1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
udf_sb_lvidiu(struct udf_sb_info * sbi)97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106
107 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110 {
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113
114 static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120 };
121
122 static struct kmem_cache *udf_inode_cachep;
123
udf_alloc_inode(struct super_block * sb)124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 struct udf_inode_info *ei;
127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 if (!ei)
129 return NULL;
130
131 ei->i_unique = 0;
132 ei->i_lenExtents = 0;
133 ei->i_next_alloc_block = 0;
134 ei->i_next_alloc_goal = 0;
135 ei->i_strat4096 = 0;
136 init_rwsem(&ei->i_data_sem);
137
138 return &ei->vfs_inode;
139 }
140
udf_i_callback(struct rcu_head * head)141 static void udf_i_callback(struct rcu_head *head)
142 {
143 struct inode *inode = container_of(head, struct inode, i_rcu);
144 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146
udf_destroy_inode(struct inode * inode)147 static void udf_destroy_inode(struct inode *inode)
148 {
149 call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151
init_once(void * foo)152 static void init_once(void *foo)
153 {
154 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155
156 ei->i_ext.i_data = NULL;
157 inode_init_once(&ei->vfs_inode);
158 }
159
init_inodecache(void)160 static int init_inodecache(void)
161 {
162 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 sizeof(struct udf_inode_info),
164 0, (SLAB_RECLAIM_ACCOUNT |
165 SLAB_MEM_SPREAD),
166 init_once);
167 if (!udf_inode_cachep)
168 return -ENOMEM;
169 return 0;
170 }
171
destroy_inodecache(void)172 static void destroy_inodecache(void)
173 {
174 kmem_cache_destroy(udf_inode_cachep);
175 }
176
177 /* Superblock operations */
178 static const struct super_operations udf_sb_ops = {
179 .alloc_inode = udf_alloc_inode,
180 .destroy_inode = udf_destroy_inode,
181 .write_inode = udf_write_inode,
182 .evict_inode = udf_evict_inode,
183 .put_super = udf_put_super,
184 .sync_fs = udf_sync_fs,
185 .statfs = udf_statfs,
186 .remount_fs = udf_remount_fs,
187 .show_options = udf_show_options,
188 };
189
190 struct udf_options {
191 unsigned char novrs;
192 unsigned int blocksize;
193 unsigned int session;
194 unsigned int lastblock;
195 unsigned int anchor;
196 unsigned int volume;
197 unsigned short partition;
198 unsigned int fileset;
199 unsigned int rootdir;
200 unsigned int flags;
201 umode_t umask;
202 gid_t gid;
203 uid_t uid;
204 umode_t fmode;
205 umode_t dmode;
206 struct nls_table *nls_map;
207 };
208
init_udf_fs(void)209 static int __init init_udf_fs(void)
210 {
211 int err;
212
213 err = init_inodecache();
214 if (err)
215 goto out1;
216 err = register_filesystem(&udf_fstype);
217 if (err)
218 goto out;
219
220 return 0;
221
222 out:
223 destroy_inodecache();
224
225 out1:
226 return err;
227 }
228
exit_udf_fs(void)229 static void __exit exit_udf_fs(void)
230 {
231 unregister_filesystem(&udf_fstype);
232 destroy_inodecache();
233 }
234
235 module_init(init_udf_fs)
module_exit(exit_udf_fs)236 module_exit(exit_udf_fs)
237
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240 struct udf_sb_info *sbi = UDF_SB(sb);
241
242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 GFP_KERNEL);
244 if (!sbi->s_partmaps) {
245 udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 count);
247 sbi->s_partitions = 0;
248 return -ENOMEM;
249 }
250
251 sbi->s_partitions = count;
252 return 0;
253 }
254
udf_show_options(struct seq_file * seq,struct dentry * root)255 static int udf_show_options(struct seq_file *seq, struct dentry *root)
256 {
257 struct super_block *sb = root->d_sb;
258 struct udf_sb_info *sbi = UDF_SB(sb);
259
260 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
261 seq_puts(seq, ",nostrict");
262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
263 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
265 seq_puts(seq, ",unhide");
266 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
267 seq_puts(seq, ",undelete");
268 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
269 seq_puts(seq, ",noadinicb");
270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
271 seq_puts(seq, ",shortad");
272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
273 seq_puts(seq, ",uid=forget");
274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
275 seq_puts(seq, ",uid=ignore");
276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
277 seq_puts(seq, ",gid=forget");
278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
279 seq_puts(seq, ",gid=ignore");
280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
281 seq_printf(seq, ",uid=%u", sbi->s_uid);
282 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
283 seq_printf(seq, ",gid=%u", sbi->s_gid);
284 if (sbi->s_umask != 0)
285 seq_printf(seq, ",umask=%ho", sbi->s_umask);
286 if (sbi->s_fmode != UDF_INVALID_MODE)
287 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
288 if (sbi->s_dmode != UDF_INVALID_MODE)
289 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
291 seq_printf(seq, ",session=%u", sbi->s_session);
292 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
293 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
294 if (sbi->s_anchor != 0)
295 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296 /*
297 * volume, partition, fileset and rootdir seem to be ignored
298 * currently
299 */
300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
301 seq_puts(seq, ",utf8");
302 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
303 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304
305 return 0;
306 }
307
308 /*
309 * udf_parse_options
310 *
311 * PURPOSE
312 * Parse mount options.
313 *
314 * DESCRIPTION
315 * The following mount options are supported:
316 *
317 * gid= Set the default group.
318 * umask= Set the default umask.
319 * mode= Set the default file permissions.
320 * dmode= Set the default directory permissions.
321 * uid= Set the default user.
322 * bs= Set the block size.
323 * unhide Show otherwise hidden files.
324 * undelete Show deleted files in lists.
325 * adinicb Embed data in the inode (default)
326 * noadinicb Don't embed data in the inode
327 * shortad Use short ad's
328 * longad Use long ad's (default)
329 * nostrict Unset strict conformance
330 * iocharset= Set the NLS character set
331 *
332 * The remaining are for debugging and disaster recovery:
333 *
334 * novrs Skip volume sequence recognition
335 *
336 * The following expect a offset from 0.
337 *
338 * session= Set the CDROM session (default= last session)
339 * anchor= Override standard anchor location. (default= 256)
340 * volume= Override the VolumeDesc location. (unused)
341 * partition= Override the PartitionDesc location. (unused)
342 * lastblock= Set the last block of the filesystem/
343 *
344 * The following expect a offset from the partition root.
345 *
346 * fileset= Override the fileset block location. (unused)
347 * rootdir= Override the root directory location. (unused)
348 * WARNING: overriding the rootdir to a non-directory may
349 * yield highly unpredictable results.
350 *
351 * PRE-CONDITIONS
352 * options Pointer to mount options string.
353 * uopts Pointer to mount options variable.
354 *
355 * POST-CONDITIONS
356 * <return> 1 Mount options parsed okay.
357 * <return> 0 Error parsing mount options.
358 *
359 * HISTORY
360 * July 1, 1997 - Andrew E. Mileski
361 * Written, tested, and released.
362 */
363
364 enum {
365 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
366 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
367 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
368 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
369 Opt_rootdir, Opt_utf8, Opt_iocharset,
370 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
371 Opt_fmode, Opt_dmode
372 };
373
374 static const match_table_t tokens = {
375 {Opt_novrs, "novrs"},
376 {Opt_nostrict, "nostrict"},
377 {Opt_bs, "bs=%u"},
378 {Opt_unhide, "unhide"},
379 {Opt_undelete, "undelete"},
380 {Opt_noadinicb, "noadinicb"},
381 {Opt_adinicb, "adinicb"},
382 {Opt_shortad, "shortad"},
383 {Opt_longad, "longad"},
384 {Opt_uforget, "uid=forget"},
385 {Opt_uignore, "uid=ignore"},
386 {Opt_gforget, "gid=forget"},
387 {Opt_gignore, "gid=ignore"},
388 {Opt_gid, "gid=%u"},
389 {Opt_uid, "uid=%u"},
390 {Opt_umask, "umask=%o"},
391 {Opt_session, "session=%u"},
392 {Opt_lastblock, "lastblock=%u"},
393 {Opt_anchor, "anchor=%u"},
394 {Opt_volume, "volume=%u"},
395 {Opt_partition, "partition=%u"},
396 {Opt_fileset, "fileset=%u"},
397 {Opt_rootdir, "rootdir=%u"},
398 {Opt_utf8, "utf8"},
399 {Opt_iocharset, "iocharset=%s"},
400 {Opt_fmode, "mode=%o"},
401 {Opt_dmode, "dmode=%o"},
402 {Opt_err, NULL}
403 };
404
udf_parse_options(char * options,struct udf_options * uopt,bool remount)405 static int udf_parse_options(char *options, struct udf_options *uopt,
406 bool remount)
407 {
408 char *p;
409 int option;
410
411 uopt->novrs = 0;
412 uopt->partition = 0xFFFF;
413 uopt->session = 0xFFFFFFFF;
414 uopt->lastblock = 0;
415 uopt->anchor = 0;
416 uopt->volume = 0xFFFFFFFF;
417 uopt->rootdir = 0xFFFFFFFF;
418 uopt->fileset = 0xFFFFFFFF;
419 uopt->nls_map = NULL;
420
421 if (!options)
422 return 1;
423
424 while ((p = strsep(&options, ",")) != NULL) {
425 substring_t args[MAX_OPT_ARGS];
426 int token;
427 if (!*p)
428 continue;
429
430 token = match_token(p, tokens, args);
431 switch (token) {
432 case Opt_novrs:
433 uopt->novrs = 1;
434 break;
435 case Opt_bs:
436 if (match_int(&args[0], &option))
437 return 0;
438 uopt->blocksize = option;
439 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
440 break;
441 case Opt_unhide:
442 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
443 break;
444 case Opt_undelete:
445 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
446 break;
447 case Opt_noadinicb:
448 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
449 break;
450 case Opt_adinicb:
451 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
452 break;
453 case Opt_shortad:
454 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
455 break;
456 case Opt_longad:
457 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
458 break;
459 case Opt_gid:
460 if (match_int(args, &option))
461 return 0;
462 uopt->gid = option;
463 uopt->flags |= (1 << UDF_FLAG_GID_SET);
464 break;
465 case Opt_uid:
466 if (match_int(args, &option))
467 return 0;
468 uopt->uid = option;
469 uopt->flags |= (1 << UDF_FLAG_UID_SET);
470 break;
471 case Opt_umask:
472 if (match_octal(args, &option))
473 return 0;
474 uopt->umask = option;
475 break;
476 case Opt_nostrict:
477 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
478 break;
479 case Opt_session:
480 if (match_int(args, &option))
481 return 0;
482 uopt->session = option;
483 if (!remount)
484 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
485 break;
486 case Opt_lastblock:
487 if (match_int(args, &option))
488 return 0;
489 uopt->lastblock = option;
490 if (!remount)
491 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
492 break;
493 case Opt_anchor:
494 if (match_int(args, &option))
495 return 0;
496 uopt->anchor = option;
497 break;
498 case Opt_volume:
499 if (match_int(args, &option))
500 return 0;
501 uopt->volume = option;
502 break;
503 case Opt_partition:
504 if (match_int(args, &option))
505 return 0;
506 uopt->partition = option;
507 break;
508 case Opt_fileset:
509 if (match_int(args, &option))
510 return 0;
511 uopt->fileset = option;
512 break;
513 case Opt_rootdir:
514 if (match_int(args, &option))
515 return 0;
516 uopt->rootdir = option;
517 break;
518 case Opt_utf8:
519 uopt->flags |= (1 << UDF_FLAG_UTF8);
520 break;
521 #ifdef CONFIG_UDF_NLS
522 case Opt_iocharset:
523 uopt->nls_map = load_nls(args[0].from);
524 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
525 break;
526 #endif
527 case Opt_uignore:
528 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
529 break;
530 case Opt_uforget:
531 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
532 break;
533 case Opt_gignore:
534 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
535 break;
536 case Opt_gforget:
537 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
538 break;
539 case Opt_fmode:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->fmode = option & 0777;
543 break;
544 case Opt_dmode:
545 if (match_octal(args, &option))
546 return 0;
547 uopt->dmode = option & 0777;
548 break;
549 default:
550 pr_err("bad mount option \"%s\" or missing value\n", p);
551 return 0;
552 }
553 }
554 return 1;
555 }
556
udf_remount_fs(struct super_block * sb,int * flags,char * options)557 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558 {
559 struct udf_options uopt;
560 struct udf_sb_info *sbi = UDF_SB(sb);
561 int error = 0;
562
563 uopt.flags = sbi->s_flags;
564 uopt.uid = sbi->s_uid;
565 uopt.gid = sbi->s_gid;
566 uopt.umask = sbi->s_umask;
567 uopt.fmode = sbi->s_fmode;
568 uopt.dmode = sbi->s_dmode;
569
570 if (!udf_parse_options(options, &uopt, true))
571 return -EINVAL;
572
573 write_lock(&sbi->s_cred_lock);
574 sbi->s_flags = uopt.flags;
575 sbi->s_uid = uopt.uid;
576 sbi->s_gid = uopt.gid;
577 sbi->s_umask = uopt.umask;
578 sbi->s_fmode = uopt.fmode;
579 sbi->s_dmode = uopt.dmode;
580 write_unlock(&sbi->s_cred_lock);
581
582 if (sbi->s_lvid_bh) {
583 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
584 if (write_rev > UDF_MAX_WRITE_VERSION)
585 *flags |= MS_RDONLY;
586 }
587
588 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
589 goto out_unlock;
590
591 if (*flags & MS_RDONLY)
592 udf_close_lvid(sb);
593 else
594 udf_open_lvid(sb);
595
596 out_unlock:
597 return error;
598 }
599
600 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
601 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)602 static loff_t udf_check_vsd(struct super_block *sb)
603 {
604 struct volStructDesc *vsd = NULL;
605 loff_t sector = 32768;
606 int sectorsize;
607 struct buffer_head *bh = NULL;
608 int nsr02 = 0;
609 int nsr03 = 0;
610 struct udf_sb_info *sbi;
611
612 sbi = UDF_SB(sb);
613 if (sb->s_blocksize < sizeof(struct volStructDesc))
614 sectorsize = sizeof(struct volStructDesc);
615 else
616 sectorsize = sb->s_blocksize;
617
618 sector += (sbi->s_session << sb->s_blocksize_bits);
619
620 udf_debug("Starting at sector %u (%ld byte sectors)\n",
621 (unsigned int)(sector >> sb->s_blocksize_bits),
622 sb->s_blocksize);
623 /* Process the sequence (if applicable) */
624 for (; !nsr02 && !nsr03; sector += sectorsize) {
625 /* Read a block */
626 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
627 if (!bh)
628 break;
629
630 /* Look for ISO descriptors */
631 vsd = (struct volStructDesc *)(bh->b_data +
632 (sector & (sb->s_blocksize - 1)));
633
634 if (vsd->stdIdent[0] == 0) {
635 brelse(bh);
636 break;
637 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
638 VSD_STD_ID_LEN)) {
639 switch (vsd->structType) {
640 case 0:
641 udf_debug("ISO9660 Boot Record found\n");
642 break;
643 case 1:
644 udf_debug("ISO9660 Primary Volume Descriptor found\n");
645 break;
646 case 2:
647 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
648 break;
649 case 3:
650 udf_debug("ISO9660 Volume Partition Descriptor found\n");
651 break;
652 case 255:
653 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
654 break;
655 default:
656 udf_debug("ISO9660 VRS (%u) found\n",
657 vsd->structType);
658 break;
659 }
660 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
661 VSD_STD_ID_LEN))
662 ; /* nothing */
663 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
664 VSD_STD_ID_LEN)) {
665 brelse(bh);
666 break;
667 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
668 VSD_STD_ID_LEN))
669 nsr02 = sector;
670 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
671 VSD_STD_ID_LEN))
672 nsr03 = sector;
673 brelse(bh);
674 }
675
676 if (nsr03)
677 return nsr03;
678 else if (nsr02)
679 return nsr02;
680 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
681 return -1;
682 else
683 return 0;
684 }
685
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)686 static int udf_find_fileset(struct super_block *sb,
687 struct kernel_lb_addr *fileset,
688 struct kernel_lb_addr *root)
689 {
690 struct buffer_head *bh = NULL;
691 long lastblock;
692 uint16_t ident;
693 struct udf_sb_info *sbi;
694
695 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
696 fileset->partitionReferenceNum != 0xFFFF) {
697 bh = udf_read_ptagged(sb, fileset, 0, &ident);
698
699 if (!bh) {
700 return 1;
701 } else if (ident != TAG_IDENT_FSD) {
702 brelse(bh);
703 return 1;
704 }
705
706 }
707
708 sbi = UDF_SB(sb);
709 if (!bh) {
710 /* Search backwards through the partitions */
711 struct kernel_lb_addr newfileset;
712
713 /* --> cvg: FIXME - is it reasonable? */
714 return 1;
715
716 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
717 (newfileset.partitionReferenceNum != 0xFFFF &&
718 fileset->logicalBlockNum == 0xFFFFFFFF &&
719 fileset->partitionReferenceNum == 0xFFFF);
720 newfileset.partitionReferenceNum--) {
721 lastblock = sbi->s_partmaps
722 [newfileset.partitionReferenceNum]
723 .s_partition_len;
724 newfileset.logicalBlockNum = 0;
725
726 do {
727 bh = udf_read_ptagged(sb, &newfileset, 0,
728 &ident);
729 if (!bh) {
730 newfileset.logicalBlockNum++;
731 continue;
732 }
733
734 switch (ident) {
735 case TAG_IDENT_SBD:
736 {
737 struct spaceBitmapDesc *sp;
738 sp = (struct spaceBitmapDesc *)
739 bh->b_data;
740 newfileset.logicalBlockNum += 1 +
741 ((le32_to_cpu(sp->numOfBytes) +
742 sizeof(struct spaceBitmapDesc)
743 - 1) >> sb->s_blocksize_bits);
744 brelse(bh);
745 break;
746 }
747 case TAG_IDENT_FSD:
748 *fileset = newfileset;
749 break;
750 default:
751 newfileset.logicalBlockNum++;
752 brelse(bh);
753 bh = NULL;
754 break;
755 }
756 } while (newfileset.logicalBlockNum < lastblock &&
757 fileset->logicalBlockNum == 0xFFFFFFFF &&
758 fileset->partitionReferenceNum == 0xFFFF);
759 }
760 }
761
762 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
763 fileset->partitionReferenceNum != 0xFFFF) && bh) {
764 udf_debug("Fileset at block=%d, partition=%d\n",
765 fileset->logicalBlockNum,
766 fileset->partitionReferenceNum);
767
768 sbi->s_partition = fileset->partitionReferenceNum;
769 udf_load_fileset(sb, bh, root);
770 brelse(bh);
771 return 0;
772 }
773 return 1;
774 }
775
udf_load_pvoldesc(struct super_block * sb,sector_t block)776 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777 {
778 struct primaryVolDesc *pvoldesc;
779 struct ustr *instr, *outstr;
780 struct buffer_head *bh;
781 uint16_t ident;
782 int ret = 1;
783
784 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
785 if (!instr)
786 return 1;
787
788 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
789 if (!outstr)
790 goto out1;
791
792 bh = udf_read_tagged(sb, block, block, &ident);
793 if (!bh)
794 goto out2;
795
796 BUG_ON(ident != TAG_IDENT_PVD);
797
798 pvoldesc = (struct primaryVolDesc *)bh->b_data;
799
800 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
801 pvoldesc->recordingDateAndTime)) {
802 #ifdef UDFFS_DEBUG
803 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
804 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
805 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
806 ts->minute, le16_to_cpu(ts->typeAndTimezone));
807 #endif
808 }
809
810 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
811 if (udf_CS0toUTF8(outstr, instr)) {
812 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
813 outstr->u_len > 31 ? 31 : outstr->u_len);
814 udf_debug("volIdent[] = '%s'\n",
815 UDF_SB(sb)->s_volume_ident);
816 }
817
818 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
819 if (udf_CS0toUTF8(outstr, instr))
820 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821
822 brelse(bh);
823 ret = 0;
824 out2:
825 kfree(outstr);
826 out1:
827 kfree(instr);
828 return ret;
829 }
830
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_num)831 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
832 u32 meta_file_loc, u32 partition_num)
833 {
834 struct kernel_lb_addr addr;
835 struct inode *metadata_fe;
836
837 addr.logicalBlockNum = meta_file_loc;
838 addr.partitionReferenceNum = partition_num;
839
840 metadata_fe = udf_iget(sb, &addr);
841
842 if (metadata_fe == NULL)
843 udf_warn(sb, "metadata inode efe not found\n");
844 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
845 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
846 iput(metadata_fe);
847 metadata_fe = NULL;
848 }
849
850 return metadata_fe;
851 }
852
udf_load_metadata_files(struct super_block * sb,int partition)853 static int udf_load_metadata_files(struct super_block *sb, int partition)
854 {
855 struct udf_sb_info *sbi = UDF_SB(sb);
856 struct udf_part_map *map;
857 struct udf_meta_data *mdata;
858 struct kernel_lb_addr addr;
859
860 map = &sbi->s_partmaps[partition];
861 mdata = &map->s_type_specific.s_metadata;
862
863 /* metadata address */
864 udf_debug("Metadata file location: block = %d part = %d\n",
865 mdata->s_meta_file_loc, map->s_partition_num);
866
867 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
868 mdata->s_meta_file_loc, map->s_partition_num);
869
870 if (mdata->s_metadata_fe == NULL) {
871 /* mirror file entry */
872 udf_debug("Mirror metadata file location: block = %d part = %d\n",
873 mdata->s_mirror_file_loc, map->s_partition_num);
874
875 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
876 mdata->s_mirror_file_loc, map->s_partition_num);
877
878 if (mdata->s_mirror_fe == NULL) {
879 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
880 goto error_exit;
881 }
882 }
883
884 /*
885 * bitmap file entry
886 * Note:
887 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888 */
889 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
890 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
891 addr.partitionReferenceNum = map->s_partition_num;
892
893 udf_debug("Bitmap file location: block = %d part = %d\n",
894 addr.logicalBlockNum, addr.partitionReferenceNum);
895
896 mdata->s_bitmap_fe = udf_iget(sb, &addr);
897
898 if (mdata->s_bitmap_fe == NULL) {
899 if (sb->s_flags & MS_RDONLY)
900 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
901 else {
902 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
903 goto error_exit;
904 }
905 }
906 }
907
908 udf_debug("udf_load_metadata_files Ok\n");
909
910 return 0;
911
912 error_exit:
913 return 1;
914 }
915
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)916 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
917 struct kernel_lb_addr *root)
918 {
919 struct fileSetDesc *fset;
920
921 fset = (struct fileSetDesc *)bh->b_data;
922
923 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924
925 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926
927 udf_debug("Rootdir at block=%d, partition=%d\n",
928 root->logicalBlockNum, root->partitionReferenceNum);
929 }
930
udf_compute_nr_groups(struct super_block * sb,u32 partition)931 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932 {
933 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
934 return DIV_ROUND_UP(map->s_partition_len +
935 (sizeof(struct spaceBitmapDesc) << 3),
936 sb->s_blocksize * 8);
937 }
938
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)939 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940 {
941 struct udf_bitmap *bitmap;
942 int nr_groups;
943 int size;
944
945 nr_groups = udf_compute_nr_groups(sb, index);
946 size = sizeof(struct udf_bitmap) +
947 (sizeof(struct buffer_head *) * nr_groups);
948
949 if (size <= PAGE_SIZE)
950 bitmap = kzalloc(size, GFP_KERNEL);
951 else
952 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953
954 if (bitmap == NULL)
955 return NULL;
956
957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958 bitmap->s_nr_groups = nr_groups;
959 return bitmap;
960 }
961
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)962 static int udf_fill_partdesc_info(struct super_block *sb,
963 struct partitionDesc *p, int p_index)
964 {
965 struct udf_part_map *map;
966 struct udf_sb_info *sbi = UDF_SB(sb);
967 struct partitionHeaderDesc *phd;
968
969 map = &sbi->s_partmaps[p_index];
970
971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973
974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982
983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984 p_index, map->s_partition_type,
985 map->s_partition_root, map->s_partition_len);
986
987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989 return 0;
990
991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992 if (phd->unallocSpaceTable.extLength) {
993 struct kernel_lb_addr loc = {
994 .logicalBlockNum = le32_to_cpu(
995 phd->unallocSpaceTable.extPosition),
996 .partitionReferenceNum = p_index,
997 };
998
999 map->s_uspace.s_table = udf_iget(sb, &loc);
1000 if (!map->s_uspace.s_table) {
1001 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002 p_index);
1003 return 1;
1004 }
1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007 p_index, map->s_uspace.s_table->i_ino);
1008 }
1009
1010 if (phd->unallocSpaceBitmap.extLength) {
1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012 if (!bitmap)
1013 return 1;
1014 map->s_uspace.s_bitmap = bitmap;
1015 bitmap->s_extLength = le32_to_cpu(
1016 phd->unallocSpaceBitmap.extLength);
1017 bitmap->s_extPosition = le32_to_cpu(
1018 phd->unallocSpaceBitmap.extPosition);
1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021 p_index, bitmap->s_extPosition);
1022 }
1023
1024 if (phd->partitionIntegrityTable.extLength)
1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027 if (phd->freedSpaceTable.extLength) {
1028 struct kernel_lb_addr loc = {
1029 .logicalBlockNum = le32_to_cpu(
1030 phd->freedSpaceTable.extPosition),
1031 .partitionReferenceNum = p_index,
1032 };
1033
1034 map->s_fspace.s_table = udf_iget(sb, &loc);
1035 if (!map->s_fspace.s_table) {
1036 udf_debug("cannot load freedSpaceTable (part %d)\n",
1037 p_index);
1038 return 1;
1039 }
1040
1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043 p_index, map->s_fspace.s_table->i_ino);
1044 }
1045
1046 if (phd->freedSpaceBitmap.extLength) {
1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048 if (!bitmap)
1049 return 1;
1050 map->s_fspace.s_bitmap = bitmap;
1051 bitmap->s_extLength = le32_to_cpu(
1052 phd->freedSpaceBitmap.extLength);
1053 bitmap->s_extPosition = le32_to_cpu(
1054 phd->freedSpaceBitmap.extPosition);
1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057 p_index, bitmap->s_extPosition);
1058 }
1059 return 0;
1060 }
1061
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1062 static void udf_find_vat_block(struct super_block *sb, int p_index,
1063 int type1_index, sector_t start_block)
1064 {
1065 struct udf_sb_info *sbi = UDF_SB(sb);
1066 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067 sector_t vat_block;
1068 struct kernel_lb_addr ino;
1069
1070 /*
1071 * VAT file entry is in the last recorded block. Some broken disks have
1072 * it a few blocks before so try a bit harder...
1073 */
1074 ino.partitionReferenceNum = type1_index;
1075 for (vat_block = start_block;
1076 vat_block >= map->s_partition_root &&
1077 vat_block >= start_block - 3 &&
1078 !sbi->s_vat_inode; vat_block--) {
1079 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080 sbi->s_vat_inode = udf_iget(sb, &ino);
1081 }
1082 }
1083
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085 {
1086 struct udf_sb_info *sbi = UDF_SB(sb);
1087 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088 struct buffer_head *bh = NULL;
1089 struct udf_inode_info *vati;
1090 uint32_t pos;
1091 struct virtualAllocationTable20 *vat20;
1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095 if (!sbi->s_vat_inode &&
1096 sbi->s_last_block != blocks - 1) {
1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098 (unsigned long)sbi->s_last_block,
1099 (unsigned long)blocks - 1);
1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101 }
1102 if (!sbi->s_vat_inode)
1103 return 1;
1104
1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 map->s_type_specific.s_virtual.s_start_offset = 0;
1107 map->s_type_specific.s_virtual.s_num_entries =
1108 (sbi->s_vat_inode->i_size - 36) >> 2;
1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 vati = UDF_I(sbi->s_vat_inode);
1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 pos = udf_block_map(sbi->s_vat_inode, 0);
1113 bh = sb_bread(sb, pos);
1114 if (!bh)
1115 return 1;
1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 } else {
1118 vat20 = (struct virtualAllocationTable20 *)
1119 vati->i_ext.i_data;
1120 }
1121
1122 map->s_type_specific.s_virtual.s_start_offset =
1123 le16_to_cpu(vat20->lengthHeader);
1124 map->s_type_specific.s_virtual.s_num_entries =
1125 (sbi->s_vat_inode->i_size -
1126 map->s_type_specific.s_virtual.
1127 s_start_offset) >> 2;
1128 brelse(bh);
1129 }
1130 return 0;
1131 }
1132
udf_load_partdesc(struct super_block * sb,sector_t block)1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134 {
1135 struct buffer_head *bh;
1136 struct partitionDesc *p;
1137 struct udf_part_map *map;
1138 struct udf_sb_info *sbi = UDF_SB(sb);
1139 int i, type1_idx;
1140 uint16_t partitionNumber;
1141 uint16_t ident;
1142 int ret = 0;
1143
1144 bh = udf_read_tagged(sb, block, block, &ident);
1145 if (!bh)
1146 return 1;
1147 if (ident != TAG_IDENT_PD)
1148 goto out_bh;
1149
1150 p = (struct partitionDesc *)bh->b_data;
1151 partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 for (i = 0; i < sbi->s_partitions; i++) {
1155 map = &sbi->s_partmaps[i];
1156 udf_debug("Searching map: (%d == %d)\n",
1157 map->s_partition_num, partitionNumber);
1158 if (map->s_partition_num == partitionNumber &&
1159 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 map->s_partition_type == UDF_SPARABLE_MAP15))
1161 break;
1162 }
1163
1164 if (i >= sbi->s_partitions) {
1165 udf_debug("Partition (%d) not found in partition map\n",
1166 partitionNumber);
1167 goto out_bh;
1168 }
1169
1170 ret = udf_fill_partdesc_info(sb, p, i);
1171
1172 /*
1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 * PHYSICAL partitions are already set up
1175 */
1176 type1_idx = i;
1177 for (i = 0; i < sbi->s_partitions; i++) {
1178 map = &sbi->s_partmaps[i];
1179
1180 if (map->s_partition_num == partitionNumber &&
1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 map->s_partition_type == UDF_METADATA_MAP25))
1184 break;
1185 }
1186
1187 if (i >= sbi->s_partitions)
1188 goto out_bh;
1189
1190 ret = udf_fill_partdesc_info(sb, p, i);
1191 if (ret)
1192 goto out_bh;
1193
1194 if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 ret = udf_load_metadata_files(sb, i);
1196 if (ret) {
1197 udf_err(sb, "error loading MetaData partition map %d\n",
1198 i);
1199 goto out_bh;
1200 }
1201 } else {
1202 ret = udf_load_vat(sb, i, type1_idx);
1203 if (ret)
1204 goto out_bh;
1205 /*
1206 * Mark filesystem read-only if we have a partition with
1207 * virtual map since we don't handle writing to it (we
1208 * overwrite blocks instead of relocating them).
1209 */
1210 sb->s_flags |= MS_RDONLY;
1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212 }
1213 out_bh:
1214 /* In case loading failed, we handle cleanup in udf_fill_super */
1215 brelse(bh);
1216 return ret;
1217 }
1218
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1219 static int udf_load_sparable_map(struct super_block *sb,
1220 struct udf_part_map *map,
1221 struct sparablePartitionMap *spm)
1222 {
1223 uint32_t loc;
1224 uint16_t ident;
1225 struct sparingTable *st;
1226 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227 int i;
1228 struct buffer_head *bh;
1229
1230 map->s_partition_type = UDF_SPARABLE_MAP15;
1231 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232 if (!is_power_of_2(sdata->s_packet_len)) {
1233 udf_err(sb, "error loading logical volume descriptor: "
1234 "Invalid packet length %u\n",
1235 (unsigned)sdata->s_packet_len);
1236 return -EIO;
1237 }
1238 if (spm->numSparingTables > 4) {
1239 udf_err(sb, "error loading logical volume descriptor: "
1240 "Too many sparing tables (%d)\n",
1241 (int)spm->numSparingTables);
1242 return -EIO;
1243 }
1244
1245 for (i = 0; i < spm->numSparingTables; i++) {
1246 loc = le32_to_cpu(spm->locSparingTable[i]);
1247 bh = udf_read_tagged(sb, loc, loc, &ident);
1248 if (!bh)
1249 continue;
1250
1251 st = (struct sparingTable *)bh->b_data;
1252 if (ident != 0 ||
1253 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254 strlen(UDF_ID_SPARING)) ||
1255 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256 sb->s_blocksize) {
1257 brelse(bh);
1258 continue;
1259 }
1260
1261 sdata->s_spar_map[i] = bh;
1262 }
1263 map->s_partition_func = udf_get_pblock_spar15;
1264 return 0;
1265 }
1266
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1267 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268 struct kernel_lb_addr *fileset)
1269 {
1270 struct logicalVolDesc *lvd;
1271 int i, offset;
1272 uint8_t type;
1273 struct udf_sb_info *sbi = UDF_SB(sb);
1274 struct genericPartitionMap *gpm;
1275 uint16_t ident;
1276 struct buffer_head *bh;
1277 unsigned int table_len;
1278 int ret = 0;
1279
1280 bh = udf_read_tagged(sb, block, block, &ident);
1281 if (!bh)
1282 return 1;
1283 BUG_ON(ident != TAG_IDENT_LVD);
1284 lvd = (struct logicalVolDesc *)bh->b_data;
1285 table_len = le32_to_cpu(lvd->mapTableLength);
1286 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287 udf_err(sb, "error loading logical volume descriptor: "
1288 "Partition table too long (%u > %lu)\n", table_len,
1289 sb->s_blocksize - sizeof(*lvd));
1290 ret = 1;
1291 goto out_bh;
1292 }
1293
1294 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1295 if (ret)
1296 goto out_bh;
1297
1298 for (i = 0, offset = 0;
1299 i < sbi->s_partitions && offset < table_len;
1300 i++, offset += gpm->partitionMapLength) {
1301 struct udf_part_map *map = &sbi->s_partmaps[i];
1302 gpm = (struct genericPartitionMap *)
1303 &(lvd->partitionMaps[offset]);
1304 type = gpm->partitionMapType;
1305 if (type == 1) {
1306 struct genericPartitionMap1 *gpm1 =
1307 (struct genericPartitionMap1 *)gpm;
1308 map->s_partition_type = UDF_TYPE1_MAP15;
1309 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1310 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1311 map->s_partition_func = NULL;
1312 } else if (type == 2) {
1313 struct udfPartitionMap2 *upm2 =
1314 (struct udfPartitionMap2 *)gpm;
1315 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1316 strlen(UDF_ID_VIRTUAL))) {
1317 u16 suf =
1318 le16_to_cpu(((__le16 *)upm2->partIdent.
1319 identSuffix)[0]);
1320 if (suf < 0x0200) {
1321 map->s_partition_type =
1322 UDF_VIRTUAL_MAP15;
1323 map->s_partition_func =
1324 udf_get_pblock_virt15;
1325 } else {
1326 map->s_partition_type =
1327 UDF_VIRTUAL_MAP20;
1328 map->s_partition_func =
1329 udf_get_pblock_virt20;
1330 }
1331 } else if (!strncmp(upm2->partIdent.ident,
1332 UDF_ID_SPARABLE,
1333 strlen(UDF_ID_SPARABLE))) {
1334 if (udf_load_sparable_map(sb, map,
1335 (struct sparablePartitionMap *)gpm) < 0) {
1336 ret = 1;
1337 goto out_bh;
1338 }
1339 } else if (!strncmp(upm2->partIdent.ident,
1340 UDF_ID_METADATA,
1341 strlen(UDF_ID_METADATA))) {
1342 struct udf_meta_data *mdata =
1343 &map->s_type_specific.s_metadata;
1344 struct metadataPartitionMap *mdm =
1345 (struct metadataPartitionMap *)
1346 &(lvd->partitionMaps[offset]);
1347 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1348 i, type, UDF_ID_METADATA);
1349
1350 map->s_partition_type = UDF_METADATA_MAP25;
1351 map->s_partition_func = udf_get_pblock_meta25;
1352
1353 mdata->s_meta_file_loc =
1354 le32_to_cpu(mdm->metadataFileLoc);
1355 mdata->s_mirror_file_loc =
1356 le32_to_cpu(mdm->metadataMirrorFileLoc);
1357 mdata->s_bitmap_file_loc =
1358 le32_to_cpu(mdm->metadataBitmapFileLoc);
1359 mdata->s_alloc_unit_size =
1360 le32_to_cpu(mdm->allocUnitSize);
1361 mdata->s_align_unit_size =
1362 le16_to_cpu(mdm->alignUnitSize);
1363 if (mdm->flags & 0x01)
1364 mdata->s_flags |= MF_DUPLICATE_MD;
1365
1366 udf_debug("Metadata Ident suffix=0x%x\n",
1367 le16_to_cpu(*(__le16 *)
1368 mdm->partIdent.identSuffix));
1369 udf_debug("Metadata part num=%d\n",
1370 le16_to_cpu(mdm->partitionNum));
1371 udf_debug("Metadata part alloc unit size=%d\n",
1372 le32_to_cpu(mdm->allocUnitSize));
1373 udf_debug("Metadata file loc=%d\n",
1374 le32_to_cpu(mdm->metadataFileLoc));
1375 udf_debug("Mirror file loc=%d\n",
1376 le32_to_cpu(mdm->metadataMirrorFileLoc));
1377 udf_debug("Bitmap file loc=%d\n",
1378 le32_to_cpu(mdm->metadataBitmapFileLoc));
1379 udf_debug("Flags: %d %d\n",
1380 mdata->s_flags, mdm->flags);
1381 } else {
1382 udf_debug("Unknown ident: %s\n",
1383 upm2->partIdent.ident);
1384 continue;
1385 }
1386 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1387 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1388 }
1389 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1390 i, map->s_partition_num, type, map->s_volumeseqnum);
1391 }
1392
1393 if (fileset) {
1394 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1395
1396 *fileset = lelb_to_cpu(la->extLocation);
1397 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1398 fileset->logicalBlockNum,
1399 fileset->partitionReferenceNum);
1400 }
1401 if (lvd->integritySeqExt.extLength)
1402 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1403
1404 out_bh:
1405 brelse(bh);
1406 return ret;
1407 }
1408
1409 /*
1410 * udf_load_logicalvolint
1411 *
1412 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1413 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1414 {
1415 struct buffer_head *bh = NULL;
1416 uint16_t ident;
1417 struct udf_sb_info *sbi = UDF_SB(sb);
1418 struct logicalVolIntegrityDesc *lvid;
1419
1420 while (loc.extLength > 0 &&
1421 (bh = udf_read_tagged(sb, loc.extLocation,
1422 loc.extLocation, &ident)) &&
1423 ident == TAG_IDENT_LVID) {
1424 sbi->s_lvid_bh = bh;
1425 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1426
1427 if (lvid->nextIntegrityExt.extLength)
1428 udf_load_logicalvolint(sb,
1429 leea_to_cpu(lvid->nextIntegrityExt));
1430
1431 if (sbi->s_lvid_bh != bh)
1432 brelse(bh);
1433 loc.extLength -= sb->s_blocksize;
1434 loc.extLocation++;
1435 }
1436 if (sbi->s_lvid_bh != bh)
1437 brelse(bh);
1438 }
1439
1440 /*
1441 * udf_process_sequence
1442 *
1443 * PURPOSE
1444 * Process a main/reserve volume descriptor sequence.
1445 *
1446 * PRE-CONDITIONS
1447 * sb Pointer to _locked_ superblock.
1448 * block First block of first extent of the sequence.
1449 * lastblock Lastblock of first extent of the sequence.
1450 *
1451 * HISTORY
1452 * July 1, 1997 - Andrew E. Mileski
1453 * Written, tested, and released.
1454 */
udf_process_sequence(struct super_block * sb,long block,long lastblock,struct kernel_lb_addr * fileset)1455 static noinline int udf_process_sequence(struct super_block *sb, long block,
1456 long lastblock, struct kernel_lb_addr *fileset)
1457 {
1458 struct buffer_head *bh = NULL;
1459 struct udf_vds_record vds[VDS_POS_LENGTH];
1460 struct udf_vds_record *curr;
1461 struct generic_desc *gd;
1462 struct volDescPtr *vdp;
1463 int done = 0;
1464 uint32_t vdsn;
1465 uint16_t ident;
1466 long next_s = 0, next_e = 0;
1467
1468 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1469
1470 /*
1471 * Read the main descriptor sequence and find which descriptors
1472 * are in it.
1473 */
1474 for (; (!done && block <= lastblock); block++) {
1475
1476 bh = udf_read_tagged(sb, block, block, &ident);
1477 if (!bh) {
1478 udf_err(sb,
1479 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1480 (unsigned long long)block);
1481 return 1;
1482 }
1483
1484 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1485 gd = (struct generic_desc *)bh->b_data;
1486 vdsn = le32_to_cpu(gd->volDescSeqNum);
1487 switch (ident) {
1488 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1489 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1490 if (vdsn >= curr->volDescSeqNum) {
1491 curr->volDescSeqNum = vdsn;
1492 curr->block = block;
1493 }
1494 break;
1495 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1496 curr = &vds[VDS_POS_VOL_DESC_PTR];
1497 if (vdsn >= curr->volDescSeqNum) {
1498 curr->volDescSeqNum = vdsn;
1499 curr->block = block;
1500
1501 vdp = (struct volDescPtr *)bh->b_data;
1502 next_s = le32_to_cpu(
1503 vdp->nextVolDescSeqExt.extLocation);
1504 next_e = le32_to_cpu(
1505 vdp->nextVolDescSeqExt.extLength);
1506 next_e = next_e >> sb->s_blocksize_bits;
1507 next_e += next_s;
1508 }
1509 break;
1510 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1511 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1512 if (vdsn >= curr->volDescSeqNum) {
1513 curr->volDescSeqNum = vdsn;
1514 curr->block = block;
1515 }
1516 break;
1517 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1518 curr = &vds[VDS_POS_PARTITION_DESC];
1519 if (!curr->block)
1520 curr->block = block;
1521 break;
1522 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1523 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1524 if (vdsn >= curr->volDescSeqNum) {
1525 curr->volDescSeqNum = vdsn;
1526 curr->block = block;
1527 }
1528 break;
1529 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1530 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1531 if (vdsn >= curr->volDescSeqNum) {
1532 curr->volDescSeqNum = vdsn;
1533 curr->block = block;
1534 }
1535 break;
1536 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1537 vds[VDS_POS_TERMINATING_DESC].block = block;
1538 if (next_e) {
1539 block = next_s;
1540 lastblock = next_e;
1541 next_s = next_e = 0;
1542 } else
1543 done = 1;
1544 break;
1545 }
1546 brelse(bh);
1547 }
1548 /*
1549 * Now read interesting descriptors again and process them
1550 * in a suitable order
1551 */
1552 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1553 udf_err(sb, "Primary Volume Descriptor not found!\n");
1554 return 1;
1555 }
1556 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1557 return 1;
1558
1559 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1560 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1561 return 1;
1562
1563 if (vds[VDS_POS_PARTITION_DESC].block) {
1564 /*
1565 * We rescan the whole descriptor sequence to find
1566 * partition descriptor blocks and process them.
1567 */
1568 for (block = vds[VDS_POS_PARTITION_DESC].block;
1569 block < vds[VDS_POS_TERMINATING_DESC].block;
1570 block++)
1571 if (udf_load_partdesc(sb, block))
1572 return 1;
1573 }
1574
1575 return 0;
1576 }
1577
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1578 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1579 struct kernel_lb_addr *fileset)
1580 {
1581 struct anchorVolDescPtr *anchor;
1582 long main_s, main_e, reserve_s, reserve_e;
1583
1584 anchor = (struct anchorVolDescPtr *)bh->b_data;
1585
1586 /* Locate the main sequence */
1587 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1588 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1589 main_e = main_e >> sb->s_blocksize_bits;
1590 main_e += main_s;
1591
1592 /* Locate the reserve sequence */
1593 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1594 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1595 reserve_e = reserve_e >> sb->s_blocksize_bits;
1596 reserve_e += reserve_s;
1597
1598 /* Process the main & reserve sequences */
1599 /* responsible for finding the PartitionDesc(s) */
1600 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1601 return 1;
1602 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1603 }
1604
1605 /*
1606 * Check whether there is an anchor block in the given block and
1607 * load Volume Descriptor Sequence if so.
1608 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1609 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1610 struct kernel_lb_addr *fileset)
1611 {
1612 struct buffer_head *bh;
1613 uint16_t ident;
1614 int ret;
1615
1616 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1617 udf_fixed_to_variable(block) >=
1618 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1619 return 0;
1620
1621 bh = udf_read_tagged(sb, block, block, &ident);
1622 if (!bh)
1623 return 0;
1624 if (ident != TAG_IDENT_AVDP) {
1625 brelse(bh);
1626 return 0;
1627 }
1628 ret = udf_load_sequence(sb, bh, fileset);
1629 brelse(bh);
1630 return ret;
1631 }
1632
1633 /* Search for an anchor volume descriptor pointer */
udf_scan_anchors(struct super_block * sb,sector_t lastblock,struct kernel_lb_addr * fileset)1634 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1635 struct kernel_lb_addr *fileset)
1636 {
1637 sector_t last[6];
1638 int i;
1639 struct udf_sb_info *sbi = UDF_SB(sb);
1640 int last_count = 0;
1641
1642 /* First try user provided anchor */
1643 if (sbi->s_anchor) {
1644 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1645 return lastblock;
1646 }
1647 /*
1648 * according to spec, anchor is in either:
1649 * block 256
1650 * lastblock-256
1651 * lastblock
1652 * however, if the disc isn't closed, it could be 512.
1653 */
1654 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1655 return lastblock;
1656 /*
1657 * The trouble is which block is the last one. Drives often misreport
1658 * this so we try various possibilities.
1659 */
1660 last[last_count++] = lastblock;
1661 if (lastblock >= 1)
1662 last[last_count++] = lastblock - 1;
1663 last[last_count++] = lastblock + 1;
1664 if (lastblock >= 2)
1665 last[last_count++] = lastblock - 2;
1666 if (lastblock >= 150)
1667 last[last_count++] = lastblock - 150;
1668 if (lastblock >= 152)
1669 last[last_count++] = lastblock - 152;
1670
1671 for (i = 0; i < last_count; i++) {
1672 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1673 sb->s_blocksize_bits)
1674 continue;
1675 if (udf_check_anchor_block(sb, last[i], fileset))
1676 return last[i];
1677 if (last[i] < 256)
1678 continue;
1679 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1680 return last[i];
1681 }
1682
1683 /* Finally try block 512 in case media is open */
1684 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1685 return last[0];
1686 return 0;
1687 }
1688
1689 /*
1690 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1691 * area specified by it. The function expects sbi->s_lastblock to be the last
1692 * block on the media.
1693 *
1694 * Return 1 if ok, 0 if not found.
1695 *
1696 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1697 static int udf_find_anchor(struct super_block *sb,
1698 struct kernel_lb_addr *fileset)
1699 {
1700 sector_t lastblock;
1701 struct udf_sb_info *sbi = UDF_SB(sb);
1702
1703 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1704 if (lastblock)
1705 goto out;
1706
1707 /* No anchor found? Try VARCONV conversion of block numbers */
1708 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1709 /* Firstly, we try to not convert number of the last block */
1710 lastblock = udf_scan_anchors(sb,
1711 udf_variable_to_fixed(sbi->s_last_block),
1712 fileset);
1713 if (lastblock)
1714 goto out;
1715
1716 /* Secondly, we try with converted number of the last block */
1717 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1718 if (!lastblock) {
1719 /* VARCONV didn't help. Clear it. */
1720 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1721 return 0;
1722 }
1723 out:
1724 sbi->s_last_block = lastblock;
1725 return 1;
1726 }
1727
1728 /*
1729 * Check Volume Structure Descriptor, find Anchor block and load Volume
1730 * Descriptor Sequence
1731 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1732 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1733 int silent, struct kernel_lb_addr *fileset)
1734 {
1735 struct udf_sb_info *sbi = UDF_SB(sb);
1736 loff_t nsr_off;
1737
1738 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1739 if (!silent)
1740 udf_warn(sb, "Bad block size\n");
1741 return 0;
1742 }
1743 sbi->s_last_block = uopt->lastblock;
1744 if (!uopt->novrs) {
1745 /* Check that it is NSR02 compliant */
1746 nsr_off = udf_check_vsd(sb);
1747 if (!nsr_off) {
1748 if (!silent)
1749 udf_warn(sb, "No VRS found\n");
1750 return 0;
1751 }
1752 if (nsr_off == -1)
1753 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1754 if (!sbi->s_last_block)
1755 sbi->s_last_block = udf_get_last_block(sb);
1756 } else {
1757 udf_debug("Validity check skipped because of novrs option\n");
1758 }
1759
1760 /* Look for anchor block and load Volume Descriptor Sequence */
1761 sbi->s_anchor = uopt->anchor;
1762 if (!udf_find_anchor(sb, fileset)) {
1763 if (!silent)
1764 udf_warn(sb, "No anchor found\n");
1765 return 0;
1766 }
1767 return 1;
1768 }
1769
udf_open_lvid(struct super_block * sb)1770 static void udf_open_lvid(struct super_block *sb)
1771 {
1772 struct udf_sb_info *sbi = UDF_SB(sb);
1773 struct buffer_head *bh = sbi->s_lvid_bh;
1774 struct logicalVolIntegrityDesc *lvid;
1775 struct logicalVolIntegrityDescImpUse *lvidiu;
1776
1777 if (!bh)
1778 return;
1779
1780 mutex_lock(&sbi->s_alloc_mutex);
1781 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1782 lvidiu = udf_sb_lvidiu(sbi);
1783
1784 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1787 CURRENT_TIME);
1788 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1789
1790 lvid->descTag.descCRC = cpu_to_le16(
1791 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1792 le16_to_cpu(lvid->descTag.descCRCLength)));
1793
1794 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1795 mark_buffer_dirty(bh);
1796 sbi->s_lvid_dirty = 0;
1797 mutex_unlock(&sbi->s_alloc_mutex);
1798 }
1799
udf_close_lvid(struct super_block * sb)1800 static void udf_close_lvid(struct super_block *sb)
1801 {
1802 struct udf_sb_info *sbi = UDF_SB(sb);
1803 struct buffer_head *bh = sbi->s_lvid_bh;
1804 struct logicalVolIntegrityDesc *lvid;
1805 struct logicalVolIntegrityDescImpUse *lvidiu;
1806
1807 if (!bh)
1808 return;
1809
1810 mutex_lock(&sbi->s_alloc_mutex);
1811 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1812 lvidiu = udf_sb_lvidiu(sbi);
1813 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1814 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1815 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1816 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1817 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1818 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1819 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1820 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1821 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1822 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1823
1824 lvid->descTag.descCRC = cpu_to_le16(
1825 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1826 le16_to_cpu(lvid->descTag.descCRCLength)));
1827
1828 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1829 /*
1830 * We set buffer uptodate unconditionally here to avoid spurious
1831 * warnings from mark_buffer_dirty() when previous EIO has marked
1832 * the buffer as !uptodate
1833 */
1834 set_buffer_uptodate(bh);
1835 mark_buffer_dirty(bh);
1836 sbi->s_lvid_dirty = 0;
1837 mutex_unlock(&sbi->s_alloc_mutex);
1838 }
1839
lvid_get_unique_id(struct super_block * sb)1840 u64 lvid_get_unique_id(struct super_block *sb)
1841 {
1842 struct buffer_head *bh;
1843 struct udf_sb_info *sbi = UDF_SB(sb);
1844 struct logicalVolIntegrityDesc *lvid;
1845 struct logicalVolHeaderDesc *lvhd;
1846 u64 uniqueID;
1847 u64 ret;
1848
1849 bh = sbi->s_lvid_bh;
1850 if (!bh)
1851 return 0;
1852
1853 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1854 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1855
1856 mutex_lock(&sbi->s_alloc_mutex);
1857 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1858 if (!(++uniqueID & 0xFFFFFFFF))
1859 uniqueID += 16;
1860 lvhd->uniqueID = cpu_to_le64(uniqueID);
1861 mutex_unlock(&sbi->s_alloc_mutex);
1862 mark_buffer_dirty(bh);
1863
1864 return ret;
1865 }
1866
udf_sb_free_bitmap(struct udf_bitmap * bitmap)1867 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1868 {
1869 int i;
1870 int nr_groups = bitmap->s_nr_groups;
1871 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1872 nr_groups);
1873
1874 for (i = 0; i < nr_groups; i++)
1875 if (bitmap->s_block_bitmap[i])
1876 brelse(bitmap->s_block_bitmap[i]);
1877
1878 if (size <= PAGE_SIZE)
1879 kfree(bitmap);
1880 else
1881 vfree(bitmap);
1882 }
1883
udf_free_partition(struct udf_part_map * map)1884 static void udf_free_partition(struct udf_part_map *map)
1885 {
1886 int i;
1887 struct udf_meta_data *mdata;
1888
1889 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1890 iput(map->s_uspace.s_table);
1891 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1892 iput(map->s_fspace.s_table);
1893 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1894 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1895 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1896 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1897 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1898 for (i = 0; i < 4; i++)
1899 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1900 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1901 mdata = &map->s_type_specific.s_metadata;
1902 iput(mdata->s_metadata_fe);
1903 mdata->s_metadata_fe = NULL;
1904
1905 iput(mdata->s_mirror_fe);
1906 mdata->s_mirror_fe = NULL;
1907
1908 iput(mdata->s_bitmap_fe);
1909 mdata->s_bitmap_fe = NULL;
1910 }
1911 }
1912
udf_fill_super(struct super_block * sb,void * options,int silent)1913 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1914 {
1915 int i;
1916 int ret;
1917 struct inode *inode = NULL;
1918 struct udf_options uopt;
1919 struct kernel_lb_addr rootdir, fileset;
1920 struct udf_sb_info *sbi;
1921
1922 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1923 uopt.uid = -1;
1924 uopt.gid = -1;
1925 uopt.umask = 0;
1926 uopt.fmode = UDF_INVALID_MODE;
1927 uopt.dmode = UDF_INVALID_MODE;
1928
1929 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1930 if (!sbi)
1931 return -ENOMEM;
1932
1933 sb->s_fs_info = sbi;
1934
1935 mutex_init(&sbi->s_alloc_mutex);
1936
1937 if (!udf_parse_options((char *)options, &uopt, false))
1938 goto error_out;
1939
1940 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1941 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1942 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1943 goto error_out;
1944 }
1945 #ifdef CONFIG_UDF_NLS
1946 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1947 uopt.nls_map = load_nls_default();
1948 if (!uopt.nls_map)
1949 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1950 else
1951 udf_debug("Using default NLS map\n");
1952 }
1953 #endif
1954 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1955 uopt.flags |= (1 << UDF_FLAG_UTF8);
1956
1957 fileset.logicalBlockNum = 0xFFFFFFFF;
1958 fileset.partitionReferenceNum = 0xFFFF;
1959
1960 sbi->s_flags = uopt.flags;
1961 sbi->s_uid = uopt.uid;
1962 sbi->s_gid = uopt.gid;
1963 sbi->s_umask = uopt.umask;
1964 sbi->s_fmode = uopt.fmode;
1965 sbi->s_dmode = uopt.dmode;
1966 sbi->s_nls_map = uopt.nls_map;
1967 rwlock_init(&sbi->s_cred_lock);
1968
1969 if (uopt.session == 0xFFFFFFFF)
1970 sbi->s_session = udf_get_last_session(sb);
1971 else
1972 sbi->s_session = uopt.session;
1973
1974 udf_debug("Multi-session=%d\n", sbi->s_session);
1975
1976 /* Fill in the rest of the superblock */
1977 sb->s_op = &udf_sb_ops;
1978 sb->s_export_op = &udf_export_ops;
1979
1980 sb->s_dirt = 0;
1981 sb->s_magic = UDF_SUPER_MAGIC;
1982 sb->s_time_gran = 1000;
1983
1984 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1985 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986 } else {
1987 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1988 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1989 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1990 if (!silent)
1991 pr_notice("Rescanning with blocksize %d\n",
1992 UDF_DEFAULT_BLOCKSIZE);
1993 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995 }
1996 }
1997 if (!ret) {
1998 udf_warn(sb, "No partition found (1)\n");
1999 goto error_out;
2000 }
2001
2002 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003
2004 if (sbi->s_lvid_bh) {
2005 struct logicalVolIntegrityDescImpUse *lvidiu =
2006 udf_sb_lvidiu(sbi);
2007 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009 /* uint16_t maxUDFWriteRev =
2010 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011
2012 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2014 le16_to_cpu(lvidiu->minUDFReadRev),
2015 UDF_MAX_READ_VERSION);
2016 goto error_out;
2017 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2018 sb->s_flags |= MS_RDONLY;
2019
2020 sbi->s_udfrev = minUDFWriteRev;
2021
2022 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2023 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2024 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2025 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2026 }
2027
2028 if (!sbi->s_partitions) {
2029 udf_warn(sb, "No partition found (2)\n");
2030 goto error_out;
2031 }
2032
2033 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2034 UDF_PART_FLAG_READ_ONLY) {
2035 pr_notice("Partition marked readonly; forcing readonly mount\n");
2036 sb->s_flags |= MS_RDONLY;
2037 }
2038
2039 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2040 udf_warn(sb, "No fileset found\n");
2041 goto error_out;
2042 }
2043
2044 if (!silent) {
2045 struct timestamp ts;
2046 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2047 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2048 sbi->s_volume_ident,
2049 le16_to_cpu(ts.year), ts.month, ts.day,
2050 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2051 }
2052 if (!(sb->s_flags & MS_RDONLY))
2053 udf_open_lvid(sb);
2054
2055 /* Assign the root inode */
2056 /* assign inodes by physical block number */
2057 /* perhaps it's not extensible enough, but for now ... */
2058 inode = udf_iget(sb, &rootdir);
2059 if (!inode) {
2060 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2061 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2062 goto error_out;
2063 }
2064
2065 /* Allocate a dentry for the root inode */
2066 sb->s_root = d_make_root(inode);
2067 if (!sb->s_root) {
2068 udf_err(sb, "Couldn't allocate root dentry\n");
2069 goto error_out;
2070 }
2071 sb->s_maxbytes = MAX_LFS_FILESIZE;
2072 sb->s_max_links = UDF_MAX_LINKS;
2073 return 0;
2074
2075 error_out:
2076 if (sbi->s_vat_inode)
2077 iput(sbi->s_vat_inode);
2078 if (sbi->s_partitions)
2079 for (i = 0; i < sbi->s_partitions; i++)
2080 udf_free_partition(&sbi->s_partmaps[i]);
2081 #ifdef CONFIG_UDF_NLS
2082 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2083 unload_nls(sbi->s_nls_map);
2084 #endif
2085 if (!(sb->s_flags & MS_RDONLY))
2086 udf_close_lvid(sb);
2087 brelse(sbi->s_lvid_bh);
2088
2089 kfree(sbi->s_partmaps);
2090 kfree(sbi);
2091 sb->s_fs_info = NULL;
2092
2093 return -EINVAL;
2094 }
2095
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2096 void _udf_err(struct super_block *sb, const char *function,
2097 const char *fmt, ...)
2098 {
2099 struct va_format vaf;
2100 va_list args;
2101
2102 /* mark sb error */
2103 if (!(sb->s_flags & MS_RDONLY))
2104 sb->s_dirt = 1;
2105
2106 va_start(args, fmt);
2107
2108 vaf.fmt = fmt;
2109 vaf.va = &args;
2110
2111 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2112
2113 va_end(args);
2114 }
2115
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2116 void _udf_warn(struct super_block *sb, const char *function,
2117 const char *fmt, ...)
2118 {
2119 struct va_format vaf;
2120 va_list args;
2121
2122 va_start(args, fmt);
2123
2124 vaf.fmt = fmt;
2125 vaf.va = &args;
2126
2127 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2128
2129 va_end(args);
2130 }
2131
udf_put_super(struct super_block * sb)2132 static void udf_put_super(struct super_block *sb)
2133 {
2134 int i;
2135 struct udf_sb_info *sbi;
2136
2137 sbi = UDF_SB(sb);
2138
2139 if (sbi->s_vat_inode)
2140 iput(sbi->s_vat_inode);
2141 if (sbi->s_partitions)
2142 for (i = 0; i < sbi->s_partitions; i++)
2143 udf_free_partition(&sbi->s_partmaps[i]);
2144 #ifdef CONFIG_UDF_NLS
2145 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2146 unload_nls(sbi->s_nls_map);
2147 #endif
2148 if (!(sb->s_flags & MS_RDONLY))
2149 udf_close_lvid(sb);
2150 brelse(sbi->s_lvid_bh);
2151 kfree(sbi->s_partmaps);
2152 kfree(sb->s_fs_info);
2153 sb->s_fs_info = NULL;
2154 }
2155
udf_sync_fs(struct super_block * sb,int wait)2156 static int udf_sync_fs(struct super_block *sb, int wait)
2157 {
2158 struct udf_sb_info *sbi = UDF_SB(sb);
2159
2160 mutex_lock(&sbi->s_alloc_mutex);
2161 if (sbi->s_lvid_dirty) {
2162 /*
2163 * Blockdevice will be synced later so we don't have to submit
2164 * the buffer for IO
2165 */
2166 mark_buffer_dirty(sbi->s_lvid_bh);
2167 sb->s_dirt = 0;
2168 sbi->s_lvid_dirty = 0;
2169 }
2170 mutex_unlock(&sbi->s_alloc_mutex);
2171
2172 return 0;
2173 }
2174
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2175 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2176 {
2177 struct super_block *sb = dentry->d_sb;
2178 struct udf_sb_info *sbi = UDF_SB(sb);
2179 struct logicalVolIntegrityDescImpUse *lvidiu;
2180 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2181
2182 if (sbi->s_lvid_bh != NULL)
2183 lvidiu = udf_sb_lvidiu(sbi);
2184 else
2185 lvidiu = NULL;
2186
2187 buf->f_type = UDF_SUPER_MAGIC;
2188 buf->f_bsize = sb->s_blocksize;
2189 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2190 buf->f_bfree = udf_count_free(sb);
2191 buf->f_bavail = buf->f_bfree;
2192 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2193 le32_to_cpu(lvidiu->numDirs)) : 0)
2194 + buf->f_bfree;
2195 buf->f_ffree = buf->f_bfree;
2196 buf->f_namelen = UDF_NAME_LEN - 2;
2197 buf->f_fsid.val[0] = (u32)id;
2198 buf->f_fsid.val[1] = (u32)(id >> 32);
2199
2200 return 0;
2201 }
2202
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2203 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2204 struct udf_bitmap *bitmap)
2205 {
2206 struct buffer_head *bh = NULL;
2207 unsigned int accum = 0;
2208 int index;
2209 int block = 0, newblock;
2210 struct kernel_lb_addr loc;
2211 uint32_t bytes;
2212 uint8_t *ptr;
2213 uint16_t ident;
2214 struct spaceBitmapDesc *bm;
2215
2216 loc.logicalBlockNum = bitmap->s_extPosition;
2217 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2218 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2219
2220 if (!bh) {
2221 udf_err(sb, "udf_count_free failed\n");
2222 goto out;
2223 } else if (ident != TAG_IDENT_SBD) {
2224 brelse(bh);
2225 udf_err(sb, "udf_count_free failed\n");
2226 goto out;
2227 }
2228
2229 bm = (struct spaceBitmapDesc *)bh->b_data;
2230 bytes = le32_to_cpu(bm->numOfBytes);
2231 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2232 ptr = (uint8_t *)bh->b_data;
2233
2234 while (bytes > 0) {
2235 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2236 accum += bitmap_weight((const unsigned long *)(ptr + index),
2237 cur_bytes * 8);
2238 bytes -= cur_bytes;
2239 if (bytes) {
2240 brelse(bh);
2241 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2242 bh = udf_tread(sb, newblock);
2243 if (!bh) {
2244 udf_debug("read failed\n");
2245 goto out;
2246 }
2247 index = 0;
2248 ptr = (uint8_t *)bh->b_data;
2249 }
2250 }
2251 brelse(bh);
2252 out:
2253 return accum;
2254 }
2255
udf_count_free_table(struct super_block * sb,struct inode * table)2256 static unsigned int udf_count_free_table(struct super_block *sb,
2257 struct inode *table)
2258 {
2259 unsigned int accum = 0;
2260 uint32_t elen;
2261 struct kernel_lb_addr eloc;
2262 int8_t etype;
2263 struct extent_position epos;
2264
2265 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2266 epos.block = UDF_I(table)->i_location;
2267 epos.offset = sizeof(struct unallocSpaceEntry);
2268 epos.bh = NULL;
2269
2270 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2271 accum += (elen >> table->i_sb->s_blocksize_bits);
2272
2273 brelse(epos.bh);
2274 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2275
2276 return accum;
2277 }
2278
udf_count_free(struct super_block * sb)2279 static unsigned int udf_count_free(struct super_block *sb)
2280 {
2281 unsigned int accum = 0;
2282 struct udf_sb_info *sbi;
2283 struct udf_part_map *map;
2284
2285 sbi = UDF_SB(sb);
2286 if (sbi->s_lvid_bh) {
2287 struct logicalVolIntegrityDesc *lvid =
2288 (struct logicalVolIntegrityDesc *)
2289 sbi->s_lvid_bh->b_data;
2290 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2291 accum = le32_to_cpu(
2292 lvid->freeSpaceTable[sbi->s_partition]);
2293 if (accum == 0xFFFFFFFF)
2294 accum = 0;
2295 }
2296 }
2297
2298 if (accum)
2299 return accum;
2300
2301 map = &sbi->s_partmaps[sbi->s_partition];
2302 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2303 accum += udf_count_free_bitmap(sb,
2304 map->s_uspace.s_bitmap);
2305 }
2306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2307 accum += udf_count_free_bitmap(sb,
2308 map->s_fspace.s_bitmap);
2309 }
2310 if (accum)
2311 return accum;
2312
2313 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2314 accum += udf_count_free_table(sb,
2315 map->s_uspace.s_table);
2316 }
2317 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2318 accum += udf_count_free_table(sb,
2319 map->s_fspace.s_table);
2320 }
2321
2322 return accum;
2323 }
2324