1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/init.h>
46 #include <linux/profile.h>
47 #include <linux/cpu.h>
48 #include <linux/security.h>
49 #include <linux/percpu.h>
50 #include <linux/rtc.h>
51 #include <linux/jiffies.h>
52 #include <linux/posix-timers.h>
53 #include <linux/irq.h>
54 #include <linux/delay.h>
55 #include <linux/irq_work.h>
56 #include <asm/trace.h>
57
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72
73 /* powerpc clocksource/clockevent code */
74
75 #include <linux/clockchips.h>
76 #include <linux/clocksource.h>
77
78 static cycle_t rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80 .name = "rtc",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
84 .read = rtc_read,
85 };
86
87 static cycle_t timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89 .name = "timebase",
90 .rating = 400,
91 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
92 .mask = CLOCKSOURCE_MASK(64),
93 .read = timebase_read,
94 };
95
96 #define DECREMENTER_MAX 0x7fffffff
97
98 static int decrementer_set_next_event(unsigned long evt,
99 struct clock_event_device *dev);
100 static void decrementer_set_mode(enum clock_event_mode mode,
101 struct clock_event_device *dev);
102
103 static struct clock_event_device decrementer_clockevent = {
104 .name = "decrementer",
105 .rating = 200,
106 .irq = 0,
107 .set_next_event = decrementer_set_next_event,
108 .set_mode = decrementer_set_mode,
109 .features = CLOCK_EVT_FEAT_ONESHOT,
110 };
111
112 DEFINE_PER_CPU(u64, decrementers_next_tb);
113 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
114
115 #define XSEC_PER_SEC (1024*1024)
116
117 #ifdef CONFIG_PPC64
118 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
119 #else
120 /* compute ((xsec << 12) * max) >> 32 */
121 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
122 #endif
123
124 unsigned long tb_ticks_per_jiffy;
125 unsigned long tb_ticks_per_usec = 100; /* sane default */
126 EXPORT_SYMBOL(tb_ticks_per_usec);
127 unsigned long tb_ticks_per_sec;
128 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
129
130 DEFINE_SPINLOCK(rtc_lock);
131 EXPORT_SYMBOL_GPL(rtc_lock);
132
133 static u64 tb_to_ns_scale __read_mostly;
134 static unsigned tb_to_ns_shift __read_mostly;
135 static u64 boot_tb __read_mostly;
136
137 extern struct timezone sys_tz;
138 static long timezone_offset;
139
140 unsigned long ppc_proc_freq;
141 EXPORT_SYMBOL_GPL(ppc_proc_freq);
142 unsigned long ppc_tb_freq;
143 EXPORT_SYMBOL_GPL(ppc_tb_freq);
144
145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
146 /*
147 * Factors for converting from cputime_t (timebase ticks) to
148 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
149 * These are all stored as 0.64 fixed-point binary fractions.
150 */
151 u64 __cputime_jiffies_factor;
152 EXPORT_SYMBOL(__cputime_jiffies_factor);
153 u64 __cputime_usec_factor;
154 EXPORT_SYMBOL(__cputime_usec_factor);
155 u64 __cputime_sec_factor;
156 EXPORT_SYMBOL(__cputime_sec_factor);
157 u64 __cputime_clockt_factor;
158 EXPORT_SYMBOL(__cputime_clockt_factor);
159 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
160 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
161
162 cputime_t cputime_one_jiffy;
163
164 void (*dtl_consumer)(struct dtl_entry *, u64);
165
calc_cputime_factors(void)166 static void calc_cputime_factors(void)
167 {
168 struct div_result res;
169
170 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
171 __cputime_jiffies_factor = res.result_low;
172 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
173 __cputime_usec_factor = res.result_low;
174 div128_by_32(1, 0, tb_ticks_per_sec, &res);
175 __cputime_sec_factor = res.result_low;
176 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
177 __cputime_clockt_factor = res.result_low;
178 }
179
180 /*
181 * Read the SPURR on systems that have it, otherwise the PURR,
182 * or if that doesn't exist return the timebase value passed in.
183 */
read_spurr(u64 tb)184 static u64 read_spurr(u64 tb)
185 {
186 if (cpu_has_feature(CPU_FTR_SPURR))
187 return mfspr(SPRN_SPURR);
188 if (cpu_has_feature(CPU_FTR_PURR))
189 return mfspr(SPRN_PURR);
190 return tb;
191 }
192
193 #ifdef CONFIG_PPC_SPLPAR
194
195 /*
196 * Scan the dispatch trace log and count up the stolen time.
197 * Should be called with interrupts disabled.
198 */
scan_dispatch_log(u64 stop_tb)199 static u64 scan_dispatch_log(u64 stop_tb)
200 {
201 u64 i = local_paca->dtl_ridx;
202 struct dtl_entry *dtl = local_paca->dtl_curr;
203 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
204 struct lppaca *vpa = local_paca->lppaca_ptr;
205 u64 tb_delta;
206 u64 stolen = 0;
207 u64 dtb;
208
209 if (!dtl)
210 return 0;
211
212 if (i == vpa->dtl_idx)
213 return 0;
214 while (i < vpa->dtl_idx) {
215 if (dtl_consumer)
216 dtl_consumer(dtl, i);
217 dtb = dtl->timebase;
218 tb_delta = dtl->enqueue_to_dispatch_time +
219 dtl->ready_to_enqueue_time;
220 barrier();
221 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
222 /* buffer has overflowed */
223 i = vpa->dtl_idx - N_DISPATCH_LOG;
224 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
225 continue;
226 }
227 if (dtb > stop_tb)
228 break;
229 stolen += tb_delta;
230 ++i;
231 ++dtl;
232 if (dtl == dtl_end)
233 dtl = local_paca->dispatch_log;
234 }
235 local_paca->dtl_ridx = i;
236 local_paca->dtl_curr = dtl;
237 return stolen;
238 }
239
240 /*
241 * Accumulate stolen time by scanning the dispatch trace log.
242 * Called on entry from user mode.
243 */
accumulate_stolen_time(void)244 void accumulate_stolen_time(void)
245 {
246 u64 sst, ust;
247
248 u8 save_soft_enabled = local_paca->soft_enabled;
249
250 /* We are called early in the exception entry, before
251 * soft/hard_enabled are sync'ed to the expected state
252 * for the exception. We are hard disabled but the PACA
253 * needs to reflect that so various debug stuff doesn't
254 * complain
255 */
256 local_paca->soft_enabled = 0;
257
258 sst = scan_dispatch_log(local_paca->starttime_user);
259 ust = scan_dispatch_log(local_paca->starttime);
260 local_paca->system_time -= sst;
261 local_paca->user_time -= ust;
262 local_paca->stolen_time += ust + sst;
263
264 local_paca->soft_enabled = save_soft_enabled;
265 }
266
calculate_stolen_time(u64 stop_tb)267 static inline u64 calculate_stolen_time(u64 stop_tb)
268 {
269 u64 stolen = 0;
270
271 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
272 stolen = scan_dispatch_log(stop_tb);
273 get_paca()->system_time -= stolen;
274 }
275
276 stolen += get_paca()->stolen_time;
277 get_paca()->stolen_time = 0;
278 return stolen;
279 }
280
281 #else /* CONFIG_PPC_SPLPAR */
calculate_stolen_time(u64 stop_tb)282 static inline u64 calculate_stolen_time(u64 stop_tb)
283 {
284 return 0;
285 }
286
287 #endif /* CONFIG_PPC_SPLPAR */
288
289 /*
290 * Account time for a transition between system, hard irq
291 * or soft irq state.
292 */
account_system_vtime(struct task_struct * tsk)293 void account_system_vtime(struct task_struct *tsk)
294 {
295 u64 now, nowscaled, delta, deltascaled;
296 unsigned long flags;
297 u64 stolen, udelta, sys_scaled, user_scaled;
298
299 local_irq_save(flags);
300 now = mftb();
301 nowscaled = read_spurr(now);
302 get_paca()->system_time += now - get_paca()->starttime;
303 get_paca()->starttime = now;
304 deltascaled = nowscaled - get_paca()->startspurr;
305 get_paca()->startspurr = nowscaled;
306
307 stolen = calculate_stolen_time(now);
308
309 delta = get_paca()->system_time;
310 get_paca()->system_time = 0;
311 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
312 get_paca()->utime_sspurr = get_paca()->user_time;
313
314 /*
315 * Because we don't read the SPURR on every kernel entry/exit,
316 * deltascaled includes both user and system SPURR ticks.
317 * Apportion these ticks to system SPURR ticks and user
318 * SPURR ticks in the same ratio as the system time (delta)
319 * and user time (udelta) values obtained from the timebase
320 * over the same interval. The system ticks get accounted here;
321 * the user ticks get saved up in paca->user_time_scaled to be
322 * used by account_process_tick.
323 */
324 sys_scaled = delta;
325 user_scaled = udelta;
326 if (deltascaled != delta + udelta) {
327 if (udelta) {
328 sys_scaled = deltascaled * delta / (delta + udelta);
329 user_scaled = deltascaled - sys_scaled;
330 } else {
331 sys_scaled = deltascaled;
332 }
333 }
334 get_paca()->user_time_scaled += user_scaled;
335
336 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
337 account_system_time(tsk, 0, delta, sys_scaled);
338 if (stolen)
339 account_steal_time(stolen);
340 } else {
341 account_idle_time(delta + stolen);
342 }
343 local_irq_restore(flags);
344 }
345 EXPORT_SYMBOL_GPL(account_system_vtime);
346
347 /*
348 * Transfer the user and system times accumulated in the paca
349 * by the exception entry and exit code to the generic process
350 * user and system time records.
351 * Must be called with interrupts disabled.
352 * Assumes that account_system_vtime() has been called recently
353 * (i.e. since the last entry from usermode) so that
354 * get_paca()->user_time_scaled is up to date.
355 */
account_process_tick(struct task_struct * tsk,int user_tick)356 void account_process_tick(struct task_struct *tsk, int user_tick)
357 {
358 cputime_t utime, utimescaled;
359
360 utime = get_paca()->user_time;
361 utimescaled = get_paca()->user_time_scaled;
362 get_paca()->user_time = 0;
363 get_paca()->user_time_scaled = 0;
364 get_paca()->utime_sspurr = 0;
365 account_user_time(tsk, utime, utimescaled);
366 }
367
368 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
369 #define calc_cputime_factors()
370 #endif
371
__delay(unsigned long loops)372 void __delay(unsigned long loops)
373 {
374 unsigned long start;
375 int diff;
376
377 if (__USE_RTC()) {
378 start = get_rtcl();
379 do {
380 /* the RTCL register wraps at 1000000000 */
381 diff = get_rtcl() - start;
382 if (diff < 0)
383 diff += 1000000000;
384 } while (diff < loops);
385 } else {
386 start = get_tbl();
387 while (get_tbl() - start < loops)
388 HMT_low();
389 HMT_medium();
390 }
391 }
392 EXPORT_SYMBOL(__delay);
393
udelay(unsigned long usecs)394 void udelay(unsigned long usecs)
395 {
396 __delay(tb_ticks_per_usec * usecs);
397 }
398 EXPORT_SYMBOL(udelay);
399
400 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)401 unsigned long profile_pc(struct pt_regs *regs)
402 {
403 unsigned long pc = instruction_pointer(regs);
404
405 if (in_lock_functions(pc))
406 return regs->link;
407
408 return pc;
409 }
410 EXPORT_SYMBOL(profile_pc);
411 #endif
412
413 #ifdef CONFIG_IRQ_WORK
414
415 /*
416 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
417 */
418 #ifdef CONFIG_PPC64
test_irq_work_pending(void)419 static inline unsigned long test_irq_work_pending(void)
420 {
421 unsigned long x;
422
423 asm volatile("lbz %0,%1(13)"
424 : "=r" (x)
425 : "i" (offsetof(struct paca_struct, irq_work_pending)));
426 return x;
427 }
428
set_irq_work_pending_flag(void)429 static inline void set_irq_work_pending_flag(void)
430 {
431 asm volatile("stb %0,%1(13)" : :
432 "r" (1),
433 "i" (offsetof(struct paca_struct, irq_work_pending)));
434 }
435
clear_irq_work_pending(void)436 static inline void clear_irq_work_pending(void)
437 {
438 asm volatile("stb %0,%1(13)" : :
439 "r" (0),
440 "i" (offsetof(struct paca_struct, irq_work_pending)));
441 }
442
443 #else /* 32-bit */
444
445 DEFINE_PER_CPU(u8, irq_work_pending);
446
447 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
448 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
449 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
450
451 #endif /* 32 vs 64 bit */
452
arch_irq_work_raise(void)453 void arch_irq_work_raise(void)
454 {
455 preempt_disable();
456 set_irq_work_pending_flag();
457 set_dec(1);
458 preempt_enable();
459 }
460
461 #else /* CONFIG_IRQ_WORK */
462
463 #define test_irq_work_pending() 0
464 #define clear_irq_work_pending()
465
466 #endif /* CONFIG_IRQ_WORK */
467
468 /*
469 * timer_interrupt - gets called when the decrementer overflows,
470 * with interrupts disabled.
471 */
timer_interrupt(struct pt_regs * regs)472 void timer_interrupt(struct pt_regs * regs)
473 {
474 struct pt_regs *old_regs;
475 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
476 struct clock_event_device *evt = &__get_cpu_var(decrementers);
477 u64 now;
478
479 /* Ensure a positive value is written to the decrementer, or else
480 * some CPUs will continue to take decrementer exceptions.
481 */
482 set_dec(DECREMENTER_MAX);
483
484 /* Some implementations of hotplug will get timer interrupts while
485 * offline, just ignore these
486 */
487 if (!cpu_online(smp_processor_id()))
488 return;
489
490 /* Conditionally hard-enable interrupts now that the DEC has been
491 * bumped to its maximum value
492 */
493 may_hard_irq_enable();
494
495 trace_timer_interrupt_entry(regs);
496
497 __get_cpu_var(irq_stat).timer_irqs++;
498
499 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
500 if (atomic_read(&ppc_n_lost_interrupts) != 0)
501 do_IRQ(regs);
502 #endif
503
504 old_regs = set_irq_regs(regs);
505 irq_enter();
506
507 if (test_irq_work_pending()) {
508 clear_irq_work_pending();
509 irq_work_run();
510 }
511
512 now = get_tb_or_rtc();
513 if (now >= *next_tb) {
514 *next_tb = ~(u64)0;
515 if (evt->event_handler)
516 evt->event_handler(evt);
517 } else {
518 now = *next_tb - now;
519 if (now <= DECREMENTER_MAX)
520 set_dec((int)now);
521 }
522
523 #ifdef CONFIG_PPC64
524 /* collect purr register values often, for accurate calculations */
525 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
526 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
527 cu->current_tb = mfspr(SPRN_PURR);
528 }
529 #endif
530
531 irq_exit();
532 set_irq_regs(old_regs);
533
534 trace_timer_interrupt_exit(regs);
535 }
536
537 #ifdef CONFIG_SUSPEND
generic_suspend_disable_irqs(void)538 static void generic_suspend_disable_irqs(void)
539 {
540 /* Disable the decrementer, so that it doesn't interfere
541 * with suspending.
542 */
543
544 set_dec(DECREMENTER_MAX);
545 local_irq_disable();
546 set_dec(DECREMENTER_MAX);
547 }
548
generic_suspend_enable_irqs(void)549 static void generic_suspend_enable_irqs(void)
550 {
551 local_irq_enable();
552 }
553
554 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_disable_irqs(void)555 void arch_suspend_disable_irqs(void)
556 {
557 if (ppc_md.suspend_disable_irqs)
558 ppc_md.suspend_disable_irqs();
559 generic_suspend_disable_irqs();
560 }
561
562 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_enable_irqs(void)563 void arch_suspend_enable_irqs(void)
564 {
565 generic_suspend_enable_irqs();
566 if (ppc_md.suspend_enable_irqs)
567 ppc_md.suspend_enable_irqs();
568 }
569 #endif
570
571 /*
572 * Scheduler clock - returns current time in nanosec units.
573 *
574 * Note: mulhdu(a, b) (multiply high double unsigned) returns
575 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
576 * are 64-bit unsigned numbers.
577 */
sched_clock(void)578 unsigned long long sched_clock(void)
579 {
580 if (__USE_RTC())
581 return get_rtc();
582 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
583 }
584
get_freq(char * name,int cells,unsigned long * val)585 static int __init get_freq(char *name, int cells, unsigned long *val)
586 {
587 struct device_node *cpu;
588 const unsigned int *fp;
589 int found = 0;
590
591 /* The cpu node should have timebase and clock frequency properties */
592 cpu = of_find_node_by_type(NULL, "cpu");
593
594 if (cpu) {
595 fp = of_get_property(cpu, name, NULL);
596 if (fp) {
597 found = 1;
598 *val = of_read_ulong(fp, cells);
599 }
600
601 of_node_put(cpu);
602 }
603
604 return found;
605 }
606
607 /* should become __cpuinit when secondary_cpu_time_init also is */
start_cpu_decrementer(void)608 void start_cpu_decrementer(void)
609 {
610 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
611 /* Clear any pending timer interrupts */
612 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
613
614 /* Enable decrementer interrupt */
615 mtspr(SPRN_TCR, TCR_DIE);
616 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
617 }
618
generic_calibrate_decr(void)619 void __init generic_calibrate_decr(void)
620 {
621 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
622
623 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
624 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
625
626 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
627 "(not found)\n");
628 }
629
630 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
631
632 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
633 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
634
635 printk(KERN_ERR "WARNING: Estimating processor frequency "
636 "(not found)\n");
637 }
638 }
639
update_persistent_clock(struct timespec now)640 int update_persistent_clock(struct timespec now)
641 {
642 struct rtc_time tm;
643
644 if (!ppc_md.set_rtc_time)
645 return 0;
646
647 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
648 tm.tm_year -= 1900;
649 tm.tm_mon -= 1;
650
651 return ppc_md.set_rtc_time(&tm);
652 }
653
__read_persistent_clock(struct timespec * ts)654 static void __read_persistent_clock(struct timespec *ts)
655 {
656 struct rtc_time tm;
657 static int first = 1;
658
659 ts->tv_nsec = 0;
660 /* XXX this is a litle fragile but will work okay in the short term */
661 if (first) {
662 first = 0;
663 if (ppc_md.time_init)
664 timezone_offset = ppc_md.time_init();
665
666 /* get_boot_time() isn't guaranteed to be safe to call late */
667 if (ppc_md.get_boot_time) {
668 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
669 return;
670 }
671 }
672 if (!ppc_md.get_rtc_time) {
673 ts->tv_sec = 0;
674 return;
675 }
676 ppc_md.get_rtc_time(&tm);
677
678 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
679 tm.tm_hour, tm.tm_min, tm.tm_sec);
680 }
681
read_persistent_clock(struct timespec * ts)682 void read_persistent_clock(struct timespec *ts)
683 {
684 __read_persistent_clock(ts);
685
686 /* Sanitize it in case real time clock is set below EPOCH */
687 if (ts->tv_sec < 0) {
688 ts->tv_sec = 0;
689 ts->tv_nsec = 0;
690 }
691
692 }
693
694 /* clocksource code */
rtc_read(struct clocksource * cs)695 static cycle_t rtc_read(struct clocksource *cs)
696 {
697 return (cycle_t)get_rtc();
698 }
699
timebase_read(struct clocksource * cs)700 static cycle_t timebase_read(struct clocksource *cs)
701 {
702 return (cycle_t)get_tb();
703 }
704
update_vsyscall(struct timespec * wall_time,struct timespec * wtm,struct clocksource * clock,u32 mult)705 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
706 struct clocksource *clock, u32 mult)
707 {
708 u64 new_tb_to_xs, new_stamp_xsec;
709 u32 frac_sec;
710
711 if (clock != &clocksource_timebase)
712 return;
713
714 /* Make userspace gettimeofday spin until we're done. */
715 ++vdso_data->tb_update_count;
716 smp_mb();
717
718 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
719 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
720 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
721 do_div(new_stamp_xsec, 1000000000);
722 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
723
724 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
725 /* this is tv_nsec / 1e9 as a 0.32 fraction */
726 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
727
728 /*
729 * tb_update_count is used to allow the userspace gettimeofday code
730 * to assure itself that it sees a consistent view of the tb_to_xs and
731 * stamp_xsec variables. It reads the tb_update_count, then reads
732 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
733 * the two values of tb_update_count match and are even then the
734 * tb_to_xs and stamp_xsec values are consistent. If not, then it
735 * loops back and reads them again until this criteria is met.
736 * We expect the caller to have done the first increment of
737 * vdso_data->tb_update_count already.
738 */
739 vdso_data->tb_orig_stamp = clock->cycle_last;
740 vdso_data->stamp_xsec = new_stamp_xsec;
741 vdso_data->tb_to_xs = new_tb_to_xs;
742 vdso_data->wtom_clock_sec = wtm->tv_sec;
743 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
744 vdso_data->stamp_xtime = *wall_time;
745 vdso_data->stamp_sec_fraction = frac_sec;
746 smp_wmb();
747 ++(vdso_data->tb_update_count);
748 }
749
update_vsyscall_tz(void)750 void update_vsyscall_tz(void)
751 {
752 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
753 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
754 }
755
clocksource_init(void)756 static void __init clocksource_init(void)
757 {
758 struct clocksource *clock;
759
760 if (__USE_RTC())
761 clock = &clocksource_rtc;
762 else
763 clock = &clocksource_timebase;
764
765 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
766 printk(KERN_ERR "clocksource: %s is already registered\n",
767 clock->name);
768 return;
769 }
770
771 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
772 clock->name, clock->mult, clock->shift);
773 }
774
decrementer_set_next_event(unsigned long evt,struct clock_event_device * dev)775 static int decrementer_set_next_event(unsigned long evt,
776 struct clock_event_device *dev)
777 {
778 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
779 set_dec(evt);
780 return 0;
781 }
782
decrementer_set_mode(enum clock_event_mode mode,struct clock_event_device * dev)783 static void decrementer_set_mode(enum clock_event_mode mode,
784 struct clock_event_device *dev)
785 {
786 if (mode != CLOCK_EVT_MODE_ONESHOT)
787 decrementer_set_next_event(DECREMENTER_MAX, dev);
788 }
789
register_decrementer_clockevent(int cpu)790 static void register_decrementer_clockevent(int cpu)
791 {
792 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
793
794 *dec = decrementer_clockevent;
795 dec->cpumask = cpumask_of(cpu);
796
797 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
798 dec->name, dec->mult, dec->shift, cpu);
799
800 clockevents_register_device(dec);
801 }
802
init_decrementer_clockevent(void)803 static void __init init_decrementer_clockevent(void)
804 {
805 int cpu = smp_processor_id();
806
807 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
808
809 decrementer_clockevent.max_delta_ns =
810 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
811 decrementer_clockevent.min_delta_ns =
812 clockevent_delta2ns(2, &decrementer_clockevent);
813
814 register_decrementer_clockevent(cpu);
815 }
816
secondary_cpu_time_init(void)817 void secondary_cpu_time_init(void)
818 {
819 /* Start the decrementer on CPUs that have manual control
820 * such as BookE
821 */
822 start_cpu_decrementer();
823
824 /* FIME: Should make unrelatred change to move snapshot_timebase
825 * call here ! */
826 register_decrementer_clockevent(smp_processor_id());
827 }
828
829 /* This function is only called on the boot processor */
time_init(void)830 void __init time_init(void)
831 {
832 struct div_result res;
833 u64 scale;
834 unsigned shift;
835
836 if (__USE_RTC()) {
837 /* 601 processor: dec counts down by 128 every 128ns */
838 ppc_tb_freq = 1000000000;
839 } else {
840 /* Normal PowerPC with timebase register */
841 ppc_md.calibrate_decr();
842 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
843 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
844 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
845 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
846 }
847
848 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
849 tb_ticks_per_sec = ppc_tb_freq;
850 tb_ticks_per_usec = ppc_tb_freq / 1000000;
851 calc_cputime_factors();
852 setup_cputime_one_jiffy();
853
854 /*
855 * Compute scale factor for sched_clock.
856 * The calibrate_decr() function has set tb_ticks_per_sec,
857 * which is the timebase frequency.
858 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
859 * the 128-bit result as a 64.64 fixed-point number.
860 * We then shift that number right until it is less than 1.0,
861 * giving us the scale factor and shift count to use in
862 * sched_clock().
863 */
864 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
865 scale = res.result_low;
866 for (shift = 0; res.result_high != 0; ++shift) {
867 scale = (scale >> 1) | (res.result_high << 63);
868 res.result_high >>= 1;
869 }
870 tb_to_ns_scale = scale;
871 tb_to_ns_shift = shift;
872 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
873 boot_tb = get_tb_or_rtc();
874
875 /* If platform provided a timezone (pmac), we correct the time */
876 if (timezone_offset) {
877 sys_tz.tz_minuteswest = -timezone_offset / 60;
878 sys_tz.tz_dsttime = 0;
879 }
880
881 vdso_data->tb_update_count = 0;
882 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
883
884 /* Start the decrementer on CPUs that have manual control
885 * such as BookE
886 */
887 start_cpu_decrementer();
888
889 /* Register the clocksource */
890 clocksource_init();
891
892 init_decrementer_clockevent();
893 }
894
895
896 #define FEBRUARY 2
897 #define STARTOFTIME 1970
898 #define SECDAY 86400L
899 #define SECYR (SECDAY * 365)
900 #define leapyear(year) ((year) % 4 == 0 && \
901 ((year) % 100 != 0 || (year) % 400 == 0))
902 #define days_in_year(a) (leapyear(a) ? 366 : 365)
903 #define days_in_month(a) (month_days[(a) - 1])
904
905 static int month_days[12] = {
906 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
907 };
908
909 /*
910 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
911 */
GregorianDay(struct rtc_time * tm)912 void GregorianDay(struct rtc_time * tm)
913 {
914 int leapsToDate;
915 int lastYear;
916 int day;
917 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
918
919 lastYear = tm->tm_year - 1;
920
921 /*
922 * Number of leap corrections to apply up to end of last year
923 */
924 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
925
926 /*
927 * This year is a leap year if it is divisible by 4 except when it is
928 * divisible by 100 unless it is divisible by 400
929 *
930 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
931 */
932 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
933
934 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
935 tm->tm_mday;
936
937 tm->tm_wday = day % 7;
938 }
939
to_tm(int tim,struct rtc_time * tm)940 void to_tm(int tim, struct rtc_time * tm)
941 {
942 register int i;
943 register long hms, day;
944
945 day = tim / SECDAY;
946 hms = tim % SECDAY;
947
948 /* Hours, minutes, seconds are easy */
949 tm->tm_hour = hms / 3600;
950 tm->tm_min = (hms % 3600) / 60;
951 tm->tm_sec = (hms % 3600) % 60;
952
953 /* Number of years in days */
954 for (i = STARTOFTIME; day >= days_in_year(i); i++)
955 day -= days_in_year(i);
956 tm->tm_year = i;
957
958 /* Number of months in days left */
959 if (leapyear(tm->tm_year))
960 days_in_month(FEBRUARY) = 29;
961 for (i = 1; day >= days_in_month(i); i++)
962 day -= days_in_month(i);
963 days_in_month(FEBRUARY) = 28;
964 tm->tm_mon = i;
965
966 /* Days are what is left over (+1) from all that. */
967 tm->tm_mday = day + 1;
968
969 /*
970 * Determine the day of week
971 */
972 GregorianDay(tm);
973 }
974
975 /*
976 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
977 * result.
978 */
div128_by_32(u64 dividend_high,u64 dividend_low,unsigned divisor,struct div_result * dr)979 void div128_by_32(u64 dividend_high, u64 dividend_low,
980 unsigned divisor, struct div_result *dr)
981 {
982 unsigned long a, b, c, d;
983 unsigned long w, x, y, z;
984 u64 ra, rb, rc;
985
986 a = dividend_high >> 32;
987 b = dividend_high & 0xffffffff;
988 c = dividend_low >> 32;
989 d = dividend_low & 0xffffffff;
990
991 w = a / divisor;
992 ra = ((u64)(a - (w * divisor)) << 32) + b;
993
994 rb = ((u64) do_div(ra, divisor) << 32) + c;
995 x = ra;
996
997 rc = ((u64) do_div(rb, divisor) << 32) + d;
998 y = rb;
999
1000 do_div(rc, divisor);
1001 z = rc;
1002
1003 dr->result_high = ((u64)w << 32) + x;
1004 dr->result_low = ((u64)y << 32) + z;
1005
1006 }
1007
1008 /* We don't need to calibrate delay, we use the CPU timebase for that */
calibrate_delay(void)1009 void calibrate_delay(void)
1010 {
1011 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1012 * as the number of __delay(1) in a jiffy, so make it so
1013 */
1014 loops_per_jiffy = tb_ticks_per_jiffy;
1015 }
1016
rtc_init(void)1017 static int __init rtc_init(void)
1018 {
1019 struct platform_device *pdev;
1020
1021 if (!ppc_md.get_rtc_time)
1022 return -ENODEV;
1023
1024 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1025 if (IS_ERR(pdev))
1026 return PTR_ERR(pdev);
1027
1028 return 0;
1029 }
1030
1031 module_init(rtc_init);
1032