693 * @vma: vma in which page is mapped for determining reclaimability
694 *
695 * Place @page on the active or unevictable LRU list, depending on its
696 * evictability. Note that if the page is not evictable, it goes
697 * directly back onto it's zone's unevictable list, it does NOT use a
698 * per cpu pagevec.
699 */
lru_cache_add_active_or_unevictable(struct page * page,struct vm_area_struct * vma)700 void lru_cache_add_active_or_unevictable(struct page *page,
701 struct vm_area_struct *vma)
702 {
703 VM_BUG_ON_PAGE(PageLRU(page), page);
704
705 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
706 SetPageActive(page);
707 lru_cache_add(page);
708 return;
709 }
710
711 if (!TestSetPageMlocked(page)) {
712 /*
713 * We use the irq-unsafe __mod_zone_page_stat because this
714 * counter is not modified from interrupt context, and the pte
715 * lock is held(spinlock), which implies preemption disabled.
716 */
717 __mod_zone_page_state(page_zone(page), NR_MLOCK,
718 hpage_nr_pages(page));
719 count_vm_event(UNEVICTABLE_PGMLOCKED);
720 }
721 add_page_to_unevictable_list(page);
722 }
723
724 /*
725 * If the page can not be invalidated, it is moved to the
726 * inactive list to speed up its reclaim. It is moved to the
727 * head of the list, rather than the tail, to give the flusher
728 * threads some time to write it out, as this is much more
729 * effective than the single-page writeout from reclaim.
730 *
731 * If the page isn't page_mapped and dirty/writeback, the page
732 * could reclaim asap using PG_reclaim.
733 *
734 * 1. active, mapped page -> none
735 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
736 * 3. inactive, mapped page -> none
737 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
738 * 5. inactive, clean -> inactive, tail
739 * 6. Others -> none
740 *
741 * In 4, why it moves inactive's head, the VM expects the page would
742 * be write it out by flusher threads as this is much more effective
743 * than the single-page writeout from reclaim.
744 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)745 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
746 void *arg)
747 {
748 int lru, file;
749 bool active;
750
751 if (!PageLRU(page))
752 return;
753
754 if (PageUnevictable(page))
755 return;
756
757 /* Some processes are using the page */
758 if (page_mapped(page))
759 return;
760
761 active = PageActive(page);
762 file = page_is_file_cache(page);
763 lru = page_lru_base_type(page);
764
765 del_page_from_lru_list(page, lruvec, lru + active);
766 ClearPageActive(page);
767 ClearPageReferenced(page);
768 add_page_to_lru_list(page, lruvec, lru);
769
770 if (PageWriteback(page) || PageDirty(page)) {
771 /*
772 * PG_reclaim could be raced with end_page_writeback
773 * It can make readahead confusing. But race window
774 * is _really_ small and it's non-critical problem.
775 */
776 SetPageReclaim(page);
777 } else {
778 /*
779 * The page's writeback ends up during pagevec
780 * We moves tha page into tail of inactive.
781 */
782 list_move_tail(&page->lru, &lruvec->lists[lru]);
783 __count_vm_event(PGROTATED);
784 }
785
786 if (active)
787 __count_vm_event(PGDEACTIVATE);
788 update_page_reclaim_stat(lruvec, file, 0);
789 }
790
791 /*
792 * Drain pages out of the cpu's pagevecs.
793 * Either "cpu" is the current CPU, and preemption has already been
794 * disabled; or "cpu" is being hot-unplugged, and is already dead.
795 */
lru_add_drain_cpu(int cpu)796 void lru_add_drain_cpu(int cpu)
797 {
798 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
799
800 if (pagevec_count(pvec))
801 __pagevec_lru_add(pvec);
802
803 pvec = &per_cpu(lru_rotate_pvecs, cpu);
804 if (pagevec_count(pvec)) {
805 unsigned long flags;
806
807 /* No harm done if a racing interrupt already did this */
808 local_irq_save(flags);
809 pagevec_move_tail(pvec);
810 local_irq_restore(flags);
811 }
812
813 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
814 if (pagevec_count(pvec))
815 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
816
817 activate_page_drain(cpu);
818 }
819
820 /**
821 * deactivate_file_page - forcefully deactivate a file page
822 * @page: page to deactivate
823 *
824 * This function hints the VM that @page is a good reclaim candidate,
825 * for example if its invalidation fails due to the page being dirty
826 * or under writeback.
827 */
deactivate_file_page(struct page * page)828 void deactivate_file_page(struct page *page)
829 {
830 /*
831 * In a workload with many unevictable page such as mprotect,
832 * unevictable page deactivation for accelerating reclaim is pointless.
833 */
834 if (PageUnevictable(page))
835 return;
836
837 if (likely(get_page_unless_zero(page))) {
838 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
839
840 if (!pagevec_add(pvec, page) || PageCompound(page))
841 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
842 put_cpu_var(lru_deactivate_file_pvecs);
843 }
844 }
845
lru_add_drain(void)846 void lru_add_drain(void)
847 {
848 lru_add_drain_cpu(get_cpu());
849 put_cpu();
850 }
851
lru_add_drain_per_cpu(struct work_struct * dummy)852 static void lru_add_drain_per_cpu(struct work_struct *dummy)
853 {
854 lru_add_drain();
855 }
856
857 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
858
lru_add_drain_all(void)859 void lru_add_drain_all(void)
860 {
861 static DEFINE_MUTEX(lock);
862 static struct cpumask has_work;
863 int cpu;
864
865 mutex_lock(&lock);
866 get_online_cpus();
867 cpumask_clear(&has_work);
868
869 for_each_online_cpu(cpu) {
870 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
871
872 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
873 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
874 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
875 need_activate_page_drain(cpu)) {
876 INIT_WORK(work, lru_add_drain_per_cpu);
877 schedule_work_on(cpu, work);
878 cpumask_set_cpu(cpu, &has_work);
879 }
880 }
881
882 for_each_cpu(cpu, &has_work)
883 flush_work(&per_cpu(lru_add_drain_work, cpu));
884
885 put_online_cpus();
886 mutex_unlock(&lock);
887 }
888
889 /**
890 * release_pages - batched page_cache_release()
891 * @pages: array of pages to release
892 * @nr: number of pages
893 * @cold: whether the pages are cache cold
894 *
895 * Decrement the reference count on all the pages in @pages. If it
896 * fell to zero, remove the page from the LRU and free it.
897 */
release_pages(struct page ** pages,int nr,bool cold)898 void release_pages(struct page **pages, int nr, bool cold)
899 {
900 int i;
901 LIST_HEAD(pages_to_free);
902 struct zone *zone = NULL;
903 struct lruvec *lruvec;
904 unsigned long uninitialized_var(flags);
905 unsigned int uninitialized_var(lock_batch);
906
907 for (i = 0; i < nr; i++) {
908 struct page *page = pages[i];
909
910 if (unlikely(PageCompound(page))) {
911 if (zone) {
912 spin_unlock_irqrestore(&zone->lru_lock, flags);
913 zone = NULL;
914 }
915 put_compound_page(page);
916 continue;
917 }
918
919 /*
920 * Make sure the IRQ-safe lock-holding time does not get
921 * excessive with a continuous string of pages from the
922 * same zone. The lock is held only if zone != NULL.
923 */
924 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
925 spin_unlock_irqrestore(&zone->lru_lock, flags);
926 zone = NULL;
927 }
928
929 if (!put_page_testzero(page))
930 continue;
931
932 if (PageLRU(page)) {
933 struct zone *pagezone = page_zone(page);
934
935 if (pagezone != zone) {
936 if (zone)
937 spin_unlock_irqrestore(&zone->lru_lock,
938 flags);
939 lock_batch = 0;
940 zone = pagezone;
941 spin_lock_irqsave(&zone->lru_lock, flags);
942 }
943
944 lruvec = mem_cgroup_page_lruvec(page, zone);
945 VM_BUG_ON_PAGE(!PageLRU(page), page);
946 __ClearPageLRU(page);
947 del_page_from_lru_list(page, lruvec, page_off_lru(page));
948 }
949
950 /* Clear Active bit in case of parallel mark_page_accessed */
951 __ClearPageActive(page);
952
953 list_add(&page->lru, &pages_to_free);
954 }
955 if (zone)
956 spin_unlock_irqrestore(&zone->lru_lock, flags);
957
958 mem_cgroup_uncharge_list(&pages_to_free);
959 free_hot_cold_page_list(&pages_to_free, cold);
960 }
961 EXPORT_SYMBOL(release_pages);
962
963 /*
964 * The pages which we're about to release may be in the deferred lru-addition
965 * queues. That would prevent them from really being freed right now. That's
966 * OK from a correctness point of view but is inefficient - those pages may be
967 * cache-warm and we want to give them back to the page allocator ASAP.
968 *
969 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
970 * and __pagevec_lru_add_active() call release_pages() directly to avoid
971 * mutual recursion.
972 */
__pagevec_release(struct pagevec * pvec)973 void __pagevec_release(struct pagevec *pvec)
974 {
975 lru_add_drain();
976 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
977 pagevec_reinit(pvec);
978 }
979 EXPORT_SYMBOL(__pagevec_release);
980
981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
982 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)983 void lru_add_page_tail(struct page *page, struct page *page_tail,
984 struct lruvec *lruvec, struct list_head *list)
985 {
986 const int file = 0;
987
988 VM_BUG_ON_PAGE(!PageHead(page), page);
989 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
990 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
991 VM_BUG_ON(NR_CPUS != 1 &&
992 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
993
994 if (!list)
995 SetPageLRU(page_tail);
996
997 if (likely(PageLRU(page)))
998 list_add_tail(&page_tail->lru, &page->lru);
999 else if (list) {
1000 /* page reclaim is reclaiming a huge page */
1001 get_page(page_tail);
1002 list_add_tail(&page_tail->lru, list);
1003 } else {
1004 struct list_head *list_head;
1005 /*
1006 * Head page has not yet been counted, as an hpage,
1007 * so we must account for each subpage individually.
1008 *
1009 * Use the standard add function to put page_tail on the list,
1010 * but then correct its position so they all end up in order.
1011 */
1012 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1013 list_head = page_tail->lru.prev;
1014 list_move_tail(&page_tail->lru, list_head);
1015 }
1016
1017 if (!PageUnevictable(page))
1018 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1019 }
1020 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1021
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)1022 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1023 void *arg)
1024 {
1025 int file = page_is_file_cache(page);
1026 int active = PageActive(page);
1027 enum lru_list lru = page_lru(page);
1028
1029 VM_BUG_ON_PAGE(PageLRU(page), page);
1030
1031 SetPageLRU(page);
1032 add_page_to_lru_list(page, lruvec, lru);
1033 update_page_reclaim_stat(lruvec, file, active);
1034 trace_mm_lru_insertion(page, lru);
1035 }
1036
1037 /*
1038 * Add the passed pages to the LRU, then drop the caller's refcount
1039 * on them. Reinitialises the caller's pagevec.
1040 */
__pagevec_lru_add(struct pagevec * pvec)1041 void __pagevec_lru_add(struct pagevec *pvec)
1042 {
1043 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1044 }
1045 EXPORT_SYMBOL(__pagevec_lru_add);
1046
1047 /**
1048 * pagevec_lookup_entries - gang pagecache lookup
1049 * @pvec: Where the resulting entries are placed
1050 * @mapping: The address_space to search
1051 * @start: The starting entry index
1052 * @nr_entries: The maximum number of entries
1053 * @indices: The cache indices corresponding to the entries in @pvec
1054 *
1055 * pagevec_lookup_entries() will search for and return a group of up
1056 * to @nr_entries pages and shadow entries in the mapping. All
1057 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1058 * reference against actual pages in @pvec.
1059 *
1060 * The search returns a group of mapping-contiguous entries with
1061 * ascending indexes. There may be holes in the indices due to
1062 * not-present entries.
1063 *
1064 * pagevec_lookup_entries() returns the number of entries which were
1065 * found.
1066 */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages,pgoff_t * indices)1067 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1068 struct address_space *mapping,
1069 pgoff_t start, unsigned nr_pages,
1070 pgoff_t *indices)
1071 {
1072 pvec->nr = find_get_entries(mapping, start, nr_pages,
1073 pvec->pages, indices);
1074 return pagevec_count(pvec);
1075 }
1076
1077 /**
1078 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1079 * @pvec: The pagevec to prune
1080 *
1081 * pagevec_lookup_entries() fills both pages and exceptional radix
1082 * tree entries into the pagevec. This function prunes all
1083 * exceptionals from @pvec without leaving holes, so that it can be
1084 * passed on to page-only pagevec operations.
1085 */
pagevec_remove_exceptionals(struct pagevec * pvec)1086 void pagevec_remove_exceptionals(struct pagevec *pvec)
1087 {
1088 int i, j;
1089
1090 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1091 struct page *page = pvec->pages[i];
1092 if (!radix_tree_exceptional_entry(page))
1093 pvec->pages[j++] = page;
1094 }
1095 pvec->nr = j;
1096 }
1097
1098 /**
1099 * pagevec_lookup - gang pagecache lookup
1100 * @pvec: Where the resulting pages are placed
1101 * @mapping: The address_space to search
1102 * @start: The starting page index
1103 * @nr_pages: The maximum number of pages
1104 *
1105 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1106 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1107 * reference against the pages in @pvec.
1108 *
1109 * The search returns a group of mapping-contiguous pages with ascending
1110 * indexes. There may be holes in the indices due to not-present pages.
1111 *
1112 * pagevec_lookup() returns the number of pages which were found.
1113 */
pagevec_lookup(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages)1114 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1115 pgoff_t start, unsigned nr_pages)
1116 {
1117 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1118 return pagevec_count(pvec);
1119 }
1120 EXPORT_SYMBOL(pagevec_lookup);
1121
pagevec_lookup_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,int tag,unsigned nr_pages)1122 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1123 pgoff_t *index, int tag, unsigned nr_pages)
1124 {
1125 pvec->nr = find_get_pages_tag(mapping, index, tag,
1126 nr_pages, pvec->pages);
1127 return pagevec_count(pvec);
1128 }
1129 EXPORT_SYMBOL(pagevec_lookup_tag);
1130
1131 /*
1132 * Perform any setup for the swap system
1133 */
swap_setup(void)1134 void __init swap_setup(void)
1135 {
1136 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1137 #ifdef CONFIG_SWAP
1138 int i;
1139
1140 if (bdi_init(swapper_spaces[0].backing_dev_info))
1141 panic("Failed to init swap bdi");
1142 for (i = 0; i < MAX_SWAPFILES; i++) {
1143 spin_lock_init(&swapper_spaces[i].tree_lock);
1144 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1145 }
1146 #endif
1147
1148 /* Use a smaller cluster for small-memory machines */
1149 if (megs < 16)
1150 page_cluster = 2;
1151 else
1152 page_cluster = 3;
1153 /*
1154 * Right now other parts of the system means that we
1155 * _really_ don't want to cluster much more
1156 */
1157 }
1158