• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 static __initconst const char banner[] = KERN_INFO
68 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
69 
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76 
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 
85 static struct kmem_cache *rcv_cache __read_mostly;
86 
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90 
91 struct timer_list can_stattimer;   /* timer for statistics update */
92 struct s_stats    can_stats;       /* packet statistics */
93 struct s_pstats   can_pstats;      /* receive list statistics */
94 
95 /*
96  * af_can socket functions
97  */
98 
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 	struct sock *sk = sock->sk;
102 
103 	switch (cmd) {
104 
105 	case SIOCGSTAMP:
106 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 
108 	default:
109 		return -ENOIOCTLCMD;
110 	}
111 }
112 EXPORT_SYMBOL(can_ioctl);
113 
can_sock_destruct(struct sock * sk)114 static void can_sock_destruct(struct sock *sk)
115 {
116 	skb_queue_purge(&sk->sk_receive_queue);
117 }
118 
can_get_proto(int protocol)119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 	const struct can_proto *cp;
122 
123 	rcu_read_lock();
124 	cp = rcu_dereference(proto_tab[protocol]);
125 	if (cp && !try_module_get(cp->prot->owner))
126 		cp = NULL;
127 	rcu_read_unlock();
128 
129 	return cp;
130 }
131 
can_put_proto(const struct can_proto * cp)132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 	module_put(cp->prot->owner);
135 }
136 
can_create(struct net * net,struct socket * sock,int protocol,int kern)137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 		      int kern)
139 {
140 	struct sock *sk;
141 	const struct can_proto *cp;
142 	int err = 0;
143 
144 	sock->state = SS_UNCONNECTED;
145 
146 	if (protocol < 0 || protocol >= CAN_NPROTO)
147 		return -EINVAL;
148 
149 	if (!net_eq(net, &init_net))
150 		return -EAFNOSUPPORT;
151 
152 	cp = can_get_proto(protocol);
153 
154 #ifdef CONFIG_MODULES
155 	if (!cp) {
156 		/* try to load protocol module if kernel is modular */
157 
158 		err = request_module("can-proto-%d", protocol);
159 
160 		/*
161 		 * In case of error we only print a message but don't
162 		 * return the error code immediately.  Below we will
163 		 * return -EPROTONOSUPPORT
164 		 */
165 		if (err)
166 			printk_ratelimited(KERN_ERR "can: request_module "
167 			       "(can-proto-%d) failed.\n", protocol);
168 
169 		cp = can_get_proto(protocol);
170 	}
171 #endif
172 
173 	/* check for available protocol and correct usage */
174 
175 	if (!cp)
176 		return -EPROTONOSUPPORT;
177 
178 	if (cp->type != sock->type) {
179 		err = -EPROTOTYPE;
180 		goto errout;
181 	}
182 
183 	sock->ops = cp->ops;
184 
185 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 	if (!sk) {
187 		err = -ENOMEM;
188 		goto errout;
189 	}
190 
191 	sock_init_data(sock, sk);
192 	sk->sk_destruct = can_sock_destruct;
193 
194 	if (sk->sk_prot->init)
195 		err = sk->sk_prot->init(sk);
196 
197 	if (err) {
198 		/* release sk on errors */
199 		sock_orphan(sk);
200 		sock_put(sk);
201 	}
202 
203  errout:
204 	can_put_proto(cp);
205 	return err;
206 }
207 
208 /*
209  * af_can tx path
210  */
211 
212 /**
213  * can_send - transmit a CAN frame (optional with local loopback)
214  * @skb: pointer to socket buffer with CAN frame in data section
215  * @loop: loopback for listeners on local CAN sockets (recommended default!)
216  *
217  * Due to the loopback this routine must not be called from hardirq context.
218  *
219  * Return:
220  *  0 on success
221  *  -ENETDOWN when the selected interface is down
222  *  -ENOBUFS on full driver queue (see net_xmit_errno())
223  *  -ENOMEM when local loopback failed at calling skb_clone()
224  *  -EPERM when trying to send on a non-CAN interface
225  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226  *  -EINVAL when the skb->data does not contain a valid CAN frame
227  */
can_send(struct sk_buff * skb,int loop)228 int can_send(struct sk_buff *skb, int loop)
229 {
230 	struct sk_buff *newskb = NULL;
231 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 	int err = -EINVAL;
233 
234 	if (skb->len == CAN_MTU) {
235 		skb->protocol = htons(ETH_P_CAN);
236 		if (unlikely(cfd->len > CAN_MAX_DLEN))
237 			goto inval_skb;
238 	} else if (skb->len == CANFD_MTU) {
239 		skb->protocol = htons(ETH_P_CANFD);
240 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 			goto inval_skb;
242 	} else
243 		goto inval_skb;
244 
245 	/*
246 	 * Make sure the CAN frame can pass the selected CAN netdevice.
247 	 * As structs can_frame and canfd_frame are similar, we can provide
248 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 	 */
250 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 		err = -EMSGSIZE;
252 		goto inval_skb;
253 	}
254 
255 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 		err = -EPERM;
257 		goto inval_skb;
258 	}
259 
260 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 		err = -ENETDOWN;
262 		goto inval_skb;
263 	}
264 
265 	skb->ip_summed = CHECKSUM_UNNECESSARY;
266 
267 	skb_reset_mac_header(skb);
268 	skb_reset_network_header(skb);
269 	skb_reset_transport_header(skb);
270 
271 	if (loop) {
272 		/* local loopback of sent CAN frames */
273 
274 		/* indication for the CAN driver: do loopback */
275 		skb->pkt_type = PACKET_LOOPBACK;
276 
277 		/*
278 		 * The reference to the originating sock may be required
279 		 * by the receiving socket to check whether the frame is
280 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
281 		 * Therefore we have to ensure that skb->sk remains the
282 		 * reference to the originating sock by restoring skb->sk
283 		 * after each skb_clone() or skb_orphan() usage.
284 		 */
285 
286 		if (!(skb->dev->flags & IFF_ECHO)) {
287 			/*
288 			 * If the interface is not capable to do loopback
289 			 * itself, we do it here.
290 			 */
291 			newskb = skb_clone(skb, GFP_ATOMIC);
292 			if (!newskb) {
293 				kfree_skb(skb);
294 				return -ENOMEM;
295 			}
296 
297 			can_skb_set_owner(newskb, skb->sk);
298 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
299 			newskb->pkt_type = PACKET_BROADCAST;
300 		}
301 	} else {
302 		/* indication for the CAN driver: no loopback required */
303 		skb->pkt_type = PACKET_HOST;
304 	}
305 
306 	/* send to netdevice */
307 	err = dev_queue_xmit(skb);
308 	if (err > 0)
309 		err = net_xmit_errno(err);
310 
311 	if (err) {
312 		kfree_skb(newskb);
313 		return err;
314 	}
315 
316 	if (newskb)
317 		netif_rx_ni(newskb);
318 
319 	/* update statistics */
320 	can_stats.tx_frames++;
321 	can_stats.tx_frames_delta++;
322 
323 	return 0;
324 
325 inval_skb:
326 	kfree_skb(skb);
327 	return err;
328 }
329 EXPORT_SYMBOL(can_send);
330 
331 /*
332  * af_can rx path
333  */
334 
find_dev_rcv_lists(struct net_device * dev)335 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
336 {
337 	if (!dev)
338 		return &can_rx_alldev_list;
339 	else
340 		return (struct dev_rcv_lists *)dev->ml_priv;
341 }
342 
343 /**
344  * effhash - hash function for 29 bit CAN identifier reduction
345  * @can_id: 29 bit CAN identifier
346  *
347  * Description:
348  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
349  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
350  *  (see CAN_EFF_RCV_HASH_BITS definition)
351  *
352  * Return:
353  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
354  */
effhash(canid_t can_id)355 static unsigned int effhash(canid_t can_id)
356 {
357 	unsigned int hash;
358 
359 	hash = can_id;
360 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
361 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
362 
363 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
364 }
365 
366 /**
367  * find_rcv_list - determine optimal filterlist inside device filter struct
368  * @can_id: pointer to CAN identifier of a given can_filter
369  * @mask: pointer to CAN mask of a given can_filter
370  * @d: pointer to the device filter struct
371  *
372  * Description:
373  *  Returns the optimal filterlist to reduce the filter handling in the
374  *  receive path. This function is called by service functions that need
375  *  to register or unregister a can_filter in the filter lists.
376  *
377  *  A filter matches in general, when
378  *
379  *          <received_can_id> & mask == can_id & mask
380  *
381  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
382  *  relevant bits for the filter.
383  *
384  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
385  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
386  *  frames there is a special filterlist and a special rx path filter handling.
387  *
388  * Return:
389  *  Pointer to optimal filterlist for the given can_id/mask pair.
390  *  Constistency checked mask.
391  *  Reduced can_id to have a preprocessed filter compare value.
392  */
find_rcv_list(canid_t * can_id,canid_t * mask,struct dev_rcv_lists * d)393 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
394 					struct dev_rcv_lists *d)
395 {
396 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
397 
398 	/* filter for error message frames in extra filterlist */
399 	if (*mask & CAN_ERR_FLAG) {
400 		/* clear CAN_ERR_FLAG in filter entry */
401 		*mask &= CAN_ERR_MASK;
402 		return &d->rx[RX_ERR];
403 	}
404 
405 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
406 
407 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
408 
409 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
410 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
411 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
412 
413 	/* reduce condition testing at receive time */
414 	*can_id &= *mask;
415 
416 	/* inverse can_id/can_mask filter */
417 	if (inv)
418 		return &d->rx[RX_INV];
419 
420 	/* mask == 0 => no condition testing at receive time */
421 	if (!(*mask))
422 		return &d->rx[RX_ALL];
423 
424 	/* extra filterlists for the subscription of a single non-RTR can_id */
425 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
426 	    !(*can_id & CAN_RTR_FLAG)) {
427 
428 		if (*can_id & CAN_EFF_FLAG) {
429 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
430 				return &d->rx_eff[effhash(*can_id)];
431 		} else {
432 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
433 				return &d->rx_sff[*can_id];
434 		}
435 	}
436 
437 	/* default: filter via can_id/can_mask */
438 	return &d->rx[RX_FIL];
439 }
440 
441 /**
442  * can_rx_register - subscribe CAN frames from a specific interface
443  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
444  * @can_id: CAN identifier (see description)
445  * @mask: CAN mask (see description)
446  * @func: callback function on filter match
447  * @data: returned parameter for callback function
448  * @ident: string for calling module identification
449  * @sk: socket pointer (might be NULL)
450  *
451  * Description:
452  *  Invokes the callback function with the received sk_buff and the given
453  *  parameter 'data' on a matching receive filter. A filter matches, when
454  *
455  *          <received_can_id> & mask == can_id & mask
456  *
457  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
458  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
459  *
460  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
461  *  the callback function is running. The callback function must *not* free
462  *  the given sk_buff while processing it's task. When the given sk_buff is
463  *  needed after the end of the callback function it must be cloned inside
464  *  the callback function with skb_clone().
465  *
466  * Return:
467  *  0 on success
468  *  -ENOMEM on missing cache mem to create subscription entry
469  *  -ENODEV unknown device
470  */
can_rx_register(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident,struct sock * sk)471 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
472 		    void (*func)(struct sk_buff *, void *), void *data,
473 		    char *ident, struct sock *sk)
474 {
475 	struct receiver *r;
476 	struct hlist_head *rl;
477 	struct dev_rcv_lists *d;
478 	int err = 0;
479 
480 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
481 
482 	if (dev && dev->type != ARPHRD_CAN)
483 		return -ENODEV;
484 
485 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
486 	if (!r)
487 		return -ENOMEM;
488 
489 	spin_lock(&can_rcvlists_lock);
490 
491 	d = find_dev_rcv_lists(dev);
492 	if (d) {
493 		rl = find_rcv_list(&can_id, &mask, d);
494 
495 		r->can_id  = can_id;
496 		r->mask    = mask;
497 		r->matches = 0;
498 		r->func    = func;
499 		r->data    = data;
500 		r->ident   = ident;
501 		r->sk      = sk;
502 
503 		hlist_add_head_rcu(&r->list, rl);
504 		d->entries++;
505 
506 		can_pstats.rcv_entries++;
507 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
508 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
509 	} else {
510 		kmem_cache_free(rcv_cache, r);
511 		err = -ENODEV;
512 	}
513 
514 	spin_unlock(&can_rcvlists_lock);
515 
516 	return err;
517 }
518 EXPORT_SYMBOL(can_rx_register);
519 
520 /*
521  * can_rx_delete_receiver - rcu callback for single receiver entry removal
522  */
can_rx_delete_receiver(struct rcu_head * rp)523 static void can_rx_delete_receiver(struct rcu_head *rp)
524 {
525 	struct receiver *r = container_of(rp, struct receiver, rcu);
526 	struct sock *sk = r->sk;
527 
528 	kmem_cache_free(rcv_cache, r);
529 	if (sk)
530 		sock_put(sk);
531 }
532 
533 /**
534  * can_rx_unregister - unsubscribe CAN frames from a specific interface
535  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
536  * @can_id: CAN identifier
537  * @mask: CAN mask
538  * @func: callback function on filter match
539  * @data: returned parameter for callback function
540  *
541  * Description:
542  *  Removes subscription entry depending on given (subscription) values.
543  */
can_rx_unregister(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)544 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
545 		       void (*func)(struct sk_buff *, void *), void *data)
546 {
547 	struct receiver *r = NULL;
548 	struct hlist_head *rl;
549 	struct dev_rcv_lists *d;
550 
551 	if (dev && dev->type != ARPHRD_CAN)
552 		return;
553 
554 	spin_lock(&can_rcvlists_lock);
555 
556 	d = find_dev_rcv_lists(dev);
557 	if (!d) {
558 		pr_err("BUG: receive list not found for "
559 		       "dev %s, id %03X, mask %03X\n",
560 		       DNAME(dev), can_id, mask);
561 		goto out;
562 	}
563 
564 	rl = find_rcv_list(&can_id, &mask, d);
565 
566 	/*
567 	 * Search the receiver list for the item to delete.  This should
568 	 * exist, since no receiver may be unregistered that hasn't
569 	 * been registered before.
570 	 */
571 
572 	hlist_for_each_entry_rcu(r, rl, list) {
573 		if (r->can_id == can_id && r->mask == mask &&
574 		    r->func == func && r->data == data)
575 			break;
576 	}
577 
578 	/*
579 	 * Check for bugs in CAN protocol implementations using af_can.c:
580 	 * 'r' will be NULL if no matching list item was found for removal.
581 	 */
582 
583 	if (!r) {
584 		WARN(1, "BUG: receive list entry not found for dev %s, "
585 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
586 		goto out;
587 	}
588 
589 	hlist_del_rcu(&r->list);
590 	d->entries--;
591 
592 	if (can_pstats.rcv_entries > 0)
593 		can_pstats.rcv_entries--;
594 
595 	/* remove device structure requested by NETDEV_UNREGISTER */
596 	if (d->remove_on_zero_entries && !d->entries) {
597 		kfree(d);
598 		dev->ml_priv = NULL;
599 	}
600 
601  out:
602 	spin_unlock(&can_rcvlists_lock);
603 
604 	/* schedule the receiver item for deletion */
605 	if (r) {
606 		if (r->sk)
607 			sock_hold(r->sk);
608 		call_rcu(&r->rcu, can_rx_delete_receiver);
609 	}
610 }
611 EXPORT_SYMBOL(can_rx_unregister);
612 
deliver(struct sk_buff * skb,struct receiver * r)613 static inline void deliver(struct sk_buff *skb, struct receiver *r)
614 {
615 	r->func(skb, r->data);
616 	r->matches++;
617 }
618 
can_rcv_filter(struct dev_rcv_lists * d,struct sk_buff * skb)619 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
620 {
621 	struct receiver *r;
622 	int matches = 0;
623 	struct can_frame *cf = (struct can_frame *)skb->data;
624 	canid_t can_id = cf->can_id;
625 
626 	if (d->entries == 0)
627 		return 0;
628 
629 	if (can_id & CAN_ERR_FLAG) {
630 		/* check for error message frame entries only */
631 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
632 			if (can_id & r->mask) {
633 				deliver(skb, r);
634 				matches++;
635 			}
636 		}
637 		return matches;
638 	}
639 
640 	/* check for unfiltered entries */
641 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
642 		deliver(skb, r);
643 		matches++;
644 	}
645 
646 	/* check for can_id/mask entries */
647 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
648 		if ((can_id & r->mask) == r->can_id) {
649 			deliver(skb, r);
650 			matches++;
651 		}
652 	}
653 
654 	/* check for inverted can_id/mask entries */
655 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
656 		if ((can_id & r->mask) != r->can_id) {
657 			deliver(skb, r);
658 			matches++;
659 		}
660 	}
661 
662 	/* check filterlists for single non-RTR can_ids */
663 	if (can_id & CAN_RTR_FLAG)
664 		return matches;
665 
666 	if (can_id & CAN_EFF_FLAG) {
667 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
668 			if (r->can_id == can_id) {
669 				deliver(skb, r);
670 				matches++;
671 			}
672 		}
673 	} else {
674 		can_id &= CAN_SFF_MASK;
675 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
676 			deliver(skb, r);
677 			matches++;
678 		}
679 	}
680 
681 	return matches;
682 }
683 
can_receive(struct sk_buff * skb,struct net_device * dev)684 static void can_receive(struct sk_buff *skb, struct net_device *dev)
685 {
686 	struct dev_rcv_lists *d;
687 	int matches;
688 
689 	/* update statistics */
690 	can_stats.rx_frames++;
691 	can_stats.rx_frames_delta++;
692 
693 	rcu_read_lock();
694 
695 	/* deliver the packet to sockets listening on all devices */
696 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
697 
698 	/* find receive list for this device */
699 	d = find_dev_rcv_lists(dev);
700 	if (d)
701 		matches += can_rcv_filter(d, skb);
702 
703 	rcu_read_unlock();
704 
705 	/* consume the skbuff allocated by the netdevice driver */
706 	consume_skb(skb);
707 
708 	if (matches > 0) {
709 		can_stats.matches++;
710 		can_stats.matches_delta++;
711 	}
712 }
713 
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)714 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
715 		   struct packet_type *pt, struct net_device *orig_dev)
716 {
717 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
718 
719 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
720 		goto drop;
721 
722 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
723 		     cfd->len > CAN_MAX_DLEN)) {
724 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
725 			     dev->type, skb->len, cfd->len);
726 		goto drop;
727 	}
728 
729 	can_receive(skb, dev);
730 	return NET_RX_SUCCESS;
731 
732 drop:
733 	kfree_skb(skb);
734 	return NET_RX_DROP;
735 }
736 
canfd_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)737 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
738 		   struct packet_type *pt, struct net_device *orig_dev)
739 {
740 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
741 
742 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
743 		goto drop;
744 
745 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
746 		     cfd->len > CANFD_MAX_DLEN)) {
747 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
748 			     dev->type, skb->len, cfd->len);
749 		goto drop;
750 	}
751 
752 	can_receive(skb, dev);
753 	return NET_RX_SUCCESS;
754 
755 drop:
756 	kfree_skb(skb);
757 	return NET_RX_DROP;
758 }
759 
760 /*
761  * af_can protocol functions
762  */
763 
764 /**
765  * can_proto_register - register CAN transport protocol
766  * @cp: pointer to CAN protocol structure
767  *
768  * Return:
769  *  0 on success
770  *  -EINVAL invalid (out of range) protocol number
771  *  -EBUSY  protocol already in use
772  *  -ENOBUF if proto_register() fails
773  */
can_proto_register(const struct can_proto * cp)774 int can_proto_register(const struct can_proto *cp)
775 {
776 	int proto = cp->protocol;
777 	int err = 0;
778 
779 	if (proto < 0 || proto >= CAN_NPROTO) {
780 		pr_err("can: protocol number %d out of range\n", proto);
781 		return -EINVAL;
782 	}
783 
784 	err = proto_register(cp->prot, 0);
785 	if (err < 0)
786 		return err;
787 
788 	mutex_lock(&proto_tab_lock);
789 
790 	if (proto_tab[proto]) {
791 		pr_err("can: protocol %d already registered\n", proto);
792 		err = -EBUSY;
793 	} else
794 		RCU_INIT_POINTER(proto_tab[proto], cp);
795 
796 	mutex_unlock(&proto_tab_lock);
797 
798 	if (err < 0)
799 		proto_unregister(cp->prot);
800 
801 	return err;
802 }
803 EXPORT_SYMBOL(can_proto_register);
804 
805 /**
806  * can_proto_unregister - unregister CAN transport protocol
807  * @cp: pointer to CAN protocol structure
808  */
can_proto_unregister(const struct can_proto * cp)809 void can_proto_unregister(const struct can_proto *cp)
810 {
811 	int proto = cp->protocol;
812 
813 	mutex_lock(&proto_tab_lock);
814 	BUG_ON(proto_tab[proto] != cp);
815 	RCU_INIT_POINTER(proto_tab[proto], NULL);
816 	mutex_unlock(&proto_tab_lock);
817 
818 	synchronize_rcu();
819 
820 	proto_unregister(cp->prot);
821 }
822 EXPORT_SYMBOL(can_proto_unregister);
823 
824 /*
825  * af_can notifier to create/remove CAN netdevice specific structs
826  */
can_notifier(struct notifier_block * nb,unsigned long msg,void * ptr)827 static int can_notifier(struct notifier_block *nb, unsigned long msg,
828 			void *ptr)
829 {
830 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
831 	struct dev_rcv_lists *d;
832 
833 	if (!net_eq(dev_net(dev), &init_net))
834 		return NOTIFY_DONE;
835 
836 	if (dev->type != ARPHRD_CAN)
837 		return NOTIFY_DONE;
838 
839 	switch (msg) {
840 
841 	case NETDEV_REGISTER:
842 
843 		/* create new dev_rcv_lists for this device */
844 		d = kzalloc(sizeof(*d), GFP_KERNEL);
845 		if (!d)
846 			return NOTIFY_DONE;
847 		BUG_ON(dev->ml_priv);
848 		dev->ml_priv = d;
849 
850 		break;
851 
852 	case NETDEV_UNREGISTER:
853 		spin_lock(&can_rcvlists_lock);
854 
855 		d = dev->ml_priv;
856 		if (d) {
857 			if (d->entries)
858 				d->remove_on_zero_entries = 1;
859 			else {
860 				kfree(d);
861 				dev->ml_priv = NULL;
862 			}
863 		} else
864 			pr_err("can: notifier: receive list not found for dev "
865 			       "%s\n", dev->name);
866 
867 		spin_unlock(&can_rcvlists_lock);
868 
869 		break;
870 	}
871 
872 	return NOTIFY_DONE;
873 }
874 
875 /*
876  * af_can module init/exit functions
877  */
878 
879 static struct packet_type can_packet __read_mostly = {
880 	.type = cpu_to_be16(ETH_P_CAN),
881 	.func = can_rcv,
882 };
883 
884 static struct packet_type canfd_packet __read_mostly = {
885 	.type = cpu_to_be16(ETH_P_CANFD),
886 	.func = canfd_rcv,
887 };
888 
889 static const struct net_proto_family can_family_ops = {
890 	.family = PF_CAN,
891 	.create = can_create,
892 	.owner  = THIS_MODULE,
893 };
894 
895 /* notifier block for netdevice event */
896 static struct notifier_block can_netdev_notifier __read_mostly = {
897 	.notifier_call = can_notifier,
898 };
899 
can_init(void)900 static __init int can_init(void)
901 {
902 	/* check for correct padding to be able to use the structs similarly */
903 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
904 		     offsetof(struct canfd_frame, len) ||
905 		     offsetof(struct can_frame, data) !=
906 		     offsetof(struct canfd_frame, data));
907 
908 	printk(banner);
909 
910 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
911 
912 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
913 				      0, 0, NULL);
914 	if (!rcv_cache)
915 		return -ENOMEM;
916 
917 	if (stats_timer) {
918 		/* the statistics are updated every second (timer triggered) */
919 		setup_timer(&can_stattimer, can_stat_update, 0);
920 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
921 	} else
922 		can_stattimer.function = NULL;
923 
924 	can_init_proc();
925 
926 	/* protocol register */
927 	sock_register(&can_family_ops);
928 	register_netdevice_notifier(&can_netdev_notifier);
929 	dev_add_pack(&can_packet);
930 	dev_add_pack(&canfd_packet);
931 
932 	return 0;
933 }
934 
can_exit(void)935 static __exit void can_exit(void)
936 {
937 	struct net_device *dev;
938 
939 	if (stats_timer)
940 		del_timer_sync(&can_stattimer);
941 
942 	can_remove_proc();
943 
944 	/* protocol unregister */
945 	dev_remove_pack(&canfd_packet);
946 	dev_remove_pack(&can_packet);
947 	unregister_netdevice_notifier(&can_netdev_notifier);
948 	sock_unregister(PF_CAN);
949 
950 	/* remove created dev_rcv_lists from still registered CAN devices */
951 	rcu_read_lock();
952 	for_each_netdev_rcu(&init_net, dev) {
953 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
954 
955 			struct dev_rcv_lists *d = dev->ml_priv;
956 
957 			BUG_ON(d->entries);
958 			kfree(d);
959 			dev->ml_priv = NULL;
960 		}
961 	}
962 	rcu_read_unlock();
963 
964 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
965 
966 	kmem_cache_destroy(rcv_cache);
967 }
968 
969 module_init(can_init);
970 module_exit(can_exit);
971