• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 
25 /*
26  *	Our network namespace constructor/destructor lists
27  */
28 
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 struct net init_net = {
37 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40 
41 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
42 
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44 
net_alloc_generic(void)45 static struct net_generic *net_alloc_generic(void)
46 {
47 	struct net_generic *ng;
48 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49 
50 	ng = kzalloc(generic_size, GFP_KERNEL);
51 	if (ng)
52 		ng->len = max_gen_ptrs;
53 
54 	return ng;
55 }
56 
net_assign_generic(struct net * net,int id,void * data)57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 	struct net_generic *ng, *old_ng;
60 
61 	BUG_ON(!mutex_is_locked(&net_mutex));
62 	BUG_ON(id == 0);
63 
64 	old_ng = rcu_dereference_protected(net->gen,
65 					   lockdep_is_held(&net_mutex));
66 	ng = old_ng;
67 	if (old_ng->len >= id)
68 		goto assign;
69 
70 	ng = net_alloc_generic();
71 	if (ng == NULL)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Some synchronisation notes:
76 	 *
77 	 * The net_generic explores the net->gen array inside rcu
78 	 * read section. Besides once set the net->gen->ptr[x]
79 	 * pointer never changes (see rules in netns/generic.h).
80 	 *
81 	 * That said, we simply duplicate this array and schedule
82 	 * the old copy for kfree after a grace period.
83 	 */
84 
85 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86 
87 	rcu_assign_pointer(net->gen, ng);
88 	kfree_rcu(old_ng, rcu);
89 assign:
90 	ng->ptr[id - 1] = data;
91 	return 0;
92 }
93 
ops_init(const struct pernet_operations * ops,struct net * net)94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 	int err = -ENOMEM;
97 	void *data = NULL;
98 
99 	if (ops->id && ops->size) {
100 		data = kzalloc(ops->size, GFP_KERNEL);
101 		if (!data)
102 			goto out;
103 
104 		err = net_assign_generic(net, *ops->id, data);
105 		if (err)
106 			goto cleanup;
107 	}
108 	err = 0;
109 	if (ops->init)
110 		err = ops->init(net);
111 	if (!err)
112 		return 0;
113 
114 cleanup:
115 	kfree(data);
116 
117 out:
118 	return err;
119 }
120 
ops_free(const struct pernet_operations * ops,struct net * net)121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 	if (ops->id && ops->size) {
124 		int id = *ops->id;
125 		kfree(net_generic(net, id));
126 	}
127 }
128 
ops_exit_list(const struct pernet_operations * ops,struct list_head * net_exit_list)129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
ops_free_list(const struct pernet_operations * ops,struct list_head * net_exit_list)141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
alloc_netid(struct net * net,struct net * peer,int reqid)151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	ASSERT_RTNL();
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
net_eq_idr(int id,void * net,void * peer)171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
__peernet2id(struct net * net,struct net * peer,bool alloc)178 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
179 {
180 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
181 
182 	ASSERT_RTNL();
183 
184 	/* Magic value for id 0. */
185 	if (id == NET_ID_ZERO)
186 		return 0;
187 	if (id > 0)
188 		return id;
189 
190 	if (alloc)
191 		return alloc_netid(net, peer, -1);
192 
193 	return -ENOENT;
194 }
195 
196 /* This function returns the id of a peer netns. If no id is assigned, one will
197  * be allocated and returned.
198  */
peernet2id(struct net * net,struct net * peer)199 int peernet2id(struct net *net, struct net *peer)
200 {
201 	int id = __peernet2id(net, peer, true);
202 
203 	return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
204 }
205 
get_net_ns_by_id(struct net * net,int id)206 struct net *get_net_ns_by_id(struct net *net, int id)
207 {
208 	struct net *peer;
209 
210 	if (id < 0)
211 		return NULL;
212 
213 	rcu_read_lock();
214 	peer = idr_find(&net->netns_ids, id);
215 	if (peer)
216 		get_net(peer);
217 	rcu_read_unlock();
218 
219 	return peer;
220 }
221 
222 /*
223  * setup_net runs the initializers for the network namespace object.
224  */
setup_net(struct net * net,struct user_namespace * user_ns)225 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
226 {
227 	/* Must be called with net_mutex held */
228 	const struct pernet_operations *ops, *saved_ops;
229 	int error = 0;
230 	LIST_HEAD(net_exit_list);
231 
232 	atomic_set(&net->count, 1);
233 	atomic_set(&net->passive, 1);
234 	net->dev_base_seq = 1;
235 	net->user_ns = user_ns;
236 	idr_init(&net->netns_ids);
237 
238 #ifdef NETNS_REFCNT_DEBUG
239 	atomic_set(&net->use_count, 0);
240 #endif
241 
242 	list_for_each_entry(ops, &pernet_list, list) {
243 		error = ops_init(ops, net);
244 		if (error < 0)
245 			goto out_undo;
246 	}
247 out:
248 	return error;
249 
250 out_undo:
251 	/* Walk through the list backwards calling the exit functions
252 	 * for the pernet modules whose init functions did not fail.
253 	 */
254 	list_add(&net->exit_list, &net_exit_list);
255 	saved_ops = ops;
256 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
257 		ops_exit_list(ops, &net_exit_list);
258 
259 	ops = saved_ops;
260 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
261 		ops_free_list(ops, &net_exit_list);
262 
263 	rcu_barrier();
264 	goto out;
265 }
266 
267 
268 #ifdef CONFIG_NET_NS
269 static struct kmem_cache *net_cachep;
270 static struct workqueue_struct *netns_wq;
271 
net_alloc(void)272 static struct net *net_alloc(void)
273 {
274 	struct net *net = NULL;
275 	struct net_generic *ng;
276 
277 	ng = net_alloc_generic();
278 	if (!ng)
279 		goto out;
280 
281 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
282 	if (!net)
283 		goto out_free;
284 
285 	rcu_assign_pointer(net->gen, ng);
286 out:
287 	return net;
288 
289 out_free:
290 	kfree(ng);
291 	goto out;
292 }
293 
net_free(struct net * net)294 static void net_free(struct net *net)
295 {
296 #ifdef NETNS_REFCNT_DEBUG
297 	if (unlikely(atomic_read(&net->use_count) != 0)) {
298 		pr_emerg("network namespace not free! Usage: %d\n",
299 			 atomic_read(&net->use_count));
300 		return;
301 	}
302 #endif
303 	kfree(rcu_access_pointer(net->gen));
304 	kmem_cache_free(net_cachep, net);
305 }
306 
net_drop_ns(void * p)307 void net_drop_ns(void *p)
308 {
309 	struct net *ns = p;
310 	if (ns && atomic_dec_and_test(&ns->passive))
311 		net_free(ns);
312 }
313 
copy_net_ns(unsigned long flags,struct user_namespace * user_ns,struct net * old_net)314 struct net *copy_net_ns(unsigned long flags,
315 			struct user_namespace *user_ns, struct net *old_net)
316 {
317 	struct net *net;
318 	int rv;
319 
320 	if (!(flags & CLONE_NEWNET))
321 		return get_net(old_net);
322 
323 	net = net_alloc();
324 	if (!net)
325 		return ERR_PTR(-ENOMEM);
326 
327 	get_user_ns(user_ns);
328 
329 	mutex_lock(&net_mutex);
330 	rv = setup_net(net, user_ns);
331 	if (rv == 0) {
332 		rtnl_lock();
333 		list_add_tail_rcu(&net->list, &net_namespace_list);
334 		rtnl_unlock();
335 	}
336 	mutex_unlock(&net_mutex);
337 	if (rv < 0) {
338 		put_user_ns(user_ns);
339 		net_drop_ns(net);
340 		return ERR_PTR(rv);
341 	}
342 	return net;
343 }
344 
345 static DEFINE_SPINLOCK(cleanup_list_lock);
346 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
347 
cleanup_net(struct work_struct * work)348 static void cleanup_net(struct work_struct *work)
349 {
350 	const struct pernet_operations *ops;
351 	struct net *net, *tmp;
352 	struct list_head net_kill_list;
353 	LIST_HEAD(net_exit_list);
354 
355 	/* Atomically snapshot the list of namespaces to cleanup */
356 	spin_lock_irq(&cleanup_list_lock);
357 	list_replace_init(&cleanup_list, &net_kill_list);
358 	spin_unlock_irq(&cleanup_list_lock);
359 
360 	mutex_lock(&net_mutex);
361 
362 	/* Don't let anyone else find us. */
363 	rtnl_lock();
364 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
365 		list_del_rcu(&net->list);
366 		list_add_tail(&net->exit_list, &net_exit_list);
367 		for_each_net(tmp) {
368 			int id = __peernet2id(tmp, net, false);
369 
370 			if (id >= 0)
371 				idr_remove(&tmp->netns_ids, id);
372 		}
373 		idr_destroy(&net->netns_ids);
374 
375 	}
376 	rtnl_unlock();
377 
378 	/*
379 	 * Another CPU might be rcu-iterating the list, wait for it.
380 	 * This needs to be before calling the exit() notifiers, so
381 	 * the rcu_barrier() below isn't sufficient alone.
382 	 */
383 	synchronize_rcu();
384 
385 	/* Run all of the network namespace exit methods */
386 	list_for_each_entry_reverse(ops, &pernet_list, list)
387 		ops_exit_list(ops, &net_exit_list);
388 
389 	/* Free the net generic variables */
390 	list_for_each_entry_reverse(ops, &pernet_list, list)
391 		ops_free_list(ops, &net_exit_list);
392 
393 	mutex_unlock(&net_mutex);
394 
395 	/* Ensure there are no outstanding rcu callbacks using this
396 	 * network namespace.
397 	 */
398 	rcu_barrier();
399 
400 	/* Finally it is safe to free my network namespace structure */
401 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
402 		list_del_init(&net->exit_list);
403 		put_user_ns(net->user_ns);
404 		net_drop_ns(net);
405 	}
406 }
407 static DECLARE_WORK(net_cleanup_work, cleanup_net);
408 
__put_net(struct net * net)409 void __put_net(struct net *net)
410 {
411 	/* Cleanup the network namespace in process context */
412 	unsigned long flags;
413 
414 	spin_lock_irqsave(&cleanup_list_lock, flags);
415 	list_add(&net->cleanup_list, &cleanup_list);
416 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
417 
418 	queue_work(netns_wq, &net_cleanup_work);
419 }
420 EXPORT_SYMBOL_GPL(__put_net);
421 
get_net_ns_by_fd(int fd)422 struct net *get_net_ns_by_fd(int fd)
423 {
424 	struct proc_ns *ei;
425 	struct file *file;
426 	struct net *net;
427 
428 	file = proc_ns_fget(fd);
429 	if (IS_ERR(file))
430 		return ERR_CAST(file);
431 
432 	ei = get_proc_ns(file_inode(file));
433 	if (ei->ns_ops == &netns_operations)
434 		net = get_net(ei->ns);
435 	else
436 		net = ERR_PTR(-EINVAL);
437 
438 	fput(file);
439 	return net;
440 }
441 
442 #else
get_net_ns_by_fd(int fd)443 struct net *get_net_ns_by_fd(int fd)
444 {
445 	return ERR_PTR(-EINVAL);
446 }
447 #endif
448 
get_net_ns_by_pid(pid_t pid)449 struct net *get_net_ns_by_pid(pid_t pid)
450 {
451 	struct task_struct *tsk;
452 	struct net *net;
453 
454 	/* Lookup the network namespace */
455 	net = ERR_PTR(-ESRCH);
456 	rcu_read_lock();
457 	tsk = find_task_by_vpid(pid);
458 	if (tsk) {
459 		struct nsproxy *nsproxy;
460 		task_lock(tsk);
461 		nsproxy = tsk->nsproxy;
462 		if (nsproxy)
463 			net = get_net(nsproxy->net_ns);
464 		task_unlock(tsk);
465 	}
466 	rcu_read_unlock();
467 	return net;
468 }
469 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
470 
net_ns_net_init(struct net * net)471 static __net_init int net_ns_net_init(struct net *net)
472 {
473 	return proc_alloc_inum(&net->proc_inum);
474 }
475 
net_ns_net_exit(struct net * net)476 static __net_exit void net_ns_net_exit(struct net *net)
477 {
478 	proc_free_inum(net->proc_inum);
479 }
480 
481 static struct pernet_operations __net_initdata net_ns_ops = {
482 	.init = net_ns_net_init,
483 	.exit = net_ns_net_exit,
484 };
485 
486 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
487 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
488 	[NETNSA_NSID]		= { .type = NLA_S32 },
489 	[NETNSA_PID]		= { .type = NLA_U32 },
490 	[NETNSA_FD]		= { .type = NLA_U32 },
491 };
492 
rtnl_net_newid(struct sk_buff * skb,struct nlmsghdr * nlh)493 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
494 {
495 	struct net *net = sock_net(skb->sk);
496 	struct nlattr *tb[NETNSA_MAX + 1];
497 	struct net *peer;
498 	int nsid, err;
499 
500 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
501 			  rtnl_net_policy);
502 	if (err < 0)
503 		return err;
504 	if (!tb[NETNSA_NSID])
505 		return -EINVAL;
506 	nsid = nla_get_s32(tb[NETNSA_NSID]);
507 
508 	if (tb[NETNSA_PID])
509 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
510 	else if (tb[NETNSA_FD])
511 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
512 	else
513 		return -EINVAL;
514 	if (IS_ERR(peer))
515 		return PTR_ERR(peer);
516 
517 	if (__peernet2id(net, peer, false) >= 0) {
518 		err = -EEXIST;
519 		goto out;
520 	}
521 
522 	err = alloc_netid(net, peer, nsid);
523 	if (err > 0)
524 		err = 0;
525 out:
526 	put_net(peer);
527 	return err;
528 }
529 
rtnl_net_get_size(void)530 static int rtnl_net_get_size(void)
531 {
532 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
533 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
534 	       ;
535 }
536 
rtnl_net_fill(struct sk_buff * skb,u32 portid,u32 seq,int flags,int cmd,struct net * net,struct net * peer)537 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
538 			 int cmd, struct net *net, struct net *peer)
539 {
540 	struct nlmsghdr *nlh;
541 	struct rtgenmsg *rth;
542 	int id;
543 
544 	ASSERT_RTNL();
545 
546 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
547 	if (!nlh)
548 		return -EMSGSIZE;
549 
550 	rth = nlmsg_data(nlh);
551 	rth->rtgen_family = AF_UNSPEC;
552 
553 	id = __peernet2id(net, peer, false);
554 	if  (id < 0)
555 		id = NETNSA_NSID_NOT_ASSIGNED;
556 	if (nla_put_s32(skb, NETNSA_NSID, id))
557 		goto nla_put_failure;
558 
559 	nlmsg_end(skb, nlh);
560 	return 0;
561 
562 nla_put_failure:
563 	nlmsg_cancel(skb, nlh);
564 	return -EMSGSIZE;
565 }
566 
rtnl_net_getid(struct sk_buff * skb,struct nlmsghdr * nlh)567 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
568 {
569 	struct net *net = sock_net(skb->sk);
570 	struct nlattr *tb[NETNSA_MAX + 1];
571 	struct sk_buff *msg;
572 	int err = -ENOBUFS;
573 	struct net *peer;
574 
575 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
576 			  rtnl_net_policy);
577 	if (err < 0)
578 		return err;
579 	if (tb[NETNSA_PID])
580 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
581 	else if (tb[NETNSA_FD])
582 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
583 	else
584 		return -EINVAL;
585 
586 	if (IS_ERR(peer))
587 		return PTR_ERR(peer);
588 
589 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
590 	if (!msg) {
591 		err = -ENOMEM;
592 		goto out;
593 	}
594 
595 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
596 			    RTM_GETNSID, net, peer);
597 	if (err < 0)
598 		goto err_out;
599 
600 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
601 	goto out;
602 
603 err_out:
604 	nlmsg_free(msg);
605 out:
606 	put_net(peer);
607 	return err;
608 }
609 
net_ns_init(void)610 static int __init net_ns_init(void)
611 {
612 	struct net_generic *ng;
613 
614 #ifdef CONFIG_NET_NS
615 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
616 					SMP_CACHE_BYTES,
617 					SLAB_PANIC, NULL);
618 
619 	/* Create workqueue for cleanup */
620 	netns_wq = create_singlethread_workqueue("netns");
621 	if (!netns_wq)
622 		panic("Could not create netns workq");
623 #endif
624 
625 	ng = net_alloc_generic();
626 	if (!ng)
627 		panic("Could not allocate generic netns");
628 
629 	rcu_assign_pointer(init_net.gen, ng);
630 
631 	mutex_lock(&net_mutex);
632 	if (setup_net(&init_net, &init_user_ns))
633 		panic("Could not setup the initial network namespace");
634 
635 	rtnl_lock();
636 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
637 	rtnl_unlock();
638 
639 	mutex_unlock(&net_mutex);
640 
641 	register_pernet_subsys(&net_ns_ops);
642 
643 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
644 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL);
645 
646 	return 0;
647 }
648 
649 pure_initcall(net_ns_init);
650 
651 #ifdef CONFIG_NET_NS
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)652 static int __register_pernet_operations(struct list_head *list,
653 					struct pernet_operations *ops)
654 {
655 	struct net *net;
656 	int error;
657 	LIST_HEAD(net_exit_list);
658 
659 	list_add_tail(&ops->list, list);
660 	if (ops->init || (ops->id && ops->size)) {
661 		for_each_net(net) {
662 			error = ops_init(ops, net);
663 			if (error)
664 				goto out_undo;
665 			list_add_tail(&net->exit_list, &net_exit_list);
666 		}
667 	}
668 	return 0;
669 
670 out_undo:
671 	/* If I have an error cleanup all namespaces I initialized */
672 	list_del(&ops->list);
673 	ops_exit_list(ops, &net_exit_list);
674 	ops_free_list(ops, &net_exit_list);
675 	return error;
676 }
677 
__unregister_pernet_operations(struct pernet_operations * ops)678 static void __unregister_pernet_operations(struct pernet_operations *ops)
679 {
680 	struct net *net;
681 	LIST_HEAD(net_exit_list);
682 
683 	list_del(&ops->list);
684 	for_each_net(net)
685 		list_add_tail(&net->exit_list, &net_exit_list);
686 	ops_exit_list(ops, &net_exit_list);
687 	ops_free_list(ops, &net_exit_list);
688 }
689 
690 #else
691 
__register_pernet_operations(struct list_head * list,struct pernet_operations * ops)692 static int __register_pernet_operations(struct list_head *list,
693 					struct pernet_operations *ops)
694 {
695 	return ops_init(ops, &init_net);
696 }
697 
__unregister_pernet_operations(struct pernet_operations * ops)698 static void __unregister_pernet_operations(struct pernet_operations *ops)
699 {
700 	LIST_HEAD(net_exit_list);
701 	list_add(&init_net.exit_list, &net_exit_list);
702 	ops_exit_list(ops, &net_exit_list);
703 	ops_free_list(ops, &net_exit_list);
704 }
705 
706 #endif /* CONFIG_NET_NS */
707 
708 static DEFINE_IDA(net_generic_ids);
709 
register_pernet_operations(struct list_head * list,struct pernet_operations * ops)710 static int register_pernet_operations(struct list_head *list,
711 				      struct pernet_operations *ops)
712 {
713 	int error;
714 
715 	if (ops->id) {
716 again:
717 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
718 		if (error < 0) {
719 			if (error == -EAGAIN) {
720 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
721 				goto again;
722 			}
723 			return error;
724 		}
725 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
726 	}
727 	error = __register_pernet_operations(list, ops);
728 	if (error) {
729 		rcu_barrier();
730 		if (ops->id)
731 			ida_remove(&net_generic_ids, *ops->id);
732 	}
733 
734 	return error;
735 }
736 
unregister_pernet_operations(struct pernet_operations * ops)737 static void unregister_pernet_operations(struct pernet_operations *ops)
738 {
739 
740 	__unregister_pernet_operations(ops);
741 	rcu_barrier();
742 	if (ops->id)
743 		ida_remove(&net_generic_ids, *ops->id);
744 }
745 
746 /**
747  *      register_pernet_subsys - register a network namespace subsystem
748  *	@ops:  pernet operations structure for the subsystem
749  *
750  *	Register a subsystem which has init and exit functions
751  *	that are called when network namespaces are created and
752  *	destroyed respectively.
753  *
754  *	When registered all network namespace init functions are
755  *	called for every existing network namespace.  Allowing kernel
756  *	modules to have a race free view of the set of network namespaces.
757  *
758  *	When a new network namespace is created all of the init
759  *	methods are called in the order in which they were registered.
760  *
761  *	When a network namespace is destroyed all of the exit methods
762  *	are called in the reverse of the order with which they were
763  *	registered.
764  */
register_pernet_subsys(struct pernet_operations * ops)765 int register_pernet_subsys(struct pernet_operations *ops)
766 {
767 	int error;
768 	mutex_lock(&net_mutex);
769 	error =  register_pernet_operations(first_device, ops);
770 	mutex_unlock(&net_mutex);
771 	return error;
772 }
773 EXPORT_SYMBOL_GPL(register_pernet_subsys);
774 
775 /**
776  *      unregister_pernet_subsys - unregister a network namespace subsystem
777  *	@ops: pernet operations structure to manipulate
778  *
779  *	Remove the pernet operations structure from the list to be
780  *	used when network namespaces are created or destroyed.  In
781  *	addition run the exit method for all existing network
782  *	namespaces.
783  */
unregister_pernet_subsys(struct pernet_operations * ops)784 void unregister_pernet_subsys(struct pernet_operations *ops)
785 {
786 	mutex_lock(&net_mutex);
787 	unregister_pernet_operations(ops);
788 	mutex_unlock(&net_mutex);
789 }
790 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
791 
792 /**
793  *      register_pernet_device - register a network namespace device
794  *	@ops:  pernet operations structure for the subsystem
795  *
796  *	Register a device which has init and exit functions
797  *	that are called when network namespaces are created and
798  *	destroyed respectively.
799  *
800  *	When registered all network namespace init functions are
801  *	called for every existing network namespace.  Allowing kernel
802  *	modules to have a race free view of the set of network namespaces.
803  *
804  *	When a new network namespace is created all of the init
805  *	methods are called in the order in which they were registered.
806  *
807  *	When a network namespace is destroyed all of the exit methods
808  *	are called in the reverse of the order with which they were
809  *	registered.
810  */
register_pernet_device(struct pernet_operations * ops)811 int register_pernet_device(struct pernet_operations *ops)
812 {
813 	int error;
814 	mutex_lock(&net_mutex);
815 	error = register_pernet_operations(&pernet_list, ops);
816 	if (!error && (first_device == &pernet_list))
817 		first_device = &ops->list;
818 	mutex_unlock(&net_mutex);
819 	return error;
820 }
821 EXPORT_SYMBOL_GPL(register_pernet_device);
822 
823 /**
824  *      unregister_pernet_device - unregister a network namespace netdevice
825  *	@ops: pernet operations structure to manipulate
826  *
827  *	Remove the pernet operations structure from the list to be
828  *	used when network namespaces are created or destroyed.  In
829  *	addition run the exit method for all existing network
830  *	namespaces.
831  */
unregister_pernet_device(struct pernet_operations * ops)832 void unregister_pernet_device(struct pernet_operations *ops)
833 {
834 	mutex_lock(&net_mutex);
835 	if (&ops->list == first_device)
836 		first_device = first_device->next;
837 	unregister_pernet_operations(ops);
838 	mutex_unlock(&net_mutex);
839 }
840 EXPORT_SYMBOL_GPL(unregister_pernet_device);
841 
842 #ifdef CONFIG_NET_NS
netns_get(struct task_struct * task)843 static void *netns_get(struct task_struct *task)
844 {
845 	struct net *net = NULL;
846 	struct nsproxy *nsproxy;
847 
848 	task_lock(task);
849 	nsproxy = task->nsproxy;
850 	if (nsproxy)
851 		net = get_net(nsproxy->net_ns);
852 	task_unlock(task);
853 
854 	return net;
855 }
856 
netns_put(void * ns)857 static void netns_put(void *ns)
858 {
859 	put_net(ns);
860 }
861 
netns_install(struct nsproxy * nsproxy,void * ns)862 static int netns_install(struct nsproxy *nsproxy, void *ns)
863 {
864 	struct net *net = ns;
865 
866 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
867 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
868 		return -EPERM;
869 
870 	put_net(nsproxy->net_ns);
871 	nsproxy->net_ns = get_net(net);
872 	return 0;
873 }
874 
netns_inum(void * ns)875 static unsigned int netns_inum(void *ns)
876 {
877 	struct net *net = ns;
878 	return net->proc_inum;
879 }
880 
881 const struct proc_ns_operations netns_operations = {
882 	.name		= "net",
883 	.type		= CLONE_NEWNET,
884 	.get		= netns_get,
885 	.put		= netns_put,
886 	.install	= netns_install,
887 	.inum		= netns_inum,
888 };
889 #endif
890