• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * bfin_dma.c - Blackfin DMA implementation
3  *
4  * Copyright 2004-2008 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/param.h>
14 #include <linux/proc_fs.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/spinlock.h>
18 
19 #include <asm/blackfin.h>
20 #include <asm/cacheflush.h>
21 #include <asm/dma.h>
22 #include <asm/uaccess.h>
23 #include <asm/early_printk.h>
24 
25 /*
26  * To make sure we work around 05000119 - we always check DMA_DONE bit,
27  * never the DMA_RUN bit
28  */
29 
30 struct dma_channel dma_ch[MAX_DMA_CHANNELS];
31 EXPORT_SYMBOL(dma_ch);
32 
blackfin_dma_init(void)33 static int __init blackfin_dma_init(void)
34 {
35 	int i;
36 
37 	printk(KERN_INFO "Blackfin DMA Controller\n");
38 
39 
40 #if ANOMALY_05000480
41 	bfin_write_DMAC_TC_PER(0x0111);
42 #endif
43 
44 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
45 		atomic_set(&dma_ch[i].chan_status, 0);
46 		dma_ch[i].regs = dma_io_base_addr[i];
47 	}
48 	/* Mark MEMDMA Channel 0 as requested since we're using it internally */
49 	request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
50 	request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
51 
52 #if defined(CONFIG_DEB_DMA_URGENT)
53 	bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
54 			 | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
55 #endif
56 
57 	return 0;
58 }
59 arch_initcall(blackfin_dma_init);
60 
61 #ifdef CONFIG_PROC_FS
proc_dma_show(struct seq_file * m,void * v)62 static int proc_dma_show(struct seq_file *m, void *v)
63 {
64 	int i;
65 
66 	for (i = 0; i < MAX_DMA_CHANNELS; ++i)
67 		if (dma_channel_active(i))
68 			seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
69 
70 	return 0;
71 }
72 
proc_dma_open(struct inode * inode,struct file * file)73 static int proc_dma_open(struct inode *inode, struct file *file)
74 {
75 	return single_open(file, proc_dma_show, NULL);
76 }
77 
78 static const struct file_operations proc_dma_operations = {
79 	.open		= proc_dma_open,
80 	.read		= seq_read,
81 	.llseek		= seq_lseek,
82 	.release	= single_release,
83 };
84 
proc_dma_init(void)85 static int __init proc_dma_init(void)
86 {
87 	return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
88 }
89 late_initcall(proc_dma_init);
90 #endif
91 
set_dma_peripheral_map(unsigned int channel,const char * device_id)92 static void set_dma_peripheral_map(unsigned int channel, const char *device_id)
93 {
94 #ifdef CONFIG_BF54x
95 	unsigned int per_map;
96 
97 	switch (channel) {
98 		case CH_UART2_RX: per_map = 0xC << 12; break;
99 		case CH_UART2_TX: per_map = 0xD << 12; break;
100 		case CH_UART3_RX: per_map = 0xE << 12; break;
101 		case CH_UART3_TX: per_map = 0xF << 12; break;
102 		default:          return;
103 	}
104 
105 	if (strncmp(device_id, "BFIN_UART", 9) == 0)
106 		dma_ch[channel].regs->peripheral_map = per_map;
107 #endif
108 }
109 
110 /**
111  *	request_dma - request a DMA channel
112  *
113  * Request the specific DMA channel from the system if it's available.
114  */
request_dma(unsigned int channel,const char * device_id)115 int request_dma(unsigned int channel, const char *device_id)
116 {
117 	pr_debug("request_dma() : BEGIN\n");
118 
119 	if (device_id == NULL)
120 		printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
121 
122 #if defined(CONFIG_BF561) && ANOMALY_05000182
123 	if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
124 		if (get_cclk() > 500000000) {
125 			printk(KERN_WARNING
126 			       "Request IMDMA failed due to ANOMALY 05000182\n");
127 			return -EFAULT;
128 		}
129 	}
130 #endif
131 
132 	if (atomic_cmpxchg(&dma_ch[channel].chan_status, 0, 1)) {
133 		pr_debug("DMA CHANNEL IN USE\n");
134 		return -EBUSY;
135 	}
136 
137 	set_dma_peripheral_map(channel, device_id);
138 	dma_ch[channel].device_id = device_id;
139 	dma_ch[channel].irq = 0;
140 
141 	/* This is to be enabled by putting a restriction -
142 	 * you have to request DMA, before doing any operations on
143 	 * descriptor/channel
144 	 */
145 	pr_debug("request_dma() : END\n");
146 	return 0;
147 }
148 EXPORT_SYMBOL(request_dma);
149 
set_dma_callback(unsigned int channel,irq_handler_t callback,void * data)150 int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
151 {
152 	int ret;
153 	unsigned int irq;
154 
155 	BUG_ON(channel >= MAX_DMA_CHANNELS || !callback ||
156 			!atomic_read(&dma_ch[channel].chan_status));
157 
158 	irq = channel2irq(channel);
159 	ret = request_irq(irq, callback, 0, dma_ch[channel].device_id, data);
160 	if (ret)
161 		return ret;
162 
163 	dma_ch[channel].irq = irq;
164 	dma_ch[channel].data = data;
165 
166 	return 0;
167 }
168 EXPORT_SYMBOL(set_dma_callback);
169 
170 /**
171  *	clear_dma_buffer - clear DMA fifos for specified channel
172  *
173  * Set the Buffer Clear bit in the Configuration register of specific DMA
174  * channel. This will stop the descriptor based DMA operation.
175  */
clear_dma_buffer(unsigned int channel)176 static void clear_dma_buffer(unsigned int channel)
177 {
178 	dma_ch[channel].regs->cfg |= RESTART;
179 	SSYNC();
180 	dma_ch[channel].regs->cfg &= ~RESTART;
181 }
182 
free_dma(unsigned int channel)183 void free_dma(unsigned int channel)
184 {
185 	pr_debug("freedma() : BEGIN\n");
186 	BUG_ON(channel >= MAX_DMA_CHANNELS ||
187 			!atomic_read(&dma_ch[channel].chan_status));
188 
189 	/* Halt the DMA */
190 	disable_dma(channel);
191 	clear_dma_buffer(channel);
192 
193 	if (dma_ch[channel].irq)
194 		free_irq(dma_ch[channel].irq, dma_ch[channel].data);
195 
196 	/* Clear the DMA Variable in the Channel */
197 	atomic_set(&dma_ch[channel].chan_status, 0);
198 
199 	pr_debug("freedma() : END\n");
200 }
201 EXPORT_SYMBOL(free_dma);
202 
203 #ifdef CONFIG_PM
204 # ifndef MAX_DMA_SUSPEND_CHANNELS
205 #  define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
206 # endif
blackfin_dma_suspend(void)207 int blackfin_dma_suspend(void)
208 {
209 	int i;
210 
211 	for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
212 		if (dma_ch[i].regs->cfg & DMAEN) {
213 			printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
214 			return -EBUSY;
215 		}
216 
217 		if (i < MAX_DMA_SUSPEND_CHANNELS)
218 			dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
219 	}
220 
221 #if ANOMALY_05000480
222 	bfin_write_DMAC_TC_PER(0x0);
223 #endif
224 	return 0;
225 }
226 
blackfin_dma_resume(void)227 void blackfin_dma_resume(void)
228 {
229 	int i;
230 
231 	for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
232 		dma_ch[i].regs->cfg = 0;
233 
234 		if (i < MAX_DMA_SUSPEND_CHANNELS)
235 			dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
236 	}
237 #if ANOMALY_05000480
238 	bfin_write_DMAC_TC_PER(0x0111);
239 #endif
240 }
241 #endif
242 
243 /**
244  *	blackfin_dma_early_init - minimal DMA init
245  *
246  * Setup a few DMA registers so we can safely do DMA transfers early on in
247  * the kernel booting process.  Really this just means using dma_memcpy().
248  */
blackfin_dma_early_init(void)249 void __init blackfin_dma_early_init(void)
250 {
251 	early_shadow_stamp();
252 	bfin_write_MDMA_S0_CONFIG(0);
253 	bfin_write_MDMA_S1_CONFIG(0);
254 }
255 
early_dma_memcpy(void * pdst,const void * psrc,size_t size)256 void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
257 {
258 	unsigned long dst = (unsigned long)pdst;
259 	unsigned long src = (unsigned long)psrc;
260 	struct dma_register *dst_ch, *src_ch;
261 
262 	early_shadow_stamp();
263 
264 	/* We assume that everything is 4 byte aligned, so include
265 	 * a basic sanity check
266 	 */
267 	BUG_ON(dst % 4);
268 	BUG_ON(src % 4);
269 	BUG_ON(size % 4);
270 
271 	src_ch = 0;
272 	/* Find an avalible memDMA channel */
273 	while (1) {
274 		if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
275 			dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
276 			src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
277 		} else {
278 			dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
279 			src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
280 		}
281 
282 		if (!bfin_read16(&src_ch->cfg))
283 			break;
284 		else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
285 			bfin_write16(&src_ch->cfg, 0);
286 			break;
287 		}
288 	}
289 
290 	/* Force a sync in case a previous config reset on this channel
291 	 * occurred.  This is needed so subsequent writes to DMA registers
292 	 * are not spuriously lost/corrupted.
293 	 */
294 	__builtin_bfin_ssync();
295 
296 	/* Destination */
297 	bfin_write32(&dst_ch->start_addr, dst);
298 	bfin_write16(&dst_ch->x_count, size >> 2);
299 	bfin_write16(&dst_ch->x_modify, 1 << 2);
300 	bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
301 
302 	/* Source */
303 	bfin_write32(&src_ch->start_addr, src);
304 	bfin_write16(&src_ch->x_count, size >> 2);
305 	bfin_write16(&src_ch->x_modify, 1 << 2);
306 	bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);
307 
308 	/* Enable */
309 	bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
310 	bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);
311 
312 	/* Since we are atomic now, don't use the workaround ssync */
313 	__builtin_bfin_ssync();
314 }
315 
early_dma_memcpy_done(void)316 void __init early_dma_memcpy_done(void)
317 {
318 	early_shadow_stamp();
319 
320 	while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
321 	       (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
322 		continue;
323 
324 	bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
325 	bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
326 	/*
327 	 * Now that DMA is done, we would normally flush cache, but
328 	 * i/d cache isn't running this early, so we don't bother,
329 	 * and just clear out the DMA channel for next time
330 	 */
331 	bfin_write_MDMA_S0_CONFIG(0);
332 	bfin_write_MDMA_S1_CONFIG(0);
333 	bfin_write_MDMA_D0_CONFIG(0);
334 	bfin_write_MDMA_D1_CONFIG(0);
335 
336 	__builtin_bfin_ssync();
337 }
338 
339 /**
340  *	__dma_memcpy - program the MDMA registers
341  *
342  * Actually program MDMA0 and wait for the transfer to finish.  Disable IRQs
343  * while programming registers so that everything is fully configured.  Wait
344  * for DMA to finish with IRQs enabled.  If interrupted, the initial DMA_DONE
345  * check will make sure we don't clobber any existing transfer.
346  */
__dma_memcpy(u32 daddr,s16 dmod,u32 saddr,s16 smod,size_t cnt,u32 conf)347 static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
348 {
349 	static DEFINE_SPINLOCK(mdma_lock);
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&mdma_lock, flags);
353 
354 	/* Force a sync in case a previous config reset on this channel
355 	 * occurred.  This is needed so subsequent writes to DMA registers
356 	 * are not spuriously lost/corrupted.  Do it under irq lock and
357 	 * without the anomaly version (because we are atomic already).
358 	 */
359 	__builtin_bfin_ssync();
360 
361 	if (bfin_read_MDMA_S0_CONFIG())
362 		while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
363 			continue;
364 
365 	if (conf & DMA2D) {
366 		/* For larger bit sizes, we've already divided down cnt so it
367 		 * is no longer a multiple of 64k.  So we have to break down
368 		 * the limit here so it is a multiple of the incoming size.
369 		 * There is no limitation here in terms of total size other
370 		 * than the hardware though as the bits lost in the shift are
371 		 * made up by MODIFY (== we can hit the whole address space).
372 		 * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
373 		 */
374 		u32 shift = abs(dmod) >> 1;
375 		size_t ycnt = cnt >> (16 - shift);
376 		cnt = 1 << (16 - shift);
377 		bfin_write_MDMA_D0_Y_COUNT(ycnt);
378 		bfin_write_MDMA_S0_Y_COUNT(ycnt);
379 		bfin_write_MDMA_D0_Y_MODIFY(dmod);
380 		bfin_write_MDMA_S0_Y_MODIFY(smod);
381 	}
382 
383 	bfin_write_MDMA_D0_START_ADDR(daddr);
384 	bfin_write_MDMA_D0_X_COUNT(cnt);
385 	bfin_write_MDMA_D0_X_MODIFY(dmod);
386 	bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
387 
388 	bfin_write_MDMA_S0_START_ADDR(saddr);
389 	bfin_write_MDMA_S0_X_COUNT(cnt);
390 	bfin_write_MDMA_S0_X_MODIFY(smod);
391 	bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
392 
393 	bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
394 	bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
395 
396 	spin_unlock_irqrestore(&mdma_lock, flags);
397 
398 	SSYNC();
399 
400 	while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
401 		if (bfin_read_MDMA_S0_CONFIG())
402 			continue;
403 		else
404 			return;
405 
406 	bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
407 
408 	bfin_write_MDMA_S0_CONFIG(0);
409 	bfin_write_MDMA_D0_CONFIG(0);
410 }
411 
412 /**
413  *	_dma_memcpy - translate C memcpy settings into MDMA settings
414  *
415  * Handle all the high level steps before we touch the MDMA registers.  So
416  * handle direction, tweaking of sizes, and formatting of addresses.
417  */
_dma_memcpy(void * pdst,const void * psrc,size_t size)418 static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
419 {
420 	u32 conf, shift;
421 	s16 mod;
422 	unsigned long dst = (unsigned long)pdst;
423 	unsigned long src = (unsigned long)psrc;
424 
425 	if (size == 0)
426 		return NULL;
427 
428 	if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
429 		conf = WDSIZE_32;
430 		shift = 2;
431 	} else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
432 		conf = WDSIZE_16;
433 		shift = 1;
434 	} else {
435 		conf = WDSIZE_8;
436 		shift = 0;
437 	}
438 
439 	/* If the two memory regions have a chance of overlapping, make
440 	 * sure the memcpy still works as expected.  Do this by having the
441 	 * copy run backwards instead.
442 	 */
443 	mod = 1 << shift;
444 	if (src < dst) {
445 		mod *= -1;
446 		dst += size + mod;
447 		src += size + mod;
448 	}
449 	size >>= shift;
450 
451 	if (size > 0x10000)
452 		conf |= DMA2D;
453 
454 	__dma_memcpy(dst, mod, src, mod, size, conf);
455 
456 	return pdst;
457 }
458 
459 /**
460  *	dma_memcpy - DMA memcpy under mutex lock
461  *
462  * Do not check arguments before starting the DMA memcpy.  Break the transfer
463  * up into two pieces.  The first transfer is in multiples of 64k and the
464  * second transfer is the piece smaller than 64k.
465  */
dma_memcpy(void * pdst,const void * psrc,size_t size)466 void *dma_memcpy(void *pdst, const void *psrc, size_t size)
467 {
468 	unsigned long dst = (unsigned long)pdst;
469 	unsigned long src = (unsigned long)psrc;
470 
471 	if (bfin_addr_dcacheable(src))
472 		blackfin_dcache_flush_range(src, src + size);
473 
474 	if (bfin_addr_dcacheable(dst))
475 		blackfin_dcache_invalidate_range(dst, dst + size);
476 
477 	return dma_memcpy_nocache(pdst, psrc, size);
478 }
479 EXPORT_SYMBOL(dma_memcpy);
480 
481 /**
482  *	dma_memcpy_nocache - DMA memcpy under mutex lock
483  *	- No cache flush/invalidate
484  *
485  * Do not check arguments before starting the DMA memcpy.  Break the transfer
486  * up into two pieces.  The first transfer is in multiples of 64k and the
487  * second transfer is the piece smaller than 64k.
488  */
dma_memcpy_nocache(void * pdst,const void * psrc,size_t size)489 void *dma_memcpy_nocache(void *pdst, const void *psrc, size_t size)
490 {
491 	size_t bulk, rest;
492 
493 	bulk = size & ~0xffff;
494 	rest = size - bulk;
495 	if (bulk)
496 		_dma_memcpy(pdst, psrc, bulk);
497 	_dma_memcpy(pdst + bulk, psrc + bulk, rest);
498 	return pdst;
499 }
500 EXPORT_SYMBOL(dma_memcpy_nocache);
501 
502 /**
503  *	safe_dma_memcpy - DMA memcpy w/argument checking
504  *
505  * Verify arguments are safe before heading to dma_memcpy().
506  */
safe_dma_memcpy(void * dst,const void * src,size_t size)507 void *safe_dma_memcpy(void *dst, const void *src, size_t size)
508 {
509 	if (!access_ok(VERIFY_WRITE, dst, size))
510 		return NULL;
511 	if (!access_ok(VERIFY_READ, src, size))
512 		return NULL;
513 	return dma_memcpy(dst, src, size);
514 }
515 EXPORT_SYMBOL(safe_dma_memcpy);
516 
_dma_out(unsigned long addr,unsigned long buf,unsigned short len,u16 size,u16 dma_size)517 static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
518                      u16 size, u16 dma_size)
519 {
520 	blackfin_dcache_flush_range(buf, buf + len * size);
521 	__dma_memcpy(addr, 0, buf, size, len, dma_size);
522 }
523 
_dma_in(unsigned long addr,unsigned long buf,unsigned short len,u16 size,u16 dma_size)524 static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
525                     u16 size, u16 dma_size)
526 {
527 	blackfin_dcache_invalidate_range(buf, buf + len * size);
528 	__dma_memcpy(buf, size, addr, 0, len, dma_size);
529 }
530 
531 #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
532 void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
533 { \
534 	_dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
535 } \
536 EXPORT_SYMBOL(dma_##io##s##bwl)
537 MAKE_DMA_IO(out, b, 1,  8, const);
538 MAKE_DMA_IO(in,  b, 1,  8, );
539 MAKE_DMA_IO(out, w, 2, 16, const);
540 MAKE_DMA_IO(in,  w, 2, 16, );
541 MAKE_DMA_IO(out, l, 4, 32, const);
542 MAKE_DMA_IO(in,  l, 4, 32, );
543