1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/smp.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 #include <linux/cache.h>
30
31 #include <asm/cacheflush.h>
32 #include <asm/pgtable.h>
33 #include <asm/war.h>
34 #include <asm/uasm.h>
35 #include <asm/setup.h>
36
37 /*
38 * TLB load/store/modify handlers.
39 *
40 * Only the fastpath gets synthesized at runtime, the slowpath for
41 * do_page_fault remains normal asm.
42 */
43 extern void tlb_do_page_fault_0(void);
44 extern void tlb_do_page_fault_1(void);
45
46 struct work_registers {
47 int r1;
48 int r2;
49 int r3;
50 };
51
52 struct tlb_reg_save {
53 unsigned long a;
54 unsigned long b;
55 } ____cacheline_aligned_in_smp;
56
57 static struct tlb_reg_save handler_reg_save[NR_CPUS];
58
r45k_bvahwbug(void)59 static inline int r45k_bvahwbug(void)
60 {
61 /* XXX: We should probe for the presence of this bug, but we don't. */
62 return 0;
63 }
64
r4k_250MHZhwbug(void)65 static inline int r4k_250MHZhwbug(void)
66 {
67 /* XXX: We should probe for the presence of this bug, but we don't. */
68 return 0;
69 }
70
bcm1250_m3_war(void)71 static inline int __maybe_unused bcm1250_m3_war(void)
72 {
73 return BCM1250_M3_WAR;
74 }
75
r10000_llsc_war(void)76 static inline int __maybe_unused r10000_llsc_war(void)
77 {
78 return R10000_LLSC_WAR;
79 }
80
use_bbit_insns(void)81 static int use_bbit_insns(void)
82 {
83 switch (current_cpu_type()) {
84 case CPU_CAVIUM_OCTEON:
85 case CPU_CAVIUM_OCTEON_PLUS:
86 case CPU_CAVIUM_OCTEON2:
87 return 1;
88 default:
89 return 0;
90 }
91 }
92
use_lwx_insns(void)93 static int use_lwx_insns(void)
94 {
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON2:
97 return 1;
98 default:
99 return 0;
100 }
101 }
102 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
103 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
scratchpad_available(void)104 static bool scratchpad_available(void)
105 {
106 return true;
107 }
scratchpad_offset(int i)108 static int scratchpad_offset(int i)
109 {
110 /*
111 * CVMSEG starts at address -32768 and extends for
112 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
113 */
114 i += 1; /* Kernel use starts at the top and works down. */
115 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
116 }
117 #else
scratchpad_available(void)118 static bool scratchpad_available(void)
119 {
120 return false;
121 }
scratchpad_offset(int i)122 static int scratchpad_offset(int i)
123 {
124 BUG();
125 /* Really unreachable, but evidently some GCC want this. */
126 return 0;
127 }
128 #endif
129 /*
130 * Found by experiment: At least some revisions of the 4kc throw under
131 * some circumstances a machine check exception, triggered by invalid
132 * values in the index register. Delaying the tlbp instruction until
133 * after the next branch, plus adding an additional nop in front of
134 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
135 * why; it's not an issue caused by the core RTL.
136 *
137 */
m4kc_tlbp_war(void)138 static int __cpuinit m4kc_tlbp_war(void)
139 {
140 return (current_cpu_data.processor_id & 0xffff00) ==
141 (PRID_COMP_MIPS | PRID_IMP_4KC);
142 }
143
144 /* Handle labels (which must be positive integers). */
145 enum label_id {
146 label_second_part = 1,
147 label_leave,
148 label_vmalloc,
149 label_vmalloc_done,
150 label_tlbw_hazard,
151 label_split,
152 label_tlbl_goaround1,
153 label_tlbl_goaround2,
154 label_nopage_tlbl,
155 label_nopage_tlbs,
156 label_nopage_tlbm,
157 label_smp_pgtable_change,
158 label_r3000_write_probe_fail,
159 label_large_segbits_fault,
160 #ifdef CONFIG_HUGETLB_PAGE
161 label_tlb_huge_update,
162 #endif
163 };
164
165 UASM_L_LA(_second_part)
UASM_L_LA(_leave)166 UASM_L_LA(_leave)
167 UASM_L_LA(_vmalloc)
168 UASM_L_LA(_vmalloc_done)
169 UASM_L_LA(_tlbw_hazard)
170 UASM_L_LA(_split)
171 UASM_L_LA(_tlbl_goaround1)
172 UASM_L_LA(_tlbl_goaround2)
173 UASM_L_LA(_nopage_tlbl)
174 UASM_L_LA(_nopage_tlbs)
175 UASM_L_LA(_nopage_tlbm)
176 UASM_L_LA(_smp_pgtable_change)
177 UASM_L_LA(_r3000_write_probe_fail)
178 UASM_L_LA(_large_segbits_fault)
179 #ifdef CONFIG_HUGETLB_PAGE
180 UASM_L_LA(_tlb_huge_update)
181 #endif
182
183 /*
184 * For debug purposes.
185 */
186 static inline void dump_handler(const u32 *handler, int count)
187 {
188 int i;
189
190 pr_debug("\t.set push\n");
191 pr_debug("\t.set noreorder\n");
192
193 for (i = 0; i < count; i++)
194 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
195
196 pr_debug("\t.set pop\n");
197 }
198
199 /* The only general purpose registers allowed in TLB handlers. */
200 #define K0 26
201 #define K1 27
202
203 /* Some CP0 registers */
204 #define C0_INDEX 0, 0
205 #define C0_ENTRYLO0 2, 0
206 #define C0_TCBIND 2, 2
207 #define C0_ENTRYLO1 3, 0
208 #define C0_CONTEXT 4, 0
209 #define C0_PAGEMASK 5, 0
210 #define C0_BADVADDR 8, 0
211 #define C0_ENTRYHI 10, 0
212 #define C0_EPC 14, 0
213 #define C0_XCONTEXT 20, 0
214
215 #ifdef CONFIG_64BIT
216 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
217 #else
218 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
219 #endif
220
221 /* The worst case length of the handler is around 18 instructions for
222 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
223 * Maximum space available is 32 instructions for R3000 and 64
224 * instructions for R4000.
225 *
226 * We deliberately chose a buffer size of 128, so we won't scribble
227 * over anything important on overflow before we panic.
228 */
229 static u32 tlb_handler[128] __cpuinitdata;
230
231 /* simply assume worst case size for labels and relocs */
232 static struct uasm_label labels[128] __cpuinitdata;
233 static struct uasm_reloc relocs[128] __cpuinitdata;
234
235 #ifdef CONFIG_64BIT
236 static int check_for_high_segbits __cpuinitdata;
237 #endif
238
239 static int check_for_high_segbits __cpuinitdata;
240
241 static unsigned int kscratch_used_mask __cpuinitdata;
242
allocate_kscratch(void)243 static int __cpuinit allocate_kscratch(void)
244 {
245 int r;
246 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
247
248 r = ffs(a);
249
250 if (r == 0)
251 return -1;
252
253 r--; /* make it zero based */
254
255 kscratch_used_mask |= (1 << r);
256
257 return r;
258 }
259
260 static int scratch_reg __cpuinitdata;
261 static int pgd_reg __cpuinitdata;
262 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
263
build_get_work_registers(u32 ** p)264 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
265 {
266 struct work_registers r;
267
268 int smp_processor_id_reg;
269 int smp_processor_id_sel;
270 int smp_processor_id_shift;
271
272 if (scratch_reg > 0) {
273 /* Save in CPU local C0_KScratch? */
274 UASM_i_MTC0(p, 1, 31, scratch_reg);
275 r.r1 = K0;
276 r.r2 = K1;
277 r.r3 = 1;
278 return r;
279 }
280
281 if (num_possible_cpus() > 1) {
282 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
283 smp_processor_id_shift = 51;
284 smp_processor_id_reg = 20; /* XContext */
285 smp_processor_id_sel = 0;
286 #else
287 # ifdef CONFIG_32BIT
288 smp_processor_id_shift = 25;
289 smp_processor_id_reg = 4; /* Context */
290 smp_processor_id_sel = 0;
291 # endif
292 # ifdef CONFIG_64BIT
293 smp_processor_id_shift = 26;
294 smp_processor_id_reg = 4; /* Context */
295 smp_processor_id_sel = 0;
296 # endif
297 #endif
298 /* Get smp_processor_id */
299 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
300 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
301
302 /* handler_reg_save index in K0 */
303 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
304
305 UASM_i_LA(p, K1, (long)&handler_reg_save);
306 UASM_i_ADDU(p, K0, K0, K1);
307 } else {
308 UASM_i_LA(p, K0, (long)&handler_reg_save);
309 }
310 /* K0 now points to save area, save $1 and $2 */
311 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
312 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
313
314 r.r1 = K1;
315 r.r2 = 1;
316 r.r3 = 2;
317 return r;
318 }
319
build_restore_work_registers(u32 ** p)320 static void __cpuinit build_restore_work_registers(u32 **p)
321 {
322 if (scratch_reg > 0) {
323 UASM_i_MFC0(p, 1, 31, scratch_reg);
324 return;
325 }
326 /* K0 already points to save area, restore $1 and $2 */
327 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
328 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
329 }
330
331 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
332
333 /*
334 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
335 * we cannot do r3000 under these circumstances.
336 *
337 * Declare pgd_current here instead of including mmu_context.h to avoid type
338 * conflicts for tlbmiss_handler_setup_pgd
339 */
340 extern unsigned long pgd_current[];
341
342 /*
343 * The R3000 TLB handler is simple.
344 */
build_r3000_tlb_refill_handler(void)345 static void __cpuinit build_r3000_tlb_refill_handler(void)
346 {
347 long pgdc = (long)pgd_current;
348 u32 *p;
349
350 memset(tlb_handler, 0, sizeof(tlb_handler));
351 p = tlb_handler;
352
353 uasm_i_mfc0(&p, K0, C0_BADVADDR);
354 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
355 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
356 uasm_i_srl(&p, K0, K0, 22); /* load delay */
357 uasm_i_sll(&p, K0, K0, 2);
358 uasm_i_addu(&p, K1, K1, K0);
359 uasm_i_mfc0(&p, K0, C0_CONTEXT);
360 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
361 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
362 uasm_i_addu(&p, K1, K1, K0);
363 uasm_i_lw(&p, K0, 0, K1);
364 uasm_i_nop(&p); /* load delay */
365 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
366 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
367 uasm_i_tlbwr(&p); /* cp0 delay */
368 uasm_i_jr(&p, K1);
369 uasm_i_rfe(&p); /* branch delay */
370
371 if (p > tlb_handler + 32)
372 panic("TLB refill handler space exceeded");
373
374 pr_debug("Wrote TLB refill handler (%u instructions).\n",
375 (unsigned int)(p - tlb_handler));
376
377 memcpy((void *)ebase, tlb_handler, 0x80);
378
379 dump_handler((u32 *)ebase, 32);
380 }
381 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
382
383 /*
384 * The R4000 TLB handler is much more complicated. We have two
385 * consecutive handler areas with 32 instructions space each.
386 * Since they aren't used at the same time, we can overflow in the
387 * other one.To keep things simple, we first assume linear space,
388 * then we relocate it to the final handler layout as needed.
389 */
390 static u32 final_handler[64] __cpuinitdata;
391
392 /*
393 * Hazards
394 *
395 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
396 * 2. A timing hazard exists for the TLBP instruction.
397 *
398 * stalling_instruction
399 * TLBP
400 *
401 * The JTLB is being read for the TLBP throughout the stall generated by the
402 * previous instruction. This is not really correct as the stalling instruction
403 * can modify the address used to access the JTLB. The failure symptom is that
404 * the TLBP instruction will use an address created for the stalling instruction
405 * and not the address held in C0_ENHI and thus report the wrong results.
406 *
407 * The software work-around is to not allow the instruction preceding the TLBP
408 * to stall - make it an NOP or some other instruction guaranteed not to stall.
409 *
410 * Errata 2 will not be fixed. This errata is also on the R5000.
411 *
412 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
413 */
build_tlb_probe_entry(u32 ** p)414 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
415 {
416 switch (current_cpu_type()) {
417 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
418 case CPU_R4600:
419 case CPU_R4700:
420 case CPU_R5000:
421 case CPU_R5000A:
422 case CPU_NEVADA:
423 uasm_i_nop(p);
424 uasm_i_tlbp(p);
425 break;
426
427 default:
428 uasm_i_tlbp(p);
429 break;
430 }
431 }
432
433 /*
434 * Write random or indexed TLB entry, and care about the hazards from
435 * the preceding mtc0 and for the following eret.
436 */
437 enum tlb_write_entry { tlb_random, tlb_indexed };
438
build_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,enum tlb_write_entry wmode)439 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
440 struct uasm_reloc **r,
441 enum tlb_write_entry wmode)
442 {
443 void(*tlbw)(u32 **) = NULL;
444
445 switch (wmode) {
446 case tlb_random: tlbw = uasm_i_tlbwr; break;
447 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
448 }
449
450 if (cpu_has_mips_r2) {
451 if (cpu_has_mips_r2_exec_hazard)
452 uasm_i_ehb(p);
453 tlbw(p);
454 return;
455 }
456
457 switch (current_cpu_type()) {
458 case CPU_R4000PC:
459 case CPU_R4000SC:
460 case CPU_R4000MC:
461 case CPU_R4400PC:
462 case CPU_R4400SC:
463 case CPU_R4400MC:
464 /*
465 * This branch uses up a mtc0 hazard nop slot and saves
466 * two nops after the tlbw instruction.
467 */
468 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
469 tlbw(p);
470 uasm_l_tlbw_hazard(l, *p);
471 uasm_i_nop(p);
472 break;
473
474 case CPU_R4600:
475 case CPU_R4700:
476 case CPU_R5000:
477 case CPU_R5000A:
478 uasm_i_nop(p);
479 tlbw(p);
480 uasm_i_nop(p);
481 break;
482
483 case CPU_R4300:
484 case CPU_5KC:
485 case CPU_TX49XX:
486 case CPU_PR4450:
487 case CPU_XLR:
488 uasm_i_nop(p);
489 tlbw(p);
490 break;
491
492 case CPU_R10000:
493 case CPU_R12000:
494 case CPU_R14000:
495 case CPU_4KC:
496 case CPU_4KEC:
497 case CPU_SB1:
498 case CPU_SB1A:
499 case CPU_4KSC:
500 case CPU_20KC:
501 case CPU_25KF:
502 case CPU_BMIPS32:
503 case CPU_BMIPS3300:
504 case CPU_BMIPS4350:
505 case CPU_BMIPS4380:
506 case CPU_BMIPS5000:
507 case CPU_LOONGSON2:
508 case CPU_R5500:
509 if (m4kc_tlbp_war())
510 uasm_i_nop(p);
511 case CPU_ALCHEMY:
512 tlbw(p);
513 break;
514
515 case CPU_NEVADA:
516 uasm_i_nop(p); /* QED specifies 2 nops hazard */
517 /*
518 * This branch uses up a mtc0 hazard nop slot and saves
519 * a nop after the tlbw instruction.
520 */
521 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
522 tlbw(p);
523 uasm_l_tlbw_hazard(l, *p);
524 break;
525
526 case CPU_RM7000:
527 uasm_i_nop(p);
528 uasm_i_nop(p);
529 uasm_i_nop(p);
530 uasm_i_nop(p);
531 tlbw(p);
532 break;
533
534 case CPU_RM9000:
535 /*
536 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
537 * use of the JTLB for instructions should not occur for 4
538 * cpu cycles and use for data translations should not occur
539 * for 3 cpu cycles.
540 */
541 uasm_i_ssnop(p);
542 uasm_i_ssnop(p);
543 uasm_i_ssnop(p);
544 uasm_i_ssnop(p);
545 tlbw(p);
546 uasm_i_ssnop(p);
547 uasm_i_ssnop(p);
548 uasm_i_ssnop(p);
549 uasm_i_ssnop(p);
550 break;
551
552 case CPU_VR4111:
553 case CPU_VR4121:
554 case CPU_VR4122:
555 case CPU_VR4181:
556 case CPU_VR4181A:
557 uasm_i_nop(p);
558 uasm_i_nop(p);
559 tlbw(p);
560 uasm_i_nop(p);
561 uasm_i_nop(p);
562 break;
563
564 case CPU_VR4131:
565 case CPU_VR4133:
566 case CPU_R5432:
567 uasm_i_nop(p);
568 uasm_i_nop(p);
569 tlbw(p);
570 break;
571
572 case CPU_JZRISC:
573 tlbw(p);
574 uasm_i_nop(p);
575 break;
576
577 default:
578 panic("No TLB refill handler yet (CPU type: %d)",
579 current_cpu_data.cputype);
580 break;
581 }
582 }
583
build_convert_pte_to_entrylo(u32 ** p,unsigned int reg)584 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
585 unsigned int reg)
586 {
587 if (kernel_uses_smartmips_rixi) {
588 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
589 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
590 } else {
591 #ifdef CONFIG_64BIT_PHYS_ADDR
592 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
593 #else
594 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
595 #endif
596 }
597 }
598
599 #ifdef CONFIG_HUGETLB_PAGE
600
build_restore_pagemask(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,enum label_id lid,int restore_scratch)601 static __cpuinit void build_restore_pagemask(u32 **p,
602 struct uasm_reloc **r,
603 unsigned int tmp,
604 enum label_id lid,
605 int restore_scratch)
606 {
607 if (restore_scratch) {
608 /* Reset default page size */
609 if (PM_DEFAULT_MASK >> 16) {
610 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
611 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
612 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
613 uasm_il_b(p, r, lid);
614 } else if (PM_DEFAULT_MASK) {
615 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
616 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
617 uasm_il_b(p, r, lid);
618 } else {
619 uasm_i_mtc0(p, 0, C0_PAGEMASK);
620 uasm_il_b(p, r, lid);
621 }
622 if (scratch_reg > 0)
623 UASM_i_MFC0(p, 1, 31, scratch_reg);
624 else
625 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
626 } else {
627 /* Reset default page size */
628 if (PM_DEFAULT_MASK >> 16) {
629 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
630 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
631 uasm_il_b(p, r, lid);
632 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
633 } else if (PM_DEFAULT_MASK) {
634 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
635 uasm_il_b(p, r, lid);
636 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
637 } else {
638 uasm_il_b(p, r, lid);
639 uasm_i_mtc0(p, 0, C0_PAGEMASK);
640 }
641 }
642 }
643
build_huge_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,enum tlb_write_entry wmode,int restore_scratch)644 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
645 struct uasm_label **l,
646 struct uasm_reloc **r,
647 unsigned int tmp,
648 enum tlb_write_entry wmode,
649 int restore_scratch)
650 {
651 /* Set huge page tlb entry size */
652 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
653 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
654 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
655
656 build_tlb_write_entry(p, l, r, wmode);
657
658 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
659 }
660
661 /*
662 * Check if Huge PTE is present, if so then jump to LABEL.
663 */
664 static void __cpuinit
build_is_huge_pte(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,unsigned int pmd,int lid)665 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
666 unsigned int pmd, int lid)
667 {
668 UASM_i_LW(p, tmp, 0, pmd);
669 if (use_bbit_insns()) {
670 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
671 } else {
672 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
673 uasm_il_bnez(p, r, tmp, lid);
674 }
675 }
676
build_huge_update_entries(u32 ** p,unsigned int pte,unsigned int tmp)677 static __cpuinit void build_huge_update_entries(u32 **p,
678 unsigned int pte,
679 unsigned int tmp)
680 {
681 int small_sequence;
682
683 /*
684 * A huge PTE describes an area the size of the
685 * configured huge page size. This is twice the
686 * of the large TLB entry size we intend to use.
687 * A TLB entry half the size of the configured
688 * huge page size is configured into entrylo0
689 * and entrylo1 to cover the contiguous huge PTE
690 * address space.
691 */
692 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
693
694 /* We can clobber tmp. It isn't used after this.*/
695 if (!small_sequence)
696 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
697
698 build_convert_pte_to_entrylo(p, pte);
699 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
700 /* convert to entrylo1 */
701 if (small_sequence)
702 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
703 else
704 UASM_i_ADDU(p, pte, pte, tmp);
705
706 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
707 }
708
build_huge_handler_tail(u32 ** p,struct uasm_reloc ** r,struct uasm_label ** l,unsigned int pte,unsigned int ptr)709 static __cpuinit void build_huge_handler_tail(u32 **p,
710 struct uasm_reloc **r,
711 struct uasm_label **l,
712 unsigned int pte,
713 unsigned int ptr)
714 {
715 #ifdef CONFIG_SMP
716 UASM_i_SC(p, pte, 0, ptr);
717 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
718 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
719 #else
720 UASM_i_SW(p, pte, 0, ptr);
721 #endif
722 build_huge_update_entries(p, pte, ptr);
723 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
724 }
725 #endif /* CONFIG_HUGETLB_PAGE */
726
727 #ifdef CONFIG_64BIT
728 /*
729 * TMP and PTR are scratch.
730 * TMP will be clobbered, PTR will hold the pmd entry.
731 */
732 static void __cpuinit
build_get_pmde64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)733 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
734 unsigned int tmp, unsigned int ptr)
735 {
736 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
737 long pgdc = (long)pgd_current;
738 #endif
739 /*
740 * The vmalloc handling is not in the hotpath.
741 */
742 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
743
744 if (check_for_high_segbits) {
745 /*
746 * The kernel currently implicitely assumes that the
747 * MIPS SEGBITS parameter for the processor is
748 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
749 * allocate virtual addresses outside the maximum
750 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
751 * that doesn't prevent user code from accessing the
752 * higher xuseg addresses. Here, we make sure that
753 * everything but the lower xuseg addresses goes down
754 * the module_alloc/vmalloc path.
755 */
756 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
757 uasm_il_bnez(p, r, ptr, label_vmalloc);
758 } else {
759 uasm_il_bltz(p, r, tmp, label_vmalloc);
760 }
761 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
762
763 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
764 if (pgd_reg != -1) {
765 /* pgd is in pgd_reg */
766 UASM_i_MFC0(p, ptr, 31, pgd_reg);
767 } else {
768 /*
769 * &pgd << 11 stored in CONTEXT [23..63].
770 */
771 UASM_i_MFC0(p, ptr, C0_CONTEXT);
772
773 /* Clear lower 23 bits of context. */
774 uasm_i_dins(p, ptr, 0, 0, 23);
775
776 /* 1 0 1 0 1 << 6 xkphys cached */
777 uasm_i_ori(p, ptr, ptr, 0x540);
778 uasm_i_drotr(p, ptr, ptr, 11);
779 }
780 #elif defined(CONFIG_SMP)
781 # ifdef CONFIG_MIPS_MT_SMTC
782 /*
783 * SMTC uses TCBind value as "CPU" index
784 */
785 uasm_i_mfc0(p, ptr, C0_TCBIND);
786 uasm_i_dsrl_safe(p, ptr, ptr, 19);
787 # else
788 /*
789 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
790 * stored in CONTEXT.
791 */
792 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
793 uasm_i_dsrl_safe(p, ptr, ptr, 23);
794 # endif
795 UASM_i_LA_mostly(p, tmp, pgdc);
796 uasm_i_daddu(p, ptr, ptr, tmp);
797 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
798 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
799 #else
800 UASM_i_LA_mostly(p, ptr, pgdc);
801 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
802 #endif
803
804 uasm_l_vmalloc_done(l, *p);
805
806 /* get pgd offset in bytes */
807 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
808
809 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
810 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
811 #ifndef __PAGETABLE_PMD_FOLDED
812 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
813 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
814 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
815 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
816 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
817 #endif
818 }
819
820 /*
821 * BVADDR is the faulting address, PTR is scratch.
822 * PTR will hold the pgd for vmalloc.
823 */
824 static void __cpuinit
build_get_pgd_vmalloc64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int bvaddr,unsigned int ptr,enum vmalloc64_mode mode)825 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
826 unsigned int bvaddr, unsigned int ptr,
827 enum vmalloc64_mode mode)
828 {
829 long swpd = (long)swapper_pg_dir;
830 int single_insn_swpd;
831 int did_vmalloc_branch = 0;
832
833 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
834
835 uasm_l_vmalloc(l, *p);
836
837 if (mode != not_refill && check_for_high_segbits) {
838 if (single_insn_swpd) {
839 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
840 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
841 did_vmalloc_branch = 1;
842 /* fall through */
843 } else {
844 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
845 }
846 }
847 if (!did_vmalloc_branch) {
848 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
849 uasm_il_b(p, r, label_vmalloc_done);
850 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
851 } else {
852 UASM_i_LA_mostly(p, ptr, swpd);
853 uasm_il_b(p, r, label_vmalloc_done);
854 if (uasm_in_compat_space_p(swpd))
855 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
856 else
857 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
858 }
859 }
860 if (mode != not_refill && check_for_high_segbits) {
861 uasm_l_large_segbits_fault(l, *p);
862 /*
863 * We get here if we are an xsseg address, or if we are
864 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
865 *
866 * Ignoring xsseg (assume disabled so would generate
867 * (address errors?), the only remaining possibility
868 * is the upper xuseg addresses. On processors with
869 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
870 * addresses would have taken an address error. We try
871 * to mimic that here by taking a load/istream page
872 * fault.
873 */
874 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
875 uasm_i_jr(p, ptr);
876
877 if (mode == refill_scratch) {
878 if (scratch_reg > 0)
879 UASM_i_MFC0(p, 1, 31, scratch_reg);
880 else
881 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
882 } else {
883 uasm_i_nop(p);
884 }
885 }
886 }
887
888 #else /* !CONFIG_64BIT */
889
890 /*
891 * TMP and PTR are scratch.
892 * TMP will be clobbered, PTR will hold the pgd entry.
893 */
894 static void __cpuinit __maybe_unused
build_get_pgde32(u32 ** p,unsigned int tmp,unsigned int ptr)895 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
896 {
897 long pgdc = (long)pgd_current;
898
899 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
900 #ifdef CONFIG_SMP
901 #ifdef CONFIG_MIPS_MT_SMTC
902 /*
903 * SMTC uses TCBind value as "CPU" index
904 */
905 uasm_i_mfc0(p, ptr, C0_TCBIND);
906 UASM_i_LA_mostly(p, tmp, pgdc);
907 uasm_i_srl(p, ptr, ptr, 19);
908 #else
909 /*
910 * smp_processor_id() << 3 is stored in CONTEXT.
911 */
912 uasm_i_mfc0(p, ptr, C0_CONTEXT);
913 UASM_i_LA_mostly(p, tmp, pgdc);
914 uasm_i_srl(p, ptr, ptr, 23);
915 #endif
916 uasm_i_addu(p, ptr, tmp, ptr);
917 #else
918 UASM_i_LA_mostly(p, ptr, pgdc);
919 #endif
920 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
921 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
922 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
923 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
924 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
925 }
926
927 #endif /* !CONFIG_64BIT */
928
build_adjust_context(u32 ** p,unsigned int ctx)929 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
930 {
931 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
932 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
933
934 switch (current_cpu_type()) {
935 case CPU_VR41XX:
936 case CPU_VR4111:
937 case CPU_VR4121:
938 case CPU_VR4122:
939 case CPU_VR4131:
940 case CPU_VR4181:
941 case CPU_VR4181A:
942 case CPU_VR4133:
943 shift += 2;
944 break;
945
946 default:
947 break;
948 }
949
950 if (shift)
951 UASM_i_SRL(p, ctx, ctx, shift);
952 uasm_i_andi(p, ctx, ctx, mask);
953 }
954
build_get_ptep(u32 ** p,unsigned int tmp,unsigned int ptr)955 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
956 {
957 /*
958 * Bug workaround for the Nevada. It seems as if under certain
959 * circumstances the move from cp0_context might produce a
960 * bogus result when the mfc0 instruction and its consumer are
961 * in a different cacheline or a load instruction, probably any
962 * memory reference, is between them.
963 */
964 switch (current_cpu_type()) {
965 case CPU_NEVADA:
966 UASM_i_LW(p, ptr, 0, ptr);
967 GET_CONTEXT(p, tmp); /* get context reg */
968 break;
969
970 default:
971 GET_CONTEXT(p, tmp); /* get context reg */
972 UASM_i_LW(p, ptr, 0, ptr);
973 break;
974 }
975
976 build_adjust_context(p, tmp);
977 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
978 }
979
build_update_entries(u32 ** p,unsigned int tmp,unsigned int ptep)980 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
981 unsigned int ptep)
982 {
983 /*
984 * 64bit address support (36bit on a 32bit CPU) in a 32bit
985 * Kernel is a special case. Only a few CPUs use it.
986 */
987 #ifdef CONFIG_64BIT_PHYS_ADDR
988 if (cpu_has_64bits) {
989 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
990 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
991 if (kernel_uses_smartmips_rixi) {
992 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
993 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
994 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
995 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
996 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
997 } else {
998 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
999 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1000 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1001 }
1002 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1003 } else {
1004 int pte_off_even = sizeof(pte_t) / 2;
1005 int pte_off_odd = pte_off_even + sizeof(pte_t);
1006
1007 /* The pte entries are pre-shifted */
1008 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1009 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1010 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1011 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1012 }
1013 #else
1014 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1015 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1016 if (r45k_bvahwbug())
1017 build_tlb_probe_entry(p);
1018 if (kernel_uses_smartmips_rixi) {
1019 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1020 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1021 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1022 if (r4k_250MHZhwbug())
1023 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1024 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1025 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1026 } else {
1027 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1028 if (r4k_250MHZhwbug())
1029 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1030 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1031 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1032 if (r45k_bvahwbug())
1033 uasm_i_mfc0(p, tmp, C0_INDEX);
1034 }
1035 if (r4k_250MHZhwbug())
1036 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1037 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1038 #endif
1039 }
1040
1041 struct mips_huge_tlb_info {
1042 int huge_pte;
1043 int restore_scratch;
1044 };
1045
1046 static struct mips_huge_tlb_info __cpuinit
build_fast_tlb_refill_handler(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr,int c0_scratch)1047 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1048 struct uasm_reloc **r, unsigned int tmp,
1049 unsigned int ptr, int c0_scratch)
1050 {
1051 struct mips_huge_tlb_info rv;
1052 unsigned int even, odd;
1053 int vmalloc_branch_delay_filled = 0;
1054 const int scratch = 1; /* Our extra working register */
1055
1056 rv.huge_pte = scratch;
1057 rv.restore_scratch = 0;
1058
1059 if (check_for_high_segbits) {
1060 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1061
1062 if (pgd_reg != -1)
1063 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1064 else
1065 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1066
1067 if (c0_scratch >= 0)
1068 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1069 else
1070 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1071
1072 uasm_i_dsrl_safe(p, scratch, tmp,
1073 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1074 uasm_il_bnez(p, r, scratch, label_vmalloc);
1075
1076 if (pgd_reg == -1) {
1077 vmalloc_branch_delay_filled = 1;
1078 /* Clear lower 23 bits of context. */
1079 uasm_i_dins(p, ptr, 0, 0, 23);
1080 }
1081 } else {
1082 if (pgd_reg != -1)
1083 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1084 else
1085 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1086
1087 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1088
1089 if (c0_scratch >= 0)
1090 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1091 else
1092 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1093
1094 if (pgd_reg == -1)
1095 /* Clear lower 23 bits of context. */
1096 uasm_i_dins(p, ptr, 0, 0, 23);
1097
1098 uasm_il_bltz(p, r, tmp, label_vmalloc);
1099 }
1100
1101 if (pgd_reg == -1) {
1102 vmalloc_branch_delay_filled = 1;
1103 /* 1 0 1 0 1 << 6 xkphys cached */
1104 uasm_i_ori(p, ptr, ptr, 0x540);
1105 uasm_i_drotr(p, ptr, ptr, 11);
1106 }
1107
1108 #ifdef __PAGETABLE_PMD_FOLDED
1109 #define LOC_PTEP scratch
1110 #else
1111 #define LOC_PTEP ptr
1112 #endif
1113
1114 if (!vmalloc_branch_delay_filled)
1115 /* get pgd offset in bytes */
1116 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1117
1118 uasm_l_vmalloc_done(l, *p);
1119
1120 /*
1121 * tmp ptr
1122 * fall-through case = badvaddr *pgd_current
1123 * vmalloc case = badvaddr swapper_pg_dir
1124 */
1125
1126 if (vmalloc_branch_delay_filled)
1127 /* get pgd offset in bytes */
1128 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1129
1130 #ifdef __PAGETABLE_PMD_FOLDED
1131 GET_CONTEXT(p, tmp); /* get context reg */
1132 #endif
1133 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1134
1135 if (use_lwx_insns()) {
1136 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1137 } else {
1138 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1139 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1140 }
1141
1142 #ifndef __PAGETABLE_PMD_FOLDED
1143 /* get pmd offset in bytes */
1144 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1145 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1146 GET_CONTEXT(p, tmp); /* get context reg */
1147
1148 if (use_lwx_insns()) {
1149 UASM_i_LWX(p, scratch, scratch, ptr);
1150 } else {
1151 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1152 UASM_i_LW(p, scratch, 0, ptr);
1153 }
1154 #endif
1155 /* Adjust the context during the load latency. */
1156 build_adjust_context(p, tmp);
1157
1158 #ifdef CONFIG_HUGETLB_PAGE
1159 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1160 /*
1161 * The in the LWX case we don't want to do the load in the
1162 * delay slot. It cannot issue in the same cycle and may be
1163 * speculative and unneeded.
1164 */
1165 if (use_lwx_insns())
1166 uasm_i_nop(p);
1167 #endif /* CONFIG_HUGETLB_PAGE */
1168
1169
1170 /* build_update_entries */
1171 if (use_lwx_insns()) {
1172 even = ptr;
1173 odd = tmp;
1174 UASM_i_LWX(p, even, scratch, tmp);
1175 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1176 UASM_i_LWX(p, odd, scratch, tmp);
1177 } else {
1178 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1179 even = tmp;
1180 odd = ptr;
1181 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1182 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1183 }
1184 if (kernel_uses_smartmips_rixi) {
1185 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1186 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1187 uasm_i_drotr(p, even, even,
1188 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1189 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1190 uasm_i_drotr(p, odd, odd,
1191 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1192 } else {
1193 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1194 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1195 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1196 }
1197 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1198
1199 if (c0_scratch >= 0) {
1200 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1201 build_tlb_write_entry(p, l, r, tlb_random);
1202 uasm_l_leave(l, *p);
1203 rv.restore_scratch = 1;
1204 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1205 build_tlb_write_entry(p, l, r, tlb_random);
1206 uasm_l_leave(l, *p);
1207 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1208 } else {
1209 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1210 build_tlb_write_entry(p, l, r, tlb_random);
1211 uasm_l_leave(l, *p);
1212 rv.restore_scratch = 1;
1213 }
1214
1215 uasm_i_eret(p); /* return from trap */
1216
1217 return rv;
1218 }
1219
1220 /*
1221 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1222 * because EXL == 0. If we wrap, we can also use the 32 instruction
1223 * slots before the XTLB refill exception handler which belong to the
1224 * unused TLB refill exception.
1225 */
1226 #define MIPS64_REFILL_INSNS 32
1227
build_r4000_tlb_refill_handler(void)1228 static void __cpuinit build_r4000_tlb_refill_handler(void)
1229 {
1230 u32 *p = tlb_handler;
1231 struct uasm_label *l = labels;
1232 struct uasm_reloc *r = relocs;
1233 u32 *f;
1234 unsigned int final_len;
1235 struct mips_huge_tlb_info htlb_info __maybe_unused;
1236 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1237
1238 memset(tlb_handler, 0, sizeof(tlb_handler));
1239 memset(labels, 0, sizeof(labels));
1240 memset(relocs, 0, sizeof(relocs));
1241 memset(final_handler, 0, sizeof(final_handler));
1242
1243 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1244 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1245 scratch_reg);
1246 vmalloc_mode = refill_scratch;
1247 } else {
1248 htlb_info.huge_pte = K0;
1249 htlb_info.restore_scratch = 0;
1250 vmalloc_mode = refill_noscratch;
1251 /*
1252 * create the plain linear handler
1253 */
1254 if (bcm1250_m3_war()) {
1255 unsigned int segbits = 44;
1256
1257 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1258 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1259 uasm_i_xor(&p, K0, K0, K1);
1260 uasm_i_dsrl_safe(&p, K1, K0, 62);
1261 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1262 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1263 uasm_i_or(&p, K0, K0, K1);
1264 uasm_il_bnez(&p, &r, K0, label_leave);
1265 /* No need for uasm_i_nop */
1266 }
1267
1268 #ifdef CONFIG_64BIT
1269 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1270 #else
1271 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1272 #endif
1273
1274 #ifdef CONFIG_HUGETLB_PAGE
1275 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1276 #endif
1277
1278 build_get_ptep(&p, K0, K1);
1279 build_update_entries(&p, K0, K1);
1280 build_tlb_write_entry(&p, &l, &r, tlb_random);
1281 uasm_l_leave(&l, p);
1282 uasm_i_eret(&p); /* return from trap */
1283 }
1284 #ifdef CONFIG_HUGETLB_PAGE
1285 uasm_l_tlb_huge_update(&l, p);
1286 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1287 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1288 htlb_info.restore_scratch);
1289 #endif
1290
1291 #ifdef CONFIG_64BIT
1292 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1293 #endif
1294
1295 /*
1296 * Overflow check: For the 64bit handler, we need at least one
1297 * free instruction slot for the wrap-around branch. In worst
1298 * case, if the intended insertion point is a delay slot, we
1299 * need three, with the second nop'ed and the third being
1300 * unused.
1301 */
1302 /* Loongson2 ebase is different than r4k, we have more space */
1303 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1304 if ((p - tlb_handler) > 64)
1305 panic("TLB refill handler space exceeded");
1306 #else
1307 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1308 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1309 && uasm_insn_has_bdelay(relocs,
1310 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1311 panic("TLB refill handler space exceeded");
1312 #endif
1313
1314 /*
1315 * Now fold the handler in the TLB refill handler space.
1316 */
1317 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1318 f = final_handler;
1319 /* Simplest case, just copy the handler. */
1320 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1321 final_len = p - tlb_handler;
1322 #else /* CONFIG_64BIT */
1323 f = final_handler + MIPS64_REFILL_INSNS;
1324 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1325 /* Just copy the handler. */
1326 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1327 final_len = p - tlb_handler;
1328 } else {
1329 #if defined(CONFIG_HUGETLB_PAGE)
1330 const enum label_id ls = label_tlb_huge_update;
1331 #else
1332 const enum label_id ls = label_vmalloc;
1333 #endif
1334 u32 *split;
1335 int ov = 0;
1336 int i;
1337
1338 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1339 ;
1340 BUG_ON(i == ARRAY_SIZE(labels));
1341 split = labels[i].addr;
1342
1343 /*
1344 * See if we have overflown one way or the other.
1345 */
1346 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1347 split < p - MIPS64_REFILL_INSNS)
1348 ov = 1;
1349
1350 if (ov) {
1351 /*
1352 * Split two instructions before the end. One
1353 * for the branch and one for the instruction
1354 * in the delay slot.
1355 */
1356 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1357
1358 /*
1359 * If the branch would fall in a delay slot,
1360 * we must back up an additional instruction
1361 * so that it is no longer in a delay slot.
1362 */
1363 if (uasm_insn_has_bdelay(relocs, split - 1))
1364 split--;
1365 }
1366 /* Copy first part of the handler. */
1367 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1368 f += split - tlb_handler;
1369
1370 if (ov) {
1371 /* Insert branch. */
1372 uasm_l_split(&l, final_handler);
1373 uasm_il_b(&f, &r, label_split);
1374 if (uasm_insn_has_bdelay(relocs, split))
1375 uasm_i_nop(&f);
1376 else {
1377 uasm_copy_handler(relocs, labels,
1378 split, split + 1, f);
1379 uasm_move_labels(labels, f, f + 1, -1);
1380 f++;
1381 split++;
1382 }
1383 }
1384
1385 /* Copy the rest of the handler. */
1386 uasm_copy_handler(relocs, labels, split, p, final_handler);
1387 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1388 (p - split);
1389 }
1390 #endif /* CONFIG_64BIT */
1391
1392 uasm_resolve_relocs(relocs, labels);
1393 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1394 final_len);
1395
1396 memcpy((void *)ebase, final_handler, 0x100);
1397
1398 dump_handler((u32 *)ebase, 64);
1399 }
1400
1401 /*
1402 * 128 instructions for the fastpath handler is generous and should
1403 * never be exceeded.
1404 */
1405 #define FASTPATH_SIZE 128
1406
1407 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1408 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1409 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1410 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1411 u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1412
build_r4000_setup_pgd(void)1413 static void __cpuinit build_r4000_setup_pgd(void)
1414 {
1415 const int a0 = 4;
1416 const int a1 = 5;
1417 u32 *p = tlbmiss_handler_setup_pgd;
1418 struct uasm_label *l = labels;
1419 struct uasm_reloc *r = relocs;
1420
1421 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1422 memset(labels, 0, sizeof(labels));
1423 memset(relocs, 0, sizeof(relocs));
1424
1425 pgd_reg = allocate_kscratch();
1426
1427 if (pgd_reg == -1) {
1428 /* PGD << 11 in c0_Context */
1429 /*
1430 * If it is a ckseg0 address, convert to a physical
1431 * address. Shifting right by 29 and adding 4 will
1432 * result in zero for these addresses.
1433 *
1434 */
1435 UASM_i_SRA(&p, a1, a0, 29);
1436 UASM_i_ADDIU(&p, a1, a1, 4);
1437 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1438 uasm_i_nop(&p);
1439 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1440 uasm_l_tlbl_goaround1(&l, p);
1441 UASM_i_SLL(&p, a0, a0, 11);
1442 uasm_i_jr(&p, 31);
1443 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1444 } else {
1445 /* PGD in c0_KScratch */
1446 uasm_i_jr(&p, 31);
1447 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1448 }
1449 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1450 panic("tlbmiss_handler_setup_pgd space exceeded");
1451 uasm_resolve_relocs(relocs, labels);
1452 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1453 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1454
1455 dump_handler(tlbmiss_handler_setup_pgd,
1456 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1457 }
1458 #endif
1459
1460 static void __cpuinit
iPTE_LW(u32 ** p,unsigned int pte,unsigned int ptr)1461 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1462 {
1463 #ifdef CONFIG_SMP
1464 # ifdef CONFIG_64BIT_PHYS_ADDR
1465 if (cpu_has_64bits)
1466 uasm_i_lld(p, pte, 0, ptr);
1467 else
1468 # endif
1469 UASM_i_LL(p, pte, 0, ptr);
1470 #else
1471 # ifdef CONFIG_64BIT_PHYS_ADDR
1472 if (cpu_has_64bits)
1473 uasm_i_ld(p, pte, 0, ptr);
1474 else
1475 # endif
1476 UASM_i_LW(p, pte, 0, ptr);
1477 #endif
1478 }
1479
1480 static void __cpuinit
iPTE_SW(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int mode)1481 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1482 unsigned int mode)
1483 {
1484 #ifdef CONFIG_64BIT_PHYS_ADDR
1485 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1486 #endif
1487
1488 uasm_i_ori(p, pte, pte, mode);
1489 #ifdef CONFIG_SMP
1490 # ifdef CONFIG_64BIT_PHYS_ADDR
1491 if (cpu_has_64bits)
1492 uasm_i_scd(p, pte, 0, ptr);
1493 else
1494 # endif
1495 UASM_i_SC(p, pte, 0, ptr);
1496
1497 if (r10000_llsc_war())
1498 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1499 else
1500 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1501
1502 # ifdef CONFIG_64BIT_PHYS_ADDR
1503 if (!cpu_has_64bits) {
1504 /* no uasm_i_nop needed */
1505 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1506 uasm_i_ori(p, pte, pte, hwmode);
1507 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1508 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1509 /* no uasm_i_nop needed */
1510 uasm_i_lw(p, pte, 0, ptr);
1511 } else
1512 uasm_i_nop(p);
1513 # else
1514 uasm_i_nop(p);
1515 # endif
1516 #else
1517 # ifdef CONFIG_64BIT_PHYS_ADDR
1518 if (cpu_has_64bits)
1519 uasm_i_sd(p, pte, 0, ptr);
1520 else
1521 # endif
1522 UASM_i_SW(p, pte, 0, ptr);
1523
1524 # ifdef CONFIG_64BIT_PHYS_ADDR
1525 if (!cpu_has_64bits) {
1526 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1527 uasm_i_ori(p, pte, pte, hwmode);
1528 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1529 uasm_i_lw(p, pte, 0, ptr);
1530 }
1531 # endif
1532 #endif
1533 }
1534
1535 /*
1536 * Check if PTE is present, if not then jump to LABEL. PTR points to
1537 * the page table where this PTE is located, PTE will be re-loaded
1538 * with it's original value.
1539 */
1540 static void __cpuinit
build_pte_present(u32 ** p,struct uasm_reloc ** r,int pte,int ptr,int scratch,enum label_id lid)1541 build_pte_present(u32 **p, struct uasm_reloc **r,
1542 int pte, int ptr, int scratch, enum label_id lid)
1543 {
1544 int t = scratch >= 0 ? scratch : pte;
1545
1546 if (kernel_uses_smartmips_rixi) {
1547 if (use_bbit_insns()) {
1548 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1549 uasm_i_nop(p);
1550 } else {
1551 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1552 uasm_il_beqz(p, r, t, lid);
1553 if (pte == t)
1554 /* You lose the SMP race :-(*/
1555 iPTE_LW(p, pte, ptr);
1556 }
1557 } else {
1558 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1559 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1560 uasm_il_bnez(p, r, t, lid);
1561 if (pte == t)
1562 /* You lose the SMP race :-(*/
1563 iPTE_LW(p, pte, ptr);
1564 }
1565 }
1566
1567 /* Make PTE valid, store result in PTR. */
1568 static void __cpuinit
build_make_valid(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr)1569 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1570 unsigned int ptr)
1571 {
1572 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1573
1574 iPTE_SW(p, r, pte, ptr, mode);
1575 }
1576
1577 /*
1578 * Check if PTE can be written to, if not branch to LABEL. Regardless
1579 * restore PTE with value from PTR when done.
1580 */
1581 static void __cpuinit
build_pte_writable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1582 build_pte_writable(u32 **p, struct uasm_reloc **r,
1583 unsigned int pte, unsigned int ptr, int scratch,
1584 enum label_id lid)
1585 {
1586 int t = scratch >= 0 ? scratch : pte;
1587
1588 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1589 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1590 uasm_il_bnez(p, r, t, lid);
1591 if (pte == t)
1592 /* You lose the SMP race :-(*/
1593 iPTE_LW(p, pte, ptr);
1594 else
1595 uasm_i_nop(p);
1596 }
1597
1598 /* Make PTE writable, update software status bits as well, then store
1599 * at PTR.
1600 */
1601 static void __cpuinit
build_make_write(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr)1602 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1603 unsigned int ptr)
1604 {
1605 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1606 | _PAGE_DIRTY);
1607
1608 iPTE_SW(p, r, pte, ptr, mode);
1609 }
1610
1611 /*
1612 * Check if PTE can be modified, if not branch to LABEL. Regardless
1613 * restore PTE with value from PTR when done.
1614 */
1615 static void __cpuinit
build_pte_modifiable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1616 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1617 unsigned int pte, unsigned int ptr, int scratch,
1618 enum label_id lid)
1619 {
1620 if (use_bbit_insns()) {
1621 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1622 uasm_i_nop(p);
1623 } else {
1624 int t = scratch >= 0 ? scratch : pte;
1625 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1626 uasm_il_beqz(p, r, t, lid);
1627 if (pte == t)
1628 /* You lose the SMP race :-(*/
1629 iPTE_LW(p, pte, ptr);
1630 }
1631 }
1632
1633 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1634
1635
1636 /*
1637 * R3000 style TLB load/store/modify handlers.
1638 */
1639
1640 /*
1641 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1642 * Then it returns.
1643 */
1644 static void __cpuinit
build_r3000_pte_reload_tlbwi(u32 ** p,unsigned int pte,unsigned int tmp)1645 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1646 {
1647 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1648 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1649 uasm_i_tlbwi(p);
1650 uasm_i_jr(p, tmp);
1651 uasm_i_rfe(p); /* branch delay */
1652 }
1653
1654 /*
1655 * This places the pte into ENTRYLO0 and writes it with tlbwi
1656 * or tlbwr as appropriate. This is because the index register
1657 * may have the probe fail bit set as a result of a trap on a
1658 * kseg2 access, i.e. without refill. Then it returns.
1659 */
1660 static void __cpuinit
build_r3000_tlb_reload_write(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int pte,unsigned int tmp)1661 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1662 struct uasm_reloc **r, unsigned int pte,
1663 unsigned int tmp)
1664 {
1665 uasm_i_mfc0(p, tmp, C0_INDEX);
1666 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1667 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1668 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1669 uasm_i_tlbwi(p); /* cp0 delay */
1670 uasm_i_jr(p, tmp);
1671 uasm_i_rfe(p); /* branch delay */
1672 uasm_l_r3000_write_probe_fail(l, *p);
1673 uasm_i_tlbwr(p); /* cp0 delay */
1674 uasm_i_jr(p, tmp);
1675 uasm_i_rfe(p); /* branch delay */
1676 }
1677
1678 static void __cpuinit
build_r3000_tlbchange_handler_head(u32 ** p,unsigned int pte,unsigned int ptr)1679 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1680 unsigned int ptr)
1681 {
1682 long pgdc = (long)pgd_current;
1683
1684 uasm_i_mfc0(p, pte, C0_BADVADDR);
1685 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1686 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1687 uasm_i_srl(p, pte, pte, 22); /* load delay */
1688 uasm_i_sll(p, pte, pte, 2);
1689 uasm_i_addu(p, ptr, ptr, pte);
1690 uasm_i_mfc0(p, pte, C0_CONTEXT);
1691 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1692 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1693 uasm_i_addu(p, ptr, ptr, pte);
1694 uasm_i_lw(p, pte, 0, ptr);
1695 uasm_i_tlbp(p); /* load delay */
1696 }
1697
build_r3000_tlb_load_handler(void)1698 static void __cpuinit build_r3000_tlb_load_handler(void)
1699 {
1700 u32 *p = handle_tlbl;
1701 struct uasm_label *l = labels;
1702 struct uasm_reloc *r = relocs;
1703
1704 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1705 memset(labels, 0, sizeof(labels));
1706 memset(relocs, 0, sizeof(relocs));
1707
1708 build_r3000_tlbchange_handler_head(&p, K0, K1);
1709 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1710 uasm_i_nop(&p); /* load delay */
1711 build_make_valid(&p, &r, K0, K1);
1712 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1713
1714 uasm_l_nopage_tlbl(&l, p);
1715 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1716 uasm_i_nop(&p);
1717
1718 if ((p - handle_tlbl) > FASTPATH_SIZE)
1719 panic("TLB load handler fastpath space exceeded");
1720
1721 uasm_resolve_relocs(relocs, labels);
1722 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1723 (unsigned int)(p - handle_tlbl));
1724
1725 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1726 }
1727
build_r3000_tlb_store_handler(void)1728 static void __cpuinit build_r3000_tlb_store_handler(void)
1729 {
1730 u32 *p = handle_tlbs;
1731 struct uasm_label *l = labels;
1732 struct uasm_reloc *r = relocs;
1733
1734 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1735 memset(labels, 0, sizeof(labels));
1736 memset(relocs, 0, sizeof(relocs));
1737
1738 build_r3000_tlbchange_handler_head(&p, K0, K1);
1739 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1740 uasm_i_nop(&p); /* load delay */
1741 build_make_write(&p, &r, K0, K1);
1742 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1743
1744 uasm_l_nopage_tlbs(&l, p);
1745 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1746 uasm_i_nop(&p);
1747
1748 if ((p - handle_tlbs) > FASTPATH_SIZE)
1749 panic("TLB store handler fastpath space exceeded");
1750
1751 uasm_resolve_relocs(relocs, labels);
1752 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1753 (unsigned int)(p - handle_tlbs));
1754
1755 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1756 }
1757
build_r3000_tlb_modify_handler(void)1758 static void __cpuinit build_r3000_tlb_modify_handler(void)
1759 {
1760 u32 *p = handle_tlbm;
1761 struct uasm_label *l = labels;
1762 struct uasm_reloc *r = relocs;
1763
1764 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1765 memset(labels, 0, sizeof(labels));
1766 memset(relocs, 0, sizeof(relocs));
1767
1768 build_r3000_tlbchange_handler_head(&p, K0, K1);
1769 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1770 uasm_i_nop(&p); /* load delay */
1771 build_make_write(&p, &r, K0, K1);
1772 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1773
1774 uasm_l_nopage_tlbm(&l, p);
1775 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1776 uasm_i_nop(&p);
1777
1778 if ((p - handle_tlbm) > FASTPATH_SIZE)
1779 panic("TLB modify handler fastpath space exceeded");
1780
1781 uasm_resolve_relocs(relocs, labels);
1782 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1783 (unsigned int)(p - handle_tlbm));
1784
1785 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1786 }
1787 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1788
1789 /*
1790 * R4000 style TLB load/store/modify handlers.
1791 */
1792 static struct work_registers __cpuinit
build_r4000_tlbchange_handler_head(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r)1793 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1794 struct uasm_reloc **r)
1795 {
1796 struct work_registers wr = build_get_work_registers(p);
1797
1798 #ifdef CONFIG_64BIT
1799 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1800 #else
1801 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1802 #endif
1803
1804 #ifdef CONFIG_HUGETLB_PAGE
1805 /*
1806 * For huge tlb entries, pmd doesn't contain an address but
1807 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1808 * see if we need to jump to huge tlb processing.
1809 */
1810 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1811 #endif
1812
1813 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1814 UASM_i_LW(p, wr.r2, 0, wr.r2);
1815 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1816 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1817 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1818
1819 #ifdef CONFIG_SMP
1820 uasm_l_smp_pgtable_change(l, *p);
1821 #endif
1822 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1823 if (!m4kc_tlbp_war())
1824 build_tlb_probe_entry(p);
1825 return wr;
1826 }
1827
1828 static void __cpuinit
build_r4000_tlbchange_handler_tail(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)1829 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1830 struct uasm_reloc **r, unsigned int tmp,
1831 unsigned int ptr)
1832 {
1833 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1834 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1835 build_update_entries(p, tmp, ptr);
1836 build_tlb_write_entry(p, l, r, tlb_indexed);
1837 uasm_l_leave(l, *p);
1838 build_restore_work_registers(p);
1839 uasm_i_eret(p); /* return from trap */
1840
1841 #ifdef CONFIG_64BIT
1842 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1843 #endif
1844 }
1845
build_r4000_tlb_load_handler(void)1846 static void __cpuinit build_r4000_tlb_load_handler(void)
1847 {
1848 u32 *p = handle_tlbl;
1849 struct uasm_label *l = labels;
1850 struct uasm_reloc *r = relocs;
1851 struct work_registers wr;
1852
1853 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1854 memset(labels, 0, sizeof(labels));
1855 memset(relocs, 0, sizeof(relocs));
1856
1857 if (bcm1250_m3_war()) {
1858 unsigned int segbits = 44;
1859
1860 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1861 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1862 uasm_i_xor(&p, K0, K0, K1);
1863 uasm_i_dsrl_safe(&p, K1, K0, 62);
1864 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1865 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1866 uasm_i_or(&p, K0, K0, K1);
1867 uasm_il_bnez(&p, &r, K0, label_leave);
1868 /* No need for uasm_i_nop */
1869 }
1870
1871 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1872 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1873 if (m4kc_tlbp_war())
1874 build_tlb_probe_entry(&p);
1875
1876 if (kernel_uses_smartmips_rixi) {
1877 /*
1878 * If the page is not _PAGE_VALID, RI or XI could not
1879 * have triggered it. Skip the expensive test..
1880 */
1881 if (use_bbit_insns()) {
1882 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1883 label_tlbl_goaround1);
1884 } else {
1885 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1886 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1887 }
1888 uasm_i_nop(&p);
1889
1890 uasm_i_tlbr(&p);
1891 /* Examine entrylo 0 or 1 based on ptr. */
1892 if (use_bbit_insns()) {
1893 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1894 } else {
1895 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1896 uasm_i_beqz(&p, wr.r3, 8);
1897 }
1898 /* load it in the delay slot*/
1899 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1900 /* load it if ptr is odd */
1901 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1902 /*
1903 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1904 * XI must have triggered it.
1905 */
1906 if (use_bbit_insns()) {
1907 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1908 uasm_i_nop(&p);
1909 uasm_l_tlbl_goaround1(&l, p);
1910 } else {
1911 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1912 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1913 uasm_i_nop(&p);
1914 }
1915 uasm_l_tlbl_goaround1(&l, p);
1916 }
1917 build_make_valid(&p, &r, wr.r1, wr.r2);
1918 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1919
1920 #ifdef CONFIG_HUGETLB_PAGE
1921 /*
1922 * This is the entry point when build_r4000_tlbchange_handler_head
1923 * spots a huge page.
1924 */
1925 uasm_l_tlb_huge_update(&l, p);
1926 iPTE_LW(&p, wr.r1, wr.r2);
1927 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1928 build_tlb_probe_entry(&p);
1929
1930 if (kernel_uses_smartmips_rixi) {
1931 /*
1932 * If the page is not _PAGE_VALID, RI or XI could not
1933 * have triggered it. Skip the expensive test..
1934 */
1935 if (use_bbit_insns()) {
1936 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1937 label_tlbl_goaround2);
1938 } else {
1939 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1940 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1941 }
1942 uasm_i_nop(&p);
1943
1944 uasm_i_tlbr(&p);
1945 /* Examine entrylo 0 or 1 based on ptr. */
1946 if (use_bbit_insns()) {
1947 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1948 } else {
1949 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1950 uasm_i_beqz(&p, wr.r3, 8);
1951 }
1952 /* load it in the delay slot*/
1953 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1954 /* load it if ptr is odd */
1955 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1956 /*
1957 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1958 * XI must have triggered it.
1959 */
1960 if (use_bbit_insns()) {
1961 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1962 } else {
1963 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1964 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1965 }
1966 if (PM_DEFAULT_MASK == 0)
1967 uasm_i_nop(&p);
1968 /*
1969 * We clobbered C0_PAGEMASK, restore it. On the other branch
1970 * it is restored in build_huge_tlb_write_entry.
1971 */
1972 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1973
1974 uasm_l_tlbl_goaround2(&l, p);
1975 }
1976 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1977 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1978 #endif
1979
1980 uasm_l_nopage_tlbl(&l, p);
1981 build_restore_work_registers(&p);
1982 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1983 uasm_i_nop(&p);
1984
1985 if ((p - handle_tlbl) > FASTPATH_SIZE)
1986 panic("TLB load handler fastpath space exceeded");
1987
1988 uasm_resolve_relocs(relocs, labels);
1989 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1990 (unsigned int)(p - handle_tlbl));
1991
1992 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1993 }
1994
build_r4000_tlb_store_handler(void)1995 static void __cpuinit build_r4000_tlb_store_handler(void)
1996 {
1997 u32 *p = handle_tlbs;
1998 struct uasm_label *l = labels;
1999 struct uasm_reloc *r = relocs;
2000 struct work_registers wr;
2001
2002 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2003 memset(labels, 0, sizeof(labels));
2004 memset(relocs, 0, sizeof(relocs));
2005
2006 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2007 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2008 if (m4kc_tlbp_war())
2009 build_tlb_probe_entry(&p);
2010 build_make_write(&p, &r, wr.r1, wr.r2);
2011 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2012
2013 #ifdef CONFIG_HUGETLB_PAGE
2014 /*
2015 * This is the entry point when
2016 * build_r4000_tlbchange_handler_head spots a huge page.
2017 */
2018 uasm_l_tlb_huge_update(&l, p);
2019 iPTE_LW(&p, wr.r1, wr.r2);
2020 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2021 build_tlb_probe_entry(&p);
2022 uasm_i_ori(&p, wr.r1, wr.r1,
2023 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2024 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2025 #endif
2026
2027 uasm_l_nopage_tlbs(&l, p);
2028 build_restore_work_registers(&p);
2029 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2030 uasm_i_nop(&p);
2031
2032 if ((p - handle_tlbs) > FASTPATH_SIZE)
2033 panic("TLB store handler fastpath space exceeded");
2034
2035 uasm_resolve_relocs(relocs, labels);
2036 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2037 (unsigned int)(p - handle_tlbs));
2038
2039 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2040 }
2041
build_r4000_tlb_modify_handler(void)2042 static void __cpuinit build_r4000_tlb_modify_handler(void)
2043 {
2044 u32 *p = handle_tlbm;
2045 struct uasm_label *l = labels;
2046 struct uasm_reloc *r = relocs;
2047 struct work_registers wr;
2048
2049 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2050 memset(labels, 0, sizeof(labels));
2051 memset(relocs, 0, sizeof(relocs));
2052
2053 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2054 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2055 if (m4kc_tlbp_war())
2056 build_tlb_probe_entry(&p);
2057 /* Present and writable bits set, set accessed and dirty bits. */
2058 build_make_write(&p, &r, wr.r1, wr.r2);
2059 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2060
2061 #ifdef CONFIG_HUGETLB_PAGE
2062 /*
2063 * This is the entry point when
2064 * build_r4000_tlbchange_handler_head spots a huge page.
2065 */
2066 uasm_l_tlb_huge_update(&l, p);
2067 iPTE_LW(&p, wr.r1, wr.r2);
2068 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2069 build_tlb_probe_entry(&p);
2070 uasm_i_ori(&p, wr.r1, wr.r1,
2071 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2072 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2073 #endif
2074
2075 uasm_l_nopage_tlbm(&l, p);
2076 build_restore_work_registers(&p);
2077 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2078 uasm_i_nop(&p);
2079
2080 if ((p - handle_tlbm) > FASTPATH_SIZE)
2081 panic("TLB modify handler fastpath space exceeded");
2082
2083 uasm_resolve_relocs(relocs, labels);
2084 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2085 (unsigned int)(p - handle_tlbm));
2086
2087 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2088 }
2089
build_tlb_refill_handler(void)2090 void __cpuinit build_tlb_refill_handler(void)
2091 {
2092 /*
2093 * The refill handler is generated per-CPU, multi-node systems
2094 * may have local storage for it. The other handlers are only
2095 * needed once.
2096 */
2097 static int run_once = 0;
2098
2099 #ifdef CONFIG_64BIT
2100 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2101 #endif
2102
2103 switch (current_cpu_type()) {
2104 case CPU_R2000:
2105 case CPU_R3000:
2106 case CPU_R3000A:
2107 case CPU_R3081E:
2108 case CPU_TX3912:
2109 case CPU_TX3922:
2110 case CPU_TX3927:
2111 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2112 build_r3000_tlb_refill_handler();
2113 if (!run_once) {
2114 build_r3000_tlb_load_handler();
2115 build_r3000_tlb_store_handler();
2116 build_r3000_tlb_modify_handler();
2117 run_once++;
2118 }
2119 #else
2120 panic("No R3000 TLB refill handler");
2121 #endif
2122 break;
2123
2124 case CPU_R6000:
2125 case CPU_R6000A:
2126 panic("No R6000 TLB refill handler yet");
2127 break;
2128
2129 case CPU_R8000:
2130 panic("No R8000 TLB refill handler yet");
2131 break;
2132
2133 default:
2134 if (!run_once) {
2135 scratch_reg = allocate_kscratch();
2136 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2137 build_r4000_setup_pgd();
2138 #endif
2139 build_r4000_tlb_load_handler();
2140 build_r4000_tlb_store_handler();
2141 build_r4000_tlb_modify_handler();
2142 run_once++;
2143 }
2144 build_r4000_tlb_refill_handler();
2145 }
2146 }
2147
flush_tlb_handlers(void)2148 void __cpuinit flush_tlb_handlers(void)
2149 {
2150 local_flush_icache_range((unsigned long)handle_tlbl,
2151 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2152 local_flush_icache_range((unsigned long)handle_tlbs,
2153 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2154 local_flush_icache_range((unsigned long)handle_tlbm,
2155 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2156 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2157 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2158 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2159 #endif
2160 }
2161