1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29
30 #include "mm.h"
31
get_coherent_dma_mask(struct device * dev)32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 u64 mask = (u64)arm_dma_limit;
35
36 if (dev) {
37 mask = dev->coherent_dma_mask;
38
39 /*
40 * Sanity check the DMA mask - it must be non-zero, and
41 * must be able to be satisfied by a DMA allocation.
42 */
43 if (mask == 0) {
44 dev_warn(dev, "coherent DMA mask is unset\n");
45 return 0;
46 }
47
48 if ((~mask) & (u64)arm_dma_limit) {
49 dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 "than system GFP_DMA mask %#llx\n",
51 mask, (u64)arm_dma_limit);
52 return 0;
53 }
54 }
55
56 return mask;
57 }
58
59 /*
60 * Allocate a DMA buffer for 'dev' of size 'size' using the
61 * specified gfp mask. Note that 'size' must be page aligned.
62 */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp)63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 unsigned long order = get_order(size);
66 struct page *page, *p, *e;
67 void *ptr;
68 u64 mask = get_coherent_dma_mask(dev);
69
70 #ifdef CONFIG_DMA_API_DEBUG
71 u64 limit = (mask + 1) & ~mask;
72 if (limit && size >= limit) {
73 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 size, mask);
75 return NULL;
76 }
77 #endif
78
79 if (!mask)
80 return NULL;
81
82 if (mask < 0xffffffffULL)
83 gfp |= GFP_DMA;
84
85 page = alloc_pages(gfp, order);
86 if (!page)
87 return NULL;
88
89 /*
90 * Now split the huge page and free the excess pages
91 */
92 split_page(page, order);
93 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 __free_page(p);
95
96 /*
97 * Ensure that the allocated pages are zeroed, and that any data
98 * lurking in the kernel direct-mapped region is invalidated.
99 */
100 ptr = page_address(page);
101 memset(ptr, 0, size);
102 dmac_flush_range(ptr, ptr + size);
103 outer_flush_range(__pa(ptr), __pa(ptr) + size);
104
105 return page;
106 }
107
108 /*
109 * Free a DMA buffer. 'size' must be page aligned.
110 */
__dma_free_buffer(struct page * page,size_t size)111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 struct page *e = page + (size >> PAGE_SHIFT);
114
115 while (page < e) {
116 __free_page(page);
117 page++;
118 }
119 }
120
121 #ifdef CONFIG_MMU
122
123 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125
126 /*
127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128 */
129 static pte_t **consistent_pte;
130
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134
init_consistent_dma_size(unsigned long size)135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138
139 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 BUG_ON(base < VMALLOC_END);
141
142 /* Grow region to accommodate specified size */
143 if (base < consistent_base)
144 consistent_base = base;
145 }
146
147 #include "vmregion.h"
148
149 static struct arm_vmregion_head consistent_head = {
150 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
152 .vm_end = CONSISTENT_END,
153 };
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158
159 /*
160 * Initialise the consistent memory allocation.
161 */
consistent_init(void)162 static int __init consistent_init(void)
163 {
164 int ret = 0;
165 pgd_t *pgd;
166 pud_t *pud;
167 pmd_t *pmd;
168 pte_t *pte;
169 int i = 0;
170 unsigned long base = consistent_base;
171 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
172
173 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 if (!consistent_pte) {
175 pr_err("%s: no memory\n", __func__);
176 return -ENOMEM;
177 }
178
179 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 consistent_head.vm_start = base;
181
182 do {
183 pgd = pgd_offset(&init_mm, base);
184
185 pud = pud_alloc(&init_mm, pgd, base);
186 if (!pud) {
187 printk(KERN_ERR "%s: no pud tables\n", __func__);
188 ret = -ENOMEM;
189 break;
190 }
191
192 pmd = pmd_alloc(&init_mm, pud, base);
193 if (!pmd) {
194 printk(KERN_ERR "%s: no pmd tables\n", __func__);
195 ret = -ENOMEM;
196 break;
197 }
198 WARN_ON(!pmd_none(*pmd));
199
200 pte = pte_alloc_kernel(pmd, base);
201 if (!pte) {
202 printk(KERN_ERR "%s: no pte tables\n", __func__);
203 ret = -ENOMEM;
204 break;
205 }
206
207 consistent_pte[i++] = pte;
208 base += PMD_SIZE;
209 } while (base < CONSISTENT_END);
210
211 return ret;
212 }
213
214 core_initcall(consistent_init);
215
216 static void *
__dma_alloc_remap(struct page * page,size_t size,gfp_t gfp,pgprot_t prot,const void * caller)217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
218 const void *caller)
219 {
220 struct arm_vmregion *c;
221 size_t align;
222 int bit;
223
224 if (!consistent_pte) {
225 printk(KERN_ERR "%s: not initialised\n", __func__);
226 dump_stack();
227 return NULL;
228 }
229
230 /*
231 * Align the virtual region allocation - maximum alignment is
232 * a section size, minimum is a page size. This helps reduce
233 * fragmentation of the DMA space, and also prevents allocations
234 * smaller than a section from crossing a section boundary.
235 */
236 bit = fls(size - 1);
237 if (bit > SECTION_SHIFT)
238 bit = SECTION_SHIFT;
239 align = 1 << bit;
240
241 /*
242 * Allocate a virtual address in the consistent mapping region.
243 */
244 c = arm_vmregion_alloc(&consistent_head, align, size,
245 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
246 if (c) {
247 pte_t *pte;
248 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
249 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
250
251 pte = consistent_pte[idx] + off;
252 c->vm_pages = page;
253
254 do {
255 BUG_ON(!pte_none(*pte));
256
257 set_pte_ext(pte, mk_pte(page, prot), 0);
258 page++;
259 pte++;
260 off++;
261 if (off >= PTRS_PER_PTE) {
262 off = 0;
263 pte = consistent_pte[++idx];
264 }
265 } while (size -= PAGE_SIZE);
266
267 dsb();
268
269 return (void *)c->vm_start;
270 }
271 return NULL;
272 }
273
__dma_free_remap(void * cpu_addr,size_t size)274 static void __dma_free_remap(void *cpu_addr, size_t size)
275 {
276 struct arm_vmregion *c;
277 unsigned long addr;
278 pte_t *ptep;
279 int idx;
280 u32 off;
281
282 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
283 if (!c) {
284 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
285 __func__, cpu_addr);
286 dump_stack();
287 return;
288 }
289
290 if ((c->vm_end - c->vm_start) != size) {
291 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
292 __func__, c->vm_end - c->vm_start, size);
293 dump_stack();
294 size = c->vm_end - c->vm_start;
295 }
296
297 idx = CONSISTENT_PTE_INDEX(c->vm_start);
298 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
299 ptep = consistent_pte[idx] + off;
300 addr = c->vm_start;
301 do {
302 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
303
304 ptep++;
305 addr += PAGE_SIZE;
306 off++;
307 if (off >= PTRS_PER_PTE) {
308 off = 0;
309 ptep = consistent_pte[++idx];
310 }
311
312 if (pte_none(pte) || !pte_present(pte))
313 printk(KERN_CRIT "%s: bad page in kernel page table\n",
314 __func__);
315 } while (size -= PAGE_SIZE);
316
317 flush_tlb_kernel_range(c->vm_start, c->vm_end);
318
319 arm_vmregion_free(&consistent_head, c);
320 }
321
322 #else /* !CONFIG_MMU */
323
324 #define __dma_alloc_remap(page, size, gfp, prot, c) page_address(page)
325 #define __dma_free_remap(addr, size) do { } while (0)
326
327 #endif /* CONFIG_MMU */
328
329 static void *
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,const void * caller)330 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
331 pgprot_t prot, const void *caller)
332 {
333 struct page *page;
334 void *addr;
335
336 /*
337 * Following is a work-around (a.k.a. hack) to prevent pages
338 * with __GFP_COMP being passed to split_page() which cannot
339 * handle them. The real problem is that this flag probably
340 * should be 0 on ARM as it is not supported on this
341 * platform; see CONFIG_HUGETLBFS.
342 */
343 gfp &= ~(__GFP_COMP);
344
345 *handle = ~0;
346 size = PAGE_ALIGN(size);
347
348 page = __dma_alloc_buffer(dev, size, gfp);
349 if (!page)
350 return NULL;
351
352 if (!arch_is_coherent())
353 addr = __dma_alloc_remap(page, size, gfp, prot, caller);
354 else
355 addr = page_address(page);
356
357 if (addr)
358 *handle = pfn_to_dma(dev, page_to_pfn(page));
359 else
360 __dma_free_buffer(page, size);
361
362 return addr;
363 }
364
365 /*
366 * Allocate DMA-coherent memory space and return both the kernel remapped
367 * virtual and bus address for that space.
368 */
369 void *
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)370 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
371 {
372 void *memory;
373
374 if (dma_alloc_from_coherent(dev, size, handle, &memory))
375 return memory;
376
377 return __dma_alloc(dev, size, handle, gfp,
378 pgprot_dmacoherent(pgprot_kernel),
379 __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(dma_alloc_coherent);
382
383 /*
384 * Allocate a writecombining region, in much the same way as
385 * dma_alloc_coherent above.
386 */
387 void *
dma_alloc_writecombine(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)388 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
389 {
390 return __dma_alloc(dev, size, handle, gfp,
391 pgprot_writecombine(pgprot_kernel),
392 __builtin_return_address(0));
393 }
394 EXPORT_SYMBOL(dma_alloc_writecombine);
395
dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)396 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
397 void *cpu_addr, dma_addr_t dma_addr, size_t size)
398 {
399 int ret = -ENXIO;
400 #ifdef CONFIG_MMU
401 unsigned long user_size, kern_size;
402 struct arm_vmregion *c;
403
404 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
405
406 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
407 if (c) {
408 unsigned long off = vma->vm_pgoff;
409
410 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
411
412 if (off < kern_size &&
413 user_size <= (kern_size - off)) {
414 ret = remap_pfn_range(vma, vma->vm_start,
415 page_to_pfn(c->vm_pages) + off,
416 user_size << PAGE_SHIFT,
417 vma->vm_page_prot);
418 }
419 }
420 #endif /* CONFIG_MMU */
421
422 return ret;
423 }
424
dma_mmap_coherent(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)425 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
426 void *cpu_addr, dma_addr_t dma_addr, size_t size)
427 {
428 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
429 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
430 }
431 EXPORT_SYMBOL(dma_mmap_coherent);
432
dma_mmap_writecombine(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)433 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
434 void *cpu_addr, dma_addr_t dma_addr, size_t size)
435 {
436 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
437 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
438 }
439 EXPORT_SYMBOL(dma_mmap_writecombine);
440
441 /*
442 * free a page as defined by the above mapping.
443 * Must not be called with IRQs disabled.
444 */
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)445 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
446 {
447 WARN_ON(irqs_disabled());
448
449 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
450 return;
451
452 size = PAGE_ALIGN(size);
453
454 if (!arch_is_coherent())
455 __dma_free_remap(cpu_addr, size);
456
457 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
458 }
459 EXPORT_SYMBOL(dma_free_coherent);
460
461 /*
462 * Make an area consistent for devices.
463 * Note: Drivers should NOT use this function directly, as it will break
464 * platforms with CONFIG_DMABOUNCE.
465 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
466 */
___dma_single_cpu_to_dev(const void * kaddr,size_t size,enum dma_data_direction dir)467 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
468 enum dma_data_direction dir)
469 {
470 unsigned long paddr;
471
472 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
473
474 dmac_map_area(kaddr, size, dir);
475
476 paddr = __pa(kaddr);
477 if (dir == DMA_FROM_DEVICE) {
478 outer_inv_range(paddr, paddr + size);
479 } else {
480 outer_clean_range(paddr, paddr + size);
481 }
482 /* FIXME: non-speculating: flush on bidirectional mappings? */
483 }
484 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
485
___dma_single_dev_to_cpu(const void * kaddr,size_t size,enum dma_data_direction dir)486 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
487 enum dma_data_direction dir)
488 {
489 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
490
491 /* FIXME: non-speculating: not required */
492 /* don't bother invalidating if DMA to device */
493 if (dir != DMA_TO_DEVICE) {
494 unsigned long paddr = __pa(kaddr);
495 outer_inv_range(paddr, paddr + size);
496 }
497
498 dmac_unmap_area(kaddr, size, dir);
499 }
500 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
501
dma_cache_maint_page(struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))502 static void dma_cache_maint_page(struct page *page, unsigned long offset,
503 size_t size, enum dma_data_direction dir,
504 void (*op)(const void *, size_t, int))
505 {
506 unsigned long pfn;
507 size_t left = size;
508
509 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
510 offset %= PAGE_SIZE;
511
512 /*
513 * A single sg entry may refer to multiple physically contiguous
514 * pages. But we still need to process highmem pages individually.
515 * If highmem is not configured then the bulk of this loop gets
516 * optimized out.
517 */
518 do {
519 size_t len = left;
520 void *vaddr;
521
522 page = pfn_to_page(pfn);
523
524 if (PageHighMem(page)) {
525 if (len + offset > PAGE_SIZE)
526 len = PAGE_SIZE - offset;
527 vaddr = kmap_high_get(page);
528 if (vaddr) {
529 vaddr += offset;
530 op(vaddr, len, dir);
531 kunmap_high(page);
532 } else if (cache_is_vipt()) {
533 /* unmapped pages might still be cached */
534 vaddr = kmap_atomic(page);
535 op(vaddr + offset, len, dir);
536 kunmap_atomic(vaddr);
537 }
538 } else {
539 vaddr = page_address(page) + offset;
540 op(vaddr, len, dir);
541 }
542 offset = 0;
543 pfn++;
544 left -= len;
545 } while (left);
546 }
547
___dma_page_cpu_to_dev(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)548 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
549 size_t size, enum dma_data_direction dir)
550 {
551 unsigned long paddr;
552
553 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
554
555 paddr = page_to_phys(page) + off;
556 if (dir == DMA_FROM_DEVICE) {
557 outer_inv_range(paddr, paddr + size);
558 } else {
559 outer_clean_range(paddr, paddr + size);
560 }
561 /* FIXME: non-speculating: flush on bidirectional mappings? */
562 }
563 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
564
___dma_page_dev_to_cpu(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)565 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
566 size_t size, enum dma_data_direction dir)
567 {
568 unsigned long paddr = page_to_phys(page) + off;
569
570 /* FIXME: non-speculating: not required */
571 /* don't bother invalidating if DMA to device */
572 if (dir != DMA_TO_DEVICE)
573 outer_inv_range(paddr, paddr + size);
574
575 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
576
577 /*
578 * Mark the D-cache clean for this page to avoid extra flushing.
579 */
580 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
581 set_bit(PG_dcache_clean, &page->flags);
582 }
583 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
584
585 /**
586 * dma_map_sg - map a set of SG buffers for streaming mode DMA
587 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
588 * @sg: list of buffers
589 * @nents: number of buffers to map
590 * @dir: DMA transfer direction
591 *
592 * Map a set of buffers described by scatterlist in streaming mode for DMA.
593 * This is the scatter-gather version of the dma_map_single interface.
594 * Here the scatter gather list elements are each tagged with the
595 * appropriate dma address and length. They are obtained via
596 * sg_dma_{address,length}.
597 *
598 * Device ownership issues as mentioned for dma_map_single are the same
599 * here.
600 */
dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)601 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
602 enum dma_data_direction dir)
603 {
604 struct scatterlist *s;
605 int i, j;
606
607 BUG_ON(!valid_dma_direction(dir));
608
609 for_each_sg(sg, s, nents, i) {
610 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
611 s->length, dir);
612 if (dma_mapping_error(dev, s->dma_address))
613 goto bad_mapping;
614 }
615 debug_dma_map_sg(dev, sg, nents, nents, dir);
616 return nents;
617
618 bad_mapping:
619 for_each_sg(sg, s, i, j)
620 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
621 return 0;
622 }
623 EXPORT_SYMBOL(dma_map_sg);
624
625 /**
626 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
627 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
628 * @sg: list of buffers
629 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
630 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
631 *
632 * Unmap a set of streaming mode DMA translations. Again, CPU access
633 * rules concerning calls here are the same as for dma_unmap_single().
634 */
dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)635 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
636 enum dma_data_direction dir)
637 {
638 struct scatterlist *s;
639 int i;
640
641 debug_dma_unmap_sg(dev, sg, nents, dir);
642
643 for_each_sg(sg, s, nents, i)
644 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
645 }
646 EXPORT_SYMBOL(dma_unmap_sg);
647
648 /**
649 * dma_sync_sg_for_cpu
650 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
651 * @sg: list of buffers
652 * @nents: number of buffers to map (returned from dma_map_sg)
653 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
654 */
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)655 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
656 int nents, enum dma_data_direction dir)
657 {
658 struct scatterlist *s;
659 int i;
660
661 for_each_sg(sg, s, nents, i) {
662 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
663 sg_dma_len(s), dir))
664 continue;
665
666 __dma_page_dev_to_cpu(sg_page(s), s->offset,
667 s->length, dir);
668 }
669
670 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
671 }
672 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
673
674 /**
675 * dma_sync_sg_for_device
676 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
677 * @sg: list of buffers
678 * @nents: number of buffers to map (returned from dma_map_sg)
679 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
680 */
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)681 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
682 int nents, enum dma_data_direction dir)
683 {
684 struct scatterlist *s;
685 int i;
686
687 for_each_sg(sg, s, nents, i) {
688 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
689 sg_dma_len(s), dir))
690 continue;
691
692 __dma_page_cpu_to_dev(sg_page(s), s->offset,
693 s->length, dir);
694 }
695
696 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
697 }
698 EXPORT_SYMBOL(dma_sync_sg_for_device);
699
700 /*
701 * Return whether the given device DMA address mask can be supported
702 * properly. For example, if your device can only drive the low 24-bits
703 * during bus mastering, then you would pass 0x00ffffff as the mask
704 * to this function.
705 */
dma_supported(struct device * dev,u64 mask)706 int dma_supported(struct device *dev, u64 mask)
707 {
708 if (mask < (u64)arm_dma_limit)
709 return 0;
710 return 1;
711 }
712 EXPORT_SYMBOL(dma_supported);
713
dma_set_mask(struct device * dev,u64 dma_mask)714 int dma_set_mask(struct device *dev, u64 dma_mask)
715 {
716 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
717 return -EIO;
718
719 #ifndef CONFIG_DMABOUNCE
720 *dev->dma_mask = dma_mask;
721 #endif
722
723 return 0;
724 }
725 EXPORT_SYMBOL(dma_set_mask);
726
727 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
728
dma_debug_do_init(void)729 static int __init dma_debug_do_init(void)
730 {
731 #ifdef CONFIG_MMU
732 arm_vmregion_create_proc("dma-mappings", &consistent_head);
733 #endif
734 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
735 return 0;
736 }
737 fs_initcall(dma_debug_do_init);
738