1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29
30 /*
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
34 *
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38 */
39 #define ARMPMU_MAX_HWEVENTS 32
40
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49
50 enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)51 armpmu_get_pmu_id(void)
52 {
53 int id = -ENODEV;
54
55 if (cpu_pmu != NULL)
56 id = cpu_pmu->id;
57
58 return id;
59 }
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
61
perf_num_counters(void)62 int perf_num_counters(void)
63 {
64 int max_events = 0;
65
66 if (cpu_pmu != NULL)
67 max_events = cpu_pmu->num_events;
68
69 return max_events;
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72
73 #define HW_OP_UNSUPPORTED 0xFFFF
74
75 #define C(_x) \
76 PERF_COUNT_HW_CACHE_##_x
77
78 #define CACHE_OP_UNSUPPORTED 0xFFFF
79
80 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)81 armpmu_map_cache_event(const unsigned (*cache_map)
82 [PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 u64 config)
86 {
87 unsigned int cache_type, cache_op, cache_result, ret;
88
89 cache_type = (config >> 0) & 0xff;
90 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
91 return -EINVAL;
92
93 cache_op = (config >> 8) & 0xff;
94 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
95 return -EINVAL;
96
97 cache_result = (config >> 16) & 0xff;
98 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
99 return -EINVAL;
100
101 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
102
103 if (ret == CACHE_OP_UNSUPPORTED)
104 return -ENOENT;
105
106 return ret;
107 }
108
109 static int
armpmu_map_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)110 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
111 {
112 int mapping;
113
114 if (config >= PERF_COUNT_HW_MAX)
115 return -ENOENT;
116
117 mapping = (*event_map)[config];
118 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
119 }
120
121 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)122 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
123 {
124 return (int)(config & raw_event_mask);
125 }
126
map_cpu_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)127 static int map_cpu_event(struct perf_event *event,
128 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
129 const unsigned (*cache_map)
130 [PERF_COUNT_HW_CACHE_MAX]
131 [PERF_COUNT_HW_CACHE_OP_MAX]
132 [PERF_COUNT_HW_CACHE_RESULT_MAX],
133 u32 raw_event_mask)
134 {
135 u64 config = event->attr.config;
136
137 switch (event->attr.type) {
138 case PERF_TYPE_HARDWARE:
139 return armpmu_map_event(event_map, config);
140 case PERF_TYPE_HW_CACHE:
141 return armpmu_map_cache_event(cache_map, config);
142 case PERF_TYPE_RAW:
143 return armpmu_map_raw_event(raw_event_mask, config);
144 }
145
146 return -ENOENT;
147 }
148
149 int
armpmu_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)150 armpmu_event_set_period(struct perf_event *event,
151 struct hw_perf_event *hwc,
152 int idx)
153 {
154 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
155 s64 left = local64_read(&hwc->period_left);
156 s64 period = hwc->sample_period;
157 int ret = 0;
158
159 if (unlikely(left <= -period)) {
160 left = period;
161 local64_set(&hwc->period_left, left);
162 hwc->last_period = period;
163 ret = 1;
164 }
165
166 if (unlikely(left <= 0)) {
167 left += period;
168 local64_set(&hwc->period_left, left);
169 hwc->last_period = period;
170 ret = 1;
171 }
172
173 if (left > (s64)armpmu->max_period)
174 left = armpmu->max_period;
175
176 local64_set(&hwc->prev_count, (u64)-left);
177
178 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
179
180 perf_event_update_userpage(event);
181
182 return ret;
183 }
184
185 u64
armpmu_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)186 armpmu_event_update(struct perf_event *event,
187 struct hw_perf_event *hwc,
188 int idx)
189 {
190 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191 u64 delta, prev_raw_count, new_raw_count;
192
193 again:
194 prev_raw_count = local64_read(&hwc->prev_count);
195 new_raw_count = armpmu->read_counter(idx);
196
197 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
198 new_raw_count) != prev_raw_count)
199 goto again;
200
201 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
202
203 local64_add(delta, &event->count);
204 local64_sub(delta, &hwc->period_left);
205
206 return new_raw_count;
207 }
208
209 static void
armpmu_read(struct perf_event * event)210 armpmu_read(struct perf_event *event)
211 {
212 struct hw_perf_event *hwc = &event->hw;
213
214 /* Don't read disabled counters! */
215 if (hwc->idx < 0)
216 return;
217
218 armpmu_event_update(event, hwc, hwc->idx);
219 }
220
221 static void
armpmu_stop(struct perf_event * event,int flags)222 armpmu_stop(struct perf_event *event, int flags)
223 {
224 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
225 struct hw_perf_event *hwc = &event->hw;
226
227 /*
228 * ARM pmu always has to update the counter, so ignore
229 * PERF_EF_UPDATE, see comments in armpmu_start().
230 */
231 if (!(hwc->state & PERF_HES_STOPPED)) {
232 armpmu->disable(hwc, hwc->idx);
233 barrier(); /* why? */
234 armpmu_event_update(event, hwc, hwc->idx);
235 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
236 }
237 }
238
239 static void
armpmu_start(struct perf_event * event,int flags)240 armpmu_start(struct perf_event *event, int flags)
241 {
242 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 struct hw_perf_event *hwc = &event->hw;
244
245 /*
246 * ARM pmu always has to reprogram the period, so ignore
247 * PERF_EF_RELOAD, see the comment below.
248 */
249 if (flags & PERF_EF_RELOAD)
250 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
251
252 hwc->state = 0;
253 /*
254 * Set the period again. Some counters can't be stopped, so when we
255 * were stopped we simply disabled the IRQ source and the counter
256 * may have been left counting. If we don't do this step then we may
257 * get an interrupt too soon or *way* too late if the overflow has
258 * happened since disabling.
259 */
260 armpmu_event_set_period(event, hwc, hwc->idx);
261 armpmu->enable(hwc, hwc->idx);
262 }
263
264 static void
armpmu_del(struct perf_event * event,int flags)265 armpmu_del(struct perf_event *event, int flags)
266 {
267 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
268 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
269 struct hw_perf_event *hwc = &event->hw;
270 int idx = hwc->idx;
271
272 WARN_ON(idx < 0);
273
274 armpmu_stop(event, PERF_EF_UPDATE);
275 hw_events->events[idx] = NULL;
276 clear_bit(idx, hw_events->used_mask);
277
278 perf_event_update_userpage(event);
279 }
280
281 static int
armpmu_add(struct perf_event * event,int flags)282 armpmu_add(struct perf_event *event, int flags)
283 {
284 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
285 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
286 struct hw_perf_event *hwc = &event->hw;
287 int idx;
288 int err = 0;
289
290 perf_pmu_disable(event->pmu);
291
292 /* If we don't have a space for the counter then finish early. */
293 idx = armpmu->get_event_idx(hw_events, hwc);
294 if (idx < 0) {
295 err = idx;
296 goto out;
297 }
298
299 /*
300 * If there is an event in the counter we are going to use then make
301 * sure it is disabled.
302 */
303 event->hw.idx = idx;
304 armpmu->disable(hwc, idx);
305 hw_events->events[idx] = event;
306
307 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
308 if (flags & PERF_EF_START)
309 armpmu_start(event, PERF_EF_RELOAD);
310
311 /* Propagate our changes to the userspace mapping. */
312 perf_event_update_userpage(event);
313
314 out:
315 perf_pmu_enable(event->pmu);
316 return err;
317 }
318
319 static int
validate_event(struct pmu_hw_events * hw_events,struct perf_event * event)320 validate_event(struct pmu_hw_events *hw_events,
321 struct perf_event *event)
322 {
323 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
324 struct hw_perf_event fake_event = event->hw;
325 struct pmu *leader_pmu = event->group_leader->pmu;
326
327 if (is_software_event(event))
328 return 1;
329
330 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
331 return 1;
332
333 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
334 return 1;
335
336 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
337 }
338
339 static int
validate_group(struct perf_event * event)340 validate_group(struct perf_event *event)
341 {
342 struct perf_event *sibling, *leader = event->group_leader;
343 struct pmu_hw_events fake_pmu;
344 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
345
346 /*
347 * Initialise the fake PMU. We only need to populate the
348 * used_mask for the purposes of validation.
349 */
350 memset(fake_used_mask, 0, sizeof(fake_used_mask));
351 fake_pmu.used_mask = fake_used_mask;
352
353 if (!validate_event(&fake_pmu, leader))
354 return -EINVAL;
355
356 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
357 if (!validate_event(&fake_pmu, sibling))
358 return -EINVAL;
359 }
360
361 if (!validate_event(&fake_pmu, event))
362 return -EINVAL;
363
364 return 0;
365 }
366
armpmu_platform_irq(int irq,void * dev)367 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
368 {
369 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
370 struct platform_device *plat_device = armpmu->plat_device;
371 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
372
373 return plat->handle_irq(irq, dev, armpmu->handle_irq);
374 }
375
376 static void
armpmu_release_hardware(struct arm_pmu * armpmu)377 armpmu_release_hardware(struct arm_pmu *armpmu)
378 {
379 int i, irq, irqs;
380 struct platform_device *pmu_device = armpmu->plat_device;
381 struct arm_pmu_platdata *plat =
382 dev_get_platdata(&pmu_device->dev);
383
384 irqs = min(pmu_device->num_resources, num_possible_cpus());
385
386 for (i = 0; i < irqs; ++i) {
387 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
388 continue;
389 irq = platform_get_irq(pmu_device, i);
390 if (irq >= 0) {
391 if (plat && plat->disable_irq)
392 plat->disable_irq(irq);
393 free_irq(irq, armpmu);
394 }
395 }
396
397 release_pmu(armpmu->type);
398 }
399
400 static int
armpmu_reserve_hardware(struct arm_pmu * armpmu)401 armpmu_reserve_hardware(struct arm_pmu *armpmu)
402 {
403 struct arm_pmu_platdata *plat;
404 irq_handler_t handle_irq;
405 int i, err, irq, irqs;
406 struct platform_device *pmu_device = armpmu->plat_device;
407
408 if (!pmu_device)
409 return -ENODEV;
410
411 err = reserve_pmu(armpmu->type);
412 if (err) {
413 pr_warning("unable to reserve pmu\n");
414 return err;
415 }
416
417 plat = dev_get_platdata(&pmu_device->dev);
418 if (plat && plat->handle_irq)
419 handle_irq = armpmu_platform_irq;
420 else
421 handle_irq = armpmu->handle_irq;
422
423 irqs = min(pmu_device->num_resources, num_possible_cpus());
424 if (irqs < 1) {
425 pr_err("no irqs for PMUs defined\n");
426 return -ENODEV;
427 }
428
429 for (i = 0; i < irqs; ++i) {
430 err = 0;
431 irq = platform_get_irq(pmu_device, i);
432 if (irq < 0)
433 continue;
434
435 /*
436 * If we have a single PMU interrupt that we can't shift,
437 * assume that we're running on a uniprocessor machine and
438 * continue. Otherwise, continue without this interrupt.
439 */
440 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
441 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
442 irq, i);
443 continue;
444 }
445
446 err = request_irq(irq, handle_irq,
447 IRQF_DISABLED | IRQF_NOBALANCING,
448 "arm-pmu", armpmu);
449 if (err) {
450 pr_err("unable to request IRQ%d for ARM PMU counters\n",
451 irq);
452 armpmu_release_hardware(armpmu);
453 return err;
454 } else if (plat && plat->enable_irq)
455 plat->enable_irq(irq);
456
457 cpumask_set_cpu(i, &armpmu->active_irqs);
458 }
459
460 return 0;
461 }
462
463 static void
hw_perf_event_destroy(struct perf_event * event)464 hw_perf_event_destroy(struct perf_event *event)
465 {
466 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
467 atomic_t *active_events = &armpmu->active_events;
468 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
469
470 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
471 armpmu_release_hardware(armpmu);
472 mutex_unlock(pmu_reserve_mutex);
473 }
474 }
475
476 static int
event_requires_mode_exclusion(struct perf_event_attr * attr)477 event_requires_mode_exclusion(struct perf_event_attr *attr)
478 {
479 return attr->exclude_idle || attr->exclude_user ||
480 attr->exclude_kernel || attr->exclude_hv;
481 }
482
483 static int
__hw_perf_event_init(struct perf_event * event)484 __hw_perf_event_init(struct perf_event *event)
485 {
486 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
487 struct hw_perf_event *hwc = &event->hw;
488 int mapping, err;
489
490 mapping = armpmu->map_event(event);
491
492 if (mapping < 0) {
493 pr_debug("event %x:%llx not supported\n", event->attr.type,
494 event->attr.config);
495 return mapping;
496 }
497
498 /*
499 * We don't assign an index until we actually place the event onto
500 * hardware. Use -1 to signify that we haven't decided where to put it
501 * yet. For SMP systems, each core has it's own PMU so we can't do any
502 * clever allocation or constraints checking at this point.
503 */
504 hwc->idx = -1;
505 hwc->config_base = 0;
506 hwc->config = 0;
507 hwc->event_base = 0;
508
509 /*
510 * Check whether we need to exclude the counter from certain modes.
511 */
512 if ((!armpmu->set_event_filter ||
513 armpmu->set_event_filter(hwc, &event->attr)) &&
514 event_requires_mode_exclusion(&event->attr)) {
515 pr_debug("ARM performance counters do not support "
516 "mode exclusion\n");
517 return -EPERM;
518 }
519
520 /*
521 * Store the event encoding into the config_base field.
522 */
523 hwc->config_base |= (unsigned long)mapping;
524
525 if (!hwc->sample_period) {
526 /*
527 * For non-sampling runs, limit the sample_period to half
528 * of the counter width. That way, the new counter value
529 * is far less likely to overtake the previous one unless
530 * you have some serious IRQ latency issues.
531 */
532 hwc->sample_period = armpmu->max_period >> 1;
533 hwc->last_period = hwc->sample_period;
534 local64_set(&hwc->period_left, hwc->sample_period);
535 }
536
537 err = 0;
538 if (event->group_leader != event) {
539 err = validate_group(event);
540 if (err)
541 return -EINVAL;
542 }
543
544 return err;
545 }
546
armpmu_event_init(struct perf_event * event)547 static int armpmu_event_init(struct perf_event *event)
548 {
549 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
550 int err = 0;
551 atomic_t *active_events = &armpmu->active_events;
552
553 /* does not support taken branch sampling */
554 if (has_branch_stack(event))
555 return -EOPNOTSUPP;
556
557 if (armpmu->map_event(event) == -ENOENT)
558 return -ENOENT;
559
560 event->destroy = hw_perf_event_destroy;
561
562 if (!atomic_inc_not_zero(active_events)) {
563 mutex_lock(&armpmu->reserve_mutex);
564 if (atomic_read(active_events) == 0)
565 err = armpmu_reserve_hardware(armpmu);
566
567 if (!err)
568 atomic_inc(active_events);
569 mutex_unlock(&armpmu->reserve_mutex);
570 }
571
572 if (err)
573 return err;
574
575 err = __hw_perf_event_init(event);
576 if (err)
577 hw_perf_event_destroy(event);
578
579 return err;
580 }
581
armpmu_enable(struct pmu * pmu)582 static void armpmu_enable(struct pmu *pmu)
583 {
584 struct arm_pmu *armpmu = to_arm_pmu(pmu);
585 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
586 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
587
588 if (enabled)
589 armpmu->start();
590 }
591
armpmu_disable(struct pmu * pmu)592 static void armpmu_disable(struct pmu *pmu)
593 {
594 struct arm_pmu *armpmu = to_arm_pmu(pmu);
595 armpmu->stop();
596 }
597
armpmu_init(struct arm_pmu * armpmu)598 static void __init armpmu_init(struct arm_pmu *armpmu)
599 {
600 atomic_set(&armpmu->active_events, 0);
601 mutex_init(&armpmu->reserve_mutex);
602
603 armpmu->pmu = (struct pmu) {
604 .pmu_enable = armpmu_enable,
605 .pmu_disable = armpmu_disable,
606 .event_init = armpmu_event_init,
607 .add = armpmu_add,
608 .del = armpmu_del,
609 .start = armpmu_start,
610 .stop = armpmu_stop,
611 .read = armpmu_read,
612 };
613 }
614
armpmu_register(struct arm_pmu * armpmu,char * name,int type)615 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
616 {
617 armpmu_init(armpmu);
618 return perf_pmu_register(&armpmu->pmu, name, type);
619 }
620
621 /* Include the PMU-specific implementations. */
622 #include "perf_event_xscale.c"
623 #include "perf_event_v6.c"
624 #include "perf_event_v7.c"
625
626 /*
627 * Ensure the PMU has sane values out of reset.
628 * This requires SMP to be available, so exists as a separate initcall.
629 */
630 static int __init
cpu_pmu_reset(void)631 cpu_pmu_reset(void)
632 {
633 if (cpu_pmu && cpu_pmu->reset)
634 return on_each_cpu(cpu_pmu->reset, NULL, 1);
635 return 0;
636 }
637 arch_initcall(cpu_pmu_reset);
638
639 /*
640 * PMU platform driver and devicetree bindings.
641 */
642 static struct of_device_id armpmu_of_device_ids[] = {
643 {.compatible = "arm,cortex-a9-pmu"},
644 {.compatible = "arm,cortex-a8-pmu"},
645 {.compatible = "arm,arm1136-pmu"},
646 {.compatible = "arm,arm1176-pmu"},
647 {},
648 };
649
650 static struct platform_device_id armpmu_plat_device_ids[] = {
651 {.name = "arm-pmu"},
652 {},
653 };
654
armpmu_device_probe(struct platform_device * pdev)655 static int __devinit armpmu_device_probe(struct platform_device *pdev)
656 {
657 if (!cpu_pmu)
658 return -ENODEV;
659
660 cpu_pmu->plat_device = pdev;
661 return 0;
662 }
663
664 static struct platform_driver armpmu_driver = {
665 .driver = {
666 .name = "arm-pmu",
667 .of_match_table = armpmu_of_device_ids,
668 },
669 .probe = armpmu_device_probe,
670 .id_table = armpmu_plat_device_ids,
671 };
672
register_pmu_driver(void)673 static int __init register_pmu_driver(void)
674 {
675 return platform_driver_register(&armpmu_driver);
676 }
677 device_initcall(register_pmu_driver);
678
armpmu_get_cpu_events(void)679 static struct pmu_hw_events *armpmu_get_cpu_events(void)
680 {
681 return &__get_cpu_var(cpu_hw_events);
682 }
683
cpu_pmu_init(struct arm_pmu * armpmu)684 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
685 {
686 int cpu;
687 for_each_possible_cpu(cpu) {
688 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
689 events->events = per_cpu(hw_events, cpu);
690 events->used_mask = per_cpu(used_mask, cpu);
691 raw_spin_lock_init(&events->pmu_lock);
692 }
693 armpmu->get_hw_events = armpmu_get_cpu_events;
694 armpmu->type = ARM_PMU_DEVICE_CPU;
695 }
696
697 /*
698 * PMU hardware loses all context when a CPU goes offline.
699 * When a CPU is hotplugged back in, since some hardware registers are
700 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
701 * junk values out of them.
702 */
pmu_cpu_notify(struct notifier_block * b,unsigned long action,void * hcpu)703 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
704 unsigned long action, void *hcpu)
705 {
706 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
707 return NOTIFY_DONE;
708
709 if (cpu_pmu && cpu_pmu->reset)
710 cpu_pmu->reset(NULL);
711
712 return NOTIFY_OK;
713 }
714
715 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
716 .notifier_call = pmu_cpu_notify,
717 };
718
719 /*
720 * CPU PMU identification and registration.
721 */
722 static int __init
init_hw_perf_events(void)723 init_hw_perf_events(void)
724 {
725 unsigned long cpuid = read_cpuid_id();
726 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
727 unsigned long part_number = (cpuid & 0xFFF0);
728
729 /* ARM Ltd CPUs. */
730 if (0x41 == implementor) {
731 switch (part_number) {
732 case 0xB360: /* ARM1136 */
733 case 0xB560: /* ARM1156 */
734 case 0xB760: /* ARM1176 */
735 cpu_pmu = armv6pmu_init();
736 break;
737 case 0xB020: /* ARM11mpcore */
738 cpu_pmu = armv6mpcore_pmu_init();
739 break;
740 case 0xC080: /* Cortex-A8 */
741 cpu_pmu = armv7_a8_pmu_init();
742 break;
743 case 0xC090: /* Cortex-A9 */
744 cpu_pmu = armv7_a9_pmu_init();
745 break;
746 case 0xC050: /* Cortex-A5 */
747 cpu_pmu = armv7_a5_pmu_init();
748 break;
749 case 0xC0F0: /* Cortex-A15 */
750 cpu_pmu = armv7_a15_pmu_init();
751 break;
752 case 0xC070: /* Cortex-A7 */
753 cpu_pmu = armv7_a7_pmu_init();
754 break;
755 }
756 /* Intel CPUs [xscale]. */
757 } else if (0x69 == implementor) {
758 part_number = (cpuid >> 13) & 0x7;
759 switch (part_number) {
760 case 1:
761 cpu_pmu = xscale1pmu_init();
762 break;
763 case 2:
764 cpu_pmu = xscale2pmu_init();
765 break;
766 }
767 }
768
769 if (cpu_pmu) {
770 pr_info("enabled with %s PMU driver, %d counters available\n",
771 cpu_pmu->name, cpu_pmu->num_events);
772 cpu_pmu_init(cpu_pmu);
773 register_cpu_notifier(&pmu_cpu_notifier);
774 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
775 } else {
776 pr_info("no hardware support available\n");
777 }
778
779 return 0;
780 }
781 early_initcall(init_hw_perf_events);
782
783 /*
784 * Callchain handling code.
785 */
786
787 /*
788 * The registers we're interested in are at the end of the variable
789 * length saved register structure. The fp points at the end of this
790 * structure so the address of this struct is:
791 * (struct frame_tail *)(xxx->fp)-1
792 *
793 * This code has been adapted from the ARM OProfile support.
794 */
795 struct frame_tail {
796 struct frame_tail __user *fp;
797 unsigned long sp;
798 unsigned long lr;
799 } __attribute__((packed));
800
801 /*
802 * Get the return address for a single stackframe and return a pointer to the
803 * next frame tail.
804 */
805 static struct frame_tail __user *
user_backtrace(struct frame_tail __user * tail,struct perf_callchain_entry * entry)806 user_backtrace(struct frame_tail __user *tail,
807 struct perf_callchain_entry *entry)
808 {
809 struct frame_tail buftail;
810
811 /* Also check accessibility of one struct frame_tail beyond */
812 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
813 return NULL;
814 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
815 return NULL;
816
817 perf_callchain_store(entry, buftail.lr);
818
819 /*
820 * Frame pointers should strictly progress back up the stack
821 * (towards higher addresses).
822 */
823 if (tail + 1 >= buftail.fp)
824 return NULL;
825
826 return buftail.fp - 1;
827 }
828
829 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)830 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
831 {
832 struct frame_tail __user *tail;
833
834
835 perf_callchain_store(entry, regs->ARM_pc);
836 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
837
838 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
839 tail && !((unsigned long)tail & 0x3))
840 tail = user_backtrace(tail, entry);
841 }
842
843 /*
844 * Gets called by walk_stackframe() for every stackframe. This will be called
845 * whist unwinding the stackframe and is like a subroutine return so we use
846 * the PC.
847 */
848 static int
callchain_trace(struct stackframe * fr,void * data)849 callchain_trace(struct stackframe *fr,
850 void *data)
851 {
852 struct perf_callchain_entry *entry = data;
853 perf_callchain_store(entry, fr->pc);
854 return 0;
855 }
856
857 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)858 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
859 {
860 struct stackframe fr;
861
862 fr.fp = regs->ARM_fp;
863 fr.sp = regs->ARM_sp;
864 fr.lr = regs->ARM_lr;
865 fr.pc = regs->ARM_pc;
866 walk_stackframe(&fr, callchain_trace, entry);
867 }
868