1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/slab.h>
16 #include <asm/asm.h>
17 #include <asm/cpufeature.h>
18 #include <asm/processor.h>
19 #include <asm/sigcontext.h>
20 #include <asm/user.h>
21 #include <asm/uaccess.h>
22 #include <asm/xsave.h>
23
24 extern unsigned int sig_xstate_size;
25 extern void fpu_init(void);
26
27 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
28
29 extern user_regset_active_fn fpregs_active, xfpregs_active;
30 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
31 xstateregs_get;
32 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
33 xstateregs_set;
34
35
36 /*
37 * xstateregs_active == fpregs_active. Please refer to the comment
38 * at the definition of fpregs_active.
39 */
40 #define xstateregs_active fpregs_active
41
42 extern struct _fpx_sw_bytes fx_sw_reserved;
43 #ifdef CONFIG_IA32_EMULATION
44 extern unsigned int sig_xstate_ia32_size;
45 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
46 struct _fpstate_ia32;
47 struct _xstate_ia32;
48 extern int save_i387_xstate_ia32(void __user *buf);
49 extern int restore_i387_xstate_ia32(void __user *buf);
50 #endif
51
52 #ifdef CONFIG_MATH_EMULATION
53 extern void finit_soft_fpu(struct i387_soft_struct *soft);
54 #else
finit_soft_fpu(struct i387_soft_struct * soft)55 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
56 #endif
57
58 #define X87_FSW_ES (1 << 7) /* Exception Summary */
59
use_xsaveopt(void)60 static __always_inline __pure bool use_xsaveopt(void)
61 {
62 return static_cpu_has(X86_FEATURE_XSAVEOPT);
63 }
64
use_xsave(void)65 static __always_inline __pure bool use_xsave(void)
66 {
67 return static_cpu_has(X86_FEATURE_XSAVE);
68 }
69
use_fxsr(void)70 static __always_inline __pure bool use_fxsr(void)
71 {
72 return static_cpu_has(X86_FEATURE_FXSR);
73 }
74
75 extern void __sanitize_i387_state(struct task_struct *);
76
sanitize_i387_state(struct task_struct * tsk)77 static inline void sanitize_i387_state(struct task_struct *tsk)
78 {
79 if (!use_xsaveopt())
80 return;
81 __sanitize_i387_state(tsk);
82 }
83
84 #ifdef CONFIG_X86_64
fxrstor_checking(struct i387_fxsave_struct * fx)85 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
86 {
87 int err;
88
89 /* See comment in fxsave() below. */
90 #ifdef CONFIG_AS_FXSAVEQ
91 asm volatile("1: fxrstorq %[fx]\n\t"
92 "2:\n"
93 ".section .fixup,\"ax\"\n"
94 "3: movl $-1,%[err]\n"
95 " jmp 2b\n"
96 ".previous\n"
97 _ASM_EXTABLE(1b, 3b)
98 : [err] "=r" (err)
99 : [fx] "m" (*fx), "0" (0));
100 #else
101 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
102 "2:\n"
103 ".section .fixup,\"ax\"\n"
104 "3: movl $-1,%[err]\n"
105 " jmp 2b\n"
106 ".previous\n"
107 _ASM_EXTABLE(1b, 3b)
108 : [err] "=r" (err)
109 : [fx] "R" (fx), "m" (*fx), "0" (0));
110 #endif
111 return err;
112 }
113
fxsave_user(struct i387_fxsave_struct __user * fx)114 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
115 {
116 int err;
117
118 /*
119 * Clear the bytes not touched by the fxsave and reserved
120 * for the SW usage.
121 */
122 err = __clear_user(&fx->sw_reserved,
123 sizeof(struct _fpx_sw_bytes));
124 if (unlikely(err))
125 return -EFAULT;
126
127 /* See comment in fxsave() below. */
128 #ifdef CONFIG_AS_FXSAVEQ
129 asm volatile("1: fxsaveq %[fx]\n\t"
130 "2:\n"
131 ".section .fixup,\"ax\"\n"
132 "3: movl $-1,%[err]\n"
133 " jmp 2b\n"
134 ".previous\n"
135 _ASM_EXTABLE(1b, 3b)
136 : [err] "=r" (err), [fx] "=m" (*fx)
137 : "0" (0));
138 #else
139 asm volatile("1: rex64/fxsave (%[fx])\n\t"
140 "2:\n"
141 ".section .fixup,\"ax\"\n"
142 "3: movl $-1,%[err]\n"
143 " jmp 2b\n"
144 ".previous\n"
145 _ASM_EXTABLE(1b, 3b)
146 : [err] "=r" (err), "=m" (*fx)
147 : [fx] "R" (fx), "0" (0));
148 #endif
149 if (unlikely(err) &&
150 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
151 err = -EFAULT;
152 /* No need to clear here because the caller clears USED_MATH */
153 return err;
154 }
155
fpu_fxsave(struct fpu * fpu)156 static inline void fpu_fxsave(struct fpu *fpu)
157 {
158 /* Using "rex64; fxsave %0" is broken because, if the memory operand
159 uses any extended registers for addressing, a second REX prefix
160 will be generated (to the assembler, rex64 followed by semicolon
161 is a separate instruction), and hence the 64-bitness is lost. */
162
163 #ifdef CONFIG_AS_FXSAVEQ
164 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
165 starting with gas 2.16. */
166 __asm__ __volatile__("fxsaveq %0"
167 : "=m" (fpu->state->fxsave));
168 #else
169 /* Using, as a workaround, the properly prefixed form below isn't
170 accepted by any binutils version so far released, complaining that
171 the same type of prefix is used twice if an extended register is
172 needed for addressing (fix submitted to mainline 2005-11-21).
173 asm volatile("rex64/fxsave %0"
174 : "=m" (fpu->state->fxsave));
175 This, however, we can work around by forcing the compiler to select
176 an addressing mode that doesn't require extended registers. */
177 asm volatile("rex64/fxsave (%[fx])"
178 : "=m" (fpu->state->fxsave)
179 : [fx] "R" (&fpu->state->fxsave));
180 #endif
181 }
182
183 #else /* CONFIG_X86_32 */
184
185 /* perform fxrstor iff the processor has extended states, otherwise frstor */
fxrstor_checking(struct i387_fxsave_struct * fx)186 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
187 {
188 /*
189 * The "nop" is needed to make the instructions the same
190 * length.
191 */
192 alternative_input(
193 "nop ; frstor %1",
194 "fxrstor %1",
195 X86_FEATURE_FXSR,
196 "m" (*fx));
197
198 return 0;
199 }
200
fpu_fxsave(struct fpu * fpu)201 static inline void fpu_fxsave(struct fpu *fpu)
202 {
203 asm volatile("fxsave %[fx]"
204 : [fx] "=m" (fpu->state->fxsave));
205 }
206
207 #endif /* CONFIG_X86_64 */
208
209 /*
210 * These must be called with preempt disabled. Returns
211 * 'true' if the FPU state is still intact.
212 */
fpu_save_init(struct fpu * fpu)213 static inline int fpu_save_init(struct fpu *fpu)
214 {
215 if (use_xsave()) {
216 fpu_xsave(fpu);
217
218 /*
219 * xsave header may indicate the init state of the FP.
220 */
221 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
222 return 1;
223 } else if (use_fxsr()) {
224 fpu_fxsave(fpu);
225 } else {
226 asm volatile("fnsave %[fx]; fwait"
227 : [fx] "=m" (fpu->state->fsave));
228 return 0;
229 }
230
231 /*
232 * If exceptions are pending, we need to clear them so
233 * that we don't randomly get exceptions later.
234 *
235 * FIXME! Is this perhaps only true for the old-style
236 * irq13 case? Maybe we could leave the x87 state
237 * intact otherwise?
238 */
239 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
240 asm volatile("fnclex");
241 return 0;
242 }
243 return 1;
244 }
245
__save_init_fpu(struct task_struct * tsk)246 static inline int __save_init_fpu(struct task_struct *tsk)
247 {
248 return fpu_save_init(&tsk->thread.fpu);
249 }
250
fpu_fxrstor_checking(struct fpu * fpu)251 static inline int fpu_fxrstor_checking(struct fpu *fpu)
252 {
253 return fxrstor_checking(&fpu->state->fxsave);
254 }
255
fpu_restore_checking(struct fpu * fpu)256 static inline int fpu_restore_checking(struct fpu *fpu)
257 {
258 if (use_xsave())
259 return fpu_xrstor_checking(fpu);
260 else
261 return fpu_fxrstor_checking(fpu);
262 }
263
restore_fpu_checking(struct task_struct * tsk)264 static inline int restore_fpu_checking(struct task_struct *tsk)
265 {
266 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
267 is pending. Clear the x87 state here by setting it to fixed
268 values. "m" is a random variable that should be in L1 */
269 alternative_input(
270 ASM_NOP8 ASM_NOP2,
271 "emms\n\t" /* clear stack tags */
272 "fildl %P[addr]", /* set F?P to defined value */
273 X86_FEATURE_FXSAVE_LEAK,
274 [addr] "m" (tsk->thread.fpu.has_fpu));
275
276 return fpu_restore_checking(&tsk->thread.fpu);
277 }
278
279 /*
280 * Software FPU state helpers. Careful: these need to
281 * be preemption protection *and* they need to be
282 * properly paired with the CR0.TS changes!
283 */
__thread_has_fpu(struct task_struct * tsk)284 static inline int __thread_has_fpu(struct task_struct *tsk)
285 {
286 return tsk->thread.fpu.has_fpu;
287 }
288
289 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)290 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
291 {
292 tsk->thread.fpu.has_fpu = 0;
293 percpu_write(fpu_owner_task, NULL);
294 }
295
296 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)297 static inline void __thread_set_has_fpu(struct task_struct *tsk)
298 {
299 tsk->thread.fpu.has_fpu = 1;
300 percpu_write(fpu_owner_task, tsk);
301 }
302
303 /*
304 * Encapsulate the CR0.TS handling together with the
305 * software flag.
306 *
307 * These generally need preemption protection to work,
308 * do try to avoid using these on their own.
309 */
__thread_fpu_end(struct task_struct * tsk)310 static inline void __thread_fpu_end(struct task_struct *tsk)
311 {
312 __thread_clear_has_fpu(tsk);
313 stts();
314 }
315
__thread_fpu_begin(struct task_struct * tsk)316 static inline void __thread_fpu_begin(struct task_struct *tsk)
317 {
318 clts();
319 __thread_set_has_fpu(tsk);
320 }
321
322 /*
323 * FPU state switching for scheduling.
324 *
325 * This is a two-stage process:
326 *
327 * - switch_fpu_prepare() saves the old state and
328 * sets the new state of the CR0.TS bit. This is
329 * done within the context of the old process.
330 *
331 * - switch_fpu_finish() restores the new state as
332 * necessary.
333 */
334 typedef struct { int preload; } fpu_switch_t;
335
336 /*
337 * Must be run with preemption disabled: this clears the fpu_owner_task,
338 * on this CPU.
339 *
340 * This will disable any lazy FPU state restore of the current FPU state,
341 * but if the current thread owns the FPU, it will still be saved by.
342 */
__cpu_disable_lazy_restore(unsigned int cpu)343 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
344 {
345 per_cpu(fpu_owner_task, cpu) = NULL;
346 }
347
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)348 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
349 {
350 return new == percpu_read_stable(fpu_owner_task) &&
351 cpu == new->thread.fpu.last_cpu;
352 }
353
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)354 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
355 {
356 fpu_switch_t fpu;
357
358 fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
359 if (__thread_has_fpu(old)) {
360 if (!__save_init_fpu(old))
361 cpu = ~0;
362 old->thread.fpu.last_cpu = cpu;
363 old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
364
365 /* Don't change CR0.TS if we just switch! */
366 if (fpu.preload) {
367 new->fpu_counter++;
368 __thread_set_has_fpu(new);
369 prefetch(new->thread.fpu.state);
370 } else
371 stts();
372 } else {
373 old->fpu_counter = 0;
374 old->thread.fpu.last_cpu = ~0;
375 if (fpu.preload) {
376 new->fpu_counter++;
377 if (fpu_lazy_restore(new, cpu))
378 fpu.preload = 0;
379 else
380 prefetch(new->thread.fpu.state);
381 __thread_fpu_begin(new);
382 }
383 }
384 return fpu;
385 }
386
387 /*
388 * By the time this gets called, we've already cleared CR0.TS and
389 * given the process the FPU if we are going to preload the FPU
390 * state - all we need to do is to conditionally restore the register
391 * state itself.
392 */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)393 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
394 {
395 if (fpu.preload) {
396 if (unlikely(restore_fpu_checking(new)))
397 __thread_fpu_end(new);
398 }
399 }
400
401 /*
402 * Signal frame handlers...
403 */
404 extern int save_i387_xstate(void __user *buf);
405 extern int restore_i387_xstate(void __user *buf);
406
__clear_fpu(struct task_struct * tsk)407 static inline void __clear_fpu(struct task_struct *tsk)
408 {
409 if (__thread_has_fpu(tsk)) {
410 /* Ignore delayed exceptions from user space */
411 asm volatile("1: fwait\n"
412 "2:\n"
413 _ASM_EXTABLE(1b, 2b));
414 __thread_fpu_end(tsk);
415 }
416 }
417
418 /*
419 * The actual user_fpu_begin/end() functions
420 * need to be preemption-safe.
421 *
422 * NOTE! user_fpu_end() must be used only after you
423 * have saved the FP state, and user_fpu_begin() must
424 * be used only immediately before restoring it.
425 * These functions do not do any save/restore on
426 * their own.
427 */
user_fpu_end(void)428 static inline void user_fpu_end(void)
429 {
430 preempt_disable();
431 __thread_fpu_end(current);
432 preempt_enable();
433 }
434
user_fpu_begin(void)435 static inline void user_fpu_begin(void)
436 {
437 preempt_disable();
438 if (!user_has_fpu())
439 __thread_fpu_begin(current);
440 preempt_enable();
441 }
442
443 /*
444 * These disable preemption on their own and are safe
445 */
save_init_fpu(struct task_struct * tsk)446 static inline void save_init_fpu(struct task_struct *tsk)
447 {
448 WARN_ON_ONCE(!__thread_has_fpu(tsk));
449 preempt_disable();
450 __save_init_fpu(tsk);
451 __thread_fpu_end(tsk);
452 preempt_enable();
453 }
454
clear_fpu(struct task_struct * tsk)455 static inline void clear_fpu(struct task_struct *tsk)
456 {
457 preempt_disable();
458 __clear_fpu(tsk);
459 preempt_enable();
460 }
461
462 /*
463 * i387 state interaction
464 */
get_fpu_cwd(struct task_struct * tsk)465 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
466 {
467 if (cpu_has_fxsr) {
468 return tsk->thread.fpu.state->fxsave.cwd;
469 } else {
470 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
471 }
472 }
473
get_fpu_swd(struct task_struct * tsk)474 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
475 {
476 if (cpu_has_fxsr) {
477 return tsk->thread.fpu.state->fxsave.swd;
478 } else {
479 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
480 }
481 }
482
get_fpu_mxcsr(struct task_struct * tsk)483 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
484 {
485 if (cpu_has_xmm) {
486 return tsk->thread.fpu.state->fxsave.mxcsr;
487 } else {
488 return MXCSR_DEFAULT;
489 }
490 }
491
fpu_allocated(struct fpu * fpu)492 static bool fpu_allocated(struct fpu *fpu)
493 {
494 return fpu->state != NULL;
495 }
496
fpu_alloc(struct fpu * fpu)497 static inline int fpu_alloc(struct fpu *fpu)
498 {
499 if (fpu_allocated(fpu))
500 return 0;
501 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
502 if (!fpu->state)
503 return -ENOMEM;
504 WARN_ON((unsigned long)fpu->state & 15);
505 return 0;
506 }
507
fpu_free(struct fpu * fpu)508 static inline void fpu_free(struct fpu *fpu)
509 {
510 if (fpu->state) {
511 kmem_cache_free(task_xstate_cachep, fpu->state);
512 fpu->state = NULL;
513 }
514 }
515
fpu_copy(struct fpu * dst,struct fpu * src)516 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
517 {
518 memcpy(dst->state, src->state, xstate_size);
519 }
520
521 extern void fpu_finit(struct fpu *fpu);
522
523 #endif
524