• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11  * code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29 
30 /*
31  * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32  * another platform that supports more, we need to increase this to be the
33  * largest of all platforms.
34  *
35  * ARMv7 supports up to 32 events:
36  *  cycle counter CCNT + 31 events counters CNT0..30.
37  *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38  */
39 #define ARMPMU_MAX_HWEVENTS		32
40 
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44 
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46 
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49 
50 enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)51 armpmu_get_pmu_id(void)
52 {
53 	int id = -ENODEV;
54 
55 	if (cpu_pmu != NULL)
56 		id = cpu_pmu->id;
57 
58 	return id;
59 }
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
61 
perf_num_counters(void)62 int perf_num_counters(void)
63 {
64 	int max_events = 0;
65 
66 	if (cpu_pmu != NULL)
67 		max_events = cpu_pmu->num_events;
68 
69 	return max_events;
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72 
73 #define HW_OP_UNSUPPORTED		0xFFFF
74 
75 #define C(_x) \
76 	PERF_COUNT_HW_CACHE_##_x
77 
78 #define CACHE_OP_UNSUPPORTED		0xFFFF
79 
80 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)81 armpmu_map_cache_event(const unsigned (*cache_map)
82 				      [PERF_COUNT_HW_CACHE_MAX]
83 				      [PERF_COUNT_HW_CACHE_OP_MAX]
84 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 		       u64 config)
86 {
87 	unsigned int cache_type, cache_op, cache_result, ret;
88 
89 	cache_type = (config >>  0) & 0xff;
90 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
91 		return -EINVAL;
92 
93 	cache_op = (config >>  8) & 0xff;
94 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
95 		return -EINVAL;
96 
97 	cache_result = (config >> 16) & 0xff;
98 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
99 		return -EINVAL;
100 
101 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
102 
103 	if (ret == CACHE_OP_UNSUPPORTED)
104 		return -ENOENT;
105 
106 	return ret;
107 }
108 
109 static int
armpmu_map_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)110 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
111 {
112 	int mapping;
113 
114 	if (config >= PERF_COUNT_HW_MAX)
115 		return -ENOENT;
116 
117 	mapping = (*event_map)[config];
118 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
119 }
120 
121 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)122 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
123 {
124 	return (int)(config & raw_event_mask);
125 }
126 
map_cpu_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)127 static int map_cpu_event(struct perf_event *event,
128 			 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
129 			 const unsigned (*cache_map)
130 					[PERF_COUNT_HW_CACHE_MAX]
131 					[PERF_COUNT_HW_CACHE_OP_MAX]
132 					[PERF_COUNT_HW_CACHE_RESULT_MAX],
133 			 u32 raw_event_mask)
134 {
135 	u64 config = event->attr.config;
136 
137 	switch (event->attr.type) {
138 	case PERF_TYPE_HARDWARE:
139 		return armpmu_map_event(event_map, config);
140 	case PERF_TYPE_HW_CACHE:
141 		return armpmu_map_cache_event(cache_map, config);
142 	case PERF_TYPE_RAW:
143 		return armpmu_map_raw_event(raw_event_mask, config);
144 	}
145 
146 	return -ENOENT;
147 }
148 
149 int
armpmu_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)150 armpmu_event_set_period(struct perf_event *event,
151 			struct hw_perf_event *hwc,
152 			int idx)
153 {
154 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
155 	s64 left = local64_read(&hwc->period_left);
156 	s64 period = hwc->sample_period;
157 	int ret = 0;
158 
159 	if (unlikely(left <= -period)) {
160 		left = period;
161 		local64_set(&hwc->period_left, left);
162 		hwc->last_period = period;
163 		ret = 1;
164 	}
165 
166 	if (unlikely(left <= 0)) {
167 		left += period;
168 		local64_set(&hwc->period_left, left);
169 		hwc->last_period = period;
170 		ret = 1;
171 	}
172 
173 	if (left > (s64)armpmu->max_period)
174 		left = armpmu->max_period;
175 
176 	local64_set(&hwc->prev_count, (u64)-left);
177 
178 	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
179 
180 	perf_event_update_userpage(event);
181 
182 	return ret;
183 }
184 
185 u64
armpmu_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)186 armpmu_event_update(struct perf_event *event,
187 		    struct hw_perf_event *hwc,
188 		    int idx)
189 {
190 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191 	u64 delta, prev_raw_count, new_raw_count;
192 
193 again:
194 	prev_raw_count = local64_read(&hwc->prev_count);
195 	new_raw_count = armpmu->read_counter(idx);
196 
197 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
198 			     new_raw_count) != prev_raw_count)
199 		goto again;
200 
201 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
202 
203 	local64_add(delta, &event->count);
204 	local64_sub(delta, &hwc->period_left);
205 
206 	return new_raw_count;
207 }
208 
209 static void
armpmu_read(struct perf_event * event)210 armpmu_read(struct perf_event *event)
211 {
212 	struct hw_perf_event *hwc = &event->hw;
213 
214 	/* Don't read disabled counters! */
215 	if (hwc->idx < 0)
216 		return;
217 
218 	armpmu_event_update(event, hwc, hwc->idx);
219 }
220 
221 static void
armpmu_stop(struct perf_event * event,int flags)222 armpmu_stop(struct perf_event *event, int flags)
223 {
224 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
225 	struct hw_perf_event *hwc = &event->hw;
226 
227 	/*
228 	 * ARM pmu always has to update the counter, so ignore
229 	 * PERF_EF_UPDATE, see comments in armpmu_start().
230 	 */
231 	if (!(hwc->state & PERF_HES_STOPPED)) {
232 		armpmu->disable(hwc, hwc->idx);
233 		barrier(); /* why? */
234 		armpmu_event_update(event, hwc, hwc->idx);
235 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
236 	}
237 }
238 
239 static void
armpmu_start(struct perf_event * event,int flags)240 armpmu_start(struct perf_event *event, int flags)
241 {
242 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 	struct hw_perf_event *hwc = &event->hw;
244 
245 	/*
246 	 * ARM pmu always has to reprogram the period, so ignore
247 	 * PERF_EF_RELOAD, see the comment below.
248 	 */
249 	if (flags & PERF_EF_RELOAD)
250 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
251 
252 	hwc->state = 0;
253 	/*
254 	 * Set the period again. Some counters can't be stopped, so when we
255 	 * were stopped we simply disabled the IRQ source and the counter
256 	 * may have been left counting. If we don't do this step then we may
257 	 * get an interrupt too soon or *way* too late if the overflow has
258 	 * happened since disabling.
259 	 */
260 	armpmu_event_set_period(event, hwc, hwc->idx);
261 	armpmu->enable(hwc, hwc->idx);
262 }
263 
264 static void
armpmu_del(struct perf_event * event,int flags)265 armpmu_del(struct perf_event *event, int flags)
266 {
267 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
268 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
269 	struct hw_perf_event *hwc = &event->hw;
270 	int idx = hwc->idx;
271 
272 	WARN_ON(idx < 0);
273 
274 	armpmu_stop(event, PERF_EF_UPDATE);
275 	hw_events->events[idx] = NULL;
276 	clear_bit(idx, hw_events->used_mask);
277 
278 	perf_event_update_userpage(event);
279 }
280 
281 static int
armpmu_add(struct perf_event * event,int flags)282 armpmu_add(struct perf_event *event, int flags)
283 {
284 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
285 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
286 	struct hw_perf_event *hwc = &event->hw;
287 	int idx;
288 	int err = 0;
289 
290 	perf_pmu_disable(event->pmu);
291 
292 	/* If we don't have a space for the counter then finish early. */
293 	idx = armpmu->get_event_idx(hw_events, hwc);
294 	if (idx < 0) {
295 		err = idx;
296 		goto out;
297 	}
298 
299 	/*
300 	 * If there is an event in the counter we are going to use then make
301 	 * sure it is disabled.
302 	 */
303 	event->hw.idx = idx;
304 	armpmu->disable(hwc, idx);
305 	hw_events->events[idx] = event;
306 
307 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
308 	if (flags & PERF_EF_START)
309 		armpmu_start(event, PERF_EF_RELOAD);
310 
311 	/* Propagate our changes to the userspace mapping. */
312 	perf_event_update_userpage(event);
313 
314 out:
315 	perf_pmu_enable(event->pmu);
316 	return err;
317 }
318 
319 static int
validate_event(struct pmu_hw_events * hw_events,struct perf_event * event)320 validate_event(struct pmu_hw_events *hw_events,
321 	       struct perf_event *event)
322 {
323 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
324 	struct hw_perf_event fake_event = event->hw;
325 	struct pmu *leader_pmu = event->group_leader->pmu;
326 
327 	if (is_software_event(event))
328 		return 1;
329 
330 	if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
331 		return 1;
332 
333 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
334 		return 1;
335 
336 	return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
337 }
338 
339 static int
validate_group(struct perf_event * event)340 validate_group(struct perf_event *event)
341 {
342 	struct perf_event *sibling, *leader = event->group_leader;
343 	struct pmu_hw_events fake_pmu;
344 	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
345 
346 	/*
347 	 * Initialise the fake PMU. We only need to populate the
348 	 * used_mask for the purposes of validation.
349 	 */
350 	memset(fake_used_mask, 0, sizeof(fake_used_mask));
351 	fake_pmu.used_mask = fake_used_mask;
352 
353 	if (!validate_event(&fake_pmu, leader))
354 		return -EINVAL;
355 
356 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
357 		if (!validate_event(&fake_pmu, sibling))
358 			return -EINVAL;
359 	}
360 
361 	if (!validate_event(&fake_pmu, event))
362 		return -EINVAL;
363 
364 	return 0;
365 }
366 
armpmu_platform_irq(int irq,void * dev)367 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
368 {
369 	struct arm_pmu *armpmu = (struct arm_pmu *) dev;
370 	struct platform_device *plat_device = armpmu->plat_device;
371 	struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
372 
373 	return plat->handle_irq(irq, dev, armpmu->handle_irq);
374 }
375 
376 static void
armpmu_release_hardware(struct arm_pmu * armpmu)377 armpmu_release_hardware(struct arm_pmu *armpmu)
378 {
379 	int i, irq, irqs;
380 	struct platform_device *pmu_device = armpmu->plat_device;
381 	struct arm_pmu_platdata *plat =
382 		dev_get_platdata(&pmu_device->dev);
383 
384 	irqs = min(pmu_device->num_resources, num_possible_cpus());
385 
386 	for (i = 0; i < irqs; ++i) {
387 		if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
388 			continue;
389 		irq = platform_get_irq(pmu_device, i);
390 		if (irq >= 0) {
391 			if (plat && plat->disable_irq)
392 				plat->disable_irq(irq);
393 			free_irq(irq, armpmu);
394 		}
395 	}
396 
397 	release_pmu(armpmu->type);
398 }
399 
400 static int
armpmu_reserve_hardware(struct arm_pmu * armpmu)401 armpmu_reserve_hardware(struct arm_pmu *armpmu)
402 {
403 	struct arm_pmu_platdata *plat;
404 	irq_handler_t handle_irq;
405 	int i, err, irq, irqs;
406 	struct platform_device *pmu_device = armpmu->plat_device;
407 
408 	if (!pmu_device)
409 		return -ENODEV;
410 
411 	err = reserve_pmu(armpmu->type);
412 	if (err) {
413 		pr_warning("unable to reserve pmu\n");
414 		return err;
415 	}
416 
417 	plat = dev_get_platdata(&pmu_device->dev);
418 	if (plat && plat->handle_irq)
419 		handle_irq = armpmu_platform_irq;
420 	else
421 		handle_irq = armpmu->handle_irq;
422 
423 	irqs = min(pmu_device->num_resources, num_possible_cpus());
424 	if (irqs < 1) {
425 		pr_err("no irqs for PMUs defined\n");
426 		return -ENODEV;
427 	}
428 
429 	for (i = 0; i < irqs; ++i) {
430 		err = 0;
431 		irq = platform_get_irq(pmu_device, i);
432 		if (irq < 0)
433 			continue;
434 
435 		/*
436 		 * If we have a single PMU interrupt that we can't shift,
437 		 * assume that we're running on a uniprocessor machine and
438 		 * continue. Otherwise, continue without this interrupt.
439 		 */
440 		if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
441 			pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
442 				    irq, i);
443 			continue;
444 		}
445 
446 		err = request_irq(irq, handle_irq,
447 				  IRQF_DISABLED | IRQF_NOBALANCING,
448 				  "arm-pmu", armpmu);
449 		if (err) {
450 			pr_err("unable to request IRQ%d for ARM PMU counters\n",
451 				irq);
452 			armpmu_release_hardware(armpmu);
453 			return err;
454 		} else if (plat && plat->enable_irq)
455 			plat->enable_irq(irq);
456 
457 		cpumask_set_cpu(i, &armpmu->active_irqs);
458 	}
459 
460 	return 0;
461 }
462 
463 static void
hw_perf_event_destroy(struct perf_event * event)464 hw_perf_event_destroy(struct perf_event *event)
465 {
466 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
467 	atomic_t *active_events	 = &armpmu->active_events;
468 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
469 
470 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
471 		armpmu_release_hardware(armpmu);
472 		mutex_unlock(pmu_reserve_mutex);
473 	}
474 }
475 
476 static int
event_requires_mode_exclusion(struct perf_event_attr * attr)477 event_requires_mode_exclusion(struct perf_event_attr *attr)
478 {
479 	return attr->exclude_idle || attr->exclude_user ||
480 	       attr->exclude_kernel || attr->exclude_hv;
481 }
482 
483 static int
__hw_perf_event_init(struct perf_event * event)484 __hw_perf_event_init(struct perf_event *event)
485 {
486 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
487 	struct hw_perf_event *hwc = &event->hw;
488 	int mapping, err;
489 
490 	mapping = armpmu->map_event(event);
491 
492 	if (mapping < 0) {
493 		pr_debug("event %x:%llx not supported\n", event->attr.type,
494 			 event->attr.config);
495 		return mapping;
496 	}
497 
498 	/*
499 	 * We don't assign an index until we actually place the event onto
500 	 * hardware. Use -1 to signify that we haven't decided where to put it
501 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
502 	 * clever allocation or constraints checking at this point.
503 	 */
504 	hwc->idx		= -1;
505 	hwc->config_base	= 0;
506 	hwc->config		= 0;
507 	hwc->event_base		= 0;
508 
509 	/*
510 	 * Check whether we need to exclude the counter from certain modes.
511 	 */
512 	if ((!armpmu->set_event_filter ||
513 	     armpmu->set_event_filter(hwc, &event->attr)) &&
514 	     event_requires_mode_exclusion(&event->attr)) {
515 		pr_debug("ARM performance counters do not support "
516 			 "mode exclusion\n");
517 		return -EPERM;
518 	}
519 
520 	/*
521 	 * Store the event encoding into the config_base field.
522 	 */
523 	hwc->config_base	    |= (unsigned long)mapping;
524 
525 	if (!hwc->sample_period) {
526 		/*
527 		 * For non-sampling runs, limit the sample_period to half
528 		 * of the counter width. That way, the new counter value
529 		 * is far less likely to overtake the previous one unless
530 		 * you have some serious IRQ latency issues.
531 		 */
532 		hwc->sample_period  = armpmu->max_period >> 1;
533 		hwc->last_period    = hwc->sample_period;
534 		local64_set(&hwc->period_left, hwc->sample_period);
535 	}
536 
537 	err = 0;
538 	if (event->group_leader != event) {
539 		err = validate_group(event);
540 		if (err)
541 			return -EINVAL;
542 	}
543 
544 	return err;
545 }
546 
armpmu_event_init(struct perf_event * event)547 static int armpmu_event_init(struct perf_event *event)
548 {
549 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
550 	int err = 0;
551 	atomic_t *active_events = &armpmu->active_events;
552 
553 	/* does not support taken branch sampling */
554 	if (has_branch_stack(event))
555 		return -EOPNOTSUPP;
556 
557 	if (armpmu->map_event(event) == -ENOENT)
558 		return -ENOENT;
559 
560 	event->destroy = hw_perf_event_destroy;
561 
562 	if (!atomic_inc_not_zero(active_events)) {
563 		mutex_lock(&armpmu->reserve_mutex);
564 		if (atomic_read(active_events) == 0)
565 			err = armpmu_reserve_hardware(armpmu);
566 
567 		if (!err)
568 			atomic_inc(active_events);
569 		mutex_unlock(&armpmu->reserve_mutex);
570 	}
571 
572 	if (err)
573 		return err;
574 
575 	err = __hw_perf_event_init(event);
576 	if (err)
577 		hw_perf_event_destroy(event);
578 
579 	return err;
580 }
581 
armpmu_enable(struct pmu * pmu)582 static void armpmu_enable(struct pmu *pmu)
583 {
584 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
585 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
586 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
587 
588 	if (enabled)
589 		armpmu->start();
590 }
591 
armpmu_disable(struct pmu * pmu)592 static void armpmu_disable(struct pmu *pmu)
593 {
594 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
595 	armpmu->stop();
596 }
597 
armpmu_init(struct arm_pmu * armpmu)598 static void __init armpmu_init(struct arm_pmu *armpmu)
599 {
600 	atomic_set(&armpmu->active_events, 0);
601 	mutex_init(&armpmu->reserve_mutex);
602 
603 	armpmu->pmu = (struct pmu) {
604 		.pmu_enable	= armpmu_enable,
605 		.pmu_disable	= armpmu_disable,
606 		.event_init	= armpmu_event_init,
607 		.add		= armpmu_add,
608 		.del		= armpmu_del,
609 		.start		= armpmu_start,
610 		.stop		= armpmu_stop,
611 		.read		= armpmu_read,
612 	};
613 }
614 
armpmu_register(struct arm_pmu * armpmu,char * name,int type)615 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
616 {
617 	armpmu_init(armpmu);
618 	return perf_pmu_register(&armpmu->pmu, name, type);
619 }
620 
621 /* Include the PMU-specific implementations. */
622 #include "perf_event_xscale.c"
623 #include "perf_event_v6.c"
624 #include "perf_event_v7.c"
625 
626 /*
627  * Ensure the PMU has sane values out of reset.
628  * This requires SMP to be available, so exists as a separate initcall.
629  */
630 static int __init
cpu_pmu_reset(void)631 cpu_pmu_reset(void)
632 {
633 	if (cpu_pmu && cpu_pmu->reset)
634 		return on_each_cpu(cpu_pmu->reset, NULL, 1);
635 	return 0;
636 }
637 arch_initcall(cpu_pmu_reset);
638 
639 /*
640  * PMU platform driver and devicetree bindings.
641  */
642 static struct of_device_id armpmu_of_device_ids[] = {
643 	{.compatible = "arm,cortex-a9-pmu"},
644 	{.compatible = "arm,cortex-a8-pmu"},
645 	{.compatible = "arm,arm1136-pmu"},
646 	{.compatible = "arm,arm1176-pmu"},
647 	{},
648 };
649 
650 static struct platform_device_id armpmu_plat_device_ids[] = {
651 	{.name = "arm-pmu"},
652 	{},
653 };
654 
armpmu_device_probe(struct platform_device * pdev)655 static int __devinit armpmu_device_probe(struct platform_device *pdev)
656 {
657 	if (!cpu_pmu)
658 		return -ENODEV;
659 
660 	cpu_pmu->plat_device = pdev;
661 	return 0;
662 }
663 
664 static struct platform_driver armpmu_driver = {
665 	.driver		= {
666 		.name	= "arm-pmu",
667 		.of_match_table = armpmu_of_device_ids,
668 	},
669 	.probe		= armpmu_device_probe,
670 	.id_table	= armpmu_plat_device_ids,
671 };
672 
register_pmu_driver(void)673 static int __init register_pmu_driver(void)
674 {
675 	return platform_driver_register(&armpmu_driver);
676 }
677 device_initcall(register_pmu_driver);
678 
armpmu_get_cpu_events(void)679 static struct pmu_hw_events *armpmu_get_cpu_events(void)
680 {
681 	return &__get_cpu_var(cpu_hw_events);
682 }
683 
cpu_pmu_init(struct arm_pmu * armpmu)684 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
685 {
686 	int cpu;
687 	for_each_possible_cpu(cpu) {
688 		struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
689 		events->events = per_cpu(hw_events, cpu);
690 		events->used_mask = per_cpu(used_mask, cpu);
691 		raw_spin_lock_init(&events->pmu_lock);
692 	}
693 	armpmu->get_hw_events = armpmu_get_cpu_events;
694 	armpmu->type = ARM_PMU_DEVICE_CPU;
695 }
696 
697 /*
698  * PMU hardware loses all context when a CPU goes offline.
699  * When a CPU is hotplugged back in, since some hardware registers are
700  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
701  * junk values out of them.
702  */
pmu_cpu_notify(struct notifier_block * b,unsigned long action,void * hcpu)703 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
704 					unsigned long action, void *hcpu)
705 {
706 	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
707 		return NOTIFY_DONE;
708 
709 	if (cpu_pmu && cpu_pmu->reset)
710 		cpu_pmu->reset(NULL);
711 
712 	return NOTIFY_OK;
713 }
714 
715 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
716 	.notifier_call = pmu_cpu_notify,
717 };
718 
719 /*
720  * CPU PMU identification and registration.
721  */
722 static int __init
init_hw_perf_events(void)723 init_hw_perf_events(void)
724 {
725 	unsigned long cpuid = read_cpuid_id();
726 	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
727 	unsigned long part_number = (cpuid & 0xFFF0);
728 
729 	/* ARM Ltd CPUs. */
730 	if (0x41 == implementor) {
731 		switch (part_number) {
732 		case 0xB360:	/* ARM1136 */
733 		case 0xB560:	/* ARM1156 */
734 		case 0xB760:	/* ARM1176 */
735 			cpu_pmu = armv6pmu_init();
736 			break;
737 		case 0xB020:	/* ARM11mpcore */
738 			cpu_pmu = armv6mpcore_pmu_init();
739 			break;
740 		case 0xC080:	/* Cortex-A8 */
741 			cpu_pmu = armv7_a8_pmu_init();
742 			break;
743 		case 0xC090:	/* Cortex-A9 */
744 			cpu_pmu = armv7_a9_pmu_init();
745 			break;
746 		case 0xC050:	/* Cortex-A5 */
747 			cpu_pmu = armv7_a5_pmu_init();
748 			break;
749 		case 0xC0F0:	/* Cortex-A15 */
750 			cpu_pmu = armv7_a15_pmu_init();
751 			break;
752 		case 0xC070:	/* Cortex-A7 */
753 			cpu_pmu = armv7_a7_pmu_init();
754 			break;
755 		}
756 	/* Intel CPUs [xscale]. */
757 	} else if (0x69 == implementor) {
758 		part_number = (cpuid >> 13) & 0x7;
759 		switch (part_number) {
760 		case 1:
761 			cpu_pmu = xscale1pmu_init();
762 			break;
763 		case 2:
764 			cpu_pmu = xscale2pmu_init();
765 			break;
766 		}
767 	}
768 
769 	if (cpu_pmu) {
770 		pr_info("enabled with %s PMU driver, %d counters available\n",
771 			cpu_pmu->name, cpu_pmu->num_events);
772 		cpu_pmu_init(cpu_pmu);
773 		register_cpu_notifier(&pmu_cpu_notifier);
774 		armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
775 	} else {
776 		pr_info("no hardware support available\n");
777 	}
778 
779 	return 0;
780 }
781 early_initcall(init_hw_perf_events);
782 
783 /*
784  * Callchain handling code.
785  */
786 
787 /*
788  * The registers we're interested in are at the end of the variable
789  * length saved register structure. The fp points at the end of this
790  * structure so the address of this struct is:
791  * (struct frame_tail *)(xxx->fp)-1
792  *
793  * This code has been adapted from the ARM OProfile support.
794  */
795 struct frame_tail {
796 	struct frame_tail __user *fp;
797 	unsigned long sp;
798 	unsigned long lr;
799 } __attribute__((packed));
800 
801 /*
802  * Get the return address for a single stackframe and return a pointer to the
803  * next frame tail.
804  */
805 static struct frame_tail __user *
user_backtrace(struct frame_tail __user * tail,struct perf_callchain_entry * entry)806 user_backtrace(struct frame_tail __user *tail,
807 	       struct perf_callchain_entry *entry)
808 {
809 	struct frame_tail buftail;
810 
811 	/* Also check accessibility of one struct frame_tail beyond */
812 	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
813 		return NULL;
814 	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
815 		return NULL;
816 
817 	perf_callchain_store(entry, buftail.lr);
818 
819 	/*
820 	 * Frame pointers should strictly progress back up the stack
821 	 * (towards higher addresses).
822 	 */
823 	if (tail + 1 >= buftail.fp)
824 		return NULL;
825 
826 	return buftail.fp - 1;
827 }
828 
829 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)830 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
831 {
832 	struct frame_tail __user *tail;
833 
834 
835 	perf_callchain_store(entry, regs->ARM_pc);
836 	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
837 
838 	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
839 	       tail && !((unsigned long)tail & 0x3))
840 		tail = user_backtrace(tail, entry);
841 }
842 
843 /*
844  * Gets called by walk_stackframe() for every stackframe. This will be called
845  * whist unwinding the stackframe and is like a subroutine return so we use
846  * the PC.
847  */
848 static int
callchain_trace(struct stackframe * fr,void * data)849 callchain_trace(struct stackframe *fr,
850 		void *data)
851 {
852 	struct perf_callchain_entry *entry = data;
853 	perf_callchain_store(entry, fr->pc);
854 	return 0;
855 }
856 
857 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)858 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
859 {
860 	struct stackframe fr;
861 
862 	fr.fp = regs->ARM_fp;
863 	fr.sp = regs->ARM_sp;
864 	fr.lr = regs->ARM_lr;
865 	fr.pc = regs->ARM_pc;
866 	walk_stackframe(&fr, callchain_trace, entry);
867 }
868