• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
entry_end(struct btrfs_ordered_extent * entry)28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
ordered_data_tree_panic(struct inode * inode,int errno,u64 offset)62 static void ordered_data_tree_panic(struct inode *inode, int errno,
63 					       u64 offset)
64 {
65 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 		    "%llu\n", (unsigned long long)offset);
68 }
69 
70 /*
71  * look for a given offset in the tree, and if it can't be found return the
72  * first lesser offset
73  */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)74 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 				     struct rb_node **prev_ret)
76 {
77 	struct rb_node *n = root->rb_node;
78 	struct rb_node *prev = NULL;
79 	struct rb_node *test;
80 	struct btrfs_ordered_extent *entry;
81 	struct btrfs_ordered_extent *prev_entry = NULL;
82 
83 	while (n) {
84 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
85 		prev = n;
86 		prev_entry = entry;
87 
88 		if (file_offset < entry->file_offset)
89 			n = n->rb_left;
90 		else if (file_offset >= entry_end(entry))
91 			n = n->rb_right;
92 		else
93 			return n;
94 	}
95 	if (!prev_ret)
96 		return NULL;
97 
98 	while (prev && file_offset >= entry_end(prev_entry)) {
99 		test = rb_next(prev);
100 		if (!test)
101 			break;
102 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 				      rb_node);
104 		if (file_offset < entry_end(prev_entry))
105 			break;
106 
107 		prev = test;
108 	}
109 	if (prev)
110 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 				      rb_node);
112 	while (prev && file_offset < entry_end(prev_entry)) {
113 		test = rb_prev(prev);
114 		if (!test)
115 			break;
116 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 				      rb_node);
118 		prev = test;
119 	}
120 	*prev_ret = prev;
121 	return NULL;
122 }
123 
124 /*
125  * helper to check if a given offset is inside a given entry
126  */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)127 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128 {
129 	if (file_offset < entry->file_offset ||
130 	    entry->file_offset + entry->len <= file_offset)
131 		return 0;
132 	return 1;
133 }
134 
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)135 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 			  u64 len)
137 {
138 	if (file_offset + len <= entry->file_offset ||
139 	    entry->file_offset + entry->len <= file_offset)
140 		return 0;
141 	return 1;
142 }
143 
144 /*
145  * look find the first ordered struct that has this offset, otherwise
146  * the first one less than this offset
147  */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)148 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 					  u64 file_offset)
150 {
151 	struct rb_root *root = &tree->tree;
152 	struct rb_node *prev = NULL;
153 	struct rb_node *ret;
154 	struct btrfs_ordered_extent *entry;
155 
156 	if (tree->last) {
157 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 				 rb_node);
159 		if (offset_in_entry(entry, file_offset))
160 			return tree->last;
161 	}
162 	ret = __tree_search(root, file_offset, &prev);
163 	if (!ret)
164 		ret = prev;
165 	if (ret)
166 		tree->last = ret;
167 	return ret;
168 }
169 
170 /* allocate and add a new ordered_extent into the per-inode tree.
171  * file_offset is the logical offset in the file
172  *
173  * start is the disk block number of an extent already reserved in the
174  * extent allocation tree
175  *
176  * len is the length of the extent
177  *
178  * The tree is given a single reference on the ordered extent that was
179  * inserted.
180  */
__btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int dio,int compress_type)181 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 				      u64 start, u64 len, u64 disk_len,
183 				      int type, int dio, int compress_type)
184 {
185 	struct btrfs_ordered_inode_tree *tree;
186 	struct rb_node *node;
187 	struct btrfs_ordered_extent *entry;
188 
189 	tree = &BTRFS_I(inode)->ordered_tree;
190 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
191 	if (!entry)
192 		return -ENOMEM;
193 
194 	entry->file_offset = file_offset;
195 	entry->start = start;
196 	entry->len = len;
197 	entry->disk_len = disk_len;
198 	entry->bytes_left = len;
199 	entry->inode = inode;
200 	entry->compress_type = compress_type;
201 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202 		set_bit(type, &entry->flags);
203 
204 	if (dio)
205 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206 
207 	/* one ref for the tree */
208 	atomic_set(&entry->refs, 1);
209 	init_waitqueue_head(&entry->wait);
210 	INIT_LIST_HEAD(&entry->list);
211 	INIT_LIST_HEAD(&entry->root_extent_list);
212 
213 	trace_btrfs_ordered_extent_add(inode, entry);
214 
215 	spin_lock(&tree->lock);
216 	node = tree_insert(&tree->tree, file_offset,
217 			   &entry->rb_node);
218 	if (node)
219 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
220 	spin_unlock(&tree->lock);
221 
222 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 	list_add_tail(&entry->root_extent_list,
224 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226 
227 	return 0;
228 }
229 
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)230 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 			     u64 start, u64 len, u64 disk_len, int type)
232 {
233 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 					  disk_len, type, 0,
235 					  BTRFS_COMPRESS_NONE);
236 }
237 
btrfs_add_ordered_extent_dio(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)238 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 				 u64 start, u64 len, u64 disk_len, int type)
240 {
241 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
242 					  disk_len, type, 1,
243 					  BTRFS_COMPRESS_NONE);
244 }
245 
btrfs_add_ordered_extent_compress(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int compress_type)246 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 				      u64 start, u64 len, u64 disk_len,
248 				      int type, int compress_type)
249 {
250 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 					  disk_len, type, 0,
252 					  compress_type);
253 }
254 
255 /*
256  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257  * when an ordered extent is finished.  If the list covers more than one
258  * ordered extent, it is split across multiples.
259  */
btrfs_add_ordered_sum(struct inode * inode,struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)260 void btrfs_add_ordered_sum(struct inode *inode,
261 			   struct btrfs_ordered_extent *entry,
262 			   struct btrfs_ordered_sum *sum)
263 {
264 	struct btrfs_ordered_inode_tree *tree;
265 
266 	tree = &BTRFS_I(inode)->ordered_tree;
267 	spin_lock(&tree->lock);
268 	list_add_tail(&sum->list, &entry->list);
269 	spin_unlock(&tree->lock);
270 }
271 
272 /*
273  * this is used to account for finished IO across a given range
274  * of the file.  The IO may span ordered extents.  If
275  * a given ordered_extent is completely done, 1 is returned, otherwise
276  * 0.
277  *
278  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279  * to make sure this function only returns 1 once for a given ordered extent.
280  *
281  * file_offset is updated to one byte past the range that is recorded as
282  * complete.  This allows you to walk forward in the file.
283  */
btrfs_dec_test_first_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 * file_offset,u64 io_size)284 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 				   struct btrfs_ordered_extent **cached,
286 				   u64 *file_offset, u64 io_size)
287 {
288 	struct btrfs_ordered_inode_tree *tree;
289 	struct rb_node *node;
290 	struct btrfs_ordered_extent *entry = NULL;
291 	int ret;
292 	u64 dec_end;
293 	u64 dec_start;
294 	u64 to_dec;
295 
296 	tree = &BTRFS_I(inode)->ordered_tree;
297 	spin_lock(&tree->lock);
298 	node = tree_search(tree, *file_offset);
299 	if (!node) {
300 		ret = 1;
301 		goto out;
302 	}
303 
304 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
305 	if (!offset_in_entry(entry, *file_offset)) {
306 		ret = 1;
307 		goto out;
308 	}
309 
310 	dec_start = max(*file_offset, entry->file_offset);
311 	dec_end = min(*file_offset + io_size, entry->file_offset +
312 		      entry->len);
313 	*file_offset = dec_end;
314 	if (dec_start > dec_end) {
315 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
316 		       (unsigned long long)dec_start,
317 		       (unsigned long long)dec_end);
318 	}
319 	to_dec = dec_end - dec_start;
320 	if (to_dec > entry->bytes_left) {
321 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
322 		       (unsigned long long)entry->bytes_left,
323 		       (unsigned long long)to_dec);
324 	}
325 	entry->bytes_left -= to_dec;
326 	if (entry->bytes_left == 0)
327 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
328 	else
329 		ret = 1;
330 out:
331 	if (!ret && cached && entry) {
332 		*cached = entry;
333 		atomic_inc(&entry->refs);
334 	}
335 	spin_unlock(&tree->lock);
336 	return ret == 0;
337 }
338 
339 /*
340  * this is used to account for finished IO across a given range
341  * of the file.  The IO should not span ordered extents.  If
342  * a given ordered_extent is completely done, 1 is returned, otherwise
343  * 0.
344  *
345  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
346  * to make sure this function only returns 1 once for a given ordered extent.
347  */
btrfs_dec_test_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)348 int btrfs_dec_test_ordered_pending(struct inode *inode,
349 				   struct btrfs_ordered_extent **cached,
350 				   u64 file_offset, u64 io_size)
351 {
352 	struct btrfs_ordered_inode_tree *tree;
353 	struct rb_node *node;
354 	struct btrfs_ordered_extent *entry = NULL;
355 	int ret;
356 
357 	tree = &BTRFS_I(inode)->ordered_tree;
358 	spin_lock(&tree->lock);
359 	node = tree_search(tree, file_offset);
360 	if (!node) {
361 		ret = 1;
362 		goto out;
363 	}
364 
365 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
366 	if (!offset_in_entry(entry, file_offset)) {
367 		ret = 1;
368 		goto out;
369 	}
370 
371 	if (io_size > entry->bytes_left) {
372 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
373 		       (unsigned long long)entry->bytes_left,
374 		       (unsigned long long)io_size);
375 	}
376 	entry->bytes_left -= io_size;
377 	if (entry->bytes_left == 0)
378 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
379 	else
380 		ret = 1;
381 out:
382 	if (!ret && cached && entry) {
383 		*cached = entry;
384 		atomic_inc(&entry->refs);
385 	}
386 	spin_unlock(&tree->lock);
387 	return ret == 0;
388 }
389 
390 /*
391  * used to drop a reference on an ordered extent.  This will free
392  * the extent if the last reference is dropped
393  */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)394 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
395 {
396 	struct list_head *cur;
397 	struct btrfs_ordered_sum *sum;
398 
399 	trace_btrfs_ordered_extent_put(entry->inode, entry);
400 
401 	if (atomic_dec_and_test(&entry->refs)) {
402 		while (!list_empty(&entry->list)) {
403 			cur = entry->list.next;
404 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
405 			list_del(&sum->list);
406 			kfree(sum);
407 		}
408 		kfree(entry);
409 	}
410 }
411 
412 /*
413  * remove an ordered extent from the tree.  No references are dropped
414  * and you must wake_up entry->wait.  You must hold the tree lock
415  * while you call this function.
416  */
__btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)417 static void __btrfs_remove_ordered_extent(struct inode *inode,
418 					  struct btrfs_ordered_extent *entry)
419 {
420 	struct btrfs_ordered_inode_tree *tree;
421 	struct btrfs_root *root = BTRFS_I(inode)->root;
422 	struct rb_node *node;
423 
424 	tree = &BTRFS_I(inode)->ordered_tree;
425 	node = &entry->rb_node;
426 	rb_erase(node, &tree->tree);
427 	tree->last = NULL;
428 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
429 
430 	spin_lock(&root->fs_info->ordered_extent_lock);
431 	list_del_init(&entry->root_extent_list);
432 
433 	trace_btrfs_ordered_extent_remove(inode, entry);
434 
435 	/*
436 	 * we have no more ordered extents for this inode and
437 	 * no dirty pages.  We can safely remove it from the
438 	 * list of ordered extents
439 	 */
440 	if (RB_EMPTY_ROOT(&tree->tree) &&
441 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
442 		list_del_init(&BTRFS_I(inode)->ordered_operations);
443 	}
444 	spin_unlock(&root->fs_info->ordered_extent_lock);
445 }
446 
447 /*
448  * remove an ordered extent from the tree.  No references are dropped
449  * but any waiters are woken.
450  */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)451 void btrfs_remove_ordered_extent(struct inode *inode,
452 				 struct btrfs_ordered_extent *entry)
453 {
454 	struct btrfs_ordered_inode_tree *tree;
455 
456 	tree = &BTRFS_I(inode)->ordered_tree;
457 	spin_lock(&tree->lock);
458 	__btrfs_remove_ordered_extent(inode, entry);
459 	spin_unlock(&tree->lock);
460 	wake_up(&entry->wait);
461 }
462 
463 /*
464  * wait for all the ordered extents in a root.  This is done when balancing
465  * space between drives.
466  */
btrfs_wait_ordered_extents(struct btrfs_root * root,int nocow_only,int delay_iput)467 void btrfs_wait_ordered_extents(struct btrfs_root *root,
468 				int nocow_only, int delay_iput)
469 {
470 	struct list_head splice;
471 	struct list_head *cur;
472 	struct btrfs_ordered_extent *ordered;
473 	struct inode *inode;
474 
475 	INIT_LIST_HEAD(&splice);
476 
477 	spin_lock(&root->fs_info->ordered_extent_lock);
478 	list_splice_init(&root->fs_info->ordered_extents, &splice);
479 	while (!list_empty(&splice)) {
480 		cur = splice.next;
481 		ordered = list_entry(cur, struct btrfs_ordered_extent,
482 				     root_extent_list);
483 		if (nocow_only &&
484 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
485 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
486 			list_move(&ordered->root_extent_list,
487 				  &root->fs_info->ordered_extents);
488 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
489 			continue;
490 		}
491 
492 		list_del_init(&ordered->root_extent_list);
493 		atomic_inc(&ordered->refs);
494 
495 		/*
496 		 * the inode may be getting freed (in sys_unlink path).
497 		 */
498 		inode = igrab(ordered->inode);
499 
500 		spin_unlock(&root->fs_info->ordered_extent_lock);
501 
502 		if (inode) {
503 			btrfs_start_ordered_extent(inode, ordered, 1);
504 			btrfs_put_ordered_extent(ordered);
505 			if (delay_iput)
506 				btrfs_add_delayed_iput(inode);
507 			else
508 				iput(inode);
509 		} else {
510 			btrfs_put_ordered_extent(ordered);
511 		}
512 
513 		spin_lock(&root->fs_info->ordered_extent_lock);
514 	}
515 	spin_unlock(&root->fs_info->ordered_extent_lock);
516 }
517 
518 /*
519  * this is used during transaction commit to write all the inodes
520  * added to the ordered operation list.  These files must be fully on
521  * disk before the transaction commits.
522  *
523  * we have two modes here, one is to just start the IO via filemap_flush
524  * and the other is to wait for all the io.  When we wait, we have an
525  * extra check to make sure the ordered operation list really is empty
526  * before we return
527  */
btrfs_run_ordered_operations(struct btrfs_root * root,int wait)528 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529 {
530 	struct btrfs_inode *btrfs_inode;
531 	struct inode *inode;
532 	struct list_head splice;
533 
534 	INIT_LIST_HEAD(&splice);
535 
536 	mutex_lock(&root->fs_info->ordered_operations_mutex);
537 	spin_lock(&root->fs_info->ordered_extent_lock);
538 again:
539 	list_splice_init(&root->fs_info->ordered_operations, &splice);
540 
541 	while (!list_empty(&splice)) {
542 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543 				   ordered_operations);
544 
545 		inode = &btrfs_inode->vfs_inode;
546 
547 		list_del_init(&btrfs_inode->ordered_operations);
548 
549 		/*
550 		 * the inode may be getting freed (in sys_unlink path).
551 		 */
552 		inode = igrab(inode);
553 
554 		if (!wait && inode) {
555 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
556 			      &root->fs_info->ordered_operations);
557 		}
558 		spin_unlock(&root->fs_info->ordered_extent_lock);
559 
560 		if (inode) {
561 			if (wait)
562 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
563 			else
564 				filemap_flush(inode->i_mapping);
565 			btrfs_add_delayed_iput(inode);
566 		}
567 
568 		cond_resched();
569 		spin_lock(&root->fs_info->ordered_extent_lock);
570 	}
571 	if (wait && !list_empty(&root->fs_info->ordered_operations))
572 		goto again;
573 
574 	spin_unlock(&root->fs_info->ordered_extent_lock);
575 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
576 }
577 
578 /*
579  * Used to start IO or wait for a given ordered extent to finish.
580  *
581  * If wait is one, this effectively waits on page writeback for all the pages
582  * in the extent, and it waits on the io completion code to insert
583  * metadata into the btree corresponding to the extent
584  */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)585 void btrfs_start_ordered_extent(struct inode *inode,
586 				       struct btrfs_ordered_extent *entry,
587 				       int wait)
588 {
589 	u64 start = entry->file_offset;
590 	u64 end = start + entry->len - 1;
591 
592 	trace_btrfs_ordered_extent_start(inode, entry);
593 
594 	/*
595 	 * pages in the range can be dirty, clean or writeback.  We
596 	 * start IO on any dirty ones so the wait doesn't stall waiting
597 	 * for pdflush to find them
598 	 */
599 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
600 		filemap_fdatawrite_range(inode->i_mapping, start, end);
601 	if (wait) {
602 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
603 						 &entry->flags));
604 	}
605 }
606 
607 /*
608  * Used to wait on ordered extents across a large range of bytes.
609  */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)610 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
611 {
612 	u64 end;
613 	u64 orig_end;
614 	struct btrfs_ordered_extent *ordered;
615 	int found;
616 
617 	if (start + len < start) {
618 		orig_end = INT_LIMIT(loff_t);
619 	} else {
620 		orig_end = start + len - 1;
621 		if (orig_end > INT_LIMIT(loff_t))
622 			orig_end = INT_LIMIT(loff_t);
623 	}
624 again:
625 	/* start IO across the range first to instantiate any delalloc
626 	 * extents
627 	 */
628 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
629 
630 	/* The compression code will leave pages locked but return from
631 	 * writepage without setting the page writeback.  Starting again
632 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
633 	 */
634 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
635 
636 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
637 
638 	end = orig_end;
639 	found = 0;
640 	while (1) {
641 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
642 		if (!ordered)
643 			break;
644 		if (ordered->file_offset > orig_end) {
645 			btrfs_put_ordered_extent(ordered);
646 			break;
647 		}
648 		if (ordered->file_offset + ordered->len < start) {
649 			btrfs_put_ordered_extent(ordered);
650 			break;
651 		}
652 		found++;
653 		btrfs_start_ordered_extent(inode, ordered, 1);
654 		end = ordered->file_offset;
655 		btrfs_put_ordered_extent(ordered);
656 		if (end == 0 || end == start)
657 			break;
658 		end--;
659 	}
660 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
661 			   EXTENT_DELALLOC, 0, NULL)) {
662 		schedule_timeout(1);
663 		goto again;
664 	}
665 }
666 
667 /*
668  * find an ordered extent corresponding to file_offset.  return NULL if
669  * nothing is found, otherwise take a reference on the extent and return it
670  */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)671 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
672 							 u64 file_offset)
673 {
674 	struct btrfs_ordered_inode_tree *tree;
675 	struct rb_node *node;
676 	struct btrfs_ordered_extent *entry = NULL;
677 
678 	tree = &BTRFS_I(inode)->ordered_tree;
679 	spin_lock(&tree->lock);
680 	node = tree_search(tree, file_offset);
681 	if (!node)
682 		goto out;
683 
684 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
685 	if (!offset_in_entry(entry, file_offset))
686 		entry = NULL;
687 	if (entry)
688 		atomic_inc(&entry->refs);
689 out:
690 	spin_unlock(&tree->lock);
691 	return entry;
692 }
693 
694 /* Since the DIO code tries to lock a wide area we need to look for any ordered
695  * extents that exist in the range, rather than just the start of the range.
696  */
btrfs_lookup_ordered_range(struct inode * inode,u64 file_offset,u64 len)697 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
698 							u64 file_offset,
699 							u64 len)
700 {
701 	struct btrfs_ordered_inode_tree *tree;
702 	struct rb_node *node;
703 	struct btrfs_ordered_extent *entry = NULL;
704 
705 	tree = &BTRFS_I(inode)->ordered_tree;
706 	spin_lock(&tree->lock);
707 	node = tree_search(tree, file_offset);
708 	if (!node) {
709 		node = tree_search(tree, file_offset + len);
710 		if (!node)
711 			goto out;
712 	}
713 
714 	while (1) {
715 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
716 		if (range_overlaps(entry, file_offset, len))
717 			break;
718 
719 		if (entry->file_offset >= file_offset + len) {
720 			entry = NULL;
721 			break;
722 		}
723 		entry = NULL;
724 		node = rb_next(node);
725 		if (!node)
726 			break;
727 	}
728 out:
729 	if (entry)
730 		atomic_inc(&entry->refs);
731 	spin_unlock(&tree->lock);
732 	return entry;
733 }
734 
735 /*
736  * lookup and return any extent before 'file_offset'.  NULL is returned
737  * if none is found
738  */
739 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)740 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
741 {
742 	struct btrfs_ordered_inode_tree *tree;
743 	struct rb_node *node;
744 	struct btrfs_ordered_extent *entry = NULL;
745 
746 	tree = &BTRFS_I(inode)->ordered_tree;
747 	spin_lock(&tree->lock);
748 	node = tree_search(tree, file_offset);
749 	if (!node)
750 		goto out;
751 
752 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
753 	atomic_inc(&entry->refs);
754 out:
755 	spin_unlock(&tree->lock);
756 	return entry;
757 }
758 
759 /*
760  * After an extent is done, call this to conditionally update the on disk
761  * i_size.  i_size is updated to cover any fully written part of the file.
762  */
btrfs_ordered_update_i_size(struct inode * inode,u64 offset,struct btrfs_ordered_extent * ordered)763 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
764 				struct btrfs_ordered_extent *ordered)
765 {
766 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
767 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
768 	u64 disk_i_size;
769 	u64 new_i_size;
770 	u64 i_size_test;
771 	u64 i_size = i_size_read(inode);
772 	struct rb_node *node;
773 	struct rb_node *prev = NULL;
774 	struct btrfs_ordered_extent *test;
775 	int ret = 1;
776 
777 	if (ordered)
778 		offset = entry_end(ordered);
779 	else
780 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
781 
782 	spin_lock(&tree->lock);
783 	disk_i_size = BTRFS_I(inode)->disk_i_size;
784 
785 	/* truncate file */
786 	if (disk_i_size > i_size) {
787 		BTRFS_I(inode)->disk_i_size = i_size;
788 		ret = 0;
789 		goto out;
790 	}
791 
792 	/*
793 	 * if the disk i_size is already at the inode->i_size, or
794 	 * this ordered extent is inside the disk i_size, we're done
795 	 */
796 	if (disk_i_size == i_size || offset <= disk_i_size) {
797 		goto out;
798 	}
799 
800 	/*
801 	 * we can't update the disk_isize if there are delalloc bytes
802 	 * between disk_i_size and  this ordered extent
803 	 */
804 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
805 			   EXTENT_DELALLOC, 0, NULL)) {
806 		goto out;
807 	}
808 	/*
809 	 * walk backward from this ordered extent to disk_i_size.
810 	 * if we find an ordered extent then we can't update disk i_size
811 	 * yet
812 	 */
813 	if (ordered) {
814 		node = rb_prev(&ordered->rb_node);
815 	} else {
816 		prev = tree_search(tree, offset);
817 		/*
818 		 * we insert file extents without involving ordered struct,
819 		 * so there should be no ordered struct cover this offset
820 		 */
821 		if (prev) {
822 			test = rb_entry(prev, struct btrfs_ordered_extent,
823 					rb_node);
824 			BUG_ON(offset_in_entry(test, offset));
825 		}
826 		node = prev;
827 	}
828 	while (node) {
829 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
830 		if (test->file_offset + test->len <= disk_i_size)
831 			break;
832 		if (test->file_offset >= i_size)
833 			break;
834 		if (test->file_offset >= disk_i_size)
835 			goto out;
836 		node = rb_prev(node);
837 	}
838 	new_i_size = min_t(u64, offset, i_size);
839 
840 	/*
841 	 * at this point, we know we can safely update i_size to at least
842 	 * the offset from this ordered extent.  But, we need to
843 	 * walk forward and see if ios from higher up in the file have
844 	 * finished.
845 	 */
846 	if (ordered) {
847 		node = rb_next(&ordered->rb_node);
848 	} else {
849 		if (prev)
850 			node = rb_next(prev);
851 		else
852 			node = rb_first(&tree->tree);
853 	}
854 	i_size_test = 0;
855 	if (node) {
856 		/*
857 		 * do we have an area where IO might have finished
858 		 * between our ordered extent and the next one.
859 		 */
860 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861 		if (test->file_offset > offset)
862 			i_size_test = test->file_offset;
863 	} else {
864 		i_size_test = i_size;
865 	}
866 
867 	/*
868 	 * i_size_test is the end of a region after this ordered
869 	 * extent where there are no ordered extents.  As long as there
870 	 * are no delalloc bytes in this area, it is safe to update
871 	 * disk_i_size to the end of the region.
872 	 */
873 	if (i_size_test > offset &&
874 	    !test_range_bit(io_tree, offset, i_size_test - 1,
875 			    EXTENT_DELALLOC, 0, NULL)) {
876 		new_i_size = min_t(u64, i_size_test, i_size);
877 	}
878 	BTRFS_I(inode)->disk_i_size = new_i_size;
879 	ret = 0;
880 out:
881 	/*
882 	 * we need to remove the ordered extent with the tree lock held
883 	 * so that other people calling this function don't find our fully
884 	 * processed ordered entry and skip updating the i_size
885 	 */
886 	if (ordered)
887 		__btrfs_remove_ordered_extent(inode, ordered);
888 	spin_unlock(&tree->lock);
889 	if (ordered)
890 		wake_up(&ordered->wait);
891 	return ret;
892 }
893 
894 /*
895  * search the ordered extents for one corresponding to 'offset' and
896  * try to find a checksum.  This is used because we allow pages to
897  * be reclaimed before their checksum is actually put into the btree
898  */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u32 * sum)899 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
900 			   u32 *sum)
901 {
902 	struct btrfs_ordered_sum *ordered_sum;
903 	struct btrfs_sector_sum *sector_sums;
904 	struct btrfs_ordered_extent *ordered;
905 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
906 	unsigned long num_sectors;
907 	unsigned long i;
908 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
909 	int ret = 1;
910 
911 	ordered = btrfs_lookup_ordered_extent(inode, offset);
912 	if (!ordered)
913 		return 1;
914 
915 	spin_lock(&tree->lock);
916 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
917 		if (disk_bytenr >= ordered_sum->bytenr) {
918 			num_sectors = ordered_sum->len / sectorsize;
919 			sector_sums = ordered_sum->sums;
920 			for (i = 0; i < num_sectors; i++) {
921 				if (sector_sums[i].bytenr == disk_bytenr) {
922 					*sum = sector_sums[i].sum;
923 					ret = 0;
924 					goto out;
925 				}
926 			}
927 		}
928 	}
929 out:
930 	spin_unlock(&tree->lock);
931 	btrfs_put_ordered_extent(ordered);
932 	return ret;
933 }
934 
935 
936 /*
937  * add a given inode to the list of inodes that must be fully on
938  * disk before a transaction commit finishes.
939  *
940  * This basically gives us the ext3 style data=ordered mode, and it is mostly
941  * used to make sure renamed files are fully on disk.
942  *
943  * It is a noop if the inode is already fully on disk.
944  *
945  * If trans is not null, we'll do a friendly check for a transaction that
946  * is already flushing things and force the IO down ourselves.
947  */
btrfs_add_ordered_operation(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)948 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
949 				 struct btrfs_root *root, struct inode *inode)
950 {
951 	u64 last_mod;
952 
953 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
954 
955 	/*
956 	 * if this file hasn't been changed since the last transaction
957 	 * commit, we can safely return without doing anything
958 	 */
959 	if (last_mod < root->fs_info->last_trans_committed)
960 		return;
961 
962 	/*
963 	 * the transaction is already committing.  Just start the IO and
964 	 * don't bother with all of this list nonsense
965 	 */
966 	if (trans && root->fs_info->running_transaction->blocked) {
967 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
968 		return;
969 	}
970 
971 	spin_lock(&root->fs_info->ordered_extent_lock);
972 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
973 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
974 			      &root->fs_info->ordered_operations);
975 	}
976 	spin_unlock(&root->fs_info->ordered_extent_lock);
977 }
978