1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
36
37 #define K(x) ((x) << (PAGE_SHIFT-10))
38
39 /*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
show_mem(unsigned int filter)43 void show_mem(unsigned int filter)
44 {
45 struct zone *zone;
46
47 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
48 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 " pagecache:%lu swap:%lu\n",
50 (global_page_state(NR_ACTIVE_ANON) +
51 global_page_state(NR_ACTIVE_FILE)),
52 (global_page_state(NR_INACTIVE_ANON) +
53 global_page_state(NR_INACTIVE_FILE)),
54 global_page_state(NR_FILE_DIRTY),
55 global_page_state(NR_WRITEBACK),
56 global_page_state(NR_UNSTABLE_NFS),
57 global_page_state(NR_FREE_PAGES),
58 (global_page_state(NR_SLAB_RECLAIMABLE) +
59 global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 global_page_state(NR_FILE_MAPPED),
61 global_page_state(NR_PAGETABLE),
62 global_page_state(NR_BOUNCE),
63 global_page_state(NR_FILE_PAGES),
64 nr_swap_pages);
65
66 for_each_zone(zone) {
67 unsigned long flags, order, total = 0, largest_order = -1;
68
69 if (!populated_zone(zone))
70 continue;
71
72 spin_lock_irqsave(&zone->lock, flags);
73 for (order = 0; order < MAX_ORDER; order++) {
74 int nr = zone->free_area[order].nr_free;
75 total += nr << order;
76 if (nr)
77 largest_order = order;
78 }
79 spin_unlock_irqrestore(&zone->lock, flags);
80 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 zone_to_nid(zone), zone->name,
82 K(total), largest_order ? K(1UL) << largest_order : 0);
83 }
84 }
85
86 /*
87 * Associate a virtual page frame with a given physical page frame
88 * and protection flags for that frame.
89 */
set_pte_pfn(unsigned long vaddr,unsigned long pfn,pgprot_t flags)90 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
91 {
92 pgd_t *pgd;
93 pud_t *pud;
94 pmd_t *pmd;
95 pte_t *pte;
96
97 pgd = swapper_pg_dir + pgd_index(vaddr);
98 if (pgd_none(*pgd)) {
99 BUG();
100 return;
101 }
102 pud = pud_offset(pgd, vaddr);
103 if (pud_none(*pud)) {
104 BUG();
105 return;
106 }
107 pmd = pmd_offset(pud, vaddr);
108 if (pmd_none(*pmd)) {
109 BUG();
110 return;
111 }
112 pte = pte_offset_kernel(pmd, vaddr);
113 /* <pfn,flags> stored as-is, to permit clearing entries */
114 set_pte(pte, pfn_pte(pfn, flags));
115
116 /*
117 * It's enough to flush this one mapping.
118 * This appears conservative since it is only called
119 * from __set_fixmap.
120 */
121 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
122 }
123
__set_fixmap(enum fixed_addresses idx,unsigned long phys,pgprot_t flags)124 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
125 {
126 unsigned long address = __fix_to_virt(idx);
127
128 if (idx >= __end_of_fixed_addresses) {
129 BUG();
130 return;
131 }
132 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
133 }
134
135 #if defined(CONFIG_HIGHPTE)
_pte_offset_map(pmd_t * dir,unsigned long address)136 pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
137 {
138 pte_t *pte = kmap_atomic(pmd_page(*dir)) +
139 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
140 return &pte[pte_index(address)];
141 }
142 #endif
143
144 /**
145 * shatter_huge_page() - ensure a given address is mapped by a small page.
146 *
147 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
148 * of small PTEs with the same caching. No cache flush required, but we
149 * must do a global TLB flush.
150 *
151 * Any caller that wishes to modify a kernel mapping that might
152 * have been made with a huge page should call this function,
153 * since doing so properly avoids race conditions with installing the
154 * newly-shattered page and then flushing all the TLB entries.
155 *
156 * @addr: Address at which to shatter any existing huge page.
157 */
shatter_huge_page(unsigned long addr)158 void shatter_huge_page(unsigned long addr)
159 {
160 pgd_t *pgd;
161 pud_t *pud;
162 pmd_t *pmd;
163 unsigned long flags = 0; /* happy compiler */
164 #ifdef __PAGETABLE_PMD_FOLDED
165 struct list_head *pos;
166 #endif
167
168 /* Get a pointer to the pmd entry that we need to change. */
169 addr &= HPAGE_MASK;
170 BUG_ON(pgd_addr_invalid(addr));
171 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
172 pgd = swapper_pg_dir + pgd_index(addr);
173 pud = pud_offset(pgd, addr);
174 BUG_ON(!pud_present(*pud));
175 pmd = pmd_offset(pud, addr);
176 BUG_ON(!pmd_present(*pmd));
177 if (!pmd_huge_page(*pmd))
178 return;
179
180 spin_lock_irqsave(&init_mm.page_table_lock, flags);
181 if (!pmd_huge_page(*pmd)) {
182 /* Lost the race to convert the huge page. */
183 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
184 return;
185 }
186
187 /* Shatter the huge page into the preallocated L2 page table. */
188 pmd_populate_kernel(&init_mm, pmd,
189 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
190
191 #ifdef __PAGETABLE_PMD_FOLDED
192 /* Walk every pgd on the system and update the pmd there. */
193 spin_lock(&pgd_lock);
194 list_for_each(pos, &pgd_list) {
195 pmd_t *copy_pmd;
196 pgd = list_to_pgd(pos) + pgd_index(addr);
197 pud = pud_offset(pgd, addr);
198 copy_pmd = pmd_offset(pud, addr);
199 __set_pmd(copy_pmd, *pmd);
200 }
201 spin_unlock(&pgd_lock);
202 #endif
203
204 /* Tell every cpu to notice the change. */
205 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
206 cpu_possible_mask, NULL, 0);
207
208 /* Hold the lock until the TLB flush is finished to avoid races. */
209 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
210 }
211
212 /*
213 * List of all pgd's needed so it can invalidate entries in both cached
214 * and uncached pgd's. This is essentially codepath-based locking
215 * against pageattr.c; it is the unique case in which a valid change
216 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
217 * vmalloc faults work because attached pagetables are never freed.
218 *
219 * The lock is always taken with interrupts disabled, unlike on x86
220 * and other platforms, because we need to take the lock in
221 * shatter_huge_page(), which may be called from an interrupt context.
222 * We are not at risk from the tlbflush IPI deadlock that was seen on
223 * x86, since we use the flush_remote() API to have the hypervisor do
224 * the TLB flushes regardless of irq disabling.
225 */
226 DEFINE_SPINLOCK(pgd_lock);
227 LIST_HEAD(pgd_list);
228
pgd_list_add(pgd_t * pgd)229 static inline void pgd_list_add(pgd_t *pgd)
230 {
231 list_add(pgd_to_list(pgd), &pgd_list);
232 }
233
pgd_list_del(pgd_t * pgd)234 static inline void pgd_list_del(pgd_t *pgd)
235 {
236 list_del(pgd_to_list(pgd));
237 }
238
239 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
240 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
241
pgd_ctor(pgd_t * pgd)242 static void pgd_ctor(pgd_t *pgd)
243 {
244 unsigned long flags;
245
246 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
247 spin_lock_irqsave(&pgd_lock, flags);
248
249 #ifndef __tilegx__
250 /*
251 * Check that the user interrupt vector has no L2.
252 * It never should for the swapper, and new page tables
253 * should always start with an empty user interrupt vector.
254 */
255 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
256 #endif
257
258 memcpy(pgd + KERNEL_PGD_INDEX_START,
259 swapper_pg_dir + KERNEL_PGD_INDEX_START,
260 KERNEL_PGD_PTRS * sizeof(pgd_t));
261
262 pgd_list_add(pgd);
263 spin_unlock_irqrestore(&pgd_lock, flags);
264 }
265
pgd_dtor(pgd_t * pgd)266 static void pgd_dtor(pgd_t *pgd)
267 {
268 unsigned long flags; /* can be called from interrupt context */
269
270 spin_lock_irqsave(&pgd_lock, flags);
271 pgd_list_del(pgd);
272 spin_unlock_irqrestore(&pgd_lock, flags);
273 }
274
pgd_alloc(struct mm_struct * mm)275 pgd_t *pgd_alloc(struct mm_struct *mm)
276 {
277 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
278 if (pgd)
279 pgd_ctor(pgd);
280 return pgd;
281 }
282
pgd_free(struct mm_struct * mm,pgd_t * pgd)283 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
284 {
285 pgd_dtor(pgd);
286 kmem_cache_free(pgd_cache, pgd);
287 }
288
289
290 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
291
pte_alloc_one(struct mm_struct * mm,unsigned long address)292 struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
293 {
294 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
295 struct page *p;
296 #if L2_USER_PGTABLE_ORDER > 0
297 int i;
298 #endif
299
300 #ifdef CONFIG_HIGHPTE
301 flags |= __GFP_HIGHMEM;
302 #endif
303
304 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
305 if (p == NULL)
306 return NULL;
307
308 #if L2_USER_PGTABLE_ORDER > 0
309 /*
310 * Make every page have a page_count() of one, not just the first.
311 * We don't use __GFP_COMP since it doesn't look like it works
312 * correctly with tlb_remove_page().
313 */
314 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
315 init_page_count(p+i);
316 inc_zone_page_state(p+i, NR_PAGETABLE);
317 }
318 #endif
319
320 pgtable_page_ctor(p);
321 return p;
322 }
323
324 /*
325 * Free page immediately (used in __pte_alloc if we raced with another
326 * process). We have to correct whatever pte_alloc_one() did before
327 * returning the pages to the allocator.
328 */
pte_free(struct mm_struct * mm,struct page * p)329 void pte_free(struct mm_struct *mm, struct page *p)
330 {
331 int i;
332
333 pgtable_page_dtor(p);
334 __free_page(p);
335
336 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
337 __free_page(p+i);
338 dec_zone_page_state(p+i, NR_PAGETABLE);
339 }
340 }
341
__pte_free_tlb(struct mmu_gather * tlb,struct page * pte,unsigned long address)342 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
343 unsigned long address)
344 {
345 int i;
346
347 pgtable_page_dtor(pte);
348 tlb_remove_page(tlb, pte);
349
350 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
351 tlb_remove_page(tlb, pte + i);
352 dec_zone_page_state(pte + i, NR_PAGETABLE);
353 }
354 }
355
356 #ifndef __tilegx__
357
358 /*
359 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
360 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
361 */
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)362 int ptep_test_and_clear_young(struct vm_area_struct *vma,
363 unsigned long addr, pte_t *ptep)
364 {
365 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
366 # error Code assumes HV_PTE "accessed" bit in second byte
367 #endif
368 u8 *tmp = (u8 *)ptep;
369 u8 second_byte = tmp[1];
370 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
371 return 0;
372 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
373 return 1;
374 }
375
376 /*
377 * This implementation is atomic vs hypervisor writes, since the hypervisor
378 * always writes the low word (where "accessed" and "dirty" are) and this
379 * routine only writes the high word.
380 */
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)381 void ptep_set_wrprotect(struct mm_struct *mm,
382 unsigned long addr, pte_t *ptep)
383 {
384 #if HV_PTE_INDEX_WRITABLE < 32
385 # error Code assumes HV_PTE "writable" bit in high word
386 #endif
387 u32 *tmp = (u32 *)ptep;
388 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
389 }
390
391 #endif
392
virt_to_pte(struct mm_struct * mm,unsigned long addr)393 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
394 {
395 pgd_t *pgd;
396 pud_t *pud;
397 pmd_t *pmd;
398
399 if (pgd_addr_invalid(addr))
400 return NULL;
401
402 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
403 pud = pud_offset(pgd, addr);
404 if (!pud_present(*pud))
405 return NULL;
406 pmd = pmd_offset(pud, addr);
407 if (pmd_huge_page(*pmd))
408 return (pte_t *)pmd;
409 if (!pmd_present(*pmd))
410 return NULL;
411 return pte_offset_kernel(pmd, addr);
412 }
413
set_remote_cache_cpu(pgprot_t prot,int cpu)414 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
415 {
416 unsigned int width = smp_width;
417 int x = cpu % width;
418 int y = cpu / width;
419 BUG_ON(y >= smp_height);
420 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
421 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
422 BUG_ON(!cpu_is_valid_lotar(cpu));
423 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
424 }
425
get_remote_cache_cpu(pgprot_t prot)426 int get_remote_cache_cpu(pgprot_t prot)
427 {
428 HV_LOTAR lotar = hv_pte_get_lotar(prot);
429 int x = HV_LOTAR_X(lotar);
430 int y = HV_LOTAR_Y(lotar);
431 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
432 return x + y * smp_width;
433 }
434
435 /*
436 * Convert a kernel VA to a PA and homing information.
437 */
va_to_cpa_and_pte(void * va,unsigned long long * cpa,pte_t * pte)438 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
439 {
440 struct page *page = virt_to_page(va);
441 pte_t null_pte = { 0 };
442
443 *cpa = __pa(va);
444
445 /* Note that this is not writing a page table, just returning a pte. */
446 *pte = pte_set_home(null_pte, page_home(page));
447
448 return 0; /* return non-zero if not hfh? */
449 }
450 EXPORT_SYMBOL(va_to_cpa_and_pte);
451
__set_pte(pte_t * ptep,pte_t pte)452 void __set_pte(pte_t *ptep, pte_t pte)
453 {
454 #ifdef __tilegx__
455 *ptep = pte;
456 #else
457 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
458 # error Must write the present and migrating bits last
459 # endif
460 if (pte_present(pte)) {
461 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
462 barrier();
463 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
464 } else {
465 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
466 barrier();
467 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
468 }
469 #endif /* __tilegx__ */
470 }
471
set_pte(pte_t * ptep,pte_t pte)472 void set_pte(pte_t *ptep, pte_t pte)
473 {
474 if (pte_present(pte) &&
475 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
476 /* The PTE actually references physical memory. */
477 unsigned long pfn = pte_pfn(pte);
478 if (pfn_valid(pfn)) {
479 /* Update the home of the PTE from the struct page. */
480 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
481 } else if (hv_pte_get_mode(pte) == 0) {
482 /* remap_pfn_range(), etc, must supply PTE mode. */
483 panic("set_pte(): out-of-range PFN and mode 0\n");
484 }
485 }
486
487 __set_pte(ptep, pte);
488 }
489
490 /* Can this mm load a PTE with cached_priority set? */
mm_is_priority_cached(struct mm_struct * mm)491 static inline int mm_is_priority_cached(struct mm_struct *mm)
492 {
493 return mm->context.priority_cached;
494 }
495
496 /*
497 * Add a priority mapping to an mm_context and
498 * notify the hypervisor if this is the first one.
499 */
start_mm_caching(struct mm_struct * mm)500 void start_mm_caching(struct mm_struct *mm)
501 {
502 if (!mm_is_priority_cached(mm)) {
503 mm->context.priority_cached = -1U;
504 hv_set_caching(-1U);
505 }
506 }
507
508 /*
509 * Validate and return the priority_cached flag. We know if it's zero
510 * that we don't need to scan, since we immediately set it non-zero
511 * when we first consider a MAP_CACHE_PRIORITY mapping.
512 *
513 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
514 * since we're in an interrupt context (servicing switch_mm) we don't
515 * worry about it and don't unset the "priority_cached" field.
516 * Presumably we'll come back later and have more luck and clear
517 * the value then; for now we'll just keep the cache marked for priority.
518 */
update_priority_cached(struct mm_struct * mm)519 static unsigned int update_priority_cached(struct mm_struct *mm)
520 {
521 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
522 struct vm_area_struct *vm;
523 for (vm = mm->mmap; vm; vm = vm->vm_next) {
524 if (hv_pte_get_cached_priority(vm->vm_page_prot))
525 break;
526 }
527 if (vm == NULL)
528 mm->context.priority_cached = 0;
529 up_write(&mm->mmap_sem);
530 }
531 return mm->context.priority_cached;
532 }
533
534 /* Set caching correctly for an mm that we are switching to. */
check_mm_caching(struct mm_struct * prev,struct mm_struct * next)535 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
536 {
537 if (!mm_is_priority_cached(next)) {
538 /*
539 * If the new mm doesn't use priority caching, just see if we
540 * need the hv_set_caching(), or can assume it's already zero.
541 */
542 if (mm_is_priority_cached(prev))
543 hv_set_caching(0);
544 } else {
545 hv_set_caching(update_priority_cached(next));
546 }
547 }
548
549 #if CHIP_HAS_MMIO()
550
551 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t home)552 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
553 pgprot_t home)
554 {
555 void *addr;
556 struct vm_struct *area;
557 unsigned long offset, last_addr;
558 pgprot_t pgprot;
559
560 /* Don't allow wraparound or zero size */
561 last_addr = phys_addr + size - 1;
562 if (!size || last_addr < phys_addr)
563 return NULL;
564
565 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
566 pgprot = PAGE_KERNEL;
567 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
568 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
569
570 /*
571 * Mappings have to be page-aligned
572 */
573 offset = phys_addr & ~PAGE_MASK;
574 phys_addr &= PAGE_MASK;
575 size = PAGE_ALIGN(last_addr+1) - phys_addr;
576
577 /*
578 * Ok, go for it..
579 */
580 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
581 if (!area)
582 return NULL;
583 area->phys_addr = phys_addr;
584 addr = area->addr;
585 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
586 phys_addr, pgprot)) {
587 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
588 return NULL;
589 }
590 return (__force void __iomem *) (offset + (char *)addr);
591 }
592 EXPORT_SYMBOL(ioremap_prot);
593
594 /* Map a PCI MMIO bus address into VA space. */
ioremap(resource_size_t phys_addr,unsigned long size)595 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
596 {
597 panic("ioremap for PCI MMIO is not supported");
598 }
599 EXPORT_SYMBOL(ioremap);
600
601 /* Unmap an MMIO VA mapping. */
iounmap(volatile void __iomem * addr_in)602 void iounmap(volatile void __iomem *addr_in)
603 {
604 volatile void __iomem *addr = (volatile void __iomem *)
605 (PAGE_MASK & (unsigned long __force)addr_in);
606 #if 1
607 vunmap((void * __force)addr);
608 #else
609 /* x86 uses this complicated flow instead of vunmap(). Is
610 * there any particular reason we should do the same? */
611 struct vm_struct *p, *o;
612
613 /* Use the vm area unlocked, assuming the caller
614 ensures there isn't another iounmap for the same address
615 in parallel. Reuse of the virtual address is prevented by
616 leaving it in the global lists until we're done with it.
617 cpa takes care of the direct mappings. */
618 read_lock(&vmlist_lock);
619 for (p = vmlist; p; p = p->next) {
620 if (p->addr == addr)
621 break;
622 }
623 read_unlock(&vmlist_lock);
624
625 if (!p) {
626 pr_err("iounmap: bad address %p\n", addr);
627 dump_stack();
628 return;
629 }
630
631 /* Finally remove it */
632 o = remove_vm_area((void *)addr);
633 BUG_ON(p != o || o == NULL);
634 kfree(p);
635 #endif
636 }
637 EXPORT_SYMBOL(iounmap);
638
639 #endif /* CHIP_HAS_MMIO() */
640