1 /*
2 * ioport.c: Simple io mapping allocator.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
6 *
7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
8 *
9 * 2000/01/29
10 * <rth> zait: as long as pci_alloc_consistent produces something addressable,
11 * things are ok.
12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13 * pointer into the big page mapping
14 * <rth> zait: so what?
15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
16 * <zaitcev> Hmm
17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
18 * So far so good.
19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
20 * remap_it_my_way()).
21 * <zaitcev> How do you find the address to pass to free_pages()?
22 * <rth> zait: walk the page tables? It's only two or three level after all.
23 * <rth> zait: you have to walk them anyway to remove the mapping.
24 * <zaitcev> Hmm
25 * <zaitcev> Sounds reasonable
26 */
27
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h> /* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
41
42 #include <asm/io.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
45 #include <asm/prom.h>
46 #include <asm/page.h>
47 #include <asm/pgalloc.h>
48 #include <asm/dma.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
51 #include <asm/leon.h>
52
53 /* This function must make sure that caches and memory are coherent after DMA
54 * On LEON systems without cache snooping it flushes the entire D-CACHE.
55 */
56 #ifndef CONFIG_SPARC_LEON
dma_make_coherent(unsigned long pa,unsigned long len)57 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
58 {
59 }
60 #else
dma_make_coherent(unsigned long pa,unsigned long len)61 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
62 {
63 if (!sparc_leon3_snooping_enabled())
64 leon_flush_dcache_all();
65 }
66 #endif
67
68 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
69 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
70 unsigned long size, char *name);
71 static void _sparc_free_io(struct resource *res);
72
73 static void register_proc_sparc_ioport(void);
74
75 /* This points to the next to use virtual memory for DVMA mappings */
76 static struct resource _sparc_dvma = {
77 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
78 };
79 /* This points to the start of I/O mappings, cluable from outside. */
80 /*ext*/ struct resource sparc_iomap = {
81 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
82 };
83
84 /*
85 * Our mini-allocator...
86 * Boy this is gross! We need it because we must map I/O for
87 * timers and interrupt controller before the kmalloc is available.
88 */
89
90 #define XNMLN 15
91 #define XNRES 10 /* SS-10 uses 8 */
92
93 struct xresource {
94 struct resource xres; /* Must be first */
95 int xflag; /* 1 == used */
96 char xname[XNMLN+1];
97 };
98
99 static struct xresource xresv[XNRES];
100
xres_alloc(void)101 static struct xresource *xres_alloc(void) {
102 struct xresource *xrp;
103 int n;
104
105 xrp = xresv;
106 for (n = 0; n < XNRES; n++) {
107 if (xrp->xflag == 0) {
108 xrp->xflag = 1;
109 return xrp;
110 }
111 xrp++;
112 }
113 return NULL;
114 }
115
xres_free(struct xresource * xrp)116 static void xres_free(struct xresource *xrp) {
117 xrp->xflag = 0;
118 }
119
120 /*
121 * These are typically used in PCI drivers
122 * which are trying to be cross-platform.
123 *
124 * Bus type is always zero on IIep.
125 */
ioremap(unsigned long offset,unsigned long size)126 void __iomem *ioremap(unsigned long offset, unsigned long size)
127 {
128 char name[14];
129
130 sprintf(name, "phys_%08x", (u32)offset);
131 return _sparc_alloc_io(0, offset, size, name);
132 }
133 EXPORT_SYMBOL(ioremap);
134
135 /*
136 * Comlimentary to ioremap().
137 */
iounmap(volatile void __iomem * virtual)138 void iounmap(volatile void __iomem *virtual)
139 {
140 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
141 struct resource *res;
142
143 /*
144 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
145 * This probably warrants some sort of hashing.
146 */
147 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
148 printk("free_io/iounmap: cannot free %lx\n", vaddr);
149 return;
150 }
151 _sparc_free_io(res);
152
153 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
154 xres_free((struct xresource *)res);
155 } else {
156 kfree(res);
157 }
158 }
159 EXPORT_SYMBOL(iounmap);
160
of_ioremap(struct resource * res,unsigned long offset,unsigned long size,char * name)161 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
162 unsigned long size, char *name)
163 {
164 return _sparc_alloc_io(res->flags & 0xF,
165 res->start + offset,
166 size, name);
167 }
168 EXPORT_SYMBOL(of_ioremap);
169
of_iounmap(struct resource * res,void __iomem * base,unsigned long size)170 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
171 {
172 iounmap(base);
173 }
174 EXPORT_SYMBOL(of_iounmap);
175
176 /*
177 * Meat of mapping
178 */
_sparc_alloc_io(unsigned int busno,unsigned long phys,unsigned long size,char * name)179 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
180 unsigned long size, char *name)
181 {
182 static int printed_full;
183 struct xresource *xres;
184 struct resource *res;
185 char *tack;
186 int tlen;
187 void __iomem *va; /* P3 diag */
188
189 if (name == NULL) name = "???";
190
191 if ((xres = xres_alloc()) != 0) {
192 tack = xres->xname;
193 res = &xres->xres;
194 } else {
195 if (!printed_full) {
196 printk("ioremap: done with statics, switching to malloc\n");
197 printed_full = 1;
198 }
199 tlen = strlen(name);
200 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
201 if (tack == NULL) return NULL;
202 memset(tack, 0, sizeof(struct resource));
203 res = (struct resource *) tack;
204 tack += sizeof (struct resource);
205 }
206
207 strlcpy(tack, name, XNMLN+1);
208 res->name = tack;
209
210 va = _sparc_ioremap(res, busno, phys, size);
211 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
212 return va;
213 }
214
215 /*
216 */
217 static void __iomem *
_sparc_ioremap(struct resource * res,u32 bus,u32 pa,int sz)218 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
219 {
220 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
221
222 if (allocate_resource(&sparc_iomap, res,
223 (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
224 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
225 /* Usually we cannot see printks in this case. */
226 prom_printf("alloc_io_res(%s): cannot occupy\n",
227 (res->name != NULL)? res->name: "???");
228 prom_halt();
229 }
230
231 pa &= PAGE_MASK;
232 sparc_mapiorange(bus, pa, res->start, resource_size(res));
233
234 return (void __iomem *)(unsigned long)(res->start + offset);
235 }
236
237 /*
238 * Comlimentary to _sparc_ioremap().
239 */
_sparc_free_io(struct resource * res)240 static void _sparc_free_io(struct resource *res)
241 {
242 unsigned long plen;
243
244 plen = resource_size(res);
245 BUG_ON((plen & (PAGE_SIZE-1)) != 0);
246 sparc_unmapiorange(res->start, plen);
247 release_resource(res);
248 }
249
250 #ifdef CONFIG_SBUS
251
sbus_set_sbus64(struct device * dev,int x)252 void sbus_set_sbus64(struct device *dev, int x)
253 {
254 printk("sbus_set_sbus64: unsupported\n");
255 }
256 EXPORT_SYMBOL(sbus_set_sbus64);
257
258 /*
259 * Allocate a chunk of memory suitable for DMA.
260 * Typically devices use them for control blocks.
261 * CPU may access them without any explicit flushing.
262 */
sbus_alloc_coherent(struct device * dev,size_t len,dma_addr_t * dma_addrp,gfp_t gfp,struct dma_attrs * attrs)263 static void *sbus_alloc_coherent(struct device *dev, size_t len,
264 dma_addr_t *dma_addrp, gfp_t gfp,
265 struct dma_attrs *attrs)
266 {
267 struct platform_device *op = to_platform_device(dev);
268 unsigned long len_total = PAGE_ALIGN(len);
269 unsigned long va;
270 struct resource *res;
271 int order;
272
273 /* XXX why are some lengths signed, others unsigned? */
274 if (len <= 0) {
275 return NULL;
276 }
277 /* XXX So what is maxphys for us and how do drivers know it? */
278 if (len > 256*1024) { /* __get_free_pages() limit */
279 return NULL;
280 }
281
282 order = get_order(len_total);
283 if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
284 goto err_nopages;
285
286 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
287 goto err_nomem;
288
289 if (allocate_resource(&_sparc_dvma, res, len_total,
290 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
291 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
292 goto err_nova;
293 }
294
295 // XXX The mmu_map_dma_area does this for us below, see comments.
296 // sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
297 /*
298 * XXX That's where sdev would be used. Currently we load
299 * all iommu tables with the same translations.
300 */
301 if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
302 goto err_noiommu;
303
304 res->name = op->dev.of_node->name;
305
306 return (void *)(unsigned long)res->start;
307
308 err_noiommu:
309 release_resource(res);
310 err_nova:
311 kfree(res);
312 err_nomem:
313 free_pages(va, order);
314 err_nopages:
315 return NULL;
316 }
317
sbus_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba,struct dma_attrs * attrs)318 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
319 dma_addr_t ba, struct dma_attrs *attrs)
320 {
321 struct resource *res;
322 struct page *pgv;
323
324 if ((res = lookup_resource(&_sparc_dvma,
325 (unsigned long)p)) == NULL) {
326 printk("sbus_free_consistent: cannot free %p\n", p);
327 return;
328 }
329
330 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
331 printk("sbus_free_consistent: unaligned va %p\n", p);
332 return;
333 }
334
335 n = PAGE_ALIGN(n);
336 if (resource_size(res) != n) {
337 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
338 (long)resource_size(res), n);
339 return;
340 }
341
342 release_resource(res);
343 kfree(res);
344
345 pgv = virt_to_page(p);
346 mmu_unmap_dma_area(dev, ba, n);
347
348 __free_pages(pgv, get_order(n));
349 }
350
351 /*
352 * Map a chunk of memory so that devices can see it.
353 * CPU view of this memory may be inconsistent with
354 * a device view and explicit flushing is necessary.
355 */
sbus_map_page(struct device * dev,struct page * page,unsigned long offset,size_t len,enum dma_data_direction dir,struct dma_attrs * attrs)356 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
357 unsigned long offset, size_t len,
358 enum dma_data_direction dir,
359 struct dma_attrs *attrs)
360 {
361 void *va = page_address(page) + offset;
362
363 /* XXX why are some lengths signed, others unsigned? */
364 if (len <= 0) {
365 return 0;
366 }
367 /* XXX So what is maxphys for us and how do drivers know it? */
368 if (len > 256*1024) { /* __get_free_pages() limit */
369 return 0;
370 }
371 return mmu_get_scsi_one(dev, va, len);
372 }
373
sbus_unmap_page(struct device * dev,dma_addr_t ba,size_t n,enum dma_data_direction dir,struct dma_attrs * attrs)374 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
375 enum dma_data_direction dir, struct dma_attrs *attrs)
376 {
377 mmu_release_scsi_one(dev, ba, n);
378 }
379
sbus_map_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)380 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
381 enum dma_data_direction dir, struct dma_attrs *attrs)
382 {
383 mmu_get_scsi_sgl(dev, sg, n);
384
385 /*
386 * XXX sparc64 can return a partial length here. sun4c should do this
387 * but it currently panics if it can't fulfill the request - Anton
388 */
389 return n;
390 }
391
sbus_unmap_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,struct dma_attrs * attrs)392 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
393 enum dma_data_direction dir, struct dma_attrs *attrs)
394 {
395 mmu_release_scsi_sgl(dev, sg, n);
396 }
397
sbus_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)398 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
399 int n, enum dma_data_direction dir)
400 {
401 BUG();
402 }
403
sbus_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)404 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
405 int n, enum dma_data_direction dir)
406 {
407 BUG();
408 }
409
410 struct dma_map_ops sbus_dma_ops = {
411 .alloc = sbus_alloc_coherent,
412 .free = sbus_free_coherent,
413 .map_page = sbus_map_page,
414 .unmap_page = sbus_unmap_page,
415 .map_sg = sbus_map_sg,
416 .unmap_sg = sbus_unmap_sg,
417 .sync_sg_for_cpu = sbus_sync_sg_for_cpu,
418 .sync_sg_for_device = sbus_sync_sg_for_device,
419 };
420
sparc_register_ioport(void)421 static int __init sparc_register_ioport(void)
422 {
423 register_proc_sparc_ioport();
424
425 return 0;
426 }
427
428 arch_initcall(sparc_register_ioport);
429
430 #endif /* CONFIG_SBUS */
431
432
433 /* LEON reuses PCI DMA ops */
434 #if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
435
436 /* Allocate and map kernel buffer using consistent mode DMA for a device.
437 * hwdev should be valid struct pci_dev pointer for PCI devices.
438 */
pci32_alloc_coherent(struct device * dev,size_t len,dma_addr_t * pba,gfp_t gfp,struct dma_attrs * attrs)439 static void *pci32_alloc_coherent(struct device *dev, size_t len,
440 dma_addr_t *pba, gfp_t gfp,
441 struct dma_attrs *attrs)
442 {
443 unsigned long len_total = PAGE_ALIGN(len);
444 void *va;
445 struct resource *res;
446 int order;
447
448 if (len == 0) {
449 return NULL;
450 }
451 if (len > 256*1024) { /* __get_free_pages() limit */
452 return NULL;
453 }
454
455 order = get_order(len_total);
456 va = (void *) __get_free_pages(GFP_KERNEL, order);
457 if (va == NULL) {
458 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
459 goto err_nopages;
460 }
461
462 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
463 printk("pci_alloc_consistent: no core\n");
464 goto err_nomem;
465 }
466
467 if (allocate_resource(&_sparc_dvma, res, len_total,
468 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
469 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
470 goto err_nova;
471 }
472 sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
473
474 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
475 return (void *) res->start;
476
477 err_nova:
478 kfree(res);
479 err_nomem:
480 free_pages((unsigned long)va, order);
481 err_nopages:
482 return NULL;
483 }
484
485 /* Free and unmap a consistent DMA buffer.
486 * cpu_addr is what was returned from pci_alloc_consistent,
487 * size must be the same as what as passed into pci_alloc_consistent,
488 * and likewise dma_addr must be the same as what *dma_addrp was set to.
489 *
490 * References to the memory and mappings associated with cpu_addr/dma_addr
491 * past this call are illegal.
492 */
pci32_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba,struct dma_attrs * attrs)493 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
494 dma_addr_t ba, struct dma_attrs *attrs)
495 {
496 struct resource *res;
497
498 if ((res = lookup_resource(&_sparc_dvma,
499 (unsigned long)p)) == NULL) {
500 printk("pci_free_consistent: cannot free %p\n", p);
501 return;
502 }
503
504 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
505 printk("pci_free_consistent: unaligned va %p\n", p);
506 return;
507 }
508
509 n = PAGE_ALIGN(n);
510 if (resource_size(res) != n) {
511 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
512 (long)resource_size(res), (long)n);
513 return;
514 }
515
516 dma_make_coherent(ba, n);
517 sparc_unmapiorange((unsigned long)p, n);
518
519 release_resource(res);
520 kfree(res);
521 free_pages((unsigned long)phys_to_virt(ba), get_order(n));
522 }
523
524 /*
525 * Same as pci_map_single, but with pages.
526 */
pci32_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)527 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
528 unsigned long offset, size_t size,
529 enum dma_data_direction dir,
530 struct dma_attrs *attrs)
531 {
532 /* IIep is write-through, not flushing. */
533 return page_to_phys(page) + offset;
534 }
535
pci32_unmap_page(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)536 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
537 enum dma_data_direction dir, struct dma_attrs *attrs)
538 {
539 if (dir != PCI_DMA_TODEVICE)
540 dma_make_coherent(ba, PAGE_ALIGN(size));
541 }
542
543 /* Map a set of buffers described by scatterlist in streaming
544 * mode for DMA. This is the scather-gather version of the
545 * above pci_map_single interface. Here the scatter gather list
546 * elements are each tagged with the appropriate dma address
547 * and length. They are obtained via sg_dma_{address,length}(SG).
548 *
549 * NOTE: An implementation may be able to use a smaller number of
550 * DMA address/length pairs than there are SG table elements.
551 * (for example via virtual mapping capabilities)
552 * The routine returns the number of addr/length pairs actually
553 * used, at most nents.
554 *
555 * Device ownership issues as mentioned above for pci_map_single are
556 * the same here.
557 */
pci32_map_sg(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)558 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
559 int nents, enum dma_data_direction dir,
560 struct dma_attrs *attrs)
561 {
562 struct scatterlist *sg;
563 int n;
564
565 /* IIep is write-through, not flushing. */
566 for_each_sg(sgl, sg, nents, n) {
567 sg->dma_address = sg_phys(sg);
568 sg->dma_length = sg->length;
569 }
570 return nents;
571 }
572
573 /* Unmap a set of streaming mode DMA translations.
574 * Again, cpu read rules concerning calls here are the same as for
575 * pci_unmap_single() above.
576 */
pci32_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)577 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
578 int nents, enum dma_data_direction dir,
579 struct dma_attrs *attrs)
580 {
581 struct scatterlist *sg;
582 int n;
583
584 if (dir != PCI_DMA_TODEVICE) {
585 for_each_sg(sgl, sg, nents, n) {
586 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
587 }
588 }
589 }
590
591 /* Make physical memory consistent for a single
592 * streaming mode DMA translation before or after a transfer.
593 *
594 * If you perform a pci_map_single() but wish to interrogate the
595 * buffer using the cpu, yet do not wish to teardown the PCI dma
596 * mapping, you must call this function before doing so. At the
597 * next point you give the PCI dma address back to the card, you
598 * must first perform a pci_dma_sync_for_device, and then the
599 * device again owns the buffer.
600 */
pci32_sync_single_for_cpu(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)601 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
602 size_t size, enum dma_data_direction dir)
603 {
604 if (dir != PCI_DMA_TODEVICE) {
605 dma_make_coherent(ba, PAGE_ALIGN(size));
606 }
607 }
608
pci32_sync_single_for_device(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)609 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
610 size_t size, enum dma_data_direction dir)
611 {
612 if (dir != PCI_DMA_TODEVICE) {
613 dma_make_coherent(ba, PAGE_ALIGN(size));
614 }
615 }
616
617 /* Make physical memory consistent for a set of streaming
618 * mode DMA translations after a transfer.
619 *
620 * The same as pci_dma_sync_single_* but for a scatter-gather list,
621 * same rules and usage.
622 */
pci32_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)623 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
624 int nents, enum dma_data_direction dir)
625 {
626 struct scatterlist *sg;
627 int n;
628
629 if (dir != PCI_DMA_TODEVICE) {
630 for_each_sg(sgl, sg, nents, n) {
631 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
632 }
633 }
634 }
635
pci32_sync_sg_for_device(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir)636 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
637 int nents, enum dma_data_direction dir)
638 {
639 struct scatterlist *sg;
640 int n;
641
642 if (dir != PCI_DMA_TODEVICE) {
643 for_each_sg(sgl, sg, nents, n) {
644 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
645 }
646 }
647 }
648
649 struct dma_map_ops pci32_dma_ops = {
650 .alloc = pci32_alloc_coherent,
651 .free = pci32_free_coherent,
652 .map_page = pci32_map_page,
653 .unmap_page = pci32_unmap_page,
654 .map_sg = pci32_map_sg,
655 .unmap_sg = pci32_unmap_sg,
656 .sync_single_for_cpu = pci32_sync_single_for_cpu,
657 .sync_single_for_device = pci32_sync_single_for_device,
658 .sync_sg_for_cpu = pci32_sync_sg_for_cpu,
659 .sync_sg_for_device = pci32_sync_sg_for_device,
660 };
661 EXPORT_SYMBOL(pci32_dma_ops);
662
663 #endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
664
665 #ifdef CONFIG_SPARC_LEON
666 struct dma_map_ops *dma_ops = &pci32_dma_ops;
667 #elif defined(CONFIG_SBUS)
668 struct dma_map_ops *dma_ops = &sbus_dma_ops;
669 #endif
670
671 EXPORT_SYMBOL(dma_ops);
672
673
674 /*
675 * Return whether the given PCI device DMA address mask can be
676 * supported properly. For example, if your device can only drive the
677 * low 24-bits during PCI bus mastering, then you would pass
678 * 0x00ffffff as the mask to this function.
679 */
dma_supported(struct device * dev,u64 mask)680 int dma_supported(struct device *dev, u64 mask)
681 {
682 #ifdef CONFIG_PCI
683 if (dev->bus == &pci_bus_type)
684 return 1;
685 #endif
686 return 0;
687 }
688 EXPORT_SYMBOL(dma_supported);
689
690 #ifdef CONFIG_PROC_FS
691
sparc_io_proc_show(struct seq_file * m,void * v)692 static int sparc_io_proc_show(struct seq_file *m, void *v)
693 {
694 struct resource *root = m->private, *r;
695 const char *nm;
696
697 for (r = root->child; r != NULL; r = r->sibling) {
698 if ((nm = r->name) == 0) nm = "???";
699 seq_printf(m, "%016llx-%016llx: %s\n",
700 (unsigned long long)r->start,
701 (unsigned long long)r->end, nm);
702 }
703
704 return 0;
705 }
706
sparc_io_proc_open(struct inode * inode,struct file * file)707 static int sparc_io_proc_open(struct inode *inode, struct file *file)
708 {
709 return single_open(file, sparc_io_proc_show, PDE(inode)->data);
710 }
711
712 static const struct file_operations sparc_io_proc_fops = {
713 .owner = THIS_MODULE,
714 .open = sparc_io_proc_open,
715 .read = seq_read,
716 .llseek = seq_lseek,
717 .release = single_release,
718 };
719 #endif /* CONFIG_PROC_FS */
720
register_proc_sparc_ioport(void)721 static void register_proc_sparc_ioport(void)
722 {
723 #ifdef CONFIG_PROC_FS
724 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
725 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
726 #endif
727 }
728