• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/sh/mm/cache.c
3  *
4  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5  * Copyright (C) 2002 - 2010  Paul Mundt
6  *
7  * Released under the terms of the GNU GPL v2.0.
8  */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18 
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28 
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35 
noop__flush_region(void * start,int size)36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39 
cacheop_on_each_cpu(void (* func)(void * info),void * info,int wait)40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41                                    int wait)
42 {
43 	preempt_disable();
44 
45 	/*
46 	 * It's possible that this gets called early on when IRQs are
47 	 * still disabled due to ioremapping by the boot CPU, so don't
48 	 * even attempt IPIs unless there are other CPUs online.
49 	 */
50 	if (num_online_cpus() > 1)
51 		smp_call_function(func, info, wait);
52 
53 	func(info);
54 
55 	preempt_enable();
56 }
57 
copy_to_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)58 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
59 		       unsigned long vaddr, void *dst, const void *src,
60 		       unsigned long len)
61 {
62 	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
63 	    test_bit(PG_dcache_clean, &page->flags)) {
64 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
65 		memcpy(vto, src, len);
66 		kunmap_coherent(vto);
67 	} else {
68 		memcpy(dst, src, len);
69 		if (boot_cpu_data.dcache.n_aliases)
70 			clear_bit(PG_dcache_clean, &page->flags);
71 	}
72 
73 	if (vma->vm_flags & VM_EXEC)
74 		flush_cache_page(vma, vaddr, page_to_pfn(page));
75 }
76 
copy_from_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)77 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
78 			 unsigned long vaddr, void *dst, const void *src,
79 			 unsigned long len)
80 {
81 	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
82 	    test_bit(PG_dcache_clean, &page->flags)) {
83 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
84 		memcpy(dst, vfrom, len);
85 		kunmap_coherent(vfrom);
86 	} else {
87 		memcpy(dst, src, len);
88 		if (boot_cpu_data.dcache.n_aliases)
89 			clear_bit(PG_dcache_clean, &page->flags);
90 	}
91 }
92 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)93 void copy_user_highpage(struct page *to, struct page *from,
94 			unsigned long vaddr, struct vm_area_struct *vma)
95 {
96 	void *vfrom, *vto;
97 
98 	vto = kmap_atomic(to);
99 
100 	if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
101 	    test_bit(PG_dcache_clean, &from->flags)) {
102 		vfrom = kmap_coherent(from, vaddr);
103 		copy_page(vto, vfrom);
104 		kunmap_coherent(vfrom);
105 	} else {
106 		vfrom = kmap_atomic(from);
107 		copy_page(vto, vfrom);
108 		kunmap_atomic(vfrom);
109 	}
110 
111 	if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
112 	    (vma->vm_flags & VM_EXEC))
113 		__flush_purge_region(vto, PAGE_SIZE);
114 
115 	kunmap_atomic(vto);
116 	/* Make sure this page is cleared on other CPU's too before using it */
117 	smp_wmb();
118 }
119 EXPORT_SYMBOL(copy_user_highpage);
120 
clear_user_highpage(struct page * page,unsigned long vaddr)121 void clear_user_highpage(struct page *page, unsigned long vaddr)
122 {
123 	void *kaddr = kmap_atomic(page);
124 
125 	clear_page(kaddr);
126 
127 	if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
128 		__flush_purge_region(kaddr, PAGE_SIZE);
129 
130 	kunmap_atomic(kaddr);
131 }
132 EXPORT_SYMBOL(clear_user_highpage);
133 
__update_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)134 void __update_cache(struct vm_area_struct *vma,
135 		    unsigned long address, pte_t pte)
136 {
137 	struct page *page;
138 	unsigned long pfn = pte_pfn(pte);
139 
140 	if (!boot_cpu_data.dcache.n_aliases)
141 		return;
142 
143 	page = pfn_to_page(pfn);
144 	if (pfn_valid(pfn)) {
145 		int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
146 		if (dirty)
147 			__flush_purge_region(page_address(page), PAGE_SIZE);
148 	}
149 }
150 
__flush_anon_page(struct page * page,unsigned long vmaddr)151 void __flush_anon_page(struct page *page, unsigned long vmaddr)
152 {
153 	unsigned long addr = (unsigned long) page_address(page);
154 
155 	if (pages_do_alias(addr, vmaddr)) {
156 		if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
157 		    test_bit(PG_dcache_clean, &page->flags)) {
158 			void *kaddr;
159 
160 			kaddr = kmap_coherent(page, vmaddr);
161 			/* XXX.. For now kunmap_coherent() does a purge */
162 			/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
163 			kunmap_coherent(kaddr);
164 		} else
165 			__flush_purge_region((void *)addr, PAGE_SIZE);
166 	}
167 }
168 
flush_cache_all(void)169 void flush_cache_all(void)
170 {
171 	cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
172 }
173 EXPORT_SYMBOL(flush_cache_all);
174 
flush_cache_mm(struct mm_struct * mm)175 void flush_cache_mm(struct mm_struct *mm)
176 {
177 	if (boot_cpu_data.dcache.n_aliases == 0)
178 		return;
179 
180 	cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
181 }
182 
flush_cache_dup_mm(struct mm_struct * mm)183 void flush_cache_dup_mm(struct mm_struct *mm)
184 {
185 	if (boot_cpu_data.dcache.n_aliases == 0)
186 		return;
187 
188 	cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
189 }
190 
flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)191 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
192 		      unsigned long pfn)
193 {
194 	struct flusher_data data;
195 
196 	data.vma = vma;
197 	data.addr1 = addr;
198 	data.addr2 = pfn;
199 
200 	cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
201 }
202 
flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)203 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
204 		       unsigned long end)
205 {
206 	struct flusher_data data;
207 
208 	data.vma = vma;
209 	data.addr1 = start;
210 	data.addr2 = end;
211 
212 	cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
213 }
214 EXPORT_SYMBOL(flush_cache_range);
215 
flush_dcache_page(struct page * page)216 void flush_dcache_page(struct page *page)
217 {
218 	cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
219 }
220 EXPORT_SYMBOL(flush_dcache_page);
221 
flush_icache_range(unsigned long start,unsigned long end)222 void flush_icache_range(unsigned long start, unsigned long end)
223 {
224 	struct flusher_data data;
225 
226 	data.vma = NULL;
227 	data.addr1 = start;
228 	data.addr2 = end;
229 
230 	cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
231 }
232 
flush_icache_page(struct vm_area_struct * vma,struct page * page)233 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
234 {
235 	/* Nothing uses the VMA, so just pass the struct page along */
236 	cacheop_on_each_cpu(local_flush_icache_page, page, 1);
237 }
238 
flush_cache_sigtramp(unsigned long address)239 void flush_cache_sigtramp(unsigned long address)
240 {
241 	cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
242 }
243 
compute_alias(struct cache_info * c)244 static void compute_alias(struct cache_info *c)
245 {
246 	c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
247 	c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
248 }
249 
emit_cache_params(void)250 static void __init emit_cache_params(void)
251 {
252 	printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
253 		boot_cpu_data.icache.ways,
254 		boot_cpu_data.icache.sets,
255 		boot_cpu_data.icache.way_incr);
256 	printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
257 		boot_cpu_data.icache.entry_mask,
258 		boot_cpu_data.icache.alias_mask,
259 		boot_cpu_data.icache.n_aliases);
260 	printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
261 		boot_cpu_data.dcache.ways,
262 		boot_cpu_data.dcache.sets,
263 		boot_cpu_data.dcache.way_incr);
264 	printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
265 		boot_cpu_data.dcache.entry_mask,
266 		boot_cpu_data.dcache.alias_mask,
267 		boot_cpu_data.dcache.n_aliases);
268 
269 	/*
270 	 * Emit Secondary Cache parameters if the CPU has a probed L2.
271 	 */
272 	if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
273 		printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
274 			boot_cpu_data.scache.ways,
275 			boot_cpu_data.scache.sets,
276 			boot_cpu_data.scache.way_incr);
277 		printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
278 			boot_cpu_data.scache.entry_mask,
279 			boot_cpu_data.scache.alias_mask,
280 			boot_cpu_data.scache.n_aliases);
281 	}
282 }
283 
cpu_cache_init(void)284 void __init cpu_cache_init(void)
285 {
286 	unsigned int cache_disabled = 0;
287 
288 #ifdef CCR
289 	cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
290 #endif
291 
292 	compute_alias(&boot_cpu_data.icache);
293 	compute_alias(&boot_cpu_data.dcache);
294 	compute_alias(&boot_cpu_data.scache);
295 
296 	__flush_wback_region		= noop__flush_region;
297 	__flush_purge_region		= noop__flush_region;
298 	__flush_invalidate_region	= noop__flush_region;
299 
300 	/*
301 	 * No flushing is necessary in the disabled cache case so we can
302 	 * just keep the noop functions in local_flush_..() and __flush_..()
303 	 */
304 	if (unlikely(cache_disabled))
305 		goto skip;
306 
307 	if (boot_cpu_data.family == CPU_FAMILY_SH2) {
308 		extern void __weak sh2_cache_init(void);
309 
310 		sh2_cache_init();
311 	}
312 
313 	if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
314 		extern void __weak sh2a_cache_init(void);
315 
316 		sh2a_cache_init();
317 	}
318 
319 	if (boot_cpu_data.family == CPU_FAMILY_SH3) {
320 		extern void __weak sh3_cache_init(void);
321 
322 		sh3_cache_init();
323 
324 		if ((boot_cpu_data.type == CPU_SH7705) &&
325 		    (boot_cpu_data.dcache.sets == 512)) {
326 			extern void __weak sh7705_cache_init(void);
327 
328 			sh7705_cache_init();
329 		}
330 	}
331 
332 	if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
333 	    (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
334 	    (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
335 		extern void __weak sh4_cache_init(void);
336 
337 		sh4_cache_init();
338 
339 		if ((boot_cpu_data.type == CPU_SH7786) ||
340 		    (boot_cpu_data.type == CPU_SHX3)) {
341 			extern void __weak shx3_cache_init(void);
342 
343 			shx3_cache_init();
344 		}
345 	}
346 
347 	if (boot_cpu_data.family == CPU_FAMILY_SH5) {
348 		extern void __weak sh5_cache_init(void);
349 
350 		sh5_cache_init();
351 	}
352 
353 skip:
354 	emit_cache_params();
355 }
356