• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
put_transaction(struct btrfs_transaction * transaction)34 void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		WARN_ON(transaction->delayed_refs.root.rb_node);
40 		WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 		memset(transaction, 0, sizeof(*transaction));
42 		kmem_cache_free(btrfs_transaction_cachep, transaction);
43 	}
44 }
45 
switch_commit_root(struct btrfs_root * root)46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 	free_extent_buffer(root->commit_root);
49 	root->commit_root = btrfs_root_node(root);
50 }
51 
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
join_transaction(struct btrfs_root * root,int nofail)55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 	struct btrfs_transaction *cur_trans;
58 
59 	spin_lock(&root->fs_info->trans_lock);
60 loop:
61 	/* The file system has been taken offline. No new transactions. */
62 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
63 		spin_unlock(&root->fs_info->trans_lock);
64 		return -EROFS;
65 	}
66 
67 	if (root->fs_info->trans_no_join) {
68 		if (!nofail) {
69 			spin_unlock(&root->fs_info->trans_lock);
70 			return -EBUSY;
71 		}
72 	}
73 
74 	cur_trans = root->fs_info->running_transaction;
75 	if (cur_trans) {
76 		if (cur_trans->aborted) {
77 			spin_unlock(&root->fs_info->trans_lock);
78 			return cur_trans->aborted;
79 		}
80 		atomic_inc(&cur_trans->use_count);
81 		atomic_inc(&cur_trans->num_writers);
82 		cur_trans->num_joined++;
83 		spin_unlock(&root->fs_info->trans_lock);
84 		return 0;
85 	}
86 	spin_unlock(&root->fs_info->trans_lock);
87 
88 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
89 	if (!cur_trans)
90 		return -ENOMEM;
91 
92 	spin_lock(&root->fs_info->trans_lock);
93 	if (root->fs_info->running_transaction) {
94 		/*
95 		 * someone started a transaction after we unlocked.  Make sure
96 		 * to redo the trans_no_join checks above
97 		 */
98 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
99 		cur_trans = root->fs_info->running_transaction;
100 		goto loop;
101 	}
102 
103 	atomic_set(&cur_trans->num_writers, 1);
104 	cur_trans->num_joined = 0;
105 	init_waitqueue_head(&cur_trans->writer_wait);
106 	init_waitqueue_head(&cur_trans->commit_wait);
107 	cur_trans->in_commit = 0;
108 	cur_trans->blocked = 0;
109 	/*
110 	 * One for this trans handle, one so it will live on until we
111 	 * commit the transaction.
112 	 */
113 	atomic_set(&cur_trans->use_count, 2);
114 	cur_trans->commit_done = 0;
115 	cur_trans->start_time = get_seconds();
116 
117 	cur_trans->delayed_refs.root = RB_ROOT;
118 	cur_trans->delayed_refs.num_entries = 0;
119 	cur_trans->delayed_refs.num_heads_ready = 0;
120 	cur_trans->delayed_refs.num_heads = 0;
121 	cur_trans->delayed_refs.flushing = 0;
122 	cur_trans->delayed_refs.run_delayed_start = 0;
123 	cur_trans->delayed_refs.seq = 1;
124 	init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
125 	spin_lock_init(&cur_trans->commit_lock);
126 	spin_lock_init(&cur_trans->delayed_refs.lock);
127 	INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
128 
129 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
130 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
131 	extent_io_tree_init(&cur_trans->dirty_pages,
132 			     root->fs_info->btree_inode->i_mapping);
133 	root->fs_info->generation++;
134 	cur_trans->transid = root->fs_info->generation;
135 	root->fs_info->running_transaction = cur_trans;
136 	cur_trans->aborted = 0;
137 	spin_unlock(&root->fs_info->trans_lock);
138 
139 	return 0;
140 }
141 
142 /*
143  * this does all the record keeping required to make sure that a reference
144  * counted root is properly recorded in a given transaction.  This is required
145  * to make sure the old root from before we joined the transaction is deleted
146  * when the transaction commits
147  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)148 static int record_root_in_trans(struct btrfs_trans_handle *trans,
149 			       struct btrfs_root *root)
150 {
151 	if (root->ref_cows && root->last_trans < trans->transid) {
152 		WARN_ON(root == root->fs_info->extent_root);
153 		WARN_ON(root->commit_root != root->node);
154 
155 		/*
156 		 * see below for in_trans_setup usage rules
157 		 * we have the reloc mutex held now, so there
158 		 * is only one writer in this function
159 		 */
160 		root->in_trans_setup = 1;
161 
162 		/* make sure readers find in_trans_setup before
163 		 * they find our root->last_trans update
164 		 */
165 		smp_wmb();
166 
167 		spin_lock(&root->fs_info->fs_roots_radix_lock);
168 		if (root->last_trans == trans->transid) {
169 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
170 			return 0;
171 		}
172 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
173 			   (unsigned long)root->root_key.objectid,
174 			   BTRFS_ROOT_TRANS_TAG);
175 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
176 		root->last_trans = trans->transid;
177 
178 		/* this is pretty tricky.  We don't want to
179 		 * take the relocation lock in btrfs_record_root_in_trans
180 		 * unless we're really doing the first setup for this root in
181 		 * this transaction.
182 		 *
183 		 * Normally we'd use root->last_trans as a flag to decide
184 		 * if we want to take the expensive mutex.
185 		 *
186 		 * But, we have to set root->last_trans before we
187 		 * init the relocation root, otherwise, we trip over warnings
188 		 * in ctree.c.  The solution used here is to flag ourselves
189 		 * with root->in_trans_setup.  When this is 1, we're still
190 		 * fixing up the reloc trees and everyone must wait.
191 		 *
192 		 * When this is zero, they can trust root->last_trans and fly
193 		 * through btrfs_record_root_in_trans without having to take the
194 		 * lock.  smp_wmb() makes sure that all the writes above are
195 		 * done before we pop in the zero below
196 		 */
197 		btrfs_init_reloc_root(trans, root);
198 		smp_wmb();
199 		root->in_trans_setup = 0;
200 	}
201 	return 0;
202 }
203 
204 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)205 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
206 			       struct btrfs_root *root)
207 {
208 	if (!root->ref_cows)
209 		return 0;
210 
211 	/*
212 	 * see record_root_in_trans for comments about in_trans_setup usage
213 	 * and barriers
214 	 */
215 	smp_rmb();
216 	if (root->last_trans == trans->transid &&
217 	    !root->in_trans_setup)
218 		return 0;
219 
220 	mutex_lock(&root->fs_info->reloc_mutex);
221 	record_root_in_trans(trans, root);
222 	mutex_unlock(&root->fs_info->reloc_mutex);
223 
224 	return 0;
225 }
226 
227 /* wait for commit against the current transaction to become unblocked
228  * when this is done, it is safe to start a new transaction, but the current
229  * transaction might not be fully on disk.
230  */
wait_current_trans(struct btrfs_root * root)231 static void wait_current_trans(struct btrfs_root *root)
232 {
233 	struct btrfs_transaction *cur_trans;
234 
235 	spin_lock(&root->fs_info->trans_lock);
236 	cur_trans = root->fs_info->running_transaction;
237 	if (cur_trans && cur_trans->blocked) {
238 		atomic_inc(&cur_trans->use_count);
239 		spin_unlock(&root->fs_info->trans_lock);
240 
241 		wait_event(root->fs_info->transaction_wait,
242 			   !cur_trans->blocked);
243 		put_transaction(cur_trans);
244 	} else {
245 		spin_unlock(&root->fs_info->trans_lock);
246 	}
247 }
248 
249 enum btrfs_trans_type {
250 	TRANS_START,
251 	TRANS_JOIN,
252 	TRANS_USERSPACE,
253 	TRANS_JOIN_NOLOCK,
254 };
255 
may_wait_transaction(struct btrfs_root * root,int type)256 static int may_wait_transaction(struct btrfs_root *root, int type)
257 {
258 	if (root->fs_info->log_root_recovering)
259 		return 0;
260 
261 	if (type == TRANS_USERSPACE)
262 		return 1;
263 
264 	if (type == TRANS_START &&
265 	    !atomic_read(&root->fs_info->open_ioctl_trans))
266 		return 1;
267 
268 	return 0;
269 }
270 
start_transaction(struct btrfs_root * root,u64 num_items,int type)271 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
272 						    u64 num_items, int type)
273 {
274 	struct btrfs_trans_handle *h;
275 	struct btrfs_transaction *cur_trans;
276 	u64 num_bytes = 0;
277 	int ret;
278 
279 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
280 		return ERR_PTR(-EROFS);
281 
282 	if (current->journal_info) {
283 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
284 		h = current->journal_info;
285 		h->use_count++;
286 		h->orig_rsv = h->block_rsv;
287 		h->block_rsv = NULL;
288 		goto got_it;
289 	}
290 
291 	/*
292 	 * Do the reservation before we join the transaction so we can do all
293 	 * the appropriate flushing if need be.
294 	 */
295 	if (num_items > 0 && root != root->fs_info->chunk_root) {
296 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
297 		ret = btrfs_block_rsv_add(root,
298 					  &root->fs_info->trans_block_rsv,
299 					  num_bytes);
300 		if (ret)
301 			return ERR_PTR(ret);
302 	}
303 again:
304 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
305 	if (!h)
306 		return ERR_PTR(-ENOMEM);
307 
308 	if (may_wait_transaction(root, type))
309 		wait_current_trans(root);
310 
311 	do {
312 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
313 		if (ret == -EBUSY)
314 			wait_current_trans(root);
315 	} while (ret == -EBUSY);
316 
317 	if (ret < 0) {
318 		kmem_cache_free(btrfs_trans_handle_cachep, h);
319 		return ERR_PTR(ret);
320 	}
321 
322 	cur_trans = root->fs_info->running_transaction;
323 
324 	h->transid = cur_trans->transid;
325 	h->transaction = cur_trans;
326 	h->blocks_used = 0;
327 	h->bytes_reserved = 0;
328 	h->delayed_ref_updates = 0;
329 	h->use_count = 1;
330 	h->block_rsv = NULL;
331 	h->orig_rsv = NULL;
332 	h->aborted = 0;
333 
334 	smp_mb();
335 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
336 		btrfs_commit_transaction(h, root);
337 		goto again;
338 	}
339 
340 	if (num_bytes) {
341 		trace_btrfs_space_reservation(root->fs_info, "transaction",
342 					      h->transid, num_bytes, 1);
343 		h->block_rsv = &root->fs_info->trans_block_rsv;
344 		h->bytes_reserved = num_bytes;
345 	}
346 
347 got_it:
348 	btrfs_record_root_in_trans(h, root);
349 
350 	if (!current->journal_info && type != TRANS_USERSPACE)
351 		current->journal_info = h;
352 	return h;
353 }
354 
btrfs_start_transaction(struct btrfs_root * root,int num_items)355 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
356 						   int num_items)
357 {
358 	return start_transaction(root, num_items, TRANS_START);
359 }
btrfs_join_transaction(struct btrfs_root * root)360 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
361 {
362 	return start_transaction(root, 0, TRANS_JOIN);
363 }
364 
btrfs_join_transaction_nolock(struct btrfs_root * root)365 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
366 {
367 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
368 }
369 
btrfs_start_ioctl_transaction(struct btrfs_root * root)370 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
371 {
372 	return start_transaction(root, 0, TRANS_USERSPACE);
373 }
374 
375 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)376 static noinline void wait_for_commit(struct btrfs_root *root,
377 				    struct btrfs_transaction *commit)
378 {
379 	wait_event(commit->commit_wait, commit->commit_done);
380 }
381 
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)382 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
383 {
384 	struct btrfs_transaction *cur_trans = NULL, *t;
385 	int ret;
386 
387 	ret = 0;
388 	if (transid) {
389 		if (transid <= root->fs_info->last_trans_committed)
390 			goto out;
391 
392 		/* find specified transaction */
393 		spin_lock(&root->fs_info->trans_lock);
394 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
395 			if (t->transid == transid) {
396 				cur_trans = t;
397 				atomic_inc(&cur_trans->use_count);
398 				break;
399 			}
400 			if (t->transid > transid)
401 				break;
402 		}
403 		spin_unlock(&root->fs_info->trans_lock);
404 		ret = -EINVAL;
405 		if (!cur_trans)
406 			goto out;  /* bad transid */
407 	} else {
408 		/* find newest transaction that is committing | committed */
409 		spin_lock(&root->fs_info->trans_lock);
410 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
411 					    list) {
412 			if (t->in_commit) {
413 				if (t->commit_done)
414 					break;
415 				cur_trans = t;
416 				atomic_inc(&cur_trans->use_count);
417 				break;
418 			}
419 		}
420 		spin_unlock(&root->fs_info->trans_lock);
421 		if (!cur_trans)
422 			goto out;  /* nothing committing|committed */
423 	}
424 
425 	wait_for_commit(root, cur_trans);
426 
427 	put_transaction(cur_trans);
428 	ret = 0;
429 out:
430 	return ret;
431 }
432 
btrfs_throttle(struct btrfs_root * root)433 void btrfs_throttle(struct btrfs_root *root)
434 {
435 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
436 		wait_current_trans(root);
437 }
438 
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)439 static int should_end_transaction(struct btrfs_trans_handle *trans,
440 				  struct btrfs_root *root)
441 {
442 	int ret;
443 
444 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
445 	return ret ? 1 : 0;
446 }
447 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)448 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
449 				 struct btrfs_root *root)
450 {
451 	struct btrfs_transaction *cur_trans = trans->transaction;
452 	struct btrfs_block_rsv *rsv = trans->block_rsv;
453 	int updates;
454 	int err;
455 
456 	smp_mb();
457 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
458 		return 1;
459 
460 	/*
461 	 * We need to do this in case we're deleting csums so the global block
462 	 * rsv get's used instead of the csum block rsv.
463 	 */
464 	trans->block_rsv = NULL;
465 
466 	updates = trans->delayed_ref_updates;
467 	trans->delayed_ref_updates = 0;
468 	if (updates) {
469 		err = btrfs_run_delayed_refs(trans, root, updates);
470 		if (err) /* Error code will also eval true */
471 			return err;
472 	}
473 
474 	trans->block_rsv = rsv;
475 
476 	return should_end_transaction(trans, root);
477 }
478 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle,int lock)479 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
480 			  struct btrfs_root *root, int throttle, int lock)
481 {
482 	struct btrfs_transaction *cur_trans = trans->transaction;
483 	struct btrfs_fs_info *info = root->fs_info;
484 	int count = 0;
485 	int err = 0;
486 
487 	if (--trans->use_count) {
488 		trans->block_rsv = trans->orig_rsv;
489 		return 0;
490 	}
491 
492 	btrfs_trans_release_metadata(trans, root);
493 	trans->block_rsv = NULL;
494 	while (count < 2) {
495 		unsigned long cur = trans->delayed_ref_updates;
496 		trans->delayed_ref_updates = 0;
497 		if (cur &&
498 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
499 			trans->delayed_ref_updates = 0;
500 			btrfs_run_delayed_refs(trans, root, cur);
501 		} else {
502 			break;
503 		}
504 		count++;
505 	}
506 
507 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
508 	    should_end_transaction(trans, root)) {
509 		trans->transaction->blocked = 1;
510 		smp_wmb();
511 	}
512 
513 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
514 		if (throttle) {
515 			/*
516 			 * We may race with somebody else here so end up having
517 			 * to call end_transaction on ourselves again, so inc
518 			 * our use_count.
519 			 */
520 			trans->use_count++;
521 			return btrfs_commit_transaction(trans, root);
522 		} else {
523 			wake_up_process(info->transaction_kthread);
524 		}
525 	}
526 
527 	WARN_ON(cur_trans != info->running_transaction);
528 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
529 	atomic_dec(&cur_trans->num_writers);
530 
531 	smp_mb();
532 	if (waitqueue_active(&cur_trans->writer_wait))
533 		wake_up(&cur_trans->writer_wait);
534 	put_transaction(cur_trans);
535 
536 	if (current->journal_info == trans)
537 		current->journal_info = NULL;
538 
539 	if (throttle)
540 		btrfs_run_delayed_iputs(root);
541 
542 	if (trans->aborted ||
543 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
544 		err = -EIO;
545 	}
546 
547 	memset(trans, 0, sizeof(*trans));
548 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
549 	return err;
550 }
551 
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)552 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
553 			  struct btrfs_root *root)
554 {
555 	int ret;
556 
557 	ret = __btrfs_end_transaction(trans, root, 0, 1);
558 	if (ret)
559 		return ret;
560 	return 0;
561 }
562 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)563 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
564 				   struct btrfs_root *root)
565 {
566 	int ret;
567 
568 	ret = __btrfs_end_transaction(trans, root, 1, 1);
569 	if (ret)
570 		return ret;
571 	return 0;
572 }
573 
btrfs_end_transaction_nolock(struct btrfs_trans_handle * trans,struct btrfs_root * root)574 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
575 				 struct btrfs_root *root)
576 {
577 	int ret;
578 
579 	ret = __btrfs_end_transaction(trans, root, 0, 0);
580 	if (ret)
581 		return ret;
582 	return 0;
583 }
584 
btrfs_end_transaction_dmeta(struct btrfs_trans_handle * trans,struct btrfs_root * root)585 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
586 				struct btrfs_root *root)
587 {
588 	return __btrfs_end_transaction(trans, root, 1, 1);
589 }
590 
591 /*
592  * when btree blocks are allocated, they have some corresponding bits set for
593  * them in one of two extent_io trees.  This is used to make sure all of
594  * those extents are sent to disk but does not wait on them
595  */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)596 int btrfs_write_marked_extents(struct btrfs_root *root,
597 			       struct extent_io_tree *dirty_pages, int mark)
598 {
599 	int err = 0;
600 	int werr = 0;
601 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
602 	u64 start = 0;
603 	u64 end;
604 
605 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
606 				      mark)) {
607 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
608 				   GFP_NOFS);
609 		err = filemap_fdatawrite_range(mapping, start, end);
610 		if (err)
611 			werr = err;
612 		cond_resched();
613 		start = end + 1;
614 	}
615 	if (err)
616 		werr = err;
617 	return werr;
618 }
619 
620 /*
621  * when btree blocks are allocated, they have some corresponding bits set for
622  * them in one of two extent_io trees.  This is used to make sure all of
623  * those extents are on disk for transaction or log commit.  We wait
624  * on all the pages and clear them from the dirty pages state tree
625  */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)626 int btrfs_wait_marked_extents(struct btrfs_root *root,
627 			      struct extent_io_tree *dirty_pages, int mark)
628 {
629 	int err = 0;
630 	int werr = 0;
631 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
632 	u64 start = 0;
633 	u64 end;
634 
635 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
636 				      EXTENT_NEED_WAIT)) {
637 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
638 		err = filemap_fdatawait_range(mapping, start, end);
639 		if (err)
640 			werr = err;
641 		cond_resched();
642 		start = end + 1;
643 	}
644 	if (err)
645 		werr = err;
646 	return werr;
647 }
648 
649 /*
650  * when btree blocks are allocated, they have some corresponding bits set for
651  * them in one of two extent_io trees.  This is used to make sure all of
652  * those extents are on disk for transaction or log commit
653  */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)654 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
655 				struct extent_io_tree *dirty_pages, int mark)
656 {
657 	int ret;
658 	int ret2;
659 
660 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
661 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
662 
663 	if (ret)
664 		return ret;
665 	if (ret2)
666 		return ret2;
667 	return 0;
668 }
669 
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)670 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
671 				     struct btrfs_root *root)
672 {
673 	if (!trans || !trans->transaction) {
674 		struct inode *btree_inode;
675 		btree_inode = root->fs_info->btree_inode;
676 		return filemap_write_and_wait(btree_inode->i_mapping);
677 	}
678 	return btrfs_write_and_wait_marked_extents(root,
679 					   &trans->transaction->dirty_pages,
680 					   EXTENT_DIRTY);
681 }
682 
683 /*
684  * this is used to update the root pointer in the tree of tree roots.
685  *
686  * But, in the case of the extent allocation tree, updating the root
687  * pointer may allocate blocks which may change the root of the extent
688  * allocation tree.
689  *
690  * So, this loops and repeats and makes sure the cowonly root didn't
691  * change while the root pointer was being updated in the metadata.
692  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)693 static int update_cowonly_root(struct btrfs_trans_handle *trans,
694 			       struct btrfs_root *root)
695 {
696 	int ret;
697 	u64 old_root_bytenr;
698 	u64 old_root_used;
699 	struct btrfs_root *tree_root = root->fs_info->tree_root;
700 
701 	old_root_used = btrfs_root_used(&root->root_item);
702 	btrfs_write_dirty_block_groups(trans, root);
703 
704 	while (1) {
705 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
706 		if (old_root_bytenr == root->node->start &&
707 		    old_root_used == btrfs_root_used(&root->root_item))
708 			break;
709 
710 		btrfs_set_root_node(&root->root_item, root->node);
711 		ret = btrfs_update_root(trans, tree_root,
712 					&root->root_key,
713 					&root->root_item);
714 		if (ret)
715 			return ret;
716 
717 		old_root_used = btrfs_root_used(&root->root_item);
718 		ret = btrfs_write_dirty_block_groups(trans, root);
719 		if (ret)
720 			return ret;
721 	}
722 
723 	if (root != root->fs_info->extent_root)
724 		switch_commit_root(root);
725 
726 	return 0;
727 }
728 
729 /*
730  * update all the cowonly tree roots on disk
731  *
732  * The error handling in this function may not be obvious. Any of the
733  * failures will cause the file system to go offline. We still need
734  * to clean up the delayed refs.
735  */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)736 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
737 					 struct btrfs_root *root)
738 {
739 	struct btrfs_fs_info *fs_info = root->fs_info;
740 	struct list_head *next;
741 	struct extent_buffer *eb;
742 	int ret;
743 
744 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
745 	if (ret)
746 		return ret;
747 
748 	eb = btrfs_lock_root_node(fs_info->tree_root);
749 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
750 			      0, &eb);
751 	btrfs_tree_unlock(eb);
752 	free_extent_buffer(eb);
753 
754 	if (ret)
755 		return ret;
756 
757 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758 	if (ret)
759 		return ret;
760 
761 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
762 		next = fs_info->dirty_cowonly_roots.next;
763 		list_del_init(next);
764 		root = list_entry(next, struct btrfs_root, dirty_list);
765 
766 		ret = update_cowonly_root(trans, root);
767 		if (ret)
768 			return ret;
769 	}
770 
771 	down_write(&fs_info->extent_commit_sem);
772 	switch_commit_root(fs_info->extent_root);
773 	up_write(&fs_info->extent_commit_sem);
774 
775 	return 0;
776 }
777 
778 /*
779  * dead roots are old snapshots that need to be deleted.  This allocates
780  * a dirty root struct and adds it into the list of dead roots that need to
781  * be deleted
782  */
btrfs_add_dead_root(struct btrfs_root * root)783 int btrfs_add_dead_root(struct btrfs_root *root)
784 {
785 	spin_lock(&root->fs_info->trans_lock);
786 	list_add(&root->root_list, &root->fs_info->dead_roots);
787 	spin_unlock(&root->fs_info->trans_lock);
788 	return 0;
789 }
790 
791 /*
792  * update all the cowonly tree roots on disk
793  */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)794 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
795 				    struct btrfs_root *root)
796 {
797 	struct btrfs_root *gang[8];
798 	struct btrfs_fs_info *fs_info = root->fs_info;
799 	int i;
800 	int ret;
801 	int err = 0;
802 
803 	spin_lock(&fs_info->fs_roots_radix_lock);
804 	while (1) {
805 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
806 						 (void **)gang, 0,
807 						 ARRAY_SIZE(gang),
808 						 BTRFS_ROOT_TRANS_TAG);
809 		if (ret == 0)
810 			break;
811 		for (i = 0; i < ret; i++) {
812 			root = gang[i];
813 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
814 					(unsigned long)root->root_key.objectid,
815 					BTRFS_ROOT_TRANS_TAG);
816 			spin_unlock(&fs_info->fs_roots_radix_lock);
817 
818 			btrfs_free_log(trans, root);
819 			btrfs_update_reloc_root(trans, root);
820 			btrfs_orphan_commit_root(trans, root);
821 
822 			btrfs_save_ino_cache(root, trans);
823 
824 			/* see comments in should_cow_block() */
825 			root->force_cow = 0;
826 			smp_wmb();
827 
828 			if (root->commit_root != root->node) {
829 				mutex_lock(&root->fs_commit_mutex);
830 				switch_commit_root(root);
831 				btrfs_unpin_free_ino(root);
832 				mutex_unlock(&root->fs_commit_mutex);
833 
834 				btrfs_set_root_node(&root->root_item,
835 						    root->node);
836 			}
837 
838 			err = btrfs_update_root(trans, fs_info->tree_root,
839 						&root->root_key,
840 						&root->root_item);
841 			spin_lock(&fs_info->fs_roots_radix_lock);
842 			if (err)
843 				break;
844 		}
845 	}
846 	spin_unlock(&fs_info->fs_roots_radix_lock);
847 	return err;
848 }
849 
850 /*
851  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
852  * otherwise every leaf in the btree is read and defragged.
853  */
btrfs_defrag_root(struct btrfs_root * root,int cacheonly)854 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
855 {
856 	struct btrfs_fs_info *info = root->fs_info;
857 	struct btrfs_trans_handle *trans;
858 	int ret;
859 	unsigned long nr;
860 
861 	if (xchg(&root->defrag_running, 1))
862 		return 0;
863 
864 	while (1) {
865 		trans = btrfs_start_transaction(root, 0);
866 		if (IS_ERR(trans))
867 			return PTR_ERR(trans);
868 
869 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
870 
871 		nr = trans->blocks_used;
872 		btrfs_end_transaction(trans, root);
873 		btrfs_btree_balance_dirty(info->tree_root, nr);
874 		cond_resched();
875 
876 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
877 			break;
878 	}
879 	root->defrag_running = 0;
880 	return ret;
881 }
882 
883 /*
884  * new snapshots need to be created at a very specific time in the
885  * transaction commit.  This does the actual creation
886  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)887 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
888 				   struct btrfs_fs_info *fs_info,
889 				   struct btrfs_pending_snapshot *pending)
890 {
891 	struct btrfs_key key;
892 	struct btrfs_root_item *new_root_item;
893 	struct btrfs_root *tree_root = fs_info->tree_root;
894 	struct btrfs_root *root = pending->root;
895 	struct btrfs_root *parent_root;
896 	struct btrfs_block_rsv *rsv;
897 	struct inode *parent_inode;
898 	struct dentry *parent;
899 	struct dentry *dentry;
900 	struct extent_buffer *tmp;
901 	struct extent_buffer *old;
902 	int ret;
903 	u64 to_reserve = 0;
904 	u64 index = 0;
905 	u64 objectid;
906 	u64 root_flags;
907 
908 	rsv = trans->block_rsv;
909 
910 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
911 	if (!new_root_item) {
912 		ret = pending->error = -ENOMEM;
913 		goto fail;
914 	}
915 
916 	ret = btrfs_find_free_objectid(tree_root, &objectid);
917 	if (ret) {
918 		pending->error = ret;
919 		goto fail;
920 	}
921 
922 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
923 
924 	if (to_reserve > 0) {
925 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
926 						  to_reserve);
927 		if (ret) {
928 			pending->error = ret;
929 			goto fail;
930 		}
931 	}
932 
933 	key.objectid = objectid;
934 	key.offset = (u64)-1;
935 	key.type = BTRFS_ROOT_ITEM_KEY;
936 
937 	trans->block_rsv = &pending->block_rsv;
938 
939 	dentry = pending->dentry;
940 	parent = dget_parent(dentry);
941 	parent_inode = parent->d_inode;
942 	parent_root = BTRFS_I(parent_inode)->root;
943 	record_root_in_trans(trans, parent_root);
944 
945 	/*
946 	 * insert the directory item
947 	 */
948 	ret = btrfs_set_inode_index(parent_inode, &index);
949 	BUG_ON(ret); /* -ENOMEM */
950 	ret = btrfs_insert_dir_item(trans, parent_root,
951 				dentry->d_name.name, dentry->d_name.len,
952 				parent_inode, &key,
953 				BTRFS_FT_DIR, index);
954 	if (ret == -EEXIST) {
955 		pending->error = -EEXIST;
956 		dput(parent);
957 		goto fail;
958 	} else if (ret) {
959 		goto abort_trans_dput;
960 	}
961 
962 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
963 					 dentry->d_name.len * 2);
964 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
965 	if (ret)
966 		goto abort_trans_dput;
967 
968 	/*
969 	 * pull in the delayed directory update
970 	 * and the delayed inode item
971 	 * otherwise we corrupt the FS during
972 	 * snapshot
973 	 */
974 	ret = btrfs_run_delayed_items(trans, root);
975 	if (ret) { /* Transaction aborted */
976 		dput(parent);
977 		goto fail;
978 	}
979 
980 	record_root_in_trans(trans, root);
981 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
982 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
983 	btrfs_check_and_init_root_item(new_root_item);
984 
985 	root_flags = btrfs_root_flags(new_root_item);
986 	if (pending->readonly)
987 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
988 	else
989 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
990 	btrfs_set_root_flags(new_root_item, root_flags);
991 
992 	old = btrfs_lock_root_node(root);
993 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
994 	if (ret) {
995 		btrfs_tree_unlock(old);
996 		free_extent_buffer(old);
997 		goto abort_trans_dput;
998 	}
999 
1000 	btrfs_set_lock_blocking(old);
1001 
1002 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1003 	/* clean up in any case */
1004 	btrfs_tree_unlock(old);
1005 	free_extent_buffer(old);
1006 	if (ret)
1007 		goto abort_trans_dput;
1008 
1009 	/* see comments in should_cow_block() */
1010 	root->force_cow = 1;
1011 	smp_wmb();
1012 
1013 	btrfs_set_root_node(new_root_item, tmp);
1014 	/* record when the snapshot was created in key.offset */
1015 	key.offset = trans->transid;
1016 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1017 	btrfs_tree_unlock(tmp);
1018 	free_extent_buffer(tmp);
1019 	if (ret)
1020 		goto abort_trans_dput;
1021 
1022 	/*
1023 	 * insert root back/forward references
1024 	 */
1025 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1026 				 parent_root->root_key.objectid,
1027 				 btrfs_ino(parent_inode), index,
1028 				 dentry->d_name.name, dentry->d_name.len);
1029 	dput(parent);
1030 	if (ret)
1031 		goto fail;
1032 
1033 	key.offset = (u64)-1;
1034 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1035 	if (IS_ERR(pending->snap)) {
1036 		ret = PTR_ERR(pending->snap);
1037 		goto abort_trans;
1038 	}
1039 
1040 	ret = btrfs_reloc_post_snapshot(trans, pending);
1041 	if (ret)
1042 		goto abort_trans;
1043 	ret = 0;
1044 fail:
1045 	kfree(new_root_item);
1046 	trans->block_rsv = rsv;
1047 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1048 	return ret;
1049 
1050 abort_trans_dput:
1051 	dput(parent);
1052 abort_trans:
1053 	btrfs_abort_transaction(trans, root, ret);
1054 	goto fail;
1055 }
1056 
1057 /*
1058  * create all the snapshots we've scheduled for creation
1059  */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1060 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1061 					     struct btrfs_fs_info *fs_info)
1062 {
1063 	struct btrfs_pending_snapshot *pending;
1064 	struct list_head *head = &trans->transaction->pending_snapshots;
1065 
1066 	list_for_each_entry(pending, head, list)
1067 		create_pending_snapshot(trans, fs_info, pending);
1068 	return 0;
1069 }
1070 
update_super_roots(struct btrfs_root * root)1071 static void update_super_roots(struct btrfs_root *root)
1072 {
1073 	struct btrfs_root_item *root_item;
1074 	struct btrfs_super_block *super;
1075 
1076 	super = root->fs_info->super_copy;
1077 
1078 	root_item = &root->fs_info->chunk_root->root_item;
1079 	super->chunk_root = root_item->bytenr;
1080 	super->chunk_root_generation = root_item->generation;
1081 	super->chunk_root_level = root_item->level;
1082 
1083 	root_item = &root->fs_info->tree_root->root_item;
1084 	super->root = root_item->bytenr;
1085 	super->generation = root_item->generation;
1086 	super->root_level = root_item->level;
1087 	if (btrfs_test_opt(root, SPACE_CACHE))
1088 		super->cache_generation = root_item->generation;
1089 }
1090 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1091 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1092 {
1093 	int ret = 0;
1094 	spin_lock(&info->trans_lock);
1095 	if (info->running_transaction)
1096 		ret = info->running_transaction->in_commit;
1097 	spin_unlock(&info->trans_lock);
1098 	return ret;
1099 }
1100 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1101 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1102 {
1103 	int ret = 0;
1104 	spin_lock(&info->trans_lock);
1105 	if (info->running_transaction)
1106 		ret = info->running_transaction->blocked;
1107 	spin_unlock(&info->trans_lock);
1108 	return ret;
1109 }
1110 
1111 /*
1112  * wait for the current transaction commit to start and block subsequent
1113  * transaction joins
1114  */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1115 static void wait_current_trans_commit_start(struct btrfs_root *root,
1116 					    struct btrfs_transaction *trans)
1117 {
1118 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1119 }
1120 
1121 /*
1122  * wait for the current transaction to start and then become unblocked.
1123  * caller holds ref.
1124  */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1125 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1126 					 struct btrfs_transaction *trans)
1127 {
1128 	wait_event(root->fs_info->transaction_wait,
1129 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1130 }
1131 
1132 /*
1133  * commit transactions asynchronously. once btrfs_commit_transaction_async
1134  * returns, any subsequent transaction will not be allowed to join.
1135  */
1136 struct btrfs_async_commit {
1137 	struct btrfs_trans_handle *newtrans;
1138 	struct btrfs_root *root;
1139 	struct delayed_work work;
1140 };
1141 
do_async_commit(struct work_struct * work)1142 static void do_async_commit(struct work_struct *work)
1143 {
1144 	struct btrfs_async_commit *ac =
1145 		container_of(work, struct btrfs_async_commit, work.work);
1146 
1147 	btrfs_commit_transaction(ac->newtrans, ac->root);
1148 	kfree(ac);
1149 }
1150 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1151 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1152 				   struct btrfs_root *root,
1153 				   int wait_for_unblock)
1154 {
1155 	struct btrfs_async_commit *ac;
1156 	struct btrfs_transaction *cur_trans;
1157 
1158 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1159 	if (!ac)
1160 		return -ENOMEM;
1161 
1162 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1163 	ac->root = root;
1164 	ac->newtrans = btrfs_join_transaction(root);
1165 	if (IS_ERR(ac->newtrans)) {
1166 		int err = PTR_ERR(ac->newtrans);
1167 		kfree(ac);
1168 		return err;
1169 	}
1170 
1171 	/* take transaction reference */
1172 	cur_trans = trans->transaction;
1173 	atomic_inc(&cur_trans->use_count);
1174 
1175 	btrfs_end_transaction(trans, root);
1176 	schedule_delayed_work(&ac->work, 0);
1177 
1178 	/* wait for transaction to start and unblock */
1179 	if (wait_for_unblock)
1180 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1181 	else
1182 		wait_current_trans_commit_start(root, cur_trans);
1183 
1184 	if (current->journal_info == trans)
1185 		current->journal_info = NULL;
1186 
1187 	put_transaction(cur_trans);
1188 	return 0;
1189 }
1190 
1191 
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1192 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1193 				struct btrfs_root *root)
1194 {
1195 	struct btrfs_transaction *cur_trans = trans->transaction;
1196 
1197 	WARN_ON(trans->use_count > 1);
1198 
1199 	spin_lock(&root->fs_info->trans_lock);
1200 	list_del_init(&cur_trans->list);
1201 	spin_unlock(&root->fs_info->trans_lock);
1202 
1203 	btrfs_cleanup_one_transaction(trans->transaction, root);
1204 
1205 	put_transaction(cur_trans);
1206 	put_transaction(cur_trans);
1207 
1208 	trace_btrfs_transaction_commit(root);
1209 
1210 	btrfs_scrub_continue(root);
1211 
1212 	if (current->journal_info == trans)
1213 		current->journal_info = NULL;
1214 
1215 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1216 }
1217 
1218 /*
1219  * btrfs_transaction state sequence:
1220  *    in_commit = 0, blocked = 0  (initial)
1221  *    in_commit = 1, blocked = 1
1222  *    blocked = 0
1223  *    commit_done = 1
1224  */
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1225 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1226 			     struct btrfs_root *root)
1227 {
1228 	unsigned long joined = 0;
1229 	struct btrfs_transaction *cur_trans = trans->transaction;
1230 	struct btrfs_transaction *prev_trans = NULL;
1231 	DEFINE_WAIT(wait);
1232 	int ret = -EIO;
1233 	int should_grow = 0;
1234 	unsigned long now = get_seconds();
1235 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1236 
1237 	btrfs_run_ordered_operations(root, 0);
1238 
1239 	btrfs_trans_release_metadata(trans, root);
1240 	trans->block_rsv = NULL;
1241 
1242 	if (cur_trans->aborted)
1243 		goto cleanup_transaction;
1244 
1245 	/* make a pass through all the delayed refs we have so far
1246 	 * any runnings procs may add more while we are here
1247 	 */
1248 	ret = btrfs_run_delayed_refs(trans, root, 0);
1249 	if (ret)
1250 		goto cleanup_transaction;
1251 
1252 	cur_trans = trans->transaction;
1253 
1254 	/*
1255 	 * set the flushing flag so procs in this transaction have to
1256 	 * start sending their work down.
1257 	 */
1258 	cur_trans->delayed_refs.flushing = 1;
1259 
1260 	ret = btrfs_run_delayed_refs(trans, root, 0);
1261 	if (ret)
1262 		goto cleanup_transaction;
1263 
1264 	spin_lock(&cur_trans->commit_lock);
1265 	if (cur_trans->in_commit) {
1266 		spin_unlock(&cur_trans->commit_lock);
1267 		atomic_inc(&cur_trans->use_count);
1268 		ret = btrfs_end_transaction(trans, root);
1269 
1270 		wait_for_commit(root, cur_trans);
1271 
1272 		put_transaction(cur_trans);
1273 
1274 		return ret;
1275 	}
1276 
1277 	trans->transaction->in_commit = 1;
1278 	trans->transaction->blocked = 1;
1279 	spin_unlock(&cur_trans->commit_lock);
1280 	wake_up(&root->fs_info->transaction_blocked_wait);
1281 
1282 	spin_lock(&root->fs_info->trans_lock);
1283 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1284 		prev_trans = list_entry(cur_trans->list.prev,
1285 					struct btrfs_transaction, list);
1286 		if (!prev_trans->commit_done) {
1287 			atomic_inc(&prev_trans->use_count);
1288 			spin_unlock(&root->fs_info->trans_lock);
1289 
1290 			wait_for_commit(root, prev_trans);
1291 
1292 			put_transaction(prev_trans);
1293 		} else {
1294 			spin_unlock(&root->fs_info->trans_lock);
1295 		}
1296 	} else {
1297 		spin_unlock(&root->fs_info->trans_lock);
1298 	}
1299 
1300 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1301 		should_grow = 1;
1302 
1303 	do {
1304 		int snap_pending = 0;
1305 
1306 		joined = cur_trans->num_joined;
1307 		if (!list_empty(&trans->transaction->pending_snapshots))
1308 			snap_pending = 1;
1309 
1310 		WARN_ON(cur_trans != trans->transaction);
1311 
1312 		if (flush_on_commit || snap_pending) {
1313 			btrfs_start_delalloc_inodes(root, 1);
1314 			btrfs_wait_ordered_extents(root, 0, 1);
1315 		}
1316 
1317 		ret = btrfs_run_delayed_items(trans, root);
1318 		if (ret)
1319 			goto cleanup_transaction;
1320 
1321 		/*
1322 		 * rename don't use btrfs_join_transaction, so, once we
1323 		 * set the transaction to blocked above, we aren't going
1324 		 * to get any new ordered operations.  We can safely run
1325 		 * it here and no for sure that nothing new will be added
1326 		 * to the list
1327 		 */
1328 		btrfs_run_ordered_operations(root, 1);
1329 
1330 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1331 				TASK_UNINTERRUPTIBLE);
1332 
1333 		if (atomic_read(&cur_trans->num_writers) > 1)
1334 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1335 		else if (should_grow)
1336 			schedule_timeout(1);
1337 
1338 		finish_wait(&cur_trans->writer_wait, &wait);
1339 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1340 		 (should_grow && cur_trans->num_joined != joined));
1341 
1342 	/*
1343 	 * Ok now we need to make sure to block out any other joins while we
1344 	 * commit the transaction.  We could have started a join before setting
1345 	 * no_join so make sure to wait for num_writers to == 1 again.
1346 	 */
1347 	spin_lock(&root->fs_info->trans_lock);
1348 	root->fs_info->trans_no_join = 1;
1349 	spin_unlock(&root->fs_info->trans_lock);
1350 	wait_event(cur_trans->writer_wait,
1351 		   atomic_read(&cur_trans->num_writers) == 1);
1352 
1353 	/*
1354 	 * the reloc mutex makes sure that we stop
1355 	 * the balancing code from coming in and moving
1356 	 * extents around in the middle of the commit
1357 	 */
1358 	mutex_lock(&root->fs_info->reloc_mutex);
1359 
1360 	ret = btrfs_run_delayed_items(trans, root);
1361 	if (ret) {
1362 		mutex_unlock(&root->fs_info->reloc_mutex);
1363 		goto cleanup_transaction;
1364 	}
1365 
1366 	ret = create_pending_snapshots(trans, root->fs_info);
1367 	if (ret) {
1368 		mutex_unlock(&root->fs_info->reloc_mutex);
1369 		goto cleanup_transaction;
1370 	}
1371 
1372 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1373 	if (ret) {
1374 		mutex_unlock(&root->fs_info->reloc_mutex);
1375 		goto cleanup_transaction;
1376 	}
1377 
1378 	/*
1379 	 * make sure none of the code above managed to slip in a
1380 	 * delayed item
1381 	 */
1382 	btrfs_assert_delayed_root_empty(root);
1383 
1384 	WARN_ON(cur_trans != trans->transaction);
1385 
1386 	btrfs_scrub_pause(root);
1387 	/* btrfs_commit_tree_roots is responsible for getting the
1388 	 * various roots consistent with each other.  Every pointer
1389 	 * in the tree of tree roots has to point to the most up to date
1390 	 * root for every subvolume and other tree.  So, we have to keep
1391 	 * the tree logging code from jumping in and changing any
1392 	 * of the trees.
1393 	 *
1394 	 * At this point in the commit, there can't be any tree-log
1395 	 * writers, but a little lower down we drop the trans mutex
1396 	 * and let new people in.  By holding the tree_log_mutex
1397 	 * from now until after the super is written, we avoid races
1398 	 * with the tree-log code.
1399 	 */
1400 	mutex_lock(&root->fs_info->tree_log_mutex);
1401 
1402 	ret = commit_fs_roots(trans, root);
1403 	if (ret) {
1404 		mutex_unlock(&root->fs_info->tree_log_mutex);
1405 		mutex_unlock(&root->fs_info->reloc_mutex);
1406 		goto cleanup_transaction;
1407 	}
1408 
1409 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1410 	 * safe to free the root of tree log roots
1411 	 */
1412 	btrfs_free_log_root_tree(trans, root->fs_info);
1413 
1414 	ret = commit_cowonly_roots(trans, root);
1415 	if (ret) {
1416 		mutex_unlock(&root->fs_info->tree_log_mutex);
1417 		mutex_unlock(&root->fs_info->reloc_mutex);
1418 		goto cleanup_transaction;
1419 	}
1420 
1421 	btrfs_prepare_extent_commit(trans, root);
1422 
1423 	cur_trans = root->fs_info->running_transaction;
1424 
1425 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1426 			    root->fs_info->tree_root->node);
1427 	switch_commit_root(root->fs_info->tree_root);
1428 
1429 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1430 			    root->fs_info->chunk_root->node);
1431 	switch_commit_root(root->fs_info->chunk_root);
1432 
1433 	update_super_roots(root);
1434 
1435 	if (!root->fs_info->log_root_recovering) {
1436 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1437 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1438 	}
1439 
1440 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1441 	       sizeof(*root->fs_info->super_copy));
1442 
1443 	trans->transaction->blocked = 0;
1444 	spin_lock(&root->fs_info->trans_lock);
1445 	root->fs_info->running_transaction = NULL;
1446 	root->fs_info->trans_no_join = 0;
1447 	spin_unlock(&root->fs_info->trans_lock);
1448 	mutex_unlock(&root->fs_info->reloc_mutex);
1449 
1450 	wake_up(&root->fs_info->transaction_wait);
1451 
1452 	ret = btrfs_write_and_wait_transaction(trans, root);
1453 	if (ret) {
1454 		btrfs_error(root->fs_info, ret,
1455 			    "Error while writing out transaction.");
1456 		mutex_unlock(&root->fs_info->tree_log_mutex);
1457 		goto cleanup_transaction;
1458 	}
1459 
1460 	ret = write_ctree_super(trans, root, 0);
1461 	if (ret) {
1462 		mutex_unlock(&root->fs_info->tree_log_mutex);
1463 		goto cleanup_transaction;
1464 	}
1465 
1466 	/*
1467 	 * the super is written, we can safely allow the tree-loggers
1468 	 * to go about their business
1469 	 */
1470 	mutex_unlock(&root->fs_info->tree_log_mutex);
1471 
1472 	btrfs_finish_extent_commit(trans, root);
1473 
1474 	cur_trans->commit_done = 1;
1475 
1476 	root->fs_info->last_trans_committed = cur_trans->transid;
1477 
1478 	wake_up(&cur_trans->commit_wait);
1479 
1480 	spin_lock(&root->fs_info->trans_lock);
1481 	list_del_init(&cur_trans->list);
1482 	spin_unlock(&root->fs_info->trans_lock);
1483 
1484 	put_transaction(cur_trans);
1485 	put_transaction(cur_trans);
1486 
1487 	trace_btrfs_transaction_commit(root);
1488 
1489 	btrfs_scrub_continue(root);
1490 
1491 	if (current->journal_info == trans)
1492 		current->journal_info = NULL;
1493 
1494 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1495 
1496 	if (current != root->fs_info->transaction_kthread)
1497 		btrfs_run_delayed_iputs(root);
1498 
1499 	return ret;
1500 
1501 cleanup_transaction:
1502 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1503 //	WARN_ON(1);
1504 	if (current->journal_info == trans)
1505 		current->journal_info = NULL;
1506 	cleanup_transaction(trans, root);
1507 
1508 	return ret;
1509 }
1510 
1511 /*
1512  * interface function to delete all the snapshots we have scheduled for deletion
1513  */
btrfs_clean_old_snapshots(struct btrfs_root * root)1514 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1515 {
1516 	LIST_HEAD(list);
1517 	struct btrfs_fs_info *fs_info = root->fs_info;
1518 
1519 	spin_lock(&fs_info->trans_lock);
1520 	list_splice_init(&fs_info->dead_roots, &list);
1521 	spin_unlock(&fs_info->trans_lock);
1522 
1523 	while (!list_empty(&list)) {
1524 		int ret;
1525 
1526 		root = list_entry(list.next, struct btrfs_root, root_list);
1527 		list_del(&root->root_list);
1528 
1529 		btrfs_kill_all_delayed_nodes(root);
1530 
1531 		if (btrfs_header_backref_rev(root->node) <
1532 		    BTRFS_MIXED_BACKREF_REV)
1533 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1534 		else
1535 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1536 		BUG_ON(ret < 0);
1537 	}
1538 	return 0;
1539 }
1540