• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
parse_reply_info_in(void ** p,void * end,struct ceph_mds_reply_info_in * info,int features)62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
parse_reply_info_trace(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
parse_reply_info_dir(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
parse_reply_info_filelock(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
parse_reply_info_extra(void ** p,void * end,struct ceph_mds_reply_info_parsed * info,int features)237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
parse_reply_info(struct ceph_msg * msg,struct ceph_mds_reply_info_parsed * info,int features)250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		ceph_decode_need(&p, end, len, bad);
266 		err = parse_reply_info_trace(&p, p+len, info, features);
267 		if (err < 0)
268 			goto out_bad;
269 	}
270 
271 	/* extra */
272 	ceph_decode_32_safe(&p, end, len, bad);
273 	if (len > 0) {
274 		ceph_decode_need(&p, end, len, bad);
275 		err = parse_reply_info_extra(&p, p+len, info, features);
276 		if (err < 0)
277 			goto out_bad;
278 	}
279 
280 	/* snap blob */
281 	ceph_decode_32_safe(&p, end, len, bad);
282 	info->snapblob_len = len;
283 	info->snapblob = p;
284 	p += len;
285 
286 	if (p != end)
287 		goto bad;
288 	return 0;
289 
290 bad:
291 	err = -EIO;
292 out_bad:
293 	pr_err("mds parse_reply err %d\n", err);
294 	return err;
295 }
296 
destroy_reply_info(struct ceph_mds_reply_info_parsed * info)297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
298 {
299 	kfree(info->dir_in);
300 }
301 
302 
303 /*
304  * sessions
305  */
session_state_name(int s)306 static const char *session_state_name(int s)
307 {
308 	switch (s) {
309 	case CEPH_MDS_SESSION_NEW: return "new";
310 	case CEPH_MDS_SESSION_OPENING: return "opening";
311 	case CEPH_MDS_SESSION_OPEN: return "open";
312 	case CEPH_MDS_SESSION_HUNG: return "hung";
313 	case CEPH_MDS_SESSION_CLOSING: return "closing";
314 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 	default: return "???";
317 	}
318 }
319 
get_session(struct ceph_mds_session * s)320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
321 {
322 	if (atomic_inc_not_zero(&s->s_ref)) {
323 		dout("mdsc get_session %p %d -> %d\n", s,
324 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325 		return s;
326 	} else {
327 		dout("mdsc get_session %p 0 -- FAIL", s);
328 		return NULL;
329 	}
330 }
331 
ceph_put_mds_session(struct ceph_mds_session * s)332 void ceph_put_mds_session(struct ceph_mds_session *s)
333 {
334 	dout("mdsc put_session %p %d -> %d\n", s,
335 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 	if (atomic_dec_and_test(&s->s_ref)) {
337 		if (s->s_auth.authorizer)
338 			ceph_auth_destroy_authorizer(
339 				s->s_mdsc->fsc->client->monc.auth,
340 				s->s_auth.authorizer);
341 		kfree(s);
342 	}
343 }
344 
345 /*
346  * called under mdsc->mutex
347  */
__ceph_lookup_mds_session(struct ceph_mds_client * mdsc,int mds)348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349 						   int mds)
350 {
351 	struct ceph_mds_session *session;
352 
353 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354 		return NULL;
355 	session = mdsc->sessions[mds];
356 	dout("lookup_mds_session %p %d\n", session,
357 	     atomic_read(&session->s_ref));
358 	get_session(session);
359 	return session;
360 }
361 
__have_session(struct ceph_mds_client * mdsc,int mds)362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
363 {
364 	if (mds >= mdsc->max_sessions)
365 		return false;
366 	return mdsc->sessions[mds];
367 }
368 
__verify_registered_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 				       struct ceph_mds_session *s)
371 {
372 	if (s->s_mds >= mdsc->max_sessions ||
373 	    mdsc->sessions[s->s_mds] != s)
374 		return -ENOENT;
375 	return 0;
376 }
377 
378 /*
379  * create+register a new session for given mds.
380  * called under mdsc->mutex.
381  */
register_session(struct ceph_mds_client * mdsc,int mds)382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383 						 int mds)
384 {
385 	struct ceph_mds_session *s;
386 
387 	s = kzalloc(sizeof(*s), GFP_NOFS);
388 	if (!s)
389 		return ERR_PTR(-ENOMEM);
390 	s->s_mdsc = mdsc;
391 	s->s_mds = mds;
392 	s->s_state = CEPH_MDS_SESSION_NEW;
393 	s->s_ttl = 0;
394 	s->s_seq = 0;
395 	mutex_init(&s->s_mutex);
396 
397 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
398 
399 	spin_lock_init(&s->s_gen_ttl_lock);
400 	s->s_cap_gen = 0;
401 	s->s_cap_ttl = jiffies - 1;
402 
403 	spin_lock_init(&s->s_cap_lock);
404 	s->s_renew_requested = 0;
405 	s->s_renew_seq = 0;
406 	INIT_LIST_HEAD(&s->s_caps);
407 	s->s_nr_caps = 0;
408 	s->s_trim_caps = 0;
409 	atomic_set(&s->s_ref, 1);
410 	INIT_LIST_HEAD(&s->s_waiting);
411 	INIT_LIST_HEAD(&s->s_unsafe);
412 	s->s_num_cap_releases = 0;
413 	s->s_cap_iterator = NULL;
414 	INIT_LIST_HEAD(&s->s_cap_releases);
415 	INIT_LIST_HEAD(&s->s_cap_releases_done);
416 	INIT_LIST_HEAD(&s->s_cap_flushing);
417 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418 
419 	dout("register_session mds%d\n", mds);
420 	if (mds >= mdsc->max_sessions) {
421 		int newmax = 1 << get_count_order(mds+1);
422 		struct ceph_mds_session **sa;
423 
424 		dout("register_session realloc to %d\n", newmax);
425 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 		if (sa == NULL)
427 			goto fail_realloc;
428 		if (mdsc->sessions) {
429 			memcpy(sa, mdsc->sessions,
430 			       mdsc->max_sessions * sizeof(void *));
431 			kfree(mdsc->sessions);
432 		}
433 		mdsc->sessions = sa;
434 		mdsc->max_sessions = newmax;
435 	}
436 	mdsc->sessions[mds] = s;
437 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
438 
439 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
440 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
441 
442 	return s;
443 
444 fail_realloc:
445 	kfree(s);
446 	return ERR_PTR(-ENOMEM);
447 }
448 
449 /*
450  * called under mdsc->mutex
451  */
__unregister_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * s)452 static void __unregister_session(struct ceph_mds_client *mdsc,
453 			       struct ceph_mds_session *s)
454 {
455 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
456 	BUG_ON(mdsc->sessions[s->s_mds] != s);
457 	mdsc->sessions[s->s_mds] = NULL;
458 	ceph_con_close(&s->s_con);
459 	ceph_put_mds_session(s);
460 }
461 
462 /*
463  * drop session refs in request.
464  *
465  * should be last request ref, or hold mdsc->mutex
466  */
put_request_session(struct ceph_mds_request * req)467 static void put_request_session(struct ceph_mds_request *req)
468 {
469 	if (req->r_session) {
470 		ceph_put_mds_session(req->r_session);
471 		req->r_session = NULL;
472 	}
473 }
474 
ceph_mdsc_release_request(struct kref * kref)475 void ceph_mdsc_release_request(struct kref *kref)
476 {
477 	struct ceph_mds_request *req = container_of(kref,
478 						    struct ceph_mds_request,
479 						    r_kref);
480 	if (req->r_request)
481 		ceph_msg_put(req->r_request);
482 	if (req->r_reply) {
483 		ceph_msg_put(req->r_reply);
484 		destroy_reply_info(&req->r_reply_info);
485 	}
486 	if (req->r_inode) {
487 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
488 		iput(req->r_inode);
489 	}
490 	if (req->r_locked_dir)
491 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
492 	if (req->r_target_inode)
493 		iput(req->r_target_inode);
494 	if (req->r_dentry)
495 		dput(req->r_dentry);
496 	if (req->r_old_dentry) {
497 		/*
498 		 * track (and drop pins for) r_old_dentry_dir
499 		 * separately, since r_old_dentry's d_parent may have
500 		 * changed between the dir mutex being dropped and
501 		 * this request being freed.
502 		 */
503 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
504 				  CEPH_CAP_PIN);
505 		dput(req->r_old_dentry);
506 		iput(req->r_old_dentry_dir);
507 	}
508 	kfree(req->r_path1);
509 	kfree(req->r_path2);
510 	put_request_session(req);
511 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
512 	kfree(req);
513 }
514 
515 /*
516  * lookup session, bump ref if found.
517  *
518  * called under mdsc->mutex.
519  */
__lookup_request(struct ceph_mds_client * mdsc,u64 tid)520 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
521 					     u64 tid)
522 {
523 	struct ceph_mds_request *req;
524 	struct rb_node *n = mdsc->request_tree.rb_node;
525 
526 	while (n) {
527 		req = rb_entry(n, struct ceph_mds_request, r_node);
528 		if (tid < req->r_tid)
529 			n = n->rb_left;
530 		else if (tid > req->r_tid)
531 			n = n->rb_right;
532 		else {
533 			ceph_mdsc_get_request(req);
534 			return req;
535 		}
536 	}
537 	return NULL;
538 }
539 
__insert_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * new)540 static void __insert_request(struct ceph_mds_client *mdsc,
541 			     struct ceph_mds_request *new)
542 {
543 	struct rb_node **p = &mdsc->request_tree.rb_node;
544 	struct rb_node *parent = NULL;
545 	struct ceph_mds_request *req = NULL;
546 
547 	while (*p) {
548 		parent = *p;
549 		req = rb_entry(parent, struct ceph_mds_request, r_node);
550 		if (new->r_tid < req->r_tid)
551 			p = &(*p)->rb_left;
552 		else if (new->r_tid > req->r_tid)
553 			p = &(*p)->rb_right;
554 		else
555 			BUG();
556 	}
557 
558 	rb_link_node(&new->r_node, parent, p);
559 	rb_insert_color(&new->r_node, &mdsc->request_tree);
560 }
561 
562 /*
563  * Register an in-flight request, and assign a tid.  Link to directory
564  * are modifying (if any).
565  *
566  * Called under mdsc->mutex.
567  */
__register_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,struct inode * dir)568 static void __register_request(struct ceph_mds_client *mdsc,
569 			       struct ceph_mds_request *req,
570 			       struct inode *dir)
571 {
572 	req->r_tid = ++mdsc->last_tid;
573 	if (req->r_num_caps)
574 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
575 				  req->r_num_caps);
576 	dout("__register_request %p tid %lld\n", req, req->r_tid);
577 	ceph_mdsc_get_request(req);
578 	__insert_request(mdsc, req);
579 
580 	req->r_uid = current_fsuid();
581 	req->r_gid = current_fsgid();
582 
583 	if (dir) {
584 		struct ceph_inode_info *ci = ceph_inode(dir);
585 
586 		ihold(dir);
587 		spin_lock(&ci->i_unsafe_lock);
588 		req->r_unsafe_dir = dir;
589 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
590 		spin_unlock(&ci->i_unsafe_lock);
591 	}
592 }
593 
__unregister_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)594 static void __unregister_request(struct ceph_mds_client *mdsc,
595 				 struct ceph_mds_request *req)
596 {
597 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
598 	rb_erase(&req->r_node, &mdsc->request_tree);
599 	RB_CLEAR_NODE(&req->r_node);
600 
601 	if (req->r_unsafe_dir) {
602 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
603 
604 		spin_lock(&ci->i_unsafe_lock);
605 		list_del_init(&req->r_unsafe_dir_item);
606 		spin_unlock(&ci->i_unsafe_lock);
607 
608 		iput(req->r_unsafe_dir);
609 		req->r_unsafe_dir = NULL;
610 	}
611 
612 	ceph_mdsc_put_request(req);
613 }
614 
615 /*
616  * Choose mds to send request to next.  If there is a hint set in the
617  * request (e.g., due to a prior forward hint from the mds), use that.
618  * Otherwise, consult frag tree and/or caps to identify the
619  * appropriate mds.  If all else fails, choose randomly.
620  *
621  * Called under mdsc->mutex.
622  */
get_nonsnap_parent(struct dentry * dentry)623 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
624 {
625 	/*
626 	 * we don't need to worry about protecting the d_parent access
627 	 * here because we never renaming inside the snapped namespace
628 	 * except to resplice to another snapdir, and either the old or new
629 	 * result is a valid result.
630 	 */
631 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
632 		dentry = dentry->d_parent;
633 	return dentry;
634 }
635 
__choose_mds(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)636 static int __choose_mds(struct ceph_mds_client *mdsc,
637 			struct ceph_mds_request *req)
638 {
639 	struct inode *inode;
640 	struct ceph_inode_info *ci;
641 	struct ceph_cap *cap;
642 	int mode = req->r_direct_mode;
643 	int mds = -1;
644 	u32 hash = req->r_direct_hash;
645 	bool is_hash = req->r_direct_is_hash;
646 
647 	/*
648 	 * is there a specific mds we should try?  ignore hint if we have
649 	 * no session and the mds is not up (active or recovering).
650 	 */
651 	if (req->r_resend_mds >= 0 &&
652 	    (__have_session(mdsc, req->r_resend_mds) ||
653 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
654 		dout("choose_mds using resend_mds mds%d\n",
655 		     req->r_resend_mds);
656 		return req->r_resend_mds;
657 	}
658 
659 	if (mode == USE_RANDOM_MDS)
660 		goto random;
661 
662 	inode = NULL;
663 	if (req->r_inode) {
664 		inode = req->r_inode;
665 	} else if (req->r_dentry) {
666 		/* ignore race with rename; old or new d_parent is okay */
667 		struct dentry *parent = req->r_dentry->d_parent;
668 		struct inode *dir = parent->d_inode;
669 
670 		if (dir->i_sb != mdsc->fsc->sb) {
671 			/* not this fs! */
672 			inode = req->r_dentry->d_inode;
673 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
674 			/* direct snapped/virtual snapdir requests
675 			 * based on parent dir inode */
676 			struct dentry *dn = get_nonsnap_parent(parent);
677 			inode = dn->d_inode;
678 			dout("__choose_mds using nonsnap parent %p\n", inode);
679 		} else if (req->r_dentry->d_inode) {
680 			/* dentry target */
681 			inode = req->r_dentry->d_inode;
682 		} else {
683 			/* dir + name */
684 			inode = dir;
685 			hash = ceph_dentry_hash(dir, req->r_dentry);
686 			is_hash = true;
687 		}
688 	}
689 
690 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
691 	     (int)hash, mode);
692 	if (!inode)
693 		goto random;
694 	ci = ceph_inode(inode);
695 
696 	if (is_hash && S_ISDIR(inode->i_mode)) {
697 		struct ceph_inode_frag frag;
698 		int found;
699 
700 		ceph_choose_frag(ci, hash, &frag, &found);
701 		if (found) {
702 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
703 				u8 r;
704 
705 				/* choose a random replica */
706 				get_random_bytes(&r, 1);
707 				r %= frag.ndist;
708 				mds = frag.dist[r];
709 				dout("choose_mds %p %llx.%llx "
710 				     "frag %u mds%d (%d/%d)\n",
711 				     inode, ceph_vinop(inode),
712 				     frag.frag, mds,
713 				     (int)r, frag.ndist);
714 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
715 				    CEPH_MDS_STATE_ACTIVE)
716 					return mds;
717 			}
718 
719 			/* since this file/dir wasn't known to be
720 			 * replicated, then we want to look for the
721 			 * authoritative mds. */
722 			mode = USE_AUTH_MDS;
723 			if (frag.mds >= 0) {
724 				/* choose auth mds */
725 				mds = frag.mds;
726 				dout("choose_mds %p %llx.%llx "
727 				     "frag %u mds%d (auth)\n",
728 				     inode, ceph_vinop(inode), frag.frag, mds);
729 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
730 				    CEPH_MDS_STATE_ACTIVE)
731 					return mds;
732 			}
733 		}
734 	}
735 
736 	spin_lock(&ci->i_ceph_lock);
737 	cap = NULL;
738 	if (mode == USE_AUTH_MDS)
739 		cap = ci->i_auth_cap;
740 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
741 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
742 	if (!cap) {
743 		spin_unlock(&ci->i_ceph_lock);
744 		goto random;
745 	}
746 	mds = cap->session->s_mds;
747 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
748 	     inode, ceph_vinop(inode), mds,
749 	     cap == ci->i_auth_cap ? "auth " : "", cap);
750 	spin_unlock(&ci->i_ceph_lock);
751 	return mds;
752 
753 random:
754 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
755 	dout("choose_mds chose random mds%d\n", mds);
756 	return mds;
757 }
758 
759 
760 /*
761  * session messages
762  */
create_session_msg(u32 op,u64 seq)763 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
764 {
765 	struct ceph_msg *msg;
766 	struct ceph_mds_session_head *h;
767 
768 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
769 			   false);
770 	if (!msg) {
771 		pr_err("create_session_msg ENOMEM creating msg\n");
772 		return NULL;
773 	}
774 	h = msg->front.iov_base;
775 	h->op = cpu_to_le32(op);
776 	h->seq = cpu_to_le64(seq);
777 	return msg;
778 }
779 
780 /*
781  * send session open request.
782  *
783  * called under mdsc->mutex
784  */
__open_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)785 static int __open_session(struct ceph_mds_client *mdsc,
786 			  struct ceph_mds_session *session)
787 {
788 	struct ceph_msg *msg;
789 	int mstate;
790 	int mds = session->s_mds;
791 
792 	/* wait for mds to go active? */
793 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
794 	dout("open_session to mds%d (%s)\n", mds,
795 	     ceph_mds_state_name(mstate));
796 	session->s_state = CEPH_MDS_SESSION_OPENING;
797 	session->s_renew_requested = jiffies;
798 
799 	/* send connect message */
800 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
801 	if (!msg)
802 		return -ENOMEM;
803 	ceph_con_send(&session->s_con, msg);
804 	return 0;
805 }
806 
807 /*
808  * open sessions for any export targets for the given mds
809  *
810  * called under mdsc->mutex
811  */
__open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)812 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
813 					  struct ceph_mds_session *session)
814 {
815 	struct ceph_mds_info *mi;
816 	struct ceph_mds_session *ts;
817 	int i, mds = session->s_mds;
818 	int target;
819 
820 	if (mds >= mdsc->mdsmap->m_max_mds)
821 		return;
822 	mi = &mdsc->mdsmap->m_info[mds];
823 	dout("open_export_target_sessions for mds%d (%d targets)\n",
824 	     session->s_mds, mi->num_export_targets);
825 
826 	for (i = 0; i < mi->num_export_targets; i++) {
827 		target = mi->export_targets[i];
828 		ts = __ceph_lookup_mds_session(mdsc, target);
829 		if (!ts) {
830 			ts = register_session(mdsc, target);
831 			if (IS_ERR(ts))
832 				return;
833 		}
834 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
835 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
836 			__open_session(mdsc, session);
837 		else
838 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
839 			     i, ts, session_state_name(ts->s_state));
840 		ceph_put_mds_session(ts);
841 	}
842 }
843 
ceph_mdsc_open_export_target_sessions(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)844 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
845 					   struct ceph_mds_session *session)
846 {
847 	mutex_lock(&mdsc->mutex);
848 	__open_export_target_sessions(mdsc, session);
849 	mutex_unlock(&mdsc->mutex);
850 }
851 
852 /*
853  * session caps
854  */
855 
856 /*
857  * Free preallocated cap messages assigned to this session
858  */
cleanup_cap_releases(struct ceph_mds_session * session)859 static void cleanup_cap_releases(struct ceph_mds_session *session)
860 {
861 	struct ceph_msg *msg;
862 
863 	spin_lock(&session->s_cap_lock);
864 	while (!list_empty(&session->s_cap_releases)) {
865 		msg = list_first_entry(&session->s_cap_releases,
866 				       struct ceph_msg, list_head);
867 		list_del_init(&msg->list_head);
868 		ceph_msg_put(msg);
869 	}
870 	while (!list_empty(&session->s_cap_releases_done)) {
871 		msg = list_first_entry(&session->s_cap_releases_done,
872 				       struct ceph_msg, list_head);
873 		list_del_init(&msg->list_head);
874 		ceph_msg_put(msg);
875 	}
876 	spin_unlock(&session->s_cap_lock);
877 }
878 
879 /*
880  * Helper to safely iterate over all caps associated with a session, with
881  * special care taken to handle a racing __ceph_remove_cap().
882  *
883  * Caller must hold session s_mutex.
884  */
iterate_session_caps(struct ceph_mds_session * session,int (* cb)(struct inode *,struct ceph_cap *,void *),void * arg)885 static int iterate_session_caps(struct ceph_mds_session *session,
886 				 int (*cb)(struct inode *, struct ceph_cap *,
887 					    void *), void *arg)
888 {
889 	struct list_head *p;
890 	struct ceph_cap *cap;
891 	struct inode *inode, *last_inode = NULL;
892 	struct ceph_cap *old_cap = NULL;
893 	int ret;
894 
895 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
896 	spin_lock(&session->s_cap_lock);
897 	p = session->s_caps.next;
898 	while (p != &session->s_caps) {
899 		cap = list_entry(p, struct ceph_cap, session_caps);
900 		inode = igrab(&cap->ci->vfs_inode);
901 		if (!inode) {
902 			p = p->next;
903 			continue;
904 		}
905 		session->s_cap_iterator = cap;
906 		spin_unlock(&session->s_cap_lock);
907 
908 		if (last_inode) {
909 			iput(last_inode);
910 			last_inode = NULL;
911 		}
912 		if (old_cap) {
913 			ceph_put_cap(session->s_mdsc, old_cap);
914 			old_cap = NULL;
915 		}
916 
917 		ret = cb(inode, cap, arg);
918 		last_inode = inode;
919 
920 		spin_lock(&session->s_cap_lock);
921 		p = p->next;
922 		if (cap->ci == NULL) {
923 			dout("iterate_session_caps  finishing cap %p removal\n",
924 			     cap);
925 			BUG_ON(cap->session != session);
926 			list_del_init(&cap->session_caps);
927 			session->s_nr_caps--;
928 			cap->session = NULL;
929 			old_cap = cap;  /* put_cap it w/o locks held */
930 		}
931 		if (ret < 0)
932 			goto out;
933 	}
934 	ret = 0;
935 out:
936 	session->s_cap_iterator = NULL;
937 	spin_unlock(&session->s_cap_lock);
938 
939 	if (last_inode)
940 		iput(last_inode);
941 	if (old_cap)
942 		ceph_put_cap(session->s_mdsc, old_cap);
943 
944 	return ret;
945 }
946 
remove_session_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)947 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
948 				  void *arg)
949 {
950 	struct ceph_inode_info *ci = ceph_inode(inode);
951 	int drop = 0;
952 
953 	dout("removing cap %p, ci is %p, inode is %p\n",
954 	     cap, ci, &ci->vfs_inode);
955 	spin_lock(&ci->i_ceph_lock);
956 	__ceph_remove_cap(cap);
957 	if (!__ceph_is_any_real_caps(ci)) {
958 		struct ceph_mds_client *mdsc =
959 			ceph_sb_to_client(inode->i_sb)->mdsc;
960 
961 		spin_lock(&mdsc->cap_dirty_lock);
962 		if (!list_empty(&ci->i_dirty_item)) {
963 			pr_info(" dropping dirty %s state for %p %lld\n",
964 				ceph_cap_string(ci->i_dirty_caps),
965 				inode, ceph_ino(inode));
966 			ci->i_dirty_caps = 0;
967 			list_del_init(&ci->i_dirty_item);
968 			drop = 1;
969 		}
970 		if (!list_empty(&ci->i_flushing_item)) {
971 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
972 				ceph_cap_string(ci->i_flushing_caps),
973 				inode, ceph_ino(inode));
974 			ci->i_flushing_caps = 0;
975 			list_del_init(&ci->i_flushing_item);
976 			mdsc->num_cap_flushing--;
977 			drop = 1;
978 		}
979 		if (drop && ci->i_wrbuffer_ref) {
980 			pr_info(" dropping dirty data for %p %lld\n",
981 				inode, ceph_ino(inode));
982 			ci->i_wrbuffer_ref = 0;
983 			ci->i_wrbuffer_ref_head = 0;
984 			drop++;
985 		}
986 		spin_unlock(&mdsc->cap_dirty_lock);
987 	}
988 	spin_unlock(&ci->i_ceph_lock);
989 	while (drop--)
990 		iput(inode);
991 	return 0;
992 }
993 
994 /*
995  * caller must hold session s_mutex
996  */
remove_session_caps(struct ceph_mds_session * session)997 static void remove_session_caps(struct ceph_mds_session *session)
998 {
999 	dout("remove_session_caps on %p\n", session);
1000 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1001 	BUG_ON(session->s_nr_caps > 0);
1002 	BUG_ON(!list_empty(&session->s_cap_flushing));
1003 	cleanup_cap_releases(session);
1004 }
1005 
1006 /*
1007  * wake up any threads waiting on this session's caps.  if the cap is
1008  * old (didn't get renewed on the client reconnect), remove it now.
1009  *
1010  * caller must hold s_mutex.
1011  */
wake_up_session_cb(struct inode * inode,struct ceph_cap * cap,void * arg)1012 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1013 			      void *arg)
1014 {
1015 	struct ceph_inode_info *ci = ceph_inode(inode);
1016 
1017 	wake_up_all(&ci->i_cap_wq);
1018 	if (arg) {
1019 		spin_lock(&ci->i_ceph_lock);
1020 		ci->i_wanted_max_size = 0;
1021 		ci->i_requested_max_size = 0;
1022 		spin_unlock(&ci->i_ceph_lock);
1023 	}
1024 	return 0;
1025 }
1026 
wake_up_session_caps(struct ceph_mds_session * session,int reconnect)1027 static void wake_up_session_caps(struct ceph_mds_session *session,
1028 				 int reconnect)
1029 {
1030 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1031 	iterate_session_caps(session, wake_up_session_cb,
1032 			     (void *)(unsigned long)reconnect);
1033 }
1034 
1035 /*
1036  * Send periodic message to MDS renewing all currently held caps.  The
1037  * ack will reset the expiration for all caps from this session.
1038  *
1039  * caller holds s_mutex
1040  */
send_renew_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1041 static int send_renew_caps(struct ceph_mds_client *mdsc,
1042 			   struct ceph_mds_session *session)
1043 {
1044 	struct ceph_msg *msg;
1045 	int state;
1046 
1047 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1048 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1049 		pr_info("mds%d caps stale\n", session->s_mds);
1050 	session->s_renew_requested = jiffies;
1051 
1052 	/* do not try to renew caps until a recovering mds has reconnected
1053 	 * with its clients. */
1054 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1055 	if (state < CEPH_MDS_STATE_RECONNECT) {
1056 		dout("send_renew_caps ignoring mds%d (%s)\n",
1057 		     session->s_mds, ceph_mds_state_name(state));
1058 		return 0;
1059 	}
1060 
1061 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1062 		ceph_mds_state_name(state));
1063 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1064 				 ++session->s_renew_seq);
1065 	if (!msg)
1066 		return -ENOMEM;
1067 	ceph_con_send(&session->s_con, msg);
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1073  *
1074  * Called under session->s_mutex
1075  */
renewed_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int is_renew)1076 static void renewed_caps(struct ceph_mds_client *mdsc,
1077 			 struct ceph_mds_session *session, int is_renew)
1078 {
1079 	int was_stale;
1080 	int wake = 0;
1081 
1082 	spin_lock(&session->s_cap_lock);
1083 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1084 
1085 	session->s_cap_ttl = session->s_renew_requested +
1086 		mdsc->mdsmap->m_session_timeout*HZ;
1087 
1088 	if (was_stale) {
1089 		if (time_before(jiffies, session->s_cap_ttl)) {
1090 			pr_info("mds%d caps renewed\n", session->s_mds);
1091 			wake = 1;
1092 		} else {
1093 			pr_info("mds%d caps still stale\n", session->s_mds);
1094 		}
1095 	}
1096 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1097 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1098 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1099 	spin_unlock(&session->s_cap_lock);
1100 
1101 	if (wake)
1102 		wake_up_session_caps(session, 0);
1103 }
1104 
1105 /*
1106  * send a session close request
1107  */
request_close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1108 static int request_close_session(struct ceph_mds_client *mdsc,
1109 				 struct ceph_mds_session *session)
1110 {
1111 	struct ceph_msg *msg;
1112 
1113 	dout("request_close_session mds%d state %s seq %lld\n",
1114 	     session->s_mds, session_state_name(session->s_state),
1115 	     session->s_seq);
1116 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1117 	if (!msg)
1118 		return -ENOMEM;
1119 	ceph_con_send(&session->s_con, msg);
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Called with s_mutex held.
1125  */
__close_session(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1126 static int __close_session(struct ceph_mds_client *mdsc,
1127 			 struct ceph_mds_session *session)
1128 {
1129 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1130 		return 0;
1131 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1132 	return request_close_session(mdsc, session);
1133 }
1134 
1135 /*
1136  * Trim old(er) caps.
1137  *
1138  * Because we can't cache an inode without one or more caps, we do
1139  * this indirectly: if a cap is unused, we prune its aliases, at which
1140  * point the inode will hopefully get dropped to.
1141  *
1142  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1143  * memory pressure from the MDS, though, so it needn't be perfect.
1144  */
trim_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)1145 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1146 {
1147 	struct ceph_mds_session *session = arg;
1148 	struct ceph_inode_info *ci = ceph_inode(inode);
1149 	int used, oissued, mine;
1150 
1151 	if (session->s_trim_caps <= 0)
1152 		return -1;
1153 
1154 	spin_lock(&ci->i_ceph_lock);
1155 	mine = cap->issued | cap->implemented;
1156 	used = __ceph_caps_used(ci);
1157 	oissued = __ceph_caps_issued_other(ci, cap);
1158 
1159 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1160 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1161 	     ceph_cap_string(used));
1162 	if (ci->i_dirty_caps)
1163 		goto out;   /* dirty caps */
1164 	if ((used & ~oissued) & mine)
1165 		goto out;   /* we need these caps */
1166 
1167 	session->s_trim_caps--;
1168 	if (oissued) {
1169 		/* we aren't the only cap.. just remove us */
1170 		__ceph_remove_cap(cap);
1171 	} else {
1172 		/* try to drop referring dentries */
1173 		spin_unlock(&ci->i_ceph_lock);
1174 		d_prune_aliases(inode);
1175 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1176 		     inode, cap, atomic_read(&inode->i_count));
1177 		return 0;
1178 	}
1179 
1180 out:
1181 	spin_unlock(&ci->i_ceph_lock);
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Trim session cap count down to some max number.
1187  */
trim_caps(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,int max_caps)1188 static int trim_caps(struct ceph_mds_client *mdsc,
1189 		     struct ceph_mds_session *session,
1190 		     int max_caps)
1191 {
1192 	int trim_caps = session->s_nr_caps - max_caps;
1193 
1194 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1195 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1196 	if (trim_caps > 0) {
1197 		session->s_trim_caps = trim_caps;
1198 		iterate_session_caps(session, trim_caps_cb, session);
1199 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1200 		     session->s_mds, session->s_nr_caps, max_caps,
1201 			trim_caps - session->s_trim_caps);
1202 		session->s_trim_caps = 0;
1203 	}
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Allocate cap_release messages.  If there is a partially full message
1209  * in the queue, try to allocate enough to cover it's remainder, so that
1210  * we can send it immediately.
1211  *
1212  * Called under s_mutex.
1213  */
ceph_add_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1214 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1215 			  struct ceph_mds_session *session)
1216 {
1217 	struct ceph_msg *msg, *partial = NULL;
1218 	struct ceph_mds_cap_release *head;
1219 	int err = -ENOMEM;
1220 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1221 	int num;
1222 
1223 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1224 	     extra);
1225 
1226 	spin_lock(&session->s_cap_lock);
1227 
1228 	if (!list_empty(&session->s_cap_releases)) {
1229 		msg = list_first_entry(&session->s_cap_releases,
1230 				       struct ceph_msg,
1231 				 list_head);
1232 		head = msg->front.iov_base;
1233 		num = le32_to_cpu(head->num);
1234 		if (num) {
1235 			dout(" partial %p with (%d/%d)\n", msg, num,
1236 			     (int)CEPH_CAPS_PER_RELEASE);
1237 			extra += CEPH_CAPS_PER_RELEASE - num;
1238 			partial = msg;
1239 		}
1240 	}
1241 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1242 		spin_unlock(&session->s_cap_lock);
1243 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1244 				   GFP_NOFS, false);
1245 		if (!msg)
1246 			goto out_unlocked;
1247 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1248 		     (int)msg->front.iov_len);
1249 		head = msg->front.iov_base;
1250 		head->num = cpu_to_le32(0);
1251 		msg->front.iov_len = sizeof(*head);
1252 		spin_lock(&session->s_cap_lock);
1253 		list_add(&msg->list_head, &session->s_cap_releases);
1254 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1255 	}
1256 
1257 	if (partial) {
1258 		head = partial->front.iov_base;
1259 		num = le32_to_cpu(head->num);
1260 		dout(" queueing partial %p with %d/%d\n", partial, num,
1261 		     (int)CEPH_CAPS_PER_RELEASE);
1262 		list_move_tail(&partial->list_head,
1263 			       &session->s_cap_releases_done);
1264 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1265 	}
1266 	err = 0;
1267 	spin_unlock(&session->s_cap_lock);
1268 out_unlocked:
1269 	return err;
1270 }
1271 
1272 /*
1273  * flush all dirty inode data to disk.
1274  *
1275  * returns true if we've flushed through want_flush_seq
1276  */
check_cap_flush(struct ceph_mds_client * mdsc,u64 want_flush_seq)1277 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1278 {
1279 	int mds, ret = 1;
1280 
1281 	dout("check_cap_flush want %lld\n", want_flush_seq);
1282 	mutex_lock(&mdsc->mutex);
1283 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1284 		struct ceph_mds_session *session = mdsc->sessions[mds];
1285 
1286 		if (!session)
1287 			continue;
1288 		get_session(session);
1289 		mutex_unlock(&mdsc->mutex);
1290 
1291 		mutex_lock(&session->s_mutex);
1292 		if (!list_empty(&session->s_cap_flushing)) {
1293 			struct ceph_inode_info *ci =
1294 				list_entry(session->s_cap_flushing.next,
1295 					   struct ceph_inode_info,
1296 					   i_flushing_item);
1297 			struct inode *inode = &ci->vfs_inode;
1298 
1299 			spin_lock(&ci->i_ceph_lock);
1300 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1301 				dout("check_cap_flush still flushing %p "
1302 				     "seq %lld <= %lld to mds%d\n", inode,
1303 				     ci->i_cap_flush_seq, want_flush_seq,
1304 				     session->s_mds);
1305 				ret = 0;
1306 			}
1307 			spin_unlock(&ci->i_ceph_lock);
1308 		}
1309 		mutex_unlock(&session->s_mutex);
1310 		ceph_put_mds_session(session);
1311 
1312 		if (!ret)
1313 			return ret;
1314 		mutex_lock(&mdsc->mutex);
1315 	}
1316 
1317 	mutex_unlock(&mdsc->mutex);
1318 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1319 	return ret;
1320 }
1321 
1322 /*
1323  * called under s_mutex
1324  */
ceph_send_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1325 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1326 			    struct ceph_mds_session *session)
1327 {
1328 	struct ceph_msg *msg;
1329 
1330 	dout("send_cap_releases mds%d\n", session->s_mds);
1331 	spin_lock(&session->s_cap_lock);
1332 	while (!list_empty(&session->s_cap_releases_done)) {
1333 		msg = list_first_entry(&session->s_cap_releases_done,
1334 				 struct ceph_msg, list_head);
1335 		list_del_init(&msg->list_head);
1336 		spin_unlock(&session->s_cap_lock);
1337 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1338 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1339 		ceph_con_send(&session->s_con, msg);
1340 		spin_lock(&session->s_cap_lock);
1341 	}
1342 	spin_unlock(&session->s_cap_lock);
1343 }
1344 
discard_cap_releases(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)1345 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1346 				 struct ceph_mds_session *session)
1347 {
1348 	struct ceph_msg *msg;
1349 	struct ceph_mds_cap_release *head;
1350 	unsigned num;
1351 
1352 	dout("discard_cap_releases mds%d\n", session->s_mds);
1353 	spin_lock(&session->s_cap_lock);
1354 
1355 	/* zero out the in-progress message */
1356 	msg = list_first_entry(&session->s_cap_releases,
1357 			       struct ceph_msg, list_head);
1358 	head = msg->front.iov_base;
1359 	num = le32_to_cpu(head->num);
1360 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1361 	head->num = cpu_to_le32(0);
1362 	session->s_num_cap_releases += num;
1363 
1364 	/* requeue completed messages */
1365 	while (!list_empty(&session->s_cap_releases_done)) {
1366 		msg = list_first_entry(&session->s_cap_releases_done,
1367 				 struct ceph_msg, list_head);
1368 		list_del_init(&msg->list_head);
1369 
1370 		head = msg->front.iov_base;
1371 		num = le32_to_cpu(head->num);
1372 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1373 		     num);
1374 		session->s_num_cap_releases += num;
1375 		head->num = cpu_to_le32(0);
1376 		msg->front.iov_len = sizeof(*head);
1377 		list_add(&msg->list_head, &session->s_cap_releases);
1378 	}
1379 
1380 	spin_unlock(&session->s_cap_lock);
1381 }
1382 
1383 /*
1384  * requests
1385  */
1386 
1387 /*
1388  * Create an mds request.
1389  */
1390 struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client * mdsc,int op,int mode)1391 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1392 {
1393 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1394 
1395 	if (!req)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	mutex_init(&req->r_fill_mutex);
1399 	req->r_mdsc = mdsc;
1400 	req->r_started = jiffies;
1401 	req->r_resend_mds = -1;
1402 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1403 	req->r_fmode = -1;
1404 	kref_init(&req->r_kref);
1405 	INIT_LIST_HEAD(&req->r_wait);
1406 	init_completion(&req->r_completion);
1407 	init_completion(&req->r_safe_completion);
1408 	INIT_LIST_HEAD(&req->r_unsafe_item);
1409 
1410 	req->r_op = op;
1411 	req->r_direct_mode = mode;
1412 	return req;
1413 }
1414 
1415 /*
1416  * return oldest (lowest) request, tid in request tree, 0 if none.
1417  *
1418  * called under mdsc->mutex.
1419  */
__get_oldest_req(struct ceph_mds_client * mdsc)1420 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1421 {
1422 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1423 		return NULL;
1424 	return rb_entry(rb_first(&mdsc->request_tree),
1425 			struct ceph_mds_request, r_node);
1426 }
1427 
__get_oldest_tid(struct ceph_mds_client * mdsc)1428 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1429 {
1430 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1431 
1432 	if (req)
1433 		return req->r_tid;
1434 	return 0;
1435 }
1436 
1437 /*
1438  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1439  * on build_path_from_dentry in fs/cifs/dir.c.
1440  *
1441  * If @stop_on_nosnap, generate path relative to the first non-snapped
1442  * inode.
1443  *
1444  * Encode hidden .snap dirs as a double /, i.e.
1445  *   foo/.snap/bar -> foo//bar
1446  */
ceph_mdsc_build_path(struct dentry * dentry,int * plen,u64 * base,int stop_on_nosnap)1447 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1448 			   int stop_on_nosnap)
1449 {
1450 	struct dentry *temp;
1451 	char *path;
1452 	int len, pos;
1453 	unsigned seq;
1454 
1455 	if (dentry == NULL)
1456 		return ERR_PTR(-EINVAL);
1457 
1458 retry:
1459 	len = 0;
1460 	seq = read_seqbegin(&rename_lock);
1461 	rcu_read_lock();
1462 	for (temp = dentry; !IS_ROOT(temp);) {
1463 		struct inode *inode = temp->d_inode;
1464 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1465 			len++;  /* slash only */
1466 		else if (stop_on_nosnap && inode &&
1467 			 ceph_snap(inode) == CEPH_NOSNAP)
1468 			break;
1469 		else
1470 			len += 1 + temp->d_name.len;
1471 		temp = temp->d_parent;
1472 		if (temp == NULL) {
1473 			rcu_read_unlock();
1474 			pr_err("build_path corrupt dentry %p\n", dentry);
1475 			return ERR_PTR(-EINVAL);
1476 		}
1477 	}
1478 	rcu_read_unlock();
1479 	if (len)
1480 		len--;  /* no leading '/' */
1481 
1482 	path = kmalloc(len+1, GFP_NOFS);
1483 	if (path == NULL)
1484 		return ERR_PTR(-ENOMEM);
1485 	pos = len;
1486 	path[pos] = 0;	/* trailing null */
1487 	rcu_read_lock();
1488 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1489 		struct inode *inode;
1490 
1491 		spin_lock(&temp->d_lock);
1492 		inode = temp->d_inode;
1493 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1494 			dout("build_path path+%d: %p SNAPDIR\n",
1495 			     pos, temp);
1496 		} else if (stop_on_nosnap && inode &&
1497 			   ceph_snap(inode) == CEPH_NOSNAP) {
1498 			spin_unlock(&temp->d_lock);
1499 			break;
1500 		} else {
1501 			pos -= temp->d_name.len;
1502 			if (pos < 0) {
1503 				spin_unlock(&temp->d_lock);
1504 				break;
1505 			}
1506 			strncpy(path + pos, temp->d_name.name,
1507 				temp->d_name.len);
1508 		}
1509 		spin_unlock(&temp->d_lock);
1510 		if (pos)
1511 			path[--pos] = '/';
1512 		temp = temp->d_parent;
1513 		if (temp == NULL) {
1514 			rcu_read_unlock();
1515 			pr_err("build_path corrupt dentry\n");
1516 			kfree(path);
1517 			return ERR_PTR(-EINVAL);
1518 		}
1519 	}
1520 	rcu_read_unlock();
1521 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1522 		pr_err("build_path did not end path lookup where "
1523 		       "expected, namelen is %d, pos is %d\n", len, pos);
1524 		/* presumably this is only possible if racing with a
1525 		   rename of one of the parent directories (we can not
1526 		   lock the dentries above us to prevent this, but
1527 		   retrying should be harmless) */
1528 		kfree(path);
1529 		goto retry;
1530 	}
1531 
1532 	*base = ceph_ino(temp->d_inode);
1533 	*plen = len;
1534 	dout("build_path on %p %d built %llx '%.*s'\n",
1535 	     dentry, dentry->d_count, *base, len, path);
1536 	return path;
1537 }
1538 
build_dentry_path(struct dentry * dentry,const char ** ppath,int * ppathlen,u64 * pino,int * pfreepath)1539 static int build_dentry_path(struct dentry *dentry,
1540 			     const char **ppath, int *ppathlen, u64 *pino,
1541 			     int *pfreepath)
1542 {
1543 	char *path;
1544 
1545 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1546 		*pino = ceph_ino(dentry->d_parent->d_inode);
1547 		*ppath = dentry->d_name.name;
1548 		*ppathlen = dentry->d_name.len;
1549 		return 0;
1550 	}
1551 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1552 	if (IS_ERR(path))
1553 		return PTR_ERR(path);
1554 	*ppath = path;
1555 	*pfreepath = 1;
1556 	return 0;
1557 }
1558 
build_inode_path(struct inode * inode,const char ** ppath,int * ppathlen,u64 * pino,int * pfreepath)1559 static int build_inode_path(struct inode *inode,
1560 			    const char **ppath, int *ppathlen, u64 *pino,
1561 			    int *pfreepath)
1562 {
1563 	struct dentry *dentry;
1564 	char *path;
1565 
1566 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1567 		*pino = ceph_ino(inode);
1568 		*ppathlen = 0;
1569 		return 0;
1570 	}
1571 	dentry = d_find_alias(inode);
1572 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1573 	dput(dentry);
1574 	if (IS_ERR(path))
1575 		return PTR_ERR(path);
1576 	*ppath = path;
1577 	*pfreepath = 1;
1578 	return 0;
1579 }
1580 
1581 /*
1582  * request arguments may be specified via an inode *, a dentry *, or
1583  * an explicit ino+path.
1584  */
set_request_path_attr(struct inode * rinode,struct dentry * rdentry,const char * rpath,u64 rino,const char ** ppath,int * pathlen,u64 * ino,int * freepath)1585 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1586 				  const char *rpath, u64 rino,
1587 				  const char **ppath, int *pathlen,
1588 				  u64 *ino, int *freepath)
1589 {
1590 	int r = 0;
1591 
1592 	if (rinode) {
1593 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1594 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1595 		     ceph_snap(rinode));
1596 	} else if (rdentry) {
1597 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1598 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1599 		     *ppath);
1600 	} else if (rpath || rino) {
1601 		*ino = rino;
1602 		*ppath = rpath;
1603 		*pathlen = strlen(rpath);
1604 		dout(" path %.*s\n", *pathlen, rpath);
1605 	}
1606 
1607 	return r;
1608 }
1609 
1610 /*
1611  * called under mdsc->mutex
1612  */
create_request_message(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,int mds)1613 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1614 					       struct ceph_mds_request *req,
1615 					       int mds)
1616 {
1617 	struct ceph_msg *msg;
1618 	struct ceph_mds_request_head *head;
1619 	const char *path1 = NULL;
1620 	const char *path2 = NULL;
1621 	u64 ino1 = 0, ino2 = 0;
1622 	int pathlen1 = 0, pathlen2 = 0;
1623 	int freepath1 = 0, freepath2 = 0;
1624 	int len;
1625 	u16 releases;
1626 	void *p, *end;
1627 	int ret;
1628 
1629 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1630 			      req->r_path1, req->r_ino1.ino,
1631 			      &path1, &pathlen1, &ino1, &freepath1);
1632 	if (ret < 0) {
1633 		msg = ERR_PTR(ret);
1634 		goto out;
1635 	}
1636 
1637 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1638 			      req->r_path2, req->r_ino2.ino,
1639 			      &path2, &pathlen2, &ino2, &freepath2);
1640 	if (ret < 0) {
1641 		msg = ERR_PTR(ret);
1642 		goto out_free1;
1643 	}
1644 
1645 	len = sizeof(*head) +
1646 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1647 
1648 	/* calculate (max) length for cap releases */
1649 	len += sizeof(struct ceph_mds_request_release) *
1650 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1651 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1652 	if (req->r_dentry_drop)
1653 		len += req->r_dentry->d_name.len;
1654 	if (req->r_old_dentry_drop)
1655 		len += req->r_old_dentry->d_name.len;
1656 
1657 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1658 	if (!msg) {
1659 		msg = ERR_PTR(-ENOMEM);
1660 		goto out_free2;
1661 	}
1662 
1663 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1664 
1665 	head = msg->front.iov_base;
1666 	p = msg->front.iov_base + sizeof(*head);
1667 	end = msg->front.iov_base + msg->front.iov_len;
1668 
1669 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1670 	head->op = cpu_to_le32(req->r_op);
1671 	head->caller_uid = cpu_to_le32(req->r_uid);
1672 	head->caller_gid = cpu_to_le32(req->r_gid);
1673 	head->args = req->r_args;
1674 
1675 	ceph_encode_filepath(&p, end, ino1, path1);
1676 	ceph_encode_filepath(&p, end, ino2, path2);
1677 
1678 	/* make note of release offset, in case we need to replay */
1679 	req->r_request_release_offset = p - msg->front.iov_base;
1680 
1681 	/* cap releases */
1682 	releases = 0;
1683 	if (req->r_inode_drop)
1684 		releases += ceph_encode_inode_release(&p,
1685 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1686 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1687 	if (req->r_dentry_drop)
1688 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1689 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1690 	if (req->r_old_dentry_drop)
1691 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1692 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1693 	if (req->r_old_inode_drop)
1694 		releases += ceph_encode_inode_release(&p,
1695 		      req->r_old_dentry->d_inode,
1696 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1697 	head->num_releases = cpu_to_le16(releases);
1698 
1699 	BUG_ON(p > end);
1700 	msg->front.iov_len = p - msg->front.iov_base;
1701 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1702 
1703 	msg->pages = req->r_pages;
1704 	msg->nr_pages = req->r_num_pages;
1705 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1706 	msg->hdr.data_off = cpu_to_le16(0);
1707 
1708 out_free2:
1709 	if (freepath2)
1710 		kfree((char *)path2);
1711 out_free1:
1712 	if (freepath1)
1713 		kfree((char *)path1);
1714 out:
1715 	return msg;
1716 }
1717 
1718 /*
1719  * called under mdsc->mutex if error, under no mutex if
1720  * success.
1721  */
complete_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1722 static void complete_request(struct ceph_mds_client *mdsc,
1723 			     struct ceph_mds_request *req)
1724 {
1725 	if (req->r_callback)
1726 		req->r_callback(mdsc, req);
1727 	else
1728 		complete_all(&req->r_completion);
1729 }
1730 
1731 /*
1732  * called under mdsc->mutex
1733  */
__prepare_send_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req,int mds)1734 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1735 				  struct ceph_mds_request *req,
1736 				  int mds)
1737 {
1738 	struct ceph_mds_request_head *rhead;
1739 	struct ceph_msg *msg;
1740 	int flags = 0;
1741 
1742 	req->r_attempts++;
1743 	if (req->r_inode) {
1744 		struct ceph_cap *cap =
1745 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1746 
1747 		if (cap)
1748 			req->r_sent_on_mseq = cap->mseq;
1749 		else
1750 			req->r_sent_on_mseq = -1;
1751 	}
1752 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1753 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1754 
1755 	if (req->r_got_unsafe) {
1756 		/*
1757 		 * Replay.  Do not regenerate message (and rebuild
1758 		 * paths, etc.); just use the original message.
1759 		 * Rebuilding paths will break for renames because
1760 		 * d_move mangles the src name.
1761 		 */
1762 		msg = req->r_request;
1763 		rhead = msg->front.iov_base;
1764 
1765 		flags = le32_to_cpu(rhead->flags);
1766 		flags |= CEPH_MDS_FLAG_REPLAY;
1767 		rhead->flags = cpu_to_le32(flags);
1768 
1769 		if (req->r_target_inode)
1770 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1771 
1772 		rhead->num_retry = req->r_attempts - 1;
1773 
1774 		/* remove cap/dentry releases from message */
1775 		rhead->num_releases = 0;
1776 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1777 		msg->front.iov_len = req->r_request_release_offset;
1778 		return 0;
1779 	}
1780 
1781 	if (req->r_request) {
1782 		ceph_msg_put(req->r_request);
1783 		req->r_request = NULL;
1784 	}
1785 	msg = create_request_message(mdsc, req, mds);
1786 	if (IS_ERR(msg)) {
1787 		req->r_err = PTR_ERR(msg);
1788 		complete_request(mdsc, req);
1789 		return PTR_ERR(msg);
1790 	}
1791 	req->r_request = msg;
1792 
1793 	rhead = msg->front.iov_base;
1794 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1795 	if (req->r_got_unsafe)
1796 		flags |= CEPH_MDS_FLAG_REPLAY;
1797 	if (req->r_locked_dir)
1798 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1799 	rhead->flags = cpu_to_le32(flags);
1800 	rhead->num_fwd = req->r_num_fwd;
1801 	rhead->num_retry = req->r_attempts - 1;
1802 	rhead->ino = 0;
1803 
1804 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1805 	return 0;
1806 }
1807 
1808 /*
1809  * send request, or put it on the appropriate wait list.
1810  */
__do_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1811 static int __do_request(struct ceph_mds_client *mdsc,
1812 			struct ceph_mds_request *req)
1813 {
1814 	struct ceph_mds_session *session = NULL;
1815 	int mds = -1;
1816 	int err = -EAGAIN;
1817 
1818 	if (req->r_err || req->r_got_result)
1819 		goto out;
1820 
1821 	if (req->r_timeout &&
1822 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1823 		dout("do_request timed out\n");
1824 		err = -EIO;
1825 		goto finish;
1826 	}
1827 
1828 	put_request_session(req);
1829 
1830 	mds = __choose_mds(mdsc, req);
1831 	if (mds < 0 ||
1832 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1833 		dout("do_request no mds or not active, waiting for map\n");
1834 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1835 		goto out;
1836 	}
1837 
1838 	/* get, open session */
1839 	session = __ceph_lookup_mds_session(mdsc, mds);
1840 	if (!session) {
1841 		session = register_session(mdsc, mds);
1842 		if (IS_ERR(session)) {
1843 			err = PTR_ERR(session);
1844 			goto finish;
1845 		}
1846 	}
1847 	req->r_session = get_session(session);
1848 
1849 	dout("do_request mds%d session %p state %s\n", mds, session,
1850 	     session_state_name(session->s_state));
1851 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1852 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1853 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1854 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1855 			__open_session(mdsc, session);
1856 		list_add(&req->r_wait, &session->s_waiting);
1857 		goto out_session;
1858 	}
1859 
1860 	/* send request */
1861 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1862 
1863 	if (req->r_request_started == 0)   /* note request start time */
1864 		req->r_request_started = jiffies;
1865 
1866 	err = __prepare_send_request(mdsc, req, mds);
1867 	if (!err) {
1868 		ceph_msg_get(req->r_request);
1869 		ceph_con_send(&session->s_con, req->r_request);
1870 	}
1871 
1872 out_session:
1873 	ceph_put_mds_session(session);
1874 out:
1875 	return err;
1876 
1877 finish:
1878 	req->r_err = err;
1879 	complete_request(mdsc, req);
1880 	goto out;
1881 }
1882 
1883 /*
1884  * called under mdsc->mutex
1885  */
__wake_requests(struct ceph_mds_client * mdsc,struct list_head * head)1886 static void __wake_requests(struct ceph_mds_client *mdsc,
1887 			    struct list_head *head)
1888 {
1889 	struct ceph_mds_request *req;
1890 	LIST_HEAD(tmp_list);
1891 
1892 	list_splice_init(head, &tmp_list);
1893 
1894 	while (!list_empty(&tmp_list)) {
1895 		req = list_entry(tmp_list.next,
1896 				 struct ceph_mds_request, r_wait);
1897 		list_del_init(&req->r_wait);
1898 		__do_request(mdsc, req);
1899 	}
1900 }
1901 
1902 /*
1903  * Wake up threads with requests pending for @mds, so that they can
1904  * resubmit their requests to a possibly different mds.
1905  */
kick_requests(struct ceph_mds_client * mdsc,int mds)1906 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1907 {
1908 	struct ceph_mds_request *req;
1909 	struct rb_node *p;
1910 
1911 	dout("kick_requests mds%d\n", mds);
1912 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1913 		req = rb_entry(p, struct ceph_mds_request, r_node);
1914 		if (req->r_got_unsafe)
1915 			continue;
1916 		if (req->r_session &&
1917 		    req->r_session->s_mds == mds) {
1918 			dout(" kicking tid %llu\n", req->r_tid);
1919 			__do_request(mdsc, req);
1920 		}
1921 	}
1922 }
1923 
ceph_mdsc_submit_request(struct ceph_mds_client * mdsc,struct ceph_mds_request * req)1924 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1925 			      struct ceph_mds_request *req)
1926 {
1927 	dout("submit_request on %p\n", req);
1928 	mutex_lock(&mdsc->mutex);
1929 	__register_request(mdsc, req, NULL);
1930 	__do_request(mdsc, req);
1931 	mutex_unlock(&mdsc->mutex);
1932 }
1933 
1934 /*
1935  * Synchrously perform an mds request.  Take care of all of the
1936  * session setup, forwarding, retry details.
1937  */
ceph_mdsc_do_request(struct ceph_mds_client * mdsc,struct inode * dir,struct ceph_mds_request * req)1938 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1939 			 struct inode *dir,
1940 			 struct ceph_mds_request *req)
1941 {
1942 	int err;
1943 
1944 	dout("do_request on %p\n", req);
1945 
1946 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1947 	if (req->r_inode)
1948 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1949 	if (req->r_locked_dir)
1950 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1951 	if (req->r_old_dentry)
1952 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1953 				  CEPH_CAP_PIN);
1954 
1955 	/* issue */
1956 	mutex_lock(&mdsc->mutex);
1957 	__register_request(mdsc, req, dir);
1958 	__do_request(mdsc, req);
1959 
1960 	if (req->r_err) {
1961 		err = req->r_err;
1962 		__unregister_request(mdsc, req);
1963 		dout("do_request early error %d\n", err);
1964 		goto out;
1965 	}
1966 
1967 	/* wait */
1968 	mutex_unlock(&mdsc->mutex);
1969 	dout("do_request waiting\n");
1970 	if (req->r_timeout) {
1971 		err = (long)wait_for_completion_killable_timeout(
1972 			&req->r_completion, req->r_timeout);
1973 		if (err == 0)
1974 			err = -EIO;
1975 	} else {
1976 		err = wait_for_completion_killable(&req->r_completion);
1977 	}
1978 	dout("do_request waited, got %d\n", err);
1979 	mutex_lock(&mdsc->mutex);
1980 
1981 	/* only abort if we didn't race with a real reply */
1982 	if (req->r_got_result) {
1983 		err = le32_to_cpu(req->r_reply_info.head->result);
1984 	} else if (err < 0) {
1985 		dout("aborted request %lld with %d\n", req->r_tid, err);
1986 
1987 		/*
1988 		 * ensure we aren't running concurrently with
1989 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1990 		 * rely on locks (dir mutex) held by our caller.
1991 		 */
1992 		mutex_lock(&req->r_fill_mutex);
1993 		req->r_err = err;
1994 		req->r_aborted = true;
1995 		mutex_unlock(&req->r_fill_mutex);
1996 
1997 		if (req->r_locked_dir &&
1998 		    (req->r_op & CEPH_MDS_OP_WRITE))
1999 			ceph_invalidate_dir_request(req);
2000 	} else {
2001 		err = req->r_err;
2002 	}
2003 
2004 out:
2005 	mutex_unlock(&mdsc->mutex);
2006 	dout("do_request %p done, result %d\n", req, err);
2007 	return err;
2008 }
2009 
2010 /*
2011  * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2012  * namespace request.
2013  */
ceph_invalidate_dir_request(struct ceph_mds_request * req)2014 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2015 {
2016 	struct inode *inode = req->r_locked_dir;
2017 	struct ceph_inode_info *ci = ceph_inode(inode);
2018 
2019 	dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2020 	spin_lock(&ci->i_ceph_lock);
2021 	ceph_dir_clear_complete(inode);
2022 	ci->i_release_count++;
2023 	spin_unlock(&ci->i_ceph_lock);
2024 
2025 	if (req->r_dentry)
2026 		ceph_invalidate_dentry_lease(req->r_dentry);
2027 	if (req->r_old_dentry)
2028 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2029 }
2030 
2031 /*
2032  * Handle mds reply.
2033  *
2034  * We take the session mutex and parse and process the reply immediately.
2035  * This preserves the logical ordering of replies, capabilities, etc., sent
2036  * by the MDS as they are applied to our local cache.
2037  */
handle_reply(struct ceph_mds_session * session,struct ceph_msg * msg)2038 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2039 {
2040 	struct ceph_mds_client *mdsc = session->s_mdsc;
2041 	struct ceph_mds_request *req;
2042 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2043 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2044 	u64 tid;
2045 	int err, result;
2046 	int mds = session->s_mds;
2047 
2048 	if (msg->front.iov_len < sizeof(*head)) {
2049 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2050 		ceph_msg_dump(msg);
2051 		return;
2052 	}
2053 
2054 	/* get request, session */
2055 	tid = le64_to_cpu(msg->hdr.tid);
2056 	mutex_lock(&mdsc->mutex);
2057 	req = __lookup_request(mdsc, tid);
2058 	if (!req) {
2059 		dout("handle_reply on unknown tid %llu\n", tid);
2060 		mutex_unlock(&mdsc->mutex);
2061 		return;
2062 	}
2063 	dout("handle_reply %p\n", req);
2064 
2065 	/* correct session? */
2066 	if (req->r_session != session) {
2067 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2068 		       " not mds%d\n", tid, session->s_mds,
2069 		       req->r_session ? req->r_session->s_mds : -1);
2070 		mutex_unlock(&mdsc->mutex);
2071 		goto out;
2072 	}
2073 
2074 	/* dup? */
2075 	if ((req->r_got_unsafe && !head->safe) ||
2076 	    (req->r_got_safe && head->safe)) {
2077 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2078 			   head->safe ? "safe" : "unsafe", tid, mds);
2079 		mutex_unlock(&mdsc->mutex);
2080 		goto out;
2081 	}
2082 	if (req->r_got_safe && !head->safe) {
2083 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2084 			   tid, mds);
2085 		mutex_unlock(&mdsc->mutex);
2086 		goto out;
2087 	}
2088 
2089 	result = le32_to_cpu(head->result);
2090 
2091 	/*
2092 	 * Handle an ESTALE
2093 	 * if we're not talking to the authority, send to them
2094 	 * if the authority has changed while we weren't looking,
2095 	 * send to new authority
2096 	 * Otherwise we just have to return an ESTALE
2097 	 */
2098 	if (result == -ESTALE) {
2099 		dout("got ESTALE on request %llu", req->r_tid);
2100 		if (!req->r_inode) {
2101 			/* do nothing; not an authority problem */
2102 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2103 			dout("not using auth, setting for that now");
2104 			req->r_direct_mode = USE_AUTH_MDS;
2105 			__do_request(mdsc, req);
2106 			mutex_unlock(&mdsc->mutex);
2107 			goto out;
2108 		} else  {
2109 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2110 			struct ceph_cap *cap = NULL;
2111 
2112 			if (req->r_session)
2113 				cap = ceph_get_cap_for_mds(ci,
2114 						   req->r_session->s_mds);
2115 
2116 			dout("already using auth");
2117 			if ((!cap || cap != ci->i_auth_cap) ||
2118 			    (cap->mseq != req->r_sent_on_mseq)) {
2119 				dout("but cap changed, so resending");
2120 				__do_request(mdsc, req);
2121 				mutex_unlock(&mdsc->mutex);
2122 				goto out;
2123 			}
2124 		}
2125 		dout("have to return ESTALE on request %llu", req->r_tid);
2126 	}
2127 
2128 
2129 	if (head->safe) {
2130 		req->r_got_safe = true;
2131 		__unregister_request(mdsc, req);
2132 		complete_all(&req->r_safe_completion);
2133 
2134 		if (req->r_got_unsafe) {
2135 			/*
2136 			 * We already handled the unsafe response, now do the
2137 			 * cleanup.  No need to examine the response; the MDS
2138 			 * doesn't include any result info in the safe
2139 			 * response.  And even if it did, there is nothing
2140 			 * useful we could do with a revised return value.
2141 			 */
2142 			dout("got safe reply %llu, mds%d\n", tid, mds);
2143 			list_del_init(&req->r_unsafe_item);
2144 
2145 			/* last unsafe request during umount? */
2146 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2147 				complete_all(&mdsc->safe_umount_waiters);
2148 			mutex_unlock(&mdsc->mutex);
2149 			goto out;
2150 		}
2151 	} else {
2152 		req->r_got_unsafe = true;
2153 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2154 	}
2155 
2156 	dout("handle_reply tid %lld result %d\n", tid, result);
2157 	rinfo = &req->r_reply_info;
2158 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2159 	mutex_unlock(&mdsc->mutex);
2160 
2161 	mutex_lock(&session->s_mutex);
2162 	if (err < 0) {
2163 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2164 		ceph_msg_dump(msg);
2165 		goto out_err;
2166 	}
2167 
2168 	/* snap trace */
2169 	if (rinfo->snapblob_len) {
2170 		down_write(&mdsc->snap_rwsem);
2171 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2172 			       rinfo->snapblob + rinfo->snapblob_len,
2173 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2174 		downgrade_write(&mdsc->snap_rwsem);
2175 	} else {
2176 		down_read(&mdsc->snap_rwsem);
2177 	}
2178 
2179 	/* insert trace into our cache */
2180 	mutex_lock(&req->r_fill_mutex);
2181 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2182 	if (err == 0) {
2183 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2184 		    rinfo->dir_nr)
2185 			ceph_readdir_prepopulate(req, req->r_session);
2186 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2187 	}
2188 	mutex_unlock(&req->r_fill_mutex);
2189 
2190 	up_read(&mdsc->snap_rwsem);
2191 out_err:
2192 	mutex_lock(&mdsc->mutex);
2193 	if (!req->r_aborted) {
2194 		if (err) {
2195 			req->r_err = err;
2196 		} else {
2197 			req->r_reply = msg;
2198 			ceph_msg_get(msg);
2199 			req->r_got_result = true;
2200 		}
2201 	} else {
2202 		dout("reply arrived after request %lld was aborted\n", tid);
2203 	}
2204 	mutex_unlock(&mdsc->mutex);
2205 
2206 	ceph_add_cap_releases(mdsc, req->r_session);
2207 	mutex_unlock(&session->s_mutex);
2208 
2209 	/* kick calling process */
2210 	complete_request(mdsc, req);
2211 out:
2212 	ceph_mdsc_put_request(req);
2213 	return;
2214 }
2215 
2216 
2217 
2218 /*
2219  * handle mds notification that our request has been forwarded.
2220  */
handle_forward(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)2221 static void handle_forward(struct ceph_mds_client *mdsc,
2222 			   struct ceph_mds_session *session,
2223 			   struct ceph_msg *msg)
2224 {
2225 	struct ceph_mds_request *req;
2226 	u64 tid = le64_to_cpu(msg->hdr.tid);
2227 	u32 next_mds;
2228 	u32 fwd_seq;
2229 	int err = -EINVAL;
2230 	void *p = msg->front.iov_base;
2231 	void *end = p + msg->front.iov_len;
2232 
2233 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2234 	next_mds = ceph_decode_32(&p);
2235 	fwd_seq = ceph_decode_32(&p);
2236 
2237 	mutex_lock(&mdsc->mutex);
2238 	req = __lookup_request(mdsc, tid);
2239 	if (!req) {
2240 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2241 		goto out;  /* dup reply? */
2242 	}
2243 
2244 	if (req->r_aborted) {
2245 		dout("forward tid %llu aborted, unregistering\n", tid);
2246 		__unregister_request(mdsc, req);
2247 	} else if (fwd_seq <= req->r_num_fwd) {
2248 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2249 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2250 	} else {
2251 		/* resend. forward race not possible; mds would drop */
2252 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2253 		BUG_ON(req->r_err);
2254 		BUG_ON(req->r_got_result);
2255 		req->r_num_fwd = fwd_seq;
2256 		req->r_resend_mds = next_mds;
2257 		put_request_session(req);
2258 		__do_request(mdsc, req);
2259 	}
2260 	ceph_mdsc_put_request(req);
2261 out:
2262 	mutex_unlock(&mdsc->mutex);
2263 	return;
2264 
2265 bad:
2266 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2267 }
2268 
2269 /*
2270  * handle a mds session control message
2271  */
handle_session(struct ceph_mds_session * session,struct ceph_msg * msg)2272 static void handle_session(struct ceph_mds_session *session,
2273 			   struct ceph_msg *msg)
2274 {
2275 	struct ceph_mds_client *mdsc = session->s_mdsc;
2276 	u32 op;
2277 	u64 seq;
2278 	int mds = session->s_mds;
2279 	struct ceph_mds_session_head *h = msg->front.iov_base;
2280 	int wake = 0;
2281 
2282 	/* decode */
2283 	if (msg->front.iov_len != sizeof(*h))
2284 		goto bad;
2285 	op = le32_to_cpu(h->op);
2286 	seq = le64_to_cpu(h->seq);
2287 
2288 	mutex_lock(&mdsc->mutex);
2289 	if (op == CEPH_SESSION_CLOSE)
2290 		__unregister_session(mdsc, session);
2291 	/* FIXME: this ttl calculation is generous */
2292 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2293 	mutex_unlock(&mdsc->mutex);
2294 
2295 	mutex_lock(&session->s_mutex);
2296 
2297 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2298 	     mds, ceph_session_op_name(op), session,
2299 	     session_state_name(session->s_state), seq);
2300 
2301 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2302 		session->s_state = CEPH_MDS_SESSION_OPEN;
2303 		pr_info("mds%d came back\n", session->s_mds);
2304 	}
2305 
2306 	switch (op) {
2307 	case CEPH_SESSION_OPEN:
2308 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2309 			pr_info("mds%d reconnect success\n", session->s_mds);
2310 		session->s_state = CEPH_MDS_SESSION_OPEN;
2311 		renewed_caps(mdsc, session, 0);
2312 		wake = 1;
2313 		if (mdsc->stopping)
2314 			__close_session(mdsc, session);
2315 		break;
2316 
2317 	case CEPH_SESSION_RENEWCAPS:
2318 		if (session->s_renew_seq == seq)
2319 			renewed_caps(mdsc, session, 1);
2320 		break;
2321 
2322 	case CEPH_SESSION_CLOSE:
2323 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2324 			pr_info("mds%d reconnect denied\n", session->s_mds);
2325 		remove_session_caps(session);
2326 		wake = 1; /* for good measure */
2327 		wake_up_all(&mdsc->session_close_wq);
2328 		kick_requests(mdsc, mds);
2329 		break;
2330 
2331 	case CEPH_SESSION_STALE:
2332 		pr_info("mds%d caps went stale, renewing\n",
2333 			session->s_mds);
2334 		spin_lock(&session->s_gen_ttl_lock);
2335 		session->s_cap_gen++;
2336 		session->s_cap_ttl = jiffies - 1;
2337 		spin_unlock(&session->s_gen_ttl_lock);
2338 		send_renew_caps(mdsc, session);
2339 		break;
2340 
2341 	case CEPH_SESSION_RECALL_STATE:
2342 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2343 		break;
2344 
2345 	default:
2346 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2347 		WARN_ON(1);
2348 	}
2349 
2350 	mutex_unlock(&session->s_mutex);
2351 	if (wake) {
2352 		mutex_lock(&mdsc->mutex);
2353 		__wake_requests(mdsc, &session->s_waiting);
2354 		mutex_unlock(&mdsc->mutex);
2355 	}
2356 	return;
2357 
2358 bad:
2359 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2360 	       (int)msg->front.iov_len);
2361 	ceph_msg_dump(msg);
2362 	return;
2363 }
2364 
2365 
2366 /*
2367  * called under session->mutex.
2368  */
replay_unsafe_requests(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2369 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2370 				   struct ceph_mds_session *session)
2371 {
2372 	struct ceph_mds_request *req, *nreq;
2373 	int err;
2374 
2375 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2376 
2377 	mutex_lock(&mdsc->mutex);
2378 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2379 		err = __prepare_send_request(mdsc, req, session->s_mds);
2380 		if (!err) {
2381 			ceph_msg_get(req->r_request);
2382 			ceph_con_send(&session->s_con, req->r_request);
2383 		}
2384 	}
2385 	mutex_unlock(&mdsc->mutex);
2386 }
2387 
2388 /*
2389  * Encode information about a cap for a reconnect with the MDS.
2390  */
encode_caps_cb(struct inode * inode,struct ceph_cap * cap,void * arg)2391 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2392 			  void *arg)
2393 {
2394 	union {
2395 		struct ceph_mds_cap_reconnect v2;
2396 		struct ceph_mds_cap_reconnect_v1 v1;
2397 	} rec;
2398 	size_t reclen;
2399 	struct ceph_inode_info *ci;
2400 	struct ceph_reconnect_state *recon_state = arg;
2401 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2402 	char *path;
2403 	int pathlen, err;
2404 	u64 pathbase;
2405 	struct dentry *dentry;
2406 
2407 	ci = cap->ci;
2408 
2409 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2410 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2411 	     ceph_cap_string(cap->issued));
2412 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2413 	if (err)
2414 		return err;
2415 
2416 	dentry = d_find_alias(inode);
2417 	if (dentry) {
2418 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2419 		if (IS_ERR(path)) {
2420 			err = PTR_ERR(path);
2421 			goto out_dput;
2422 		}
2423 	} else {
2424 		path = NULL;
2425 		pathlen = 0;
2426 	}
2427 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2428 	if (err)
2429 		goto out_free;
2430 
2431 	spin_lock(&ci->i_ceph_lock);
2432 	cap->seq = 0;        /* reset cap seq */
2433 	cap->issue_seq = 0;  /* and issue_seq */
2434 
2435 	if (recon_state->flock) {
2436 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2437 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2438 		rec.v2.issued = cpu_to_le32(cap->issued);
2439 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2440 		rec.v2.pathbase = cpu_to_le64(pathbase);
2441 		rec.v2.flock_len = 0;
2442 		reclen = sizeof(rec.v2);
2443 	} else {
2444 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2445 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2446 		rec.v1.issued = cpu_to_le32(cap->issued);
2447 		rec.v1.size = cpu_to_le64(inode->i_size);
2448 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2449 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2450 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2451 		rec.v1.pathbase = cpu_to_le64(pathbase);
2452 		reclen = sizeof(rec.v1);
2453 	}
2454 	spin_unlock(&ci->i_ceph_lock);
2455 
2456 	if (recon_state->flock) {
2457 		int num_fcntl_locks, num_flock_locks;
2458 		struct ceph_filelock *flocks;
2459 
2460 encode_again:
2461 		lock_flocks();
2462 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2463 		unlock_flocks();
2464 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2465 				 sizeof(struct ceph_filelock), GFP_NOFS);
2466 		if (!flocks) {
2467 			err = -ENOMEM;
2468 			goto out_free;
2469 		}
2470 		lock_flocks();
2471 		err = ceph_encode_locks_to_buffer(inode, flocks,
2472 						  num_fcntl_locks,
2473 						  num_flock_locks);
2474 		unlock_flocks();
2475 		if (err) {
2476 			kfree(flocks);
2477 			if (err == -ENOSPC)
2478 				goto encode_again;
2479 			goto out_free;
2480 		}
2481 		/*
2482 		 * number of encoded locks is stable, so copy to pagelist
2483 		 */
2484 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2485 				    (num_fcntl_locks+num_flock_locks) *
2486 				    sizeof(struct ceph_filelock));
2487 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2488 		if (!err)
2489 			err = ceph_locks_to_pagelist(flocks, pagelist,
2490 						     num_fcntl_locks,
2491 						     num_flock_locks);
2492 		kfree(flocks);
2493 	} else {
2494 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2495 	}
2496 out_free:
2497 	kfree(path);
2498 out_dput:
2499 	dput(dentry);
2500 	return err;
2501 }
2502 
2503 
2504 /*
2505  * If an MDS fails and recovers, clients need to reconnect in order to
2506  * reestablish shared state.  This includes all caps issued through
2507  * this session _and_ the snap_realm hierarchy.  Because it's not
2508  * clear which snap realms the mds cares about, we send everything we
2509  * know about.. that ensures we'll then get any new info the
2510  * recovering MDS might have.
2511  *
2512  * This is a relatively heavyweight operation, but it's rare.
2513  *
2514  * called with mdsc->mutex held.
2515  */
send_mds_reconnect(struct ceph_mds_client * mdsc,struct ceph_mds_session * session)2516 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2517 			       struct ceph_mds_session *session)
2518 {
2519 	struct ceph_msg *reply;
2520 	struct rb_node *p;
2521 	int mds = session->s_mds;
2522 	int err = -ENOMEM;
2523 	struct ceph_pagelist *pagelist;
2524 	struct ceph_reconnect_state recon_state;
2525 
2526 	pr_info("mds%d reconnect start\n", mds);
2527 
2528 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2529 	if (!pagelist)
2530 		goto fail_nopagelist;
2531 	ceph_pagelist_init(pagelist);
2532 
2533 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2534 	if (!reply)
2535 		goto fail_nomsg;
2536 
2537 	mutex_lock(&session->s_mutex);
2538 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2539 	session->s_seq = 0;
2540 
2541 	ceph_con_close(&session->s_con);
2542 	ceph_con_open(&session->s_con,
2543 		      CEPH_ENTITY_TYPE_MDS, mds,
2544 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2545 
2546 	/* replay unsafe requests */
2547 	replay_unsafe_requests(mdsc, session);
2548 
2549 	down_read(&mdsc->snap_rwsem);
2550 
2551 	dout("session %p state %s\n", session,
2552 	     session_state_name(session->s_state));
2553 
2554 	/* drop old cap expires; we're about to reestablish that state */
2555 	discard_cap_releases(mdsc, session);
2556 
2557 	/* traverse this session's caps */
2558 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2559 	if (err)
2560 		goto fail;
2561 
2562 	recon_state.pagelist = pagelist;
2563 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2564 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2565 	if (err < 0)
2566 		goto fail;
2567 
2568 	/*
2569 	 * snaprealms.  we provide mds with the ino, seq (version), and
2570 	 * parent for all of our realms.  If the mds has any newer info,
2571 	 * it will tell us.
2572 	 */
2573 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2574 		struct ceph_snap_realm *realm =
2575 			rb_entry(p, struct ceph_snap_realm, node);
2576 		struct ceph_mds_snaprealm_reconnect sr_rec;
2577 
2578 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2579 		     realm->ino, realm->seq, realm->parent_ino);
2580 		sr_rec.ino = cpu_to_le64(realm->ino);
2581 		sr_rec.seq = cpu_to_le64(realm->seq);
2582 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2583 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2584 		if (err)
2585 			goto fail;
2586 	}
2587 
2588 	reply->pagelist = pagelist;
2589 	if (recon_state.flock)
2590 		reply->hdr.version = cpu_to_le16(2);
2591 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2592 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2593 	ceph_con_send(&session->s_con, reply);
2594 
2595 	mutex_unlock(&session->s_mutex);
2596 
2597 	mutex_lock(&mdsc->mutex);
2598 	__wake_requests(mdsc, &session->s_waiting);
2599 	mutex_unlock(&mdsc->mutex);
2600 
2601 	up_read(&mdsc->snap_rwsem);
2602 	return;
2603 
2604 fail:
2605 	ceph_msg_put(reply);
2606 	up_read(&mdsc->snap_rwsem);
2607 	mutex_unlock(&session->s_mutex);
2608 fail_nomsg:
2609 	ceph_pagelist_release(pagelist);
2610 	kfree(pagelist);
2611 fail_nopagelist:
2612 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2613 	return;
2614 }
2615 
2616 
2617 /*
2618  * compare old and new mdsmaps, kicking requests
2619  * and closing out old connections as necessary
2620  *
2621  * called under mdsc->mutex.
2622  */
check_new_map(struct ceph_mds_client * mdsc,struct ceph_mdsmap * newmap,struct ceph_mdsmap * oldmap)2623 static void check_new_map(struct ceph_mds_client *mdsc,
2624 			  struct ceph_mdsmap *newmap,
2625 			  struct ceph_mdsmap *oldmap)
2626 {
2627 	int i;
2628 	int oldstate, newstate;
2629 	struct ceph_mds_session *s;
2630 
2631 	dout("check_new_map new %u old %u\n",
2632 	     newmap->m_epoch, oldmap->m_epoch);
2633 
2634 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2635 		if (mdsc->sessions[i] == NULL)
2636 			continue;
2637 		s = mdsc->sessions[i];
2638 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2639 		newstate = ceph_mdsmap_get_state(newmap, i);
2640 
2641 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2642 		     i, ceph_mds_state_name(oldstate),
2643 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2644 		     ceph_mds_state_name(newstate),
2645 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2646 		     session_state_name(s->s_state));
2647 
2648 		if (i >= newmap->m_max_mds ||
2649 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2650 			   ceph_mdsmap_get_addr(newmap, i),
2651 			   sizeof(struct ceph_entity_addr))) {
2652 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2653 				/* the session never opened, just close it
2654 				 * out now */
2655 				__wake_requests(mdsc, &s->s_waiting);
2656 				__unregister_session(mdsc, s);
2657 			} else {
2658 				/* just close it */
2659 				mutex_unlock(&mdsc->mutex);
2660 				mutex_lock(&s->s_mutex);
2661 				mutex_lock(&mdsc->mutex);
2662 				ceph_con_close(&s->s_con);
2663 				mutex_unlock(&s->s_mutex);
2664 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2665 			}
2666 
2667 			/* kick any requests waiting on the recovering mds */
2668 			kick_requests(mdsc, i);
2669 		} else if (oldstate == newstate) {
2670 			continue;  /* nothing new with this mds */
2671 		}
2672 
2673 		/*
2674 		 * send reconnect?
2675 		 */
2676 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2677 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2678 			mutex_unlock(&mdsc->mutex);
2679 			send_mds_reconnect(mdsc, s);
2680 			mutex_lock(&mdsc->mutex);
2681 		}
2682 
2683 		/*
2684 		 * kick request on any mds that has gone active.
2685 		 */
2686 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2687 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2688 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2689 			    oldstate != CEPH_MDS_STATE_STARTING)
2690 				pr_info("mds%d recovery completed\n", s->s_mds);
2691 			kick_requests(mdsc, i);
2692 			ceph_kick_flushing_caps(mdsc, s);
2693 			wake_up_session_caps(s, 1);
2694 		}
2695 	}
2696 
2697 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2698 		s = mdsc->sessions[i];
2699 		if (!s)
2700 			continue;
2701 		if (!ceph_mdsmap_is_laggy(newmap, i))
2702 			continue;
2703 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2704 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2705 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2706 			dout(" connecting to export targets of laggy mds%d\n",
2707 			     i);
2708 			__open_export_target_sessions(mdsc, s);
2709 		}
2710 	}
2711 }
2712 
2713 
2714 
2715 /*
2716  * leases
2717  */
2718 
2719 /*
2720  * caller must hold session s_mutex, dentry->d_lock
2721  */
__ceph_mdsc_drop_dentry_lease(struct dentry * dentry)2722 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2723 {
2724 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2725 
2726 	ceph_put_mds_session(di->lease_session);
2727 	di->lease_session = NULL;
2728 }
2729 
handle_lease(struct ceph_mds_client * mdsc,struct ceph_mds_session * session,struct ceph_msg * msg)2730 static void handle_lease(struct ceph_mds_client *mdsc,
2731 			 struct ceph_mds_session *session,
2732 			 struct ceph_msg *msg)
2733 {
2734 	struct super_block *sb = mdsc->fsc->sb;
2735 	struct inode *inode;
2736 	struct dentry *parent, *dentry;
2737 	struct ceph_dentry_info *di;
2738 	int mds = session->s_mds;
2739 	struct ceph_mds_lease *h = msg->front.iov_base;
2740 	u32 seq;
2741 	struct ceph_vino vino;
2742 	struct qstr dname;
2743 	int release = 0;
2744 
2745 	dout("handle_lease from mds%d\n", mds);
2746 
2747 	/* decode */
2748 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2749 		goto bad;
2750 	vino.ino = le64_to_cpu(h->ino);
2751 	vino.snap = CEPH_NOSNAP;
2752 	seq = le32_to_cpu(h->seq);
2753 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2754 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2755 	if (dname.len != get_unaligned_le32(h+1))
2756 		goto bad;
2757 
2758 	mutex_lock(&session->s_mutex);
2759 	session->s_seq++;
2760 
2761 	/* lookup inode */
2762 	inode = ceph_find_inode(sb, vino);
2763 	dout("handle_lease %s, ino %llx %p %.*s\n",
2764 	     ceph_lease_op_name(h->action), vino.ino, inode,
2765 	     dname.len, dname.name);
2766 	if (inode == NULL) {
2767 		dout("handle_lease no inode %llx\n", vino.ino);
2768 		goto release;
2769 	}
2770 
2771 	/* dentry */
2772 	parent = d_find_alias(inode);
2773 	if (!parent) {
2774 		dout("no parent dentry on inode %p\n", inode);
2775 		WARN_ON(1);
2776 		goto release;  /* hrm... */
2777 	}
2778 	dname.hash = full_name_hash(dname.name, dname.len);
2779 	dentry = d_lookup(parent, &dname);
2780 	dput(parent);
2781 	if (!dentry)
2782 		goto release;
2783 
2784 	spin_lock(&dentry->d_lock);
2785 	di = ceph_dentry(dentry);
2786 	switch (h->action) {
2787 	case CEPH_MDS_LEASE_REVOKE:
2788 		if (di->lease_session == session) {
2789 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2790 				h->seq = cpu_to_le32(di->lease_seq);
2791 			__ceph_mdsc_drop_dentry_lease(dentry);
2792 		}
2793 		release = 1;
2794 		break;
2795 
2796 	case CEPH_MDS_LEASE_RENEW:
2797 		if (di->lease_session == session &&
2798 		    di->lease_gen == session->s_cap_gen &&
2799 		    di->lease_renew_from &&
2800 		    di->lease_renew_after == 0) {
2801 			unsigned long duration =
2802 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2803 
2804 			di->lease_seq = seq;
2805 			dentry->d_time = di->lease_renew_from + duration;
2806 			di->lease_renew_after = di->lease_renew_from +
2807 				(duration >> 1);
2808 			di->lease_renew_from = 0;
2809 		}
2810 		break;
2811 	}
2812 	spin_unlock(&dentry->d_lock);
2813 	dput(dentry);
2814 
2815 	if (!release)
2816 		goto out;
2817 
2818 release:
2819 	/* let's just reuse the same message */
2820 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2821 	ceph_msg_get(msg);
2822 	ceph_con_send(&session->s_con, msg);
2823 
2824 out:
2825 	iput(inode);
2826 	mutex_unlock(&session->s_mutex);
2827 	return;
2828 
2829 bad:
2830 	pr_err("corrupt lease message\n");
2831 	ceph_msg_dump(msg);
2832 }
2833 
ceph_mdsc_lease_send_msg(struct ceph_mds_session * session,struct inode * inode,struct dentry * dentry,char action,u32 seq)2834 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2835 			      struct inode *inode,
2836 			      struct dentry *dentry, char action,
2837 			      u32 seq)
2838 {
2839 	struct ceph_msg *msg;
2840 	struct ceph_mds_lease *lease;
2841 	int len = sizeof(*lease) + sizeof(u32);
2842 	int dnamelen = 0;
2843 
2844 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2845 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2846 	dnamelen = dentry->d_name.len;
2847 	len += dnamelen;
2848 
2849 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2850 	if (!msg)
2851 		return;
2852 	lease = msg->front.iov_base;
2853 	lease->action = action;
2854 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2855 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2856 	lease->seq = cpu_to_le32(seq);
2857 	put_unaligned_le32(dnamelen, lease + 1);
2858 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2859 
2860 	/*
2861 	 * if this is a preemptive lease RELEASE, no need to
2862 	 * flush request stream, since the actual request will
2863 	 * soon follow.
2864 	 */
2865 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2866 
2867 	ceph_con_send(&session->s_con, msg);
2868 }
2869 
2870 /*
2871  * Preemptively release a lease we expect to invalidate anyway.
2872  * Pass @inode always, @dentry is optional.
2873  */
ceph_mdsc_lease_release(struct ceph_mds_client * mdsc,struct inode * inode,struct dentry * dentry)2874 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2875 			     struct dentry *dentry)
2876 {
2877 	struct ceph_dentry_info *di;
2878 	struct ceph_mds_session *session;
2879 	u32 seq;
2880 
2881 	BUG_ON(inode == NULL);
2882 	BUG_ON(dentry == NULL);
2883 
2884 	/* is dentry lease valid? */
2885 	spin_lock(&dentry->d_lock);
2886 	di = ceph_dentry(dentry);
2887 	if (!di || !di->lease_session ||
2888 	    di->lease_session->s_mds < 0 ||
2889 	    di->lease_gen != di->lease_session->s_cap_gen ||
2890 	    !time_before(jiffies, dentry->d_time)) {
2891 		dout("lease_release inode %p dentry %p -- "
2892 		     "no lease\n",
2893 		     inode, dentry);
2894 		spin_unlock(&dentry->d_lock);
2895 		return;
2896 	}
2897 
2898 	/* we do have a lease on this dentry; note mds and seq */
2899 	session = ceph_get_mds_session(di->lease_session);
2900 	seq = di->lease_seq;
2901 	__ceph_mdsc_drop_dentry_lease(dentry);
2902 	spin_unlock(&dentry->d_lock);
2903 
2904 	dout("lease_release inode %p dentry %p to mds%d\n",
2905 	     inode, dentry, session->s_mds);
2906 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2907 				 CEPH_MDS_LEASE_RELEASE, seq);
2908 	ceph_put_mds_session(session);
2909 }
2910 
2911 /*
2912  * drop all leases (and dentry refs) in preparation for umount
2913  */
drop_leases(struct ceph_mds_client * mdsc)2914 static void drop_leases(struct ceph_mds_client *mdsc)
2915 {
2916 	int i;
2917 
2918 	dout("drop_leases\n");
2919 	mutex_lock(&mdsc->mutex);
2920 	for (i = 0; i < mdsc->max_sessions; i++) {
2921 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2922 		if (!s)
2923 			continue;
2924 		mutex_unlock(&mdsc->mutex);
2925 		mutex_lock(&s->s_mutex);
2926 		mutex_unlock(&s->s_mutex);
2927 		ceph_put_mds_session(s);
2928 		mutex_lock(&mdsc->mutex);
2929 	}
2930 	mutex_unlock(&mdsc->mutex);
2931 }
2932 
2933 
2934 
2935 /*
2936  * delayed work -- periodically trim expired leases, renew caps with mds
2937  */
schedule_delayed(struct ceph_mds_client * mdsc)2938 static void schedule_delayed(struct ceph_mds_client *mdsc)
2939 {
2940 	int delay = 5;
2941 	unsigned hz = round_jiffies_relative(HZ * delay);
2942 	schedule_delayed_work(&mdsc->delayed_work, hz);
2943 }
2944 
delayed_work(struct work_struct * work)2945 static void delayed_work(struct work_struct *work)
2946 {
2947 	int i;
2948 	struct ceph_mds_client *mdsc =
2949 		container_of(work, struct ceph_mds_client, delayed_work.work);
2950 	int renew_interval;
2951 	int renew_caps;
2952 
2953 	dout("mdsc delayed_work\n");
2954 	ceph_check_delayed_caps(mdsc);
2955 
2956 	mutex_lock(&mdsc->mutex);
2957 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2958 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2959 				   mdsc->last_renew_caps);
2960 	if (renew_caps)
2961 		mdsc->last_renew_caps = jiffies;
2962 
2963 	for (i = 0; i < mdsc->max_sessions; i++) {
2964 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2965 		if (s == NULL)
2966 			continue;
2967 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2968 			dout("resending session close request for mds%d\n",
2969 			     s->s_mds);
2970 			request_close_session(mdsc, s);
2971 			ceph_put_mds_session(s);
2972 			continue;
2973 		}
2974 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2975 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2976 				s->s_state = CEPH_MDS_SESSION_HUNG;
2977 				pr_info("mds%d hung\n", s->s_mds);
2978 			}
2979 		}
2980 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2981 			/* this mds is failed or recovering, just wait */
2982 			ceph_put_mds_session(s);
2983 			continue;
2984 		}
2985 		mutex_unlock(&mdsc->mutex);
2986 
2987 		mutex_lock(&s->s_mutex);
2988 		if (renew_caps)
2989 			send_renew_caps(mdsc, s);
2990 		else
2991 			ceph_con_keepalive(&s->s_con);
2992 		ceph_add_cap_releases(mdsc, s);
2993 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2994 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2995 			ceph_send_cap_releases(mdsc, s);
2996 		mutex_unlock(&s->s_mutex);
2997 		ceph_put_mds_session(s);
2998 
2999 		mutex_lock(&mdsc->mutex);
3000 	}
3001 	mutex_unlock(&mdsc->mutex);
3002 
3003 	schedule_delayed(mdsc);
3004 }
3005 
ceph_mdsc_init(struct ceph_fs_client * fsc)3006 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3007 
3008 {
3009 	struct ceph_mds_client *mdsc;
3010 
3011 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3012 	if (!mdsc)
3013 		return -ENOMEM;
3014 	mdsc->fsc = fsc;
3015 	fsc->mdsc = mdsc;
3016 	mutex_init(&mdsc->mutex);
3017 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3018 	if (mdsc->mdsmap == NULL)
3019 		return -ENOMEM;
3020 
3021 	init_completion(&mdsc->safe_umount_waiters);
3022 	init_waitqueue_head(&mdsc->session_close_wq);
3023 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3024 	mdsc->sessions = NULL;
3025 	mdsc->max_sessions = 0;
3026 	mdsc->stopping = 0;
3027 	init_rwsem(&mdsc->snap_rwsem);
3028 	mdsc->snap_realms = RB_ROOT;
3029 	INIT_LIST_HEAD(&mdsc->snap_empty);
3030 	spin_lock_init(&mdsc->snap_empty_lock);
3031 	mdsc->last_tid = 0;
3032 	mdsc->request_tree = RB_ROOT;
3033 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3034 	mdsc->last_renew_caps = jiffies;
3035 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3036 	spin_lock_init(&mdsc->cap_delay_lock);
3037 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3038 	spin_lock_init(&mdsc->snap_flush_lock);
3039 	mdsc->cap_flush_seq = 0;
3040 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3041 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3042 	mdsc->num_cap_flushing = 0;
3043 	spin_lock_init(&mdsc->cap_dirty_lock);
3044 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3045 	spin_lock_init(&mdsc->dentry_lru_lock);
3046 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3047 
3048 	ceph_caps_init(mdsc);
3049 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3050 
3051 	return 0;
3052 }
3053 
3054 /*
3055  * Wait for safe replies on open mds requests.  If we time out, drop
3056  * all requests from the tree to avoid dangling dentry refs.
3057  */
wait_requests(struct ceph_mds_client * mdsc)3058 static void wait_requests(struct ceph_mds_client *mdsc)
3059 {
3060 	struct ceph_mds_request *req;
3061 	struct ceph_fs_client *fsc = mdsc->fsc;
3062 
3063 	mutex_lock(&mdsc->mutex);
3064 	if (__get_oldest_req(mdsc)) {
3065 		mutex_unlock(&mdsc->mutex);
3066 
3067 		dout("wait_requests waiting for requests\n");
3068 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3069 				    fsc->client->options->mount_timeout * HZ);
3070 
3071 		/* tear down remaining requests */
3072 		mutex_lock(&mdsc->mutex);
3073 		while ((req = __get_oldest_req(mdsc))) {
3074 			dout("wait_requests timed out on tid %llu\n",
3075 			     req->r_tid);
3076 			__unregister_request(mdsc, req);
3077 		}
3078 	}
3079 	mutex_unlock(&mdsc->mutex);
3080 	dout("wait_requests done\n");
3081 }
3082 
3083 /*
3084  * called before mount is ro, and before dentries are torn down.
3085  * (hmm, does this still race with new lookups?)
3086  */
ceph_mdsc_pre_umount(struct ceph_mds_client * mdsc)3087 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3088 {
3089 	dout("pre_umount\n");
3090 	mdsc->stopping = 1;
3091 
3092 	drop_leases(mdsc);
3093 	ceph_flush_dirty_caps(mdsc);
3094 	wait_requests(mdsc);
3095 
3096 	/*
3097 	 * wait for reply handlers to drop their request refs and
3098 	 * their inode/dcache refs
3099 	 */
3100 	ceph_msgr_flush();
3101 }
3102 
3103 /*
3104  * wait for all write mds requests to flush.
3105  */
wait_unsafe_requests(struct ceph_mds_client * mdsc,u64 want_tid)3106 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3107 {
3108 	struct ceph_mds_request *req = NULL, *nextreq;
3109 	struct rb_node *n;
3110 
3111 	mutex_lock(&mdsc->mutex);
3112 	dout("wait_unsafe_requests want %lld\n", want_tid);
3113 restart:
3114 	req = __get_oldest_req(mdsc);
3115 	while (req && req->r_tid <= want_tid) {
3116 		/* find next request */
3117 		n = rb_next(&req->r_node);
3118 		if (n)
3119 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3120 		else
3121 			nextreq = NULL;
3122 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3123 			/* write op */
3124 			ceph_mdsc_get_request(req);
3125 			if (nextreq)
3126 				ceph_mdsc_get_request(nextreq);
3127 			mutex_unlock(&mdsc->mutex);
3128 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3129 			     req->r_tid, want_tid);
3130 			wait_for_completion(&req->r_safe_completion);
3131 			mutex_lock(&mdsc->mutex);
3132 			ceph_mdsc_put_request(req);
3133 			if (!nextreq)
3134 				break;  /* next dne before, so we're done! */
3135 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3136 				/* next request was removed from tree */
3137 				ceph_mdsc_put_request(nextreq);
3138 				goto restart;
3139 			}
3140 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3141 		}
3142 		req = nextreq;
3143 	}
3144 	mutex_unlock(&mdsc->mutex);
3145 	dout("wait_unsafe_requests done\n");
3146 }
3147 
ceph_mdsc_sync(struct ceph_mds_client * mdsc)3148 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3149 {
3150 	u64 want_tid, want_flush;
3151 
3152 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3153 		return;
3154 
3155 	dout("sync\n");
3156 	mutex_lock(&mdsc->mutex);
3157 	want_tid = mdsc->last_tid;
3158 	want_flush = mdsc->cap_flush_seq;
3159 	mutex_unlock(&mdsc->mutex);
3160 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3161 
3162 	ceph_flush_dirty_caps(mdsc);
3163 
3164 	wait_unsafe_requests(mdsc, want_tid);
3165 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3166 }
3167 
3168 /*
3169  * true if all sessions are closed, or we force unmount
3170  */
done_closing_sessions(struct ceph_mds_client * mdsc)3171 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3172 {
3173 	int i, n = 0;
3174 
3175 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3176 		return true;
3177 
3178 	mutex_lock(&mdsc->mutex);
3179 	for (i = 0; i < mdsc->max_sessions; i++)
3180 		if (mdsc->sessions[i])
3181 			n++;
3182 	mutex_unlock(&mdsc->mutex);
3183 	return n == 0;
3184 }
3185 
3186 /*
3187  * called after sb is ro.
3188  */
ceph_mdsc_close_sessions(struct ceph_mds_client * mdsc)3189 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3190 {
3191 	struct ceph_mds_session *session;
3192 	int i;
3193 	struct ceph_fs_client *fsc = mdsc->fsc;
3194 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3195 
3196 	dout("close_sessions\n");
3197 
3198 	/* close sessions */
3199 	mutex_lock(&mdsc->mutex);
3200 	for (i = 0; i < mdsc->max_sessions; i++) {
3201 		session = __ceph_lookup_mds_session(mdsc, i);
3202 		if (!session)
3203 			continue;
3204 		mutex_unlock(&mdsc->mutex);
3205 		mutex_lock(&session->s_mutex);
3206 		__close_session(mdsc, session);
3207 		mutex_unlock(&session->s_mutex);
3208 		ceph_put_mds_session(session);
3209 		mutex_lock(&mdsc->mutex);
3210 	}
3211 	mutex_unlock(&mdsc->mutex);
3212 
3213 	dout("waiting for sessions to close\n");
3214 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3215 			   timeout);
3216 
3217 	/* tear down remaining sessions */
3218 	mutex_lock(&mdsc->mutex);
3219 	for (i = 0; i < mdsc->max_sessions; i++) {
3220 		if (mdsc->sessions[i]) {
3221 			session = get_session(mdsc->sessions[i]);
3222 			__unregister_session(mdsc, session);
3223 			mutex_unlock(&mdsc->mutex);
3224 			mutex_lock(&session->s_mutex);
3225 			remove_session_caps(session);
3226 			mutex_unlock(&session->s_mutex);
3227 			ceph_put_mds_session(session);
3228 			mutex_lock(&mdsc->mutex);
3229 		}
3230 	}
3231 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3232 	mutex_unlock(&mdsc->mutex);
3233 
3234 	ceph_cleanup_empty_realms(mdsc);
3235 
3236 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3237 
3238 	dout("stopped\n");
3239 }
3240 
ceph_mdsc_stop(struct ceph_mds_client * mdsc)3241 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3242 {
3243 	dout("stop\n");
3244 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3245 	if (mdsc->mdsmap)
3246 		ceph_mdsmap_destroy(mdsc->mdsmap);
3247 	kfree(mdsc->sessions);
3248 	ceph_caps_finalize(mdsc);
3249 }
3250 
ceph_mdsc_destroy(struct ceph_fs_client * fsc)3251 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3252 {
3253 	struct ceph_mds_client *mdsc = fsc->mdsc;
3254 
3255 	dout("mdsc_destroy %p\n", mdsc);
3256 	ceph_mdsc_stop(mdsc);
3257 
3258 	/* flush out any connection work with references to us */
3259 	ceph_msgr_flush();
3260 
3261 	fsc->mdsc = NULL;
3262 	kfree(mdsc);
3263 	dout("mdsc_destroy %p done\n", mdsc);
3264 }
3265 
3266 
3267 /*
3268  * handle mds map update.
3269  */
ceph_mdsc_handle_map(struct ceph_mds_client * mdsc,struct ceph_msg * msg)3270 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3271 {
3272 	u32 epoch;
3273 	u32 maplen;
3274 	void *p = msg->front.iov_base;
3275 	void *end = p + msg->front.iov_len;
3276 	struct ceph_mdsmap *newmap, *oldmap;
3277 	struct ceph_fsid fsid;
3278 	int err = -EINVAL;
3279 
3280 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3281 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3282 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3283 		return;
3284 	epoch = ceph_decode_32(&p);
3285 	maplen = ceph_decode_32(&p);
3286 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3287 
3288 	/* do we need it? */
3289 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3290 	mutex_lock(&mdsc->mutex);
3291 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3292 		dout("handle_map epoch %u <= our %u\n",
3293 		     epoch, mdsc->mdsmap->m_epoch);
3294 		mutex_unlock(&mdsc->mutex);
3295 		return;
3296 	}
3297 
3298 	newmap = ceph_mdsmap_decode(&p, end);
3299 	if (IS_ERR(newmap)) {
3300 		err = PTR_ERR(newmap);
3301 		goto bad_unlock;
3302 	}
3303 
3304 	/* swap into place */
3305 	if (mdsc->mdsmap) {
3306 		oldmap = mdsc->mdsmap;
3307 		mdsc->mdsmap = newmap;
3308 		check_new_map(mdsc, newmap, oldmap);
3309 		ceph_mdsmap_destroy(oldmap);
3310 	} else {
3311 		mdsc->mdsmap = newmap;  /* first mds map */
3312 	}
3313 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3314 
3315 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3316 
3317 	mutex_unlock(&mdsc->mutex);
3318 	schedule_delayed(mdsc);
3319 	return;
3320 
3321 bad_unlock:
3322 	mutex_unlock(&mdsc->mutex);
3323 bad:
3324 	pr_err("error decoding mdsmap %d\n", err);
3325 	return;
3326 }
3327 
con_get(struct ceph_connection * con)3328 static struct ceph_connection *con_get(struct ceph_connection *con)
3329 {
3330 	struct ceph_mds_session *s = con->private;
3331 
3332 	if (get_session(s)) {
3333 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3334 		return con;
3335 	}
3336 	dout("mdsc con_get %p FAIL\n", s);
3337 	return NULL;
3338 }
3339 
con_put(struct ceph_connection * con)3340 static void con_put(struct ceph_connection *con)
3341 {
3342 	struct ceph_mds_session *s = con->private;
3343 
3344 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3345 	ceph_put_mds_session(s);
3346 }
3347 
3348 /*
3349  * if the client is unresponsive for long enough, the mds will kill
3350  * the session entirely.
3351  */
peer_reset(struct ceph_connection * con)3352 static void peer_reset(struct ceph_connection *con)
3353 {
3354 	struct ceph_mds_session *s = con->private;
3355 	struct ceph_mds_client *mdsc = s->s_mdsc;
3356 
3357 	pr_warning("mds%d closed our session\n", s->s_mds);
3358 	send_mds_reconnect(mdsc, s);
3359 }
3360 
dispatch(struct ceph_connection * con,struct ceph_msg * msg)3361 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3362 {
3363 	struct ceph_mds_session *s = con->private;
3364 	struct ceph_mds_client *mdsc = s->s_mdsc;
3365 	int type = le16_to_cpu(msg->hdr.type);
3366 
3367 	mutex_lock(&mdsc->mutex);
3368 	if (__verify_registered_session(mdsc, s) < 0) {
3369 		mutex_unlock(&mdsc->mutex);
3370 		goto out;
3371 	}
3372 	mutex_unlock(&mdsc->mutex);
3373 
3374 	switch (type) {
3375 	case CEPH_MSG_MDS_MAP:
3376 		ceph_mdsc_handle_map(mdsc, msg);
3377 		break;
3378 	case CEPH_MSG_CLIENT_SESSION:
3379 		handle_session(s, msg);
3380 		break;
3381 	case CEPH_MSG_CLIENT_REPLY:
3382 		handle_reply(s, msg);
3383 		break;
3384 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3385 		handle_forward(mdsc, s, msg);
3386 		break;
3387 	case CEPH_MSG_CLIENT_CAPS:
3388 		ceph_handle_caps(s, msg);
3389 		break;
3390 	case CEPH_MSG_CLIENT_SNAP:
3391 		ceph_handle_snap(mdsc, s, msg);
3392 		break;
3393 	case CEPH_MSG_CLIENT_LEASE:
3394 		handle_lease(mdsc, s, msg);
3395 		break;
3396 
3397 	default:
3398 		pr_err("received unknown message type %d %s\n", type,
3399 		       ceph_msg_type_name(type));
3400 	}
3401 out:
3402 	ceph_msg_put(msg);
3403 }
3404 
3405 /*
3406  * authentication
3407  */
3408 
3409 /*
3410  * Note: returned pointer is the address of a structure that's
3411  * managed separately.  Caller must *not* attempt to free it.
3412  */
get_authorizer(struct ceph_connection * con,int * proto,int force_new)3413 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3414 					int *proto, int force_new)
3415 {
3416 	struct ceph_mds_session *s = con->private;
3417 	struct ceph_mds_client *mdsc = s->s_mdsc;
3418 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3419 	struct ceph_auth_handshake *auth = &s->s_auth;
3420 
3421 	if (force_new && auth->authorizer) {
3422 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3423 		auth->authorizer = NULL;
3424 	}
3425 	if (!auth->authorizer) {
3426 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3427 						      auth);
3428 		if (ret)
3429 			return ERR_PTR(ret);
3430 	} else {
3431 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3432 						      auth);
3433 		if (ret)
3434 			return ERR_PTR(ret);
3435 	}
3436 	*proto = ac->protocol;
3437 
3438 	return auth;
3439 }
3440 
3441 
verify_authorizer_reply(struct ceph_connection * con,int len)3442 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3443 {
3444 	struct ceph_mds_session *s = con->private;
3445 	struct ceph_mds_client *mdsc = s->s_mdsc;
3446 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3447 
3448 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3449 }
3450 
invalidate_authorizer(struct ceph_connection * con)3451 static int invalidate_authorizer(struct ceph_connection *con)
3452 {
3453 	struct ceph_mds_session *s = con->private;
3454 	struct ceph_mds_client *mdsc = s->s_mdsc;
3455 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3456 
3457 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3458 
3459 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3460 }
3461 
3462 static const struct ceph_connection_operations mds_con_ops = {
3463 	.get = con_get,
3464 	.put = con_put,
3465 	.dispatch = dispatch,
3466 	.get_authorizer = get_authorizer,
3467 	.verify_authorizer_reply = verify_authorizer_reply,
3468 	.invalidate_authorizer = invalidate_authorizer,
3469 	.peer_reset = peer_reset,
3470 };
3471 
3472 /* eof */
3473