1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45
46 /*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54 DEFINE_BRLOCK(vfsmount_lock);
55
hash(struct vfsmount * mnt,struct dentry * dentry)56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
62 }
63
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
66 /*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
mnt_alloc_id(struct mount * mnt)70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 int res;
73
74 retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85 }
86
mnt_free_id(struct mount * mnt)87 static void mnt_free_id(struct mount *mnt)
88 {
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
95 }
96
97 /*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
mnt_alloc_group_id(struct mount * mnt)102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 int res;
105
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
114
115 return res;
116 }
117
118 /*
119 * Release a peer group ID
120 */
mnt_release_group_id(struct mount * mnt)121 void mnt_release_group_id(struct mount *mnt)
122 {
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
128 }
129
130 /*
131 * vfsmount lock must be held for read
132 */
mnt_add_count(struct mount * mnt,int n)133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141 #endif
142 }
143
144 /*
145 * vfsmount lock must be held for write
146 */
mnt_get_count(struct mount * mnt)147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 }
156
157 return count;
158 #else
159 return mnt->mnt_count;
160 #endif
161 }
162
alloc_vfsmnt(const char * name)163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
168
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
177 }
178
179 #ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
183
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188 #endif
189
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 }
202 return mnt;
203
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 mnt_free_id(mnt);
210 out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
213 }
214
215 /*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223 /*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
__mnt_is_readonly(struct vfsmount * mnt)234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
mnt_inc_writers(struct mount * mnt)244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 mnt->mnt_writers++;
250 #endif
251 }
252
mnt_dec_writers(struct mount * mnt)253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers--;
259 #endif
260 }
261
mnt_get_writers(struct mount * mnt)262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
267
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 }
271
272 return count;
273 #else
274 return mnt->mnt_writers;
275 #endif
276 }
277
mnt_is_readonly(struct vfsmount * mnt)278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285 }
286
287 /*
288 * Most r/o checks on a fs are for operations that take
289 * discrete amounts of time, like a write() or unlink().
290 * We must keep track of when those operations start
291 * (for permission checks) and when they end, so that
292 * we can determine when writes are able to occur to
293 * a filesystem.
294 */
295 /**
296 * mnt_want_write - get write access to a mount
297 * @m: the mount on which to take a write
298 *
299 * This tells the low-level filesystem that a write is
300 * about to be performed to it, and makes sure that
301 * writes are allowed before returning success. When
302 * the write operation is finished, mnt_drop_write()
303 * must be called. This is effectively a refcount.
304 */
mnt_want_write(struct vfsmount * m)305 int mnt_want_write(struct vfsmount *m)
306 {
307 struct mount *mnt = real_mount(m);
308 int ret = 0;
309
310 preempt_disable();
311 mnt_inc_writers(mnt);
312 /*
313 * The store to mnt_inc_writers must be visible before we pass
314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
318 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
326 if (mnt_is_readonly(m)) {
327 mnt_dec_writers(mnt);
328 ret = -EROFS;
329 }
330 preempt_enable();
331 return ret;
332 }
333 EXPORT_SYMBOL_GPL(mnt_want_write);
334
335 /**
336 * mnt_clone_write - get write access to a mount
337 * @mnt: the mount on which to take a write
338 *
339 * This is effectively like mnt_want_write, except
340 * it must only be used to take an extra write reference
341 * on a mountpoint that we already know has a write reference
342 * on it. This allows some optimisation.
343 *
344 * After finished, mnt_drop_write must be called as usual to
345 * drop the reference.
346 */
mnt_clone_write(struct vfsmount * mnt)347 int mnt_clone_write(struct vfsmount *mnt)
348 {
349 /* superblock may be r/o */
350 if (__mnt_is_readonly(mnt))
351 return -EROFS;
352 preempt_disable();
353 mnt_inc_writers(real_mount(mnt));
354 preempt_enable();
355 return 0;
356 }
357 EXPORT_SYMBOL_GPL(mnt_clone_write);
358
359 /**
360 * mnt_want_write_file - get write access to a file's mount
361 * @file: the file who's mount on which to take a write
362 *
363 * This is like mnt_want_write, but it takes a file and can
364 * do some optimisations if the file is open for write already
365 */
mnt_want_write_file(struct file * file)366 int mnt_want_write_file(struct file *file)
367 {
368 struct inode *inode = file->f_dentry->d_inode;
369 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
370 return mnt_want_write(file->f_path.mnt);
371 else
372 return mnt_clone_write(file->f_path.mnt);
373 }
374 EXPORT_SYMBOL_GPL(mnt_want_write_file);
375
376 /**
377 * mnt_drop_write - give up write access to a mount
378 * @mnt: the mount on which to give up write access
379 *
380 * Tells the low-level filesystem that we are done
381 * performing writes to it. Must be matched with
382 * mnt_want_write() call above.
383 */
mnt_drop_write(struct vfsmount * mnt)384 void mnt_drop_write(struct vfsmount *mnt)
385 {
386 preempt_disable();
387 mnt_dec_writers(real_mount(mnt));
388 preempt_enable();
389 }
390 EXPORT_SYMBOL_GPL(mnt_drop_write);
391
mnt_drop_write_file(struct file * file)392 void mnt_drop_write_file(struct file *file)
393 {
394 mnt_drop_write(file->f_path.mnt);
395 }
396 EXPORT_SYMBOL(mnt_drop_write_file);
397
mnt_make_readonly(struct mount * mnt)398 static int mnt_make_readonly(struct mount *mnt)
399 {
400 int ret = 0;
401
402 br_write_lock(&vfsmount_lock);
403 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
404 /*
405 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
406 * should be visible before we do.
407 */
408 smp_mb();
409
410 /*
411 * With writers on hold, if this value is zero, then there are
412 * definitely no active writers (although held writers may subsequently
413 * increment the count, they'll have to wait, and decrement it after
414 * seeing MNT_READONLY).
415 *
416 * It is OK to have counter incremented on one CPU and decremented on
417 * another: the sum will add up correctly. The danger would be when we
418 * sum up each counter, if we read a counter before it is incremented,
419 * but then read another CPU's count which it has been subsequently
420 * decremented from -- we would see more decrements than we should.
421 * MNT_WRITE_HOLD protects against this scenario, because
422 * mnt_want_write first increments count, then smp_mb, then spins on
423 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
424 * we're counting up here.
425 */
426 if (mnt_get_writers(mnt) > 0)
427 ret = -EBUSY;
428 else
429 mnt->mnt.mnt_flags |= MNT_READONLY;
430 /*
431 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
432 * that become unheld will see MNT_READONLY.
433 */
434 smp_wmb();
435 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
436 br_write_unlock(&vfsmount_lock);
437 return ret;
438 }
439
__mnt_unmake_readonly(struct mount * mnt)440 static void __mnt_unmake_readonly(struct mount *mnt)
441 {
442 br_write_lock(&vfsmount_lock);
443 mnt->mnt.mnt_flags &= ~MNT_READONLY;
444 br_write_unlock(&vfsmount_lock);
445 }
446
sb_prepare_remount_readonly(struct super_block * sb)447 int sb_prepare_remount_readonly(struct super_block *sb)
448 {
449 struct mount *mnt;
450 int err = 0;
451
452 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
453 if (atomic_long_read(&sb->s_remove_count))
454 return -EBUSY;
455
456 br_write_lock(&vfsmount_lock);
457 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
458 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
459 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
460 smp_mb();
461 if (mnt_get_writers(mnt) > 0) {
462 err = -EBUSY;
463 break;
464 }
465 }
466 }
467 if (!err && atomic_long_read(&sb->s_remove_count))
468 err = -EBUSY;
469
470 if (!err) {
471 sb->s_readonly_remount = 1;
472 smp_wmb();
473 }
474 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
475 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
476 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
477 }
478 br_write_unlock(&vfsmount_lock);
479
480 return err;
481 }
482
free_vfsmnt(struct mount * mnt)483 static void free_vfsmnt(struct mount *mnt)
484 {
485 kfree(mnt->mnt_devname);
486 mnt_free_id(mnt);
487 #ifdef CONFIG_SMP
488 free_percpu(mnt->mnt_pcp);
489 #endif
490 kmem_cache_free(mnt_cache, mnt);
491 }
492
493 /*
494 * find the first or last mount at @dentry on vfsmount @mnt depending on
495 * @dir. If @dir is set return the first mount else return the last mount.
496 * vfsmount_lock must be held for read or write.
497 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry,int dir)498 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
499 int dir)
500 {
501 struct list_head *head = mount_hashtable + hash(mnt, dentry);
502 struct list_head *tmp = head;
503 struct mount *p, *found = NULL;
504
505 for (;;) {
506 tmp = dir ? tmp->next : tmp->prev;
507 p = NULL;
508 if (tmp == head)
509 break;
510 p = list_entry(tmp, struct mount, mnt_hash);
511 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
512 found = p;
513 break;
514 }
515 }
516 return found;
517 }
518
519 /*
520 * lookup_mnt - Return the first child mount mounted at path
521 *
522 * "First" means first mounted chronologically. If you create the
523 * following mounts:
524 *
525 * mount /dev/sda1 /mnt
526 * mount /dev/sda2 /mnt
527 * mount /dev/sda3 /mnt
528 *
529 * Then lookup_mnt() on the base /mnt dentry in the root mount will
530 * return successively the root dentry and vfsmount of /dev/sda1, then
531 * /dev/sda2, then /dev/sda3, then NULL.
532 *
533 * lookup_mnt takes a reference to the found vfsmount.
534 */
lookup_mnt(struct path * path)535 struct vfsmount *lookup_mnt(struct path *path)
536 {
537 struct mount *child_mnt;
538
539 br_read_lock(&vfsmount_lock);
540 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
541 if (child_mnt) {
542 mnt_add_count(child_mnt, 1);
543 br_read_unlock(&vfsmount_lock);
544 return &child_mnt->mnt;
545 } else {
546 br_read_unlock(&vfsmount_lock);
547 return NULL;
548 }
549 }
550
check_mnt(struct mount * mnt)551 static inline int check_mnt(struct mount *mnt)
552 {
553 return mnt->mnt_ns == current->nsproxy->mnt_ns;
554 }
555
556 /*
557 * vfsmount lock must be held for write
558 */
touch_mnt_namespace(struct mnt_namespace * ns)559 static void touch_mnt_namespace(struct mnt_namespace *ns)
560 {
561 if (ns) {
562 ns->event = ++event;
563 wake_up_interruptible(&ns->poll);
564 }
565 }
566
567 /*
568 * vfsmount lock must be held for write
569 */
__touch_mnt_namespace(struct mnt_namespace * ns)570 static void __touch_mnt_namespace(struct mnt_namespace *ns)
571 {
572 if (ns && ns->event != event) {
573 ns->event = event;
574 wake_up_interruptible(&ns->poll);
575 }
576 }
577
578 /*
579 * Clear dentry's mounted state if it has no remaining mounts.
580 * vfsmount_lock must be held for write.
581 */
dentry_reset_mounted(struct dentry * dentry)582 static void dentry_reset_mounted(struct dentry *dentry)
583 {
584 unsigned u;
585
586 for (u = 0; u < HASH_SIZE; u++) {
587 struct mount *p;
588
589 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
590 if (p->mnt_mountpoint == dentry)
591 return;
592 }
593 }
594 spin_lock(&dentry->d_lock);
595 dentry->d_flags &= ~DCACHE_MOUNTED;
596 spin_unlock(&dentry->d_lock);
597 }
598
599 /*
600 * vfsmount lock must be held for write
601 */
detach_mnt(struct mount * mnt,struct path * old_path)602 static void detach_mnt(struct mount *mnt, struct path *old_path)
603 {
604 old_path->dentry = mnt->mnt_mountpoint;
605 old_path->mnt = &mnt->mnt_parent->mnt;
606 mnt->mnt_parent = mnt;
607 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
608 list_del_init(&mnt->mnt_child);
609 list_del_init(&mnt->mnt_hash);
610 dentry_reset_mounted(old_path->dentry);
611 }
612
613 /*
614 * vfsmount lock must be held for write
615 */
mnt_set_mountpoint(struct mount * mnt,struct dentry * dentry,struct mount * child_mnt)616 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
617 struct mount *child_mnt)
618 {
619 mnt_add_count(mnt, 1); /* essentially, that's mntget */
620 child_mnt->mnt_mountpoint = dget(dentry);
621 child_mnt->mnt_parent = mnt;
622 spin_lock(&dentry->d_lock);
623 dentry->d_flags |= DCACHE_MOUNTED;
624 spin_unlock(&dentry->d_lock);
625 }
626
627 /*
628 * vfsmount lock must be held for write
629 */
attach_mnt(struct mount * mnt,struct path * path)630 static void attach_mnt(struct mount *mnt, struct path *path)
631 {
632 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
633 list_add_tail(&mnt->mnt_hash, mount_hashtable +
634 hash(path->mnt, path->dentry));
635 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
636 }
637
638 /*
639 * vfsmount lock must be held for write
640 */
commit_tree(struct mount * mnt)641 static void commit_tree(struct mount *mnt)
642 {
643 struct mount *parent = mnt->mnt_parent;
644 struct mount *m;
645 LIST_HEAD(head);
646 struct mnt_namespace *n = parent->mnt_ns;
647
648 BUG_ON(parent == mnt);
649
650 list_add_tail(&head, &mnt->mnt_list);
651 list_for_each_entry(m, &head, mnt_list)
652 m->mnt_ns = n;
653
654 list_splice(&head, n->list.prev);
655
656 list_add_tail(&mnt->mnt_hash, mount_hashtable +
657 hash(&parent->mnt, mnt->mnt_mountpoint));
658 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
659 touch_mnt_namespace(n);
660 }
661
next_mnt(struct mount * p,struct mount * root)662 static struct mount *next_mnt(struct mount *p, struct mount *root)
663 {
664 struct list_head *next = p->mnt_mounts.next;
665 if (next == &p->mnt_mounts) {
666 while (1) {
667 if (p == root)
668 return NULL;
669 next = p->mnt_child.next;
670 if (next != &p->mnt_parent->mnt_mounts)
671 break;
672 p = p->mnt_parent;
673 }
674 }
675 return list_entry(next, struct mount, mnt_child);
676 }
677
skip_mnt_tree(struct mount * p)678 static struct mount *skip_mnt_tree(struct mount *p)
679 {
680 struct list_head *prev = p->mnt_mounts.prev;
681 while (prev != &p->mnt_mounts) {
682 p = list_entry(prev, struct mount, mnt_child);
683 prev = p->mnt_mounts.prev;
684 }
685 return p;
686 }
687
688 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)689 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
690 {
691 struct mount *mnt;
692 struct dentry *root;
693
694 if (!type)
695 return ERR_PTR(-ENODEV);
696
697 mnt = alloc_vfsmnt(name);
698 if (!mnt)
699 return ERR_PTR(-ENOMEM);
700
701 if (flags & MS_KERNMOUNT)
702 mnt->mnt.mnt_flags = MNT_INTERNAL;
703
704 root = mount_fs(type, flags, name, data);
705 if (IS_ERR(root)) {
706 free_vfsmnt(mnt);
707 return ERR_CAST(root);
708 }
709
710 mnt->mnt.mnt_root = root;
711 mnt->mnt.mnt_sb = root->d_sb;
712 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
713 mnt->mnt_parent = mnt;
714 br_write_lock(&vfsmount_lock);
715 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
716 br_write_unlock(&vfsmount_lock);
717 return &mnt->mnt;
718 }
719 EXPORT_SYMBOL_GPL(vfs_kern_mount);
720
clone_mnt(struct mount * old,struct dentry * root,int flag)721 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
722 int flag)
723 {
724 struct super_block *sb = old->mnt.mnt_sb;
725 struct mount *mnt;
726 int err;
727
728 mnt = alloc_vfsmnt(old->mnt_devname);
729 if (!mnt)
730 return ERR_PTR(-ENOMEM);
731
732 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
733 mnt->mnt_group_id = 0; /* not a peer of original */
734 else
735 mnt->mnt_group_id = old->mnt_group_id;
736
737 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
738 err = mnt_alloc_group_id(mnt);
739 if (err)
740 goto out_free;
741 }
742
743 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
744 atomic_inc(&sb->s_active);
745 mnt->mnt.mnt_sb = sb;
746 mnt->mnt.mnt_root = dget(root);
747 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
748 mnt->mnt_parent = mnt;
749 br_write_lock(&vfsmount_lock);
750 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
751 br_write_unlock(&vfsmount_lock);
752
753 if ((flag & CL_SLAVE) ||
754 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
755 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
756 mnt->mnt_master = old;
757 CLEAR_MNT_SHARED(mnt);
758 } else if (!(flag & CL_PRIVATE)) {
759 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
760 list_add(&mnt->mnt_share, &old->mnt_share);
761 if (IS_MNT_SLAVE(old))
762 list_add(&mnt->mnt_slave, &old->mnt_slave);
763 mnt->mnt_master = old->mnt_master;
764 }
765 if (flag & CL_MAKE_SHARED)
766 set_mnt_shared(mnt);
767
768 /* stick the duplicate mount on the same expiry list
769 * as the original if that was on one */
770 if (flag & CL_EXPIRE) {
771 if (!list_empty(&old->mnt_expire))
772 list_add(&mnt->mnt_expire, &old->mnt_expire);
773 }
774
775 return mnt;
776
777 out_free:
778 free_vfsmnt(mnt);
779 return ERR_PTR(err);
780 }
781
mntfree(struct mount * mnt)782 static inline void mntfree(struct mount *mnt)
783 {
784 struct vfsmount *m = &mnt->mnt;
785 struct super_block *sb = m->mnt_sb;
786
787 /*
788 * This probably indicates that somebody messed
789 * up a mnt_want/drop_write() pair. If this
790 * happens, the filesystem was probably unable
791 * to make r/w->r/o transitions.
792 */
793 /*
794 * The locking used to deal with mnt_count decrement provides barriers,
795 * so mnt_get_writers() below is safe.
796 */
797 WARN_ON(mnt_get_writers(mnt));
798 fsnotify_vfsmount_delete(m);
799 dput(m->mnt_root);
800 free_vfsmnt(mnt);
801 deactivate_super(sb);
802 }
803
mntput_no_expire(struct mount * mnt)804 static void mntput_no_expire(struct mount *mnt)
805 {
806 put_again:
807 #ifdef CONFIG_SMP
808 br_read_lock(&vfsmount_lock);
809 if (likely(mnt->mnt_ns)) {
810 /* shouldn't be the last one */
811 mnt_add_count(mnt, -1);
812 br_read_unlock(&vfsmount_lock);
813 return;
814 }
815 br_read_unlock(&vfsmount_lock);
816
817 br_write_lock(&vfsmount_lock);
818 mnt_add_count(mnt, -1);
819 if (mnt_get_count(mnt)) {
820 br_write_unlock(&vfsmount_lock);
821 return;
822 }
823 #else
824 mnt_add_count(mnt, -1);
825 if (likely(mnt_get_count(mnt)))
826 return;
827 br_write_lock(&vfsmount_lock);
828 #endif
829 if (unlikely(mnt->mnt_pinned)) {
830 mnt_add_count(mnt, mnt->mnt_pinned + 1);
831 mnt->mnt_pinned = 0;
832 br_write_unlock(&vfsmount_lock);
833 acct_auto_close_mnt(&mnt->mnt);
834 goto put_again;
835 }
836
837 list_del(&mnt->mnt_instance);
838 br_write_unlock(&vfsmount_lock);
839 mntfree(mnt);
840 }
841
mntput(struct vfsmount * mnt)842 void mntput(struct vfsmount *mnt)
843 {
844 if (mnt) {
845 struct mount *m = real_mount(mnt);
846 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
847 if (unlikely(m->mnt_expiry_mark))
848 m->mnt_expiry_mark = 0;
849 mntput_no_expire(m);
850 }
851 }
852 EXPORT_SYMBOL(mntput);
853
mntget(struct vfsmount * mnt)854 struct vfsmount *mntget(struct vfsmount *mnt)
855 {
856 if (mnt)
857 mnt_add_count(real_mount(mnt), 1);
858 return mnt;
859 }
860 EXPORT_SYMBOL(mntget);
861
mnt_pin(struct vfsmount * mnt)862 void mnt_pin(struct vfsmount *mnt)
863 {
864 br_write_lock(&vfsmount_lock);
865 real_mount(mnt)->mnt_pinned++;
866 br_write_unlock(&vfsmount_lock);
867 }
868 EXPORT_SYMBOL(mnt_pin);
869
mnt_unpin(struct vfsmount * m)870 void mnt_unpin(struct vfsmount *m)
871 {
872 struct mount *mnt = real_mount(m);
873 br_write_lock(&vfsmount_lock);
874 if (mnt->mnt_pinned) {
875 mnt_add_count(mnt, 1);
876 mnt->mnt_pinned--;
877 }
878 br_write_unlock(&vfsmount_lock);
879 }
880 EXPORT_SYMBOL(mnt_unpin);
881
mangle(struct seq_file * m,const char * s)882 static inline void mangle(struct seq_file *m, const char *s)
883 {
884 seq_escape(m, s, " \t\n\\");
885 }
886
887 /*
888 * Simple .show_options callback for filesystems which don't want to
889 * implement more complex mount option showing.
890 *
891 * See also save_mount_options().
892 */
generic_show_options(struct seq_file * m,struct dentry * root)893 int generic_show_options(struct seq_file *m, struct dentry *root)
894 {
895 const char *options;
896
897 rcu_read_lock();
898 options = rcu_dereference(root->d_sb->s_options);
899
900 if (options != NULL && options[0]) {
901 seq_putc(m, ',');
902 mangle(m, options);
903 }
904 rcu_read_unlock();
905
906 return 0;
907 }
908 EXPORT_SYMBOL(generic_show_options);
909
910 /*
911 * If filesystem uses generic_show_options(), this function should be
912 * called from the fill_super() callback.
913 *
914 * The .remount_fs callback usually needs to be handled in a special
915 * way, to make sure, that previous options are not overwritten if the
916 * remount fails.
917 *
918 * Also note, that if the filesystem's .remount_fs function doesn't
919 * reset all options to their default value, but changes only newly
920 * given options, then the displayed options will not reflect reality
921 * any more.
922 */
save_mount_options(struct super_block * sb,char * options)923 void save_mount_options(struct super_block *sb, char *options)
924 {
925 BUG_ON(sb->s_options);
926 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
927 }
928 EXPORT_SYMBOL(save_mount_options);
929
replace_mount_options(struct super_block * sb,char * options)930 void replace_mount_options(struct super_block *sb, char *options)
931 {
932 char *old = sb->s_options;
933 rcu_assign_pointer(sb->s_options, options);
934 if (old) {
935 synchronize_rcu();
936 kfree(old);
937 }
938 }
939 EXPORT_SYMBOL(replace_mount_options);
940
941 #ifdef CONFIG_PROC_FS
942 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)943 static void *m_start(struct seq_file *m, loff_t *pos)
944 {
945 struct proc_mounts *p = proc_mounts(m);
946
947 down_read(&namespace_sem);
948 return seq_list_start(&p->ns->list, *pos);
949 }
950
m_next(struct seq_file * m,void * v,loff_t * pos)951 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
952 {
953 struct proc_mounts *p = proc_mounts(m);
954
955 return seq_list_next(v, &p->ns->list, pos);
956 }
957
m_stop(struct seq_file * m,void * v)958 static void m_stop(struct seq_file *m, void *v)
959 {
960 up_read(&namespace_sem);
961 }
962
m_show(struct seq_file * m,void * v)963 static int m_show(struct seq_file *m, void *v)
964 {
965 struct proc_mounts *p = proc_mounts(m);
966 struct mount *r = list_entry(v, struct mount, mnt_list);
967 return p->show(m, &r->mnt);
968 }
969
970 const struct seq_operations mounts_op = {
971 .start = m_start,
972 .next = m_next,
973 .stop = m_stop,
974 .show = m_show,
975 };
976 #endif /* CONFIG_PROC_FS */
977
978 /**
979 * may_umount_tree - check if a mount tree is busy
980 * @mnt: root of mount tree
981 *
982 * This is called to check if a tree of mounts has any
983 * open files, pwds, chroots or sub mounts that are
984 * busy.
985 */
may_umount_tree(struct vfsmount * m)986 int may_umount_tree(struct vfsmount *m)
987 {
988 struct mount *mnt = real_mount(m);
989 int actual_refs = 0;
990 int minimum_refs = 0;
991 struct mount *p;
992 BUG_ON(!m);
993
994 /* write lock needed for mnt_get_count */
995 br_write_lock(&vfsmount_lock);
996 for (p = mnt; p; p = next_mnt(p, mnt)) {
997 actual_refs += mnt_get_count(p);
998 minimum_refs += 2;
999 }
1000 br_write_unlock(&vfsmount_lock);
1001
1002 if (actual_refs > minimum_refs)
1003 return 0;
1004
1005 return 1;
1006 }
1007
1008 EXPORT_SYMBOL(may_umount_tree);
1009
1010 /**
1011 * may_umount - check if a mount point is busy
1012 * @mnt: root of mount
1013 *
1014 * This is called to check if a mount point has any
1015 * open files, pwds, chroots or sub mounts. If the
1016 * mount has sub mounts this will return busy
1017 * regardless of whether the sub mounts are busy.
1018 *
1019 * Doesn't take quota and stuff into account. IOW, in some cases it will
1020 * give false negatives. The main reason why it's here is that we need
1021 * a non-destructive way to look for easily umountable filesystems.
1022 */
may_umount(struct vfsmount * mnt)1023 int may_umount(struct vfsmount *mnt)
1024 {
1025 int ret = 1;
1026 down_read(&namespace_sem);
1027 br_write_lock(&vfsmount_lock);
1028 if (propagate_mount_busy(real_mount(mnt), 2))
1029 ret = 0;
1030 br_write_unlock(&vfsmount_lock);
1031 up_read(&namespace_sem);
1032 return ret;
1033 }
1034
1035 EXPORT_SYMBOL(may_umount);
1036
release_mounts(struct list_head * head)1037 void release_mounts(struct list_head *head)
1038 {
1039 struct mount *mnt;
1040 while (!list_empty(head)) {
1041 mnt = list_first_entry(head, struct mount, mnt_hash);
1042 list_del_init(&mnt->mnt_hash);
1043 if (mnt_has_parent(mnt)) {
1044 struct dentry *dentry;
1045 struct mount *m;
1046
1047 br_write_lock(&vfsmount_lock);
1048 dentry = mnt->mnt_mountpoint;
1049 m = mnt->mnt_parent;
1050 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1051 mnt->mnt_parent = mnt;
1052 m->mnt_ghosts--;
1053 br_write_unlock(&vfsmount_lock);
1054 dput(dentry);
1055 mntput(&m->mnt);
1056 }
1057 mntput(&mnt->mnt);
1058 }
1059 }
1060
1061 /*
1062 * vfsmount lock must be held for write
1063 * namespace_sem must be held for write
1064 */
umount_tree(struct mount * mnt,int propagate,struct list_head * kill)1065 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1066 {
1067 LIST_HEAD(tmp_list);
1068 struct mount *p;
1069
1070 for (p = mnt; p; p = next_mnt(p, mnt))
1071 list_move(&p->mnt_hash, &tmp_list);
1072
1073 if (propagate)
1074 propagate_umount(&tmp_list);
1075
1076 list_for_each_entry(p, &tmp_list, mnt_hash) {
1077 list_del_init(&p->mnt_expire);
1078 list_del_init(&p->mnt_list);
1079 __touch_mnt_namespace(p->mnt_ns);
1080 p->mnt_ns = NULL;
1081 list_del_init(&p->mnt_child);
1082 if (mnt_has_parent(p)) {
1083 p->mnt_parent->mnt_ghosts++;
1084 dentry_reset_mounted(p->mnt_mountpoint);
1085 }
1086 change_mnt_propagation(p, MS_PRIVATE);
1087 }
1088 list_splice(&tmp_list, kill);
1089 }
1090
1091 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1092
do_umount(struct mount * mnt,int flags)1093 static int do_umount(struct mount *mnt, int flags)
1094 {
1095 struct super_block *sb = mnt->mnt.mnt_sb;
1096 int retval;
1097 LIST_HEAD(umount_list);
1098
1099 retval = security_sb_umount(&mnt->mnt, flags);
1100 if (retval)
1101 return retval;
1102
1103 /*
1104 * Allow userspace to request a mountpoint be expired rather than
1105 * unmounting unconditionally. Unmount only happens if:
1106 * (1) the mark is already set (the mark is cleared by mntput())
1107 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1108 */
1109 if (flags & MNT_EXPIRE) {
1110 if (&mnt->mnt == current->fs->root.mnt ||
1111 flags & (MNT_FORCE | MNT_DETACH))
1112 return -EINVAL;
1113
1114 /*
1115 * probably don't strictly need the lock here if we examined
1116 * all race cases, but it's a slowpath.
1117 */
1118 br_write_lock(&vfsmount_lock);
1119 if (mnt_get_count(mnt) != 2) {
1120 br_write_unlock(&vfsmount_lock);
1121 return -EBUSY;
1122 }
1123 br_write_unlock(&vfsmount_lock);
1124
1125 if (!xchg(&mnt->mnt_expiry_mark, 1))
1126 return -EAGAIN;
1127 }
1128
1129 /*
1130 * If we may have to abort operations to get out of this
1131 * mount, and they will themselves hold resources we must
1132 * allow the fs to do things. In the Unix tradition of
1133 * 'Gee thats tricky lets do it in userspace' the umount_begin
1134 * might fail to complete on the first run through as other tasks
1135 * must return, and the like. Thats for the mount program to worry
1136 * about for the moment.
1137 */
1138
1139 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1140 sb->s_op->umount_begin(sb);
1141 }
1142
1143 /*
1144 * No sense to grab the lock for this test, but test itself looks
1145 * somewhat bogus. Suggestions for better replacement?
1146 * Ho-hum... In principle, we might treat that as umount + switch
1147 * to rootfs. GC would eventually take care of the old vfsmount.
1148 * Actually it makes sense, especially if rootfs would contain a
1149 * /reboot - static binary that would close all descriptors and
1150 * call reboot(9). Then init(8) could umount root and exec /reboot.
1151 */
1152 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1153 /*
1154 * Special case for "unmounting" root ...
1155 * we just try to remount it readonly.
1156 */
1157 down_write(&sb->s_umount);
1158 if (!(sb->s_flags & MS_RDONLY))
1159 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1160 up_write(&sb->s_umount);
1161 return retval;
1162 }
1163
1164 down_write(&namespace_sem);
1165 br_write_lock(&vfsmount_lock);
1166 event++;
1167
1168 if (!(flags & MNT_DETACH))
1169 shrink_submounts(mnt, &umount_list);
1170
1171 retval = -EBUSY;
1172 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1173 if (!list_empty(&mnt->mnt_list))
1174 umount_tree(mnt, 1, &umount_list);
1175 retval = 0;
1176 }
1177 br_write_unlock(&vfsmount_lock);
1178 up_write(&namespace_sem);
1179 release_mounts(&umount_list);
1180 return retval;
1181 }
1182
1183 /*
1184 * Now umount can handle mount points as well as block devices.
1185 * This is important for filesystems which use unnamed block devices.
1186 *
1187 * We now support a flag for forced unmount like the other 'big iron'
1188 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1189 */
1190
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1191 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1192 {
1193 struct path path;
1194 struct mount *mnt;
1195 int retval;
1196 int lookup_flags = 0;
1197
1198 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1199 return -EINVAL;
1200
1201 if (!(flags & UMOUNT_NOFOLLOW))
1202 lookup_flags |= LOOKUP_FOLLOW;
1203
1204 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1205 if (retval)
1206 goto out;
1207 mnt = real_mount(path.mnt);
1208 retval = -EINVAL;
1209 if (path.dentry != path.mnt->mnt_root)
1210 goto dput_and_out;
1211 if (!check_mnt(mnt))
1212 goto dput_and_out;
1213
1214 retval = -EPERM;
1215 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1216 goto dput_and_out;
1217
1218 retval = do_umount(mnt, flags);
1219 dput_and_out:
1220 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1221 dput(path.dentry);
1222 mntput_no_expire(mnt);
1223 out:
1224 return retval;
1225 }
1226
1227 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1228
1229 /*
1230 * The 2.0 compatible umount. No flags.
1231 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1232 SYSCALL_DEFINE1(oldumount, char __user *, name)
1233 {
1234 return sys_umount(name, 0);
1235 }
1236
1237 #endif
1238
mount_is_safe(struct path * path)1239 static int mount_is_safe(struct path *path)
1240 {
1241 if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1242 return 0;
1243 return -EPERM;
1244 #ifdef notyet
1245 if (S_ISLNK(path->dentry->d_inode->i_mode))
1246 return -EPERM;
1247 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1248 if (current_uid() != path->dentry->d_inode->i_uid)
1249 return -EPERM;
1250 }
1251 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1252 return -EPERM;
1253 return 0;
1254 #endif
1255 }
1256
mnt_ns_loop(struct path * path)1257 static bool mnt_ns_loop(struct path *path)
1258 {
1259 /* Could bind mounting the mount namespace inode cause a
1260 * mount namespace loop?
1261 */
1262 struct inode *inode = path->dentry->d_inode;
1263 struct proc_inode *ei;
1264 struct mnt_namespace *mnt_ns;
1265
1266 if (!proc_ns_inode(inode))
1267 return false;
1268
1269 ei = PROC_I(inode);
1270 if (ei->ns_ops != &mntns_operations)
1271 return false;
1272
1273 mnt_ns = ei->ns;
1274 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1275 }
1276
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1277 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1278 int flag)
1279 {
1280 struct mount *res, *p, *q, *r;
1281 struct path path;
1282
1283 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1284 return ERR_PTR(-EINVAL);
1285
1286 res = q = clone_mnt(mnt, dentry, flag);
1287 if (IS_ERR(q))
1288 return q;
1289
1290 q->mnt_mountpoint = mnt->mnt_mountpoint;
1291
1292 p = mnt;
1293 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1294 struct mount *s;
1295 if (!is_subdir(r->mnt_mountpoint, dentry))
1296 continue;
1297
1298 for (s = r; s; s = next_mnt(s, r)) {
1299 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1300 s = skip_mnt_tree(s);
1301 continue;
1302 }
1303 while (p != s->mnt_parent) {
1304 p = p->mnt_parent;
1305 q = q->mnt_parent;
1306 }
1307 p = s;
1308 path.mnt = &q->mnt;
1309 path.dentry = p->mnt_mountpoint;
1310 q = clone_mnt(p, p->mnt.mnt_root, flag);
1311 if (IS_ERR(q))
1312 goto out;
1313 br_write_lock(&vfsmount_lock);
1314 list_add_tail(&q->mnt_list, &res->mnt_list);
1315 attach_mnt(q, &path);
1316 br_write_unlock(&vfsmount_lock);
1317 }
1318 }
1319 return res;
1320 out:
1321 if (res) {
1322 LIST_HEAD(umount_list);
1323 br_write_lock(&vfsmount_lock);
1324 umount_tree(res, 0, &umount_list);
1325 br_write_unlock(&vfsmount_lock);
1326 release_mounts(&umount_list);
1327 }
1328 return q;
1329 }
1330
1331 /* Caller should check returned pointer for errors */
1332
collect_mounts(struct path * path)1333 struct vfsmount *collect_mounts(struct path *path)
1334 {
1335 struct mount *tree;
1336 down_write(&namespace_sem);
1337 tree = copy_tree(real_mount(path->mnt), path->dentry,
1338 CL_COPY_ALL | CL_PRIVATE);
1339 up_write(&namespace_sem);
1340 if (IS_ERR(tree))
1341 return NULL;
1342 return &tree->mnt;
1343 }
1344
drop_collected_mounts(struct vfsmount * mnt)1345 void drop_collected_mounts(struct vfsmount *mnt)
1346 {
1347 LIST_HEAD(umount_list);
1348 down_write(&namespace_sem);
1349 br_write_lock(&vfsmount_lock);
1350 umount_tree(real_mount(mnt), 0, &umount_list);
1351 br_write_unlock(&vfsmount_lock);
1352 up_write(&namespace_sem);
1353 release_mounts(&umount_list);
1354 }
1355
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1356 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1357 struct vfsmount *root)
1358 {
1359 struct mount *mnt;
1360 int res = f(root, arg);
1361 if (res)
1362 return res;
1363 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1364 res = f(&mnt->mnt, arg);
1365 if (res)
1366 return res;
1367 }
1368 return 0;
1369 }
1370
cleanup_group_ids(struct mount * mnt,struct mount * end)1371 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1372 {
1373 struct mount *p;
1374
1375 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1376 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1377 mnt_release_group_id(p);
1378 }
1379 }
1380
invent_group_ids(struct mount * mnt,bool recurse)1381 static int invent_group_ids(struct mount *mnt, bool recurse)
1382 {
1383 struct mount *p;
1384
1385 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1386 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1387 int err = mnt_alloc_group_id(p);
1388 if (err) {
1389 cleanup_group_ids(mnt, p);
1390 return err;
1391 }
1392 }
1393 }
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * @source_mnt : mount tree to be attached
1400 * @nd : place the mount tree @source_mnt is attached
1401 * @parent_nd : if non-null, detach the source_mnt from its parent and
1402 * store the parent mount and mountpoint dentry.
1403 * (done when source_mnt is moved)
1404 *
1405 * NOTE: in the table below explains the semantics when a source mount
1406 * of a given type is attached to a destination mount of a given type.
1407 * ---------------------------------------------------------------------------
1408 * | BIND MOUNT OPERATION |
1409 * |**************************************************************************
1410 * | source-->| shared | private | slave | unbindable |
1411 * | dest | | | | |
1412 * | | | | | | |
1413 * | v | | | | |
1414 * |**************************************************************************
1415 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1416 * | | | | | |
1417 * |non-shared| shared (+) | private | slave (*) | invalid |
1418 * ***************************************************************************
1419 * A bind operation clones the source mount and mounts the clone on the
1420 * destination mount.
1421 *
1422 * (++) the cloned mount is propagated to all the mounts in the propagation
1423 * tree of the destination mount and the cloned mount is added to
1424 * the peer group of the source mount.
1425 * (+) the cloned mount is created under the destination mount and is marked
1426 * as shared. The cloned mount is added to the peer group of the source
1427 * mount.
1428 * (+++) the mount is propagated to all the mounts in the propagation tree
1429 * of the destination mount and the cloned mount is made slave
1430 * of the same master as that of the source mount. The cloned mount
1431 * is marked as 'shared and slave'.
1432 * (*) the cloned mount is made a slave of the same master as that of the
1433 * source mount.
1434 *
1435 * ---------------------------------------------------------------------------
1436 * | MOVE MOUNT OPERATION |
1437 * |**************************************************************************
1438 * | source-->| shared | private | slave | unbindable |
1439 * | dest | | | | |
1440 * | | | | | | |
1441 * | v | | | | |
1442 * |**************************************************************************
1443 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1444 * | | | | | |
1445 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1446 * ***************************************************************************
1447 *
1448 * (+) the mount is moved to the destination. And is then propagated to
1449 * all the mounts in the propagation tree of the destination mount.
1450 * (+*) the mount is moved to the destination.
1451 * (+++) the mount is moved to the destination and is then propagated to
1452 * all the mounts belonging to the destination mount's propagation tree.
1453 * the mount is marked as 'shared and slave'.
1454 * (*) the mount continues to be a slave at the new location.
1455 *
1456 * if the source mount is a tree, the operations explained above is
1457 * applied to each mount in the tree.
1458 * Must be called without spinlocks held, since this function can sleep
1459 * in allocations.
1460 */
attach_recursive_mnt(struct mount * source_mnt,struct path * path,struct path * parent_path)1461 static int attach_recursive_mnt(struct mount *source_mnt,
1462 struct path *path, struct path *parent_path)
1463 {
1464 LIST_HEAD(tree_list);
1465 struct mount *dest_mnt = real_mount(path->mnt);
1466 struct dentry *dest_dentry = path->dentry;
1467 struct mount *child, *p;
1468 int err;
1469
1470 if (IS_MNT_SHARED(dest_mnt)) {
1471 err = invent_group_ids(source_mnt, true);
1472 if (err)
1473 goto out;
1474 }
1475 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1476 if (err)
1477 goto out_cleanup_ids;
1478
1479 br_write_lock(&vfsmount_lock);
1480
1481 if (IS_MNT_SHARED(dest_mnt)) {
1482 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1483 set_mnt_shared(p);
1484 }
1485 if (parent_path) {
1486 detach_mnt(source_mnt, parent_path);
1487 attach_mnt(source_mnt, path);
1488 touch_mnt_namespace(source_mnt->mnt_ns);
1489 } else {
1490 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1491 commit_tree(source_mnt);
1492 }
1493
1494 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1495 list_del_init(&child->mnt_hash);
1496 commit_tree(child);
1497 }
1498 br_write_unlock(&vfsmount_lock);
1499
1500 return 0;
1501
1502 out_cleanup_ids:
1503 if (IS_MNT_SHARED(dest_mnt))
1504 cleanup_group_ids(source_mnt, NULL);
1505 out:
1506 return err;
1507 }
1508
lock_mount(struct path * path)1509 static int lock_mount(struct path *path)
1510 {
1511 struct vfsmount *mnt;
1512 retry:
1513 mutex_lock(&path->dentry->d_inode->i_mutex);
1514 if (unlikely(cant_mount(path->dentry))) {
1515 mutex_unlock(&path->dentry->d_inode->i_mutex);
1516 return -ENOENT;
1517 }
1518 down_write(&namespace_sem);
1519 mnt = lookup_mnt(path);
1520 if (likely(!mnt))
1521 return 0;
1522 up_write(&namespace_sem);
1523 mutex_unlock(&path->dentry->d_inode->i_mutex);
1524 path_put(path);
1525 path->mnt = mnt;
1526 path->dentry = dget(mnt->mnt_root);
1527 goto retry;
1528 }
1529
unlock_mount(struct path * path)1530 static void unlock_mount(struct path *path)
1531 {
1532 up_write(&namespace_sem);
1533 mutex_unlock(&path->dentry->d_inode->i_mutex);
1534 }
1535
graft_tree(struct mount * mnt,struct path * path)1536 static int graft_tree(struct mount *mnt, struct path *path)
1537 {
1538 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1539 return -EINVAL;
1540
1541 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1542 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1543 return -ENOTDIR;
1544
1545 if (d_unlinked(path->dentry))
1546 return -ENOENT;
1547
1548 return attach_recursive_mnt(mnt, path, NULL);
1549 }
1550
1551 /*
1552 * Sanity check the flags to change_mnt_propagation.
1553 */
1554
flags_to_propagation_type(int flags)1555 static int flags_to_propagation_type(int flags)
1556 {
1557 int type = flags & ~(MS_REC | MS_SILENT);
1558
1559 /* Fail if any non-propagation flags are set */
1560 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1561 return 0;
1562 /* Only one propagation flag should be set */
1563 if (!is_power_of_2(type))
1564 return 0;
1565 return type;
1566 }
1567
1568 /*
1569 * recursively change the type of the mountpoint.
1570 */
do_change_type(struct path * path,int flag)1571 static int do_change_type(struct path *path, int flag)
1572 {
1573 struct mount *m;
1574 struct mount *mnt = real_mount(path->mnt);
1575 int recurse = flag & MS_REC;
1576 int type;
1577 int err = 0;
1578
1579 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1580 return -EPERM;
1581
1582 if (path->dentry != path->mnt->mnt_root)
1583 return -EINVAL;
1584
1585 type = flags_to_propagation_type(flag);
1586 if (!type)
1587 return -EINVAL;
1588
1589 down_write(&namespace_sem);
1590 if (type == MS_SHARED) {
1591 err = invent_group_ids(mnt, recurse);
1592 if (err)
1593 goto out_unlock;
1594 }
1595
1596 br_write_lock(&vfsmount_lock);
1597 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1598 change_mnt_propagation(m, type);
1599 br_write_unlock(&vfsmount_lock);
1600
1601 out_unlock:
1602 up_write(&namespace_sem);
1603 return err;
1604 }
1605
1606 /*
1607 * do loopback mount.
1608 */
do_loopback(struct path * path,const char * old_name,int recurse)1609 static int do_loopback(struct path *path, const char *old_name,
1610 int recurse)
1611 {
1612 LIST_HEAD(umount_list);
1613 struct path old_path;
1614 struct mount *mnt = NULL, *old;
1615 int err = mount_is_safe(path);
1616 if (err)
1617 return err;
1618 if (!old_name || !*old_name)
1619 return -EINVAL;
1620 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1621 if (err)
1622 return err;
1623
1624 err = -EINVAL;
1625 if (mnt_ns_loop(&old_path))
1626 goto out;
1627
1628 err = lock_mount(path);
1629 if (err)
1630 goto out;
1631
1632 old = real_mount(old_path.mnt);
1633
1634 err = -EINVAL;
1635 if (IS_MNT_UNBINDABLE(old))
1636 goto out2;
1637
1638 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1639 goto out2;
1640
1641 if (recurse)
1642 mnt = copy_tree(old, old_path.dentry, 0);
1643 else
1644 mnt = clone_mnt(old, old_path.dentry, 0);
1645
1646 if (IS_ERR(mnt)) {
1647 err = PTR_ERR(mnt);
1648 goto out;
1649 }
1650
1651 err = graft_tree(mnt, path);
1652 if (err) {
1653 br_write_lock(&vfsmount_lock);
1654 umount_tree(mnt, 0, &umount_list);
1655 br_write_unlock(&vfsmount_lock);
1656 }
1657 out2:
1658 unlock_mount(path);
1659 release_mounts(&umount_list);
1660 out:
1661 path_put(&old_path);
1662 return err;
1663 }
1664
change_mount_flags(struct vfsmount * mnt,int ms_flags)1665 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1666 {
1667 int error = 0;
1668 int readonly_request = 0;
1669
1670 if (ms_flags & MS_RDONLY)
1671 readonly_request = 1;
1672 if (readonly_request == __mnt_is_readonly(mnt))
1673 return 0;
1674
1675 if (readonly_request)
1676 error = mnt_make_readonly(real_mount(mnt));
1677 else
1678 __mnt_unmake_readonly(real_mount(mnt));
1679 return error;
1680 }
1681
1682 /*
1683 * change filesystem flags. dir should be a physical root of filesystem.
1684 * If you've mounted a non-root directory somewhere and want to do remount
1685 * on it - tough luck.
1686 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)1687 static int do_remount(struct path *path, int flags, int mnt_flags,
1688 void *data)
1689 {
1690 int err;
1691 struct super_block *sb = path->mnt->mnt_sb;
1692 struct mount *mnt = real_mount(path->mnt);
1693
1694 if (!capable(CAP_SYS_ADMIN))
1695 return -EPERM;
1696
1697 if (!check_mnt(mnt))
1698 return -EINVAL;
1699
1700 if (path->dentry != path->mnt->mnt_root)
1701 return -EINVAL;
1702
1703 err = security_sb_remount(sb, data);
1704 if (err)
1705 return err;
1706
1707 down_write(&sb->s_umount);
1708 if (flags & MS_BIND)
1709 err = change_mount_flags(path->mnt, flags);
1710 else
1711 err = do_remount_sb(sb, flags, data, 0);
1712 if (!err) {
1713 br_write_lock(&vfsmount_lock);
1714 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1715 mnt->mnt.mnt_flags = mnt_flags;
1716 br_write_unlock(&vfsmount_lock);
1717 }
1718 up_write(&sb->s_umount);
1719 if (!err) {
1720 br_write_lock(&vfsmount_lock);
1721 touch_mnt_namespace(mnt->mnt_ns);
1722 br_write_unlock(&vfsmount_lock);
1723 }
1724 return err;
1725 }
1726
tree_contains_unbindable(struct mount * mnt)1727 static inline int tree_contains_unbindable(struct mount *mnt)
1728 {
1729 struct mount *p;
1730 for (p = mnt; p; p = next_mnt(p, mnt)) {
1731 if (IS_MNT_UNBINDABLE(p))
1732 return 1;
1733 }
1734 return 0;
1735 }
1736
do_move_mount(struct path * path,const char * old_name)1737 static int do_move_mount(struct path *path, const char *old_name)
1738 {
1739 struct path old_path, parent_path;
1740 struct mount *p;
1741 struct mount *old;
1742 int err = 0;
1743 if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1744 return -EPERM;
1745 if (!old_name || !*old_name)
1746 return -EINVAL;
1747 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1748 if (err)
1749 return err;
1750
1751 err = lock_mount(path);
1752 if (err < 0)
1753 goto out;
1754
1755 old = real_mount(old_path.mnt);
1756 p = real_mount(path->mnt);
1757
1758 err = -EINVAL;
1759 if (!check_mnt(p) || !check_mnt(old))
1760 goto out1;
1761
1762 if (d_unlinked(path->dentry))
1763 goto out1;
1764
1765 err = -EINVAL;
1766 if (old_path.dentry != old_path.mnt->mnt_root)
1767 goto out1;
1768
1769 if (!mnt_has_parent(old))
1770 goto out1;
1771
1772 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1773 S_ISDIR(old_path.dentry->d_inode->i_mode))
1774 goto out1;
1775 /*
1776 * Don't move a mount residing in a shared parent.
1777 */
1778 if (IS_MNT_SHARED(old->mnt_parent))
1779 goto out1;
1780 /*
1781 * Don't move a mount tree containing unbindable mounts to a destination
1782 * mount which is shared.
1783 */
1784 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1785 goto out1;
1786 err = -ELOOP;
1787 for (; mnt_has_parent(p); p = p->mnt_parent)
1788 if (p == old)
1789 goto out1;
1790
1791 err = attach_recursive_mnt(old, path, &parent_path);
1792 if (err)
1793 goto out1;
1794
1795 /* if the mount is moved, it should no longer be expire
1796 * automatically */
1797 list_del_init(&old->mnt_expire);
1798 out1:
1799 unlock_mount(path);
1800 out:
1801 if (!err)
1802 path_put(&parent_path);
1803 path_put(&old_path);
1804 return err;
1805 }
1806
fs_set_subtype(struct vfsmount * mnt,const char * fstype)1807 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1808 {
1809 int err;
1810 const char *subtype = strchr(fstype, '.');
1811 if (subtype) {
1812 subtype++;
1813 err = -EINVAL;
1814 if (!subtype[0])
1815 goto err;
1816 } else
1817 subtype = "";
1818
1819 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1820 err = -ENOMEM;
1821 if (!mnt->mnt_sb->s_subtype)
1822 goto err;
1823 return mnt;
1824
1825 err:
1826 mntput(mnt);
1827 return ERR_PTR(err);
1828 }
1829
1830 /*
1831 * add a mount into a namespace's mount tree
1832 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)1833 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1834 {
1835 int err;
1836
1837 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1838
1839 err = lock_mount(path);
1840 if (err)
1841 return err;
1842
1843 err = -EINVAL;
1844 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1845 /* that's acceptable only for automounts done in private ns */
1846 if (!(mnt_flags & MNT_SHRINKABLE))
1847 goto unlock;
1848 /* ... and for those we'd better have mountpoint still alive */
1849 if (!real_mount(path->mnt)->mnt_ns)
1850 goto unlock;
1851 }
1852
1853 /* Refuse the same filesystem on the same mount point */
1854 err = -EBUSY;
1855 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1856 path->mnt->mnt_root == path->dentry)
1857 goto unlock;
1858
1859 err = -EINVAL;
1860 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1861 goto unlock;
1862
1863 newmnt->mnt.mnt_flags = mnt_flags;
1864 err = graft_tree(newmnt, path);
1865
1866 unlock:
1867 unlock_mount(path);
1868 return err;
1869 }
1870
1871 /*
1872 * create a new mount for userspace and request it to be added into the
1873 * namespace's tree
1874 */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)1875 static int do_new_mount(struct path *path, const char *fstype, int flags,
1876 int mnt_flags, const char *name, void *data)
1877 {
1878 struct file_system_type *type;
1879 struct user_namespace *user_ns;
1880 struct vfsmount *mnt;
1881 int err;
1882
1883 if (!fstype)
1884 return -EINVAL;
1885
1886 /* we need capabilities... */
1887 user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
1888 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1889 return -EPERM;
1890
1891 type = get_fs_type(fstype);
1892 if (!type)
1893 return -ENODEV;
1894
1895 if (user_ns != &init_user_ns) {
1896 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1897 put_filesystem(type);
1898 return -EPERM;
1899 }
1900 /* Only in special cases allow devices from mounts
1901 * created outside the initial user namespace.
1902 */
1903 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1904 flags |= MS_NODEV;
1905 mnt_flags |= MNT_NODEV;
1906 }
1907 }
1908
1909 mnt = vfs_kern_mount(type, flags, name, data);
1910 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1911 !mnt->mnt_sb->s_subtype)
1912 mnt = fs_set_subtype(mnt, fstype);
1913
1914 put_filesystem(type);
1915 if (IS_ERR(mnt))
1916 return PTR_ERR(mnt);
1917
1918 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1919 if (err)
1920 mntput(mnt);
1921 return err;
1922 }
1923
finish_automount(struct vfsmount * m,struct path * path)1924 int finish_automount(struct vfsmount *m, struct path *path)
1925 {
1926 struct mount *mnt = real_mount(m);
1927 int err;
1928 /* The new mount record should have at least 2 refs to prevent it being
1929 * expired before we get a chance to add it
1930 */
1931 BUG_ON(mnt_get_count(mnt) < 2);
1932
1933 if (m->mnt_sb == path->mnt->mnt_sb &&
1934 m->mnt_root == path->dentry) {
1935 err = -ELOOP;
1936 goto fail;
1937 }
1938
1939 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1940 if (!err)
1941 return 0;
1942 fail:
1943 /* remove m from any expiration list it may be on */
1944 if (!list_empty(&mnt->mnt_expire)) {
1945 down_write(&namespace_sem);
1946 br_write_lock(&vfsmount_lock);
1947 list_del_init(&mnt->mnt_expire);
1948 br_write_unlock(&vfsmount_lock);
1949 up_write(&namespace_sem);
1950 }
1951 mntput(m);
1952 mntput(m);
1953 return err;
1954 }
1955
1956 /**
1957 * mnt_set_expiry - Put a mount on an expiration list
1958 * @mnt: The mount to list.
1959 * @expiry_list: The list to add the mount to.
1960 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)1961 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1962 {
1963 down_write(&namespace_sem);
1964 br_write_lock(&vfsmount_lock);
1965
1966 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1967
1968 br_write_unlock(&vfsmount_lock);
1969 up_write(&namespace_sem);
1970 }
1971 EXPORT_SYMBOL(mnt_set_expiry);
1972
1973 /*
1974 * process a list of expirable mountpoints with the intent of discarding any
1975 * mountpoints that aren't in use and haven't been touched since last we came
1976 * here
1977 */
mark_mounts_for_expiry(struct list_head * mounts)1978 void mark_mounts_for_expiry(struct list_head *mounts)
1979 {
1980 struct mount *mnt, *next;
1981 LIST_HEAD(graveyard);
1982 LIST_HEAD(umounts);
1983
1984 if (list_empty(mounts))
1985 return;
1986
1987 down_write(&namespace_sem);
1988 br_write_lock(&vfsmount_lock);
1989
1990 /* extract from the expiration list every vfsmount that matches the
1991 * following criteria:
1992 * - only referenced by its parent vfsmount
1993 * - still marked for expiry (marked on the last call here; marks are
1994 * cleared by mntput())
1995 */
1996 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1997 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1998 propagate_mount_busy(mnt, 1))
1999 continue;
2000 list_move(&mnt->mnt_expire, &graveyard);
2001 }
2002 while (!list_empty(&graveyard)) {
2003 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2004 touch_mnt_namespace(mnt->mnt_ns);
2005 umount_tree(mnt, 1, &umounts);
2006 }
2007 br_write_unlock(&vfsmount_lock);
2008 up_write(&namespace_sem);
2009
2010 release_mounts(&umounts);
2011 }
2012
2013 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2014
2015 /*
2016 * Ripoff of 'select_parent()'
2017 *
2018 * search the list of submounts for a given mountpoint, and move any
2019 * shrinkable submounts to the 'graveyard' list.
2020 */
select_submounts(struct mount * parent,struct list_head * graveyard)2021 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2022 {
2023 struct mount *this_parent = parent;
2024 struct list_head *next;
2025 int found = 0;
2026
2027 repeat:
2028 next = this_parent->mnt_mounts.next;
2029 resume:
2030 while (next != &this_parent->mnt_mounts) {
2031 struct list_head *tmp = next;
2032 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2033
2034 next = tmp->next;
2035 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2036 continue;
2037 /*
2038 * Descend a level if the d_mounts list is non-empty.
2039 */
2040 if (!list_empty(&mnt->mnt_mounts)) {
2041 this_parent = mnt;
2042 goto repeat;
2043 }
2044
2045 if (!propagate_mount_busy(mnt, 1)) {
2046 list_move_tail(&mnt->mnt_expire, graveyard);
2047 found++;
2048 }
2049 }
2050 /*
2051 * All done at this level ... ascend and resume the search
2052 */
2053 if (this_parent != parent) {
2054 next = this_parent->mnt_child.next;
2055 this_parent = this_parent->mnt_parent;
2056 goto resume;
2057 }
2058 return found;
2059 }
2060
2061 /*
2062 * process a list of expirable mountpoints with the intent of discarding any
2063 * submounts of a specific parent mountpoint
2064 *
2065 * vfsmount_lock must be held for write
2066 */
shrink_submounts(struct mount * mnt,struct list_head * umounts)2067 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2068 {
2069 LIST_HEAD(graveyard);
2070 struct mount *m;
2071
2072 /* extract submounts of 'mountpoint' from the expiration list */
2073 while (select_submounts(mnt, &graveyard)) {
2074 while (!list_empty(&graveyard)) {
2075 m = list_first_entry(&graveyard, struct mount,
2076 mnt_expire);
2077 touch_mnt_namespace(m->mnt_ns);
2078 umount_tree(m, 1, umounts);
2079 }
2080 }
2081 }
2082
2083 /*
2084 * Some copy_from_user() implementations do not return the exact number of
2085 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2086 * Note that this function differs from copy_from_user() in that it will oops
2087 * on bad values of `to', rather than returning a short copy.
2088 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2089 static long exact_copy_from_user(void *to, const void __user * from,
2090 unsigned long n)
2091 {
2092 char *t = to;
2093 const char __user *f = from;
2094 char c;
2095
2096 if (!access_ok(VERIFY_READ, from, n))
2097 return n;
2098
2099 while (n) {
2100 if (__get_user(c, f)) {
2101 memset(t, 0, n);
2102 break;
2103 }
2104 *t++ = c;
2105 f++;
2106 n--;
2107 }
2108 return n;
2109 }
2110
copy_mount_options(const void __user * data,unsigned long * where)2111 int copy_mount_options(const void __user * data, unsigned long *where)
2112 {
2113 int i;
2114 unsigned long page;
2115 unsigned long size;
2116
2117 *where = 0;
2118 if (!data)
2119 return 0;
2120
2121 if (!(page = __get_free_page(GFP_KERNEL)))
2122 return -ENOMEM;
2123
2124 /* We only care that *some* data at the address the user
2125 * gave us is valid. Just in case, we'll zero
2126 * the remainder of the page.
2127 */
2128 /* copy_from_user cannot cross TASK_SIZE ! */
2129 size = TASK_SIZE - (unsigned long)data;
2130 if (size > PAGE_SIZE)
2131 size = PAGE_SIZE;
2132
2133 i = size - exact_copy_from_user((void *)page, data, size);
2134 if (!i) {
2135 free_page(page);
2136 return -EFAULT;
2137 }
2138 if (i != PAGE_SIZE)
2139 memset((char *)page + i, 0, PAGE_SIZE - i);
2140 *where = page;
2141 return 0;
2142 }
2143
copy_mount_string(const void __user * data,char ** where)2144 int copy_mount_string(const void __user *data, char **where)
2145 {
2146 char *tmp;
2147
2148 if (!data) {
2149 *where = NULL;
2150 return 0;
2151 }
2152
2153 tmp = strndup_user(data, PAGE_SIZE);
2154 if (IS_ERR(tmp))
2155 return PTR_ERR(tmp);
2156
2157 *where = tmp;
2158 return 0;
2159 }
2160
2161 /*
2162 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2163 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2164 *
2165 * data is a (void *) that can point to any structure up to
2166 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2167 * information (or be NULL).
2168 *
2169 * Pre-0.97 versions of mount() didn't have a flags word.
2170 * When the flags word was introduced its top half was required
2171 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2172 * Therefore, if this magic number is present, it carries no information
2173 * and must be discarded.
2174 */
do_mount(const char * dev_name,const char * dir_name,const char * type_page,unsigned long flags,void * data_page)2175 long do_mount(const char *dev_name, const char *dir_name,
2176 const char *type_page, unsigned long flags, void *data_page)
2177 {
2178 struct path path;
2179 int retval = 0;
2180 int mnt_flags = 0;
2181
2182 /* Discard magic */
2183 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2184 flags &= ~MS_MGC_MSK;
2185
2186 /* Basic sanity checks */
2187
2188 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2189 return -EINVAL;
2190
2191 if (data_page)
2192 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2193
2194 /* ... and get the mountpoint */
2195 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2196 if (retval)
2197 return retval;
2198
2199 retval = security_sb_mount(dev_name, &path,
2200 type_page, flags, data_page);
2201 if (retval)
2202 goto dput_out;
2203
2204 /* Default to relatime unless overriden */
2205 if (!(flags & MS_NOATIME))
2206 mnt_flags |= MNT_RELATIME;
2207
2208 /* Separate the per-mountpoint flags */
2209 if (flags & MS_NOSUID)
2210 mnt_flags |= MNT_NOSUID;
2211 if (flags & MS_NODEV)
2212 mnt_flags |= MNT_NODEV;
2213 if (flags & MS_NOEXEC)
2214 mnt_flags |= MNT_NOEXEC;
2215 if (flags & MS_NOATIME)
2216 mnt_flags |= MNT_NOATIME;
2217 if (flags & MS_NODIRATIME)
2218 mnt_flags |= MNT_NODIRATIME;
2219 if (flags & MS_STRICTATIME)
2220 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2221 if (flags & MS_RDONLY)
2222 mnt_flags |= MNT_READONLY;
2223
2224 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2225 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2226 MS_STRICTATIME);
2227
2228 if (flags & MS_REMOUNT)
2229 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2230 data_page);
2231 else if (flags & MS_BIND)
2232 retval = do_loopback(&path, dev_name, flags & MS_REC);
2233 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2234 retval = do_change_type(&path, flags);
2235 else if (flags & MS_MOVE)
2236 retval = do_move_mount(&path, dev_name);
2237 else
2238 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2239 dev_name, data_page);
2240 dput_out:
2241 path_put(&path);
2242 return retval;
2243 }
2244
free_mnt_ns(struct mnt_namespace * ns)2245 static void free_mnt_ns(struct mnt_namespace *ns)
2246 {
2247 proc_free_inum(ns->proc_inum);
2248 put_user_ns(ns->user_ns);
2249 kfree(ns);
2250 }
2251
2252 /*
2253 * Assign a sequence number so we can detect when we attempt to bind
2254 * mount a reference to an older mount namespace into the current
2255 * mount namespace, preventing reference counting loops. A 64bit
2256 * number incrementing at 10Ghz will take 12,427 years to wrap which
2257 * is effectively never, so we can ignore the possibility.
2258 */
2259 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2260
alloc_mnt_ns(struct user_namespace * user_ns)2261 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2262 {
2263 struct mnt_namespace *new_ns;
2264 int ret;
2265
2266 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2267 if (!new_ns)
2268 return ERR_PTR(-ENOMEM);
2269 ret = proc_alloc_inum(&new_ns->proc_inum);
2270 if (ret) {
2271 kfree(new_ns);
2272 return ERR_PTR(ret);
2273 }
2274 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2275 atomic_set(&new_ns->count, 1);
2276 new_ns->root = NULL;
2277 INIT_LIST_HEAD(&new_ns->list);
2278 init_waitqueue_head(&new_ns->poll);
2279 new_ns->event = 0;
2280 new_ns->user_ns = get_user_ns(user_ns);
2281 return new_ns;
2282 }
2283
2284 /*
2285 * Allocate a new namespace structure and populate it with contents
2286 * copied from the namespace of the passed in task structure.
2287 */
dup_mnt_ns(struct mnt_namespace * mnt_ns,struct user_namespace * user_ns,struct fs_struct * fs)2288 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2289 struct user_namespace *user_ns, struct fs_struct *fs)
2290 {
2291 struct mnt_namespace *new_ns;
2292 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2293 struct mount *p, *q;
2294 struct mount *old = mnt_ns->root;
2295 struct mount *new;
2296 int copy_flags;
2297
2298 new_ns = alloc_mnt_ns(user_ns);
2299 if (IS_ERR(new_ns))
2300 return new_ns;
2301
2302 down_write(&namespace_sem);
2303 /* First pass: copy the tree topology */
2304 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2305 if (user_ns != mnt_ns->user_ns)
2306 copy_flags |= CL_SHARED_TO_SLAVE;
2307 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2308 if (IS_ERR(new)) {
2309 up_write(&namespace_sem);
2310 free_mnt_ns(new_ns);
2311 return ERR_CAST(new);
2312 }
2313 new_ns->root = new;
2314 br_write_lock(&vfsmount_lock);
2315 list_add_tail(&new_ns->list, &new->mnt_list);
2316 br_write_unlock(&vfsmount_lock);
2317
2318 /*
2319 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2320 * as belonging to new namespace. We have already acquired a private
2321 * fs_struct, so tsk->fs->lock is not needed.
2322 */
2323 p = old;
2324 q = new;
2325 while (p) {
2326 q->mnt_ns = new_ns;
2327 if (fs) {
2328 if (&p->mnt == fs->root.mnt) {
2329 fs->root.mnt = mntget(&q->mnt);
2330 rootmnt = &p->mnt;
2331 }
2332 if (&p->mnt == fs->pwd.mnt) {
2333 fs->pwd.mnt = mntget(&q->mnt);
2334 pwdmnt = &p->mnt;
2335 }
2336 }
2337 p = next_mnt(p, old);
2338 q = next_mnt(q, new);
2339 }
2340 up_write(&namespace_sem);
2341
2342 if (rootmnt)
2343 mntput(rootmnt);
2344 if (pwdmnt)
2345 mntput(pwdmnt);
2346
2347 return new_ns;
2348 }
2349
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2350 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2351 struct user_namespace *user_ns, struct fs_struct *new_fs)
2352 {
2353 struct mnt_namespace *new_ns;
2354
2355 BUG_ON(!ns);
2356 get_mnt_ns(ns);
2357
2358 if (!(flags & CLONE_NEWNS))
2359 return ns;
2360
2361 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2362
2363 put_mnt_ns(ns);
2364 return new_ns;
2365 }
2366
2367 /**
2368 * create_mnt_ns - creates a private namespace and adds a root filesystem
2369 * @mnt: pointer to the new root filesystem mountpoint
2370 */
create_mnt_ns(struct vfsmount * m)2371 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2372 {
2373 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2374 if (!IS_ERR(new_ns)) {
2375 struct mount *mnt = real_mount(m);
2376 mnt->mnt_ns = new_ns;
2377 new_ns->root = mnt;
2378 list_add(&new_ns->list, &mnt->mnt_list);
2379 } else {
2380 mntput(m);
2381 }
2382 return new_ns;
2383 }
2384
mount_subtree(struct vfsmount * mnt,const char * name)2385 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2386 {
2387 struct mnt_namespace *ns;
2388 struct super_block *s;
2389 struct path path;
2390 int err;
2391
2392 ns = create_mnt_ns(mnt);
2393 if (IS_ERR(ns))
2394 return ERR_CAST(ns);
2395
2396 err = vfs_path_lookup(mnt->mnt_root, mnt,
2397 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2398
2399 put_mnt_ns(ns);
2400
2401 if (err)
2402 return ERR_PTR(err);
2403
2404 /* trade a vfsmount reference for active sb one */
2405 s = path.mnt->mnt_sb;
2406 atomic_inc(&s->s_active);
2407 mntput(path.mnt);
2408 /* lock the sucker */
2409 down_write(&s->s_umount);
2410 /* ... and return the root of (sub)tree on it */
2411 return path.dentry;
2412 }
2413 EXPORT_SYMBOL(mount_subtree);
2414
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2415 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2416 char __user *, type, unsigned long, flags, void __user *, data)
2417 {
2418 int ret;
2419 char *kernel_type;
2420 char *kernel_dir;
2421 char *kernel_dev;
2422 unsigned long data_page;
2423
2424 ret = copy_mount_string(type, &kernel_type);
2425 if (ret < 0)
2426 goto out_type;
2427
2428 kernel_dir = getname(dir_name);
2429 if (IS_ERR(kernel_dir)) {
2430 ret = PTR_ERR(kernel_dir);
2431 goto out_dir;
2432 }
2433
2434 ret = copy_mount_string(dev_name, &kernel_dev);
2435 if (ret < 0)
2436 goto out_dev;
2437
2438 ret = copy_mount_options(data, &data_page);
2439 if (ret < 0)
2440 goto out_data;
2441
2442 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2443 (void *) data_page);
2444
2445 free_page(data_page);
2446 out_data:
2447 kfree(kernel_dev);
2448 out_dev:
2449 putname(kernel_dir);
2450 out_dir:
2451 kfree(kernel_type);
2452 out_type:
2453 return ret;
2454 }
2455
2456 /*
2457 * Return true if path is reachable from root
2458 *
2459 * namespace_sem or vfsmount_lock is held
2460 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)2461 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2462 const struct path *root)
2463 {
2464 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2465 dentry = mnt->mnt_mountpoint;
2466 mnt = mnt->mnt_parent;
2467 }
2468 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2469 }
2470
path_is_under(struct path * path1,struct path * path2)2471 int path_is_under(struct path *path1, struct path *path2)
2472 {
2473 int res;
2474 br_read_lock(&vfsmount_lock);
2475 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2476 br_read_unlock(&vfsmount_lock);
2477 return res;
2478 }
2479 EXPORT_SYMBOL(path_is_under);
2480
2481 /*
2482 * pivot_root Semantics:
2483 * Moves the root file system of the current process to the directory put_old,
2484 * makes new_root as the new root file system of the current process, and sets
2485 * root/cwd of all processes which had them on the current root to new_root.
2486 *
2487 * Restrictions:
2488 * The new_root and put_old must be directories, and must not be on the
2489 * same file system as the current process root. The put_old must be
2490 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2491 * pointed to by put_old must yield the same directory as new_root. No other
2492 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2493 *
2494 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2495 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2496 * in this situation.
2497 *
2498 * Notes:
2499 * - we don't move root/cwd if they are not at the root (reason: if something
2500 * cared enough to change them, it's probably wrong to force them elsewhere)
2501 * - it's okay to pick a root that isn't the root of a file system, e.g.
2502 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2503 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2504 * first.
2505 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2506 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2507 const char __user *, put_old)
2508 {
2509 struct path new, old, parent_path, root_parent, root;
2510 struct mount *new_mnt, *root_mnt;
2511 int error;
2512
2513 if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
2514 return -EPERM;
2515
2516 error = user_path_dir(new_root, &new);
2517 if (error)
2518 goto out0;
2519
2520 error = user_path_dir(put_old, &old);
2521 if (error)
2522 goto out1;
2523
2524 error = security_sb_pivotroot(&old, &new);
2525 if (error)
2526 goto out2;
2527
2528 get_fs_root(current->fs, &root);
2529 error = lock_mount(&old);
2530 if (error)
2531 goto out3;
2532
2533 error = -EINVAL;
2534 new_mnt = real_mount(new.mnt);
2535 root_mnt = real_mount(root.mnt);
2536 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2537 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2538 IS_MNT_SHARED(root_mnt->mnt_parent))
2539 goto out4;
2540 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2541 goto out4;
2542 error = -ENOENT;
2543 if (d_unlinked(new.dentry))
2544 goto out4;
2545 if (d_unlinked(old.dentry))
2546 goto out4;
2547 error = -EBUSY;
2548 if (new.mnt == root.mnt ||
2549 old.mnt == root.mnt)
2550 goto out4; /* loop, on the same file system */
2551 error = -EINVAL;
2552 if (root.mnt->mnt_root != root.dentry)
2553 goto out4; /* not a mountpoint */
2554 if (!mnt_has_parent(root_mnt))
2555 goto out4; /* not attached */
2556 if (new.mnt->mnt_root != new.dentry)
2557 goto out4; /* not a mountpoint */
2558 if (!mnt_has_parent(new_mnt))
2559 goto out4; /* not attached */
2560 /* make sure we can reach put_old from new_root */
2561 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2562 goto out4;
2563 br_write_lock(&vfsmount_lock);
2564 detach_mnt(new_mnt, &parent_path);
2565 detach_mnt(root_mnt, &root_parent);
2566 /* mount old root on put_old */
2567 attach_mnt(root_mnt, &old);
2568 /* mount new_root on / */
2569 attach_mnt(new_mnt, &root_parent);
2570 touch_mnt_namespace(current->nsproxy->mnt_ns);
2571 br_write_unlock(&vfsmount_lock);
2572 chroot_fs_refs(&root, &new);
2573 error = 0;
2574 out4:
2575 unlock_mount(&old);
2576 if (!error) {
2577 path_put(&root_parent);
2578 path_put(&parent_path);
2579 }
2580 out3:
2581 path_put(&root);
2582 out2:
2583 path_put(&old);
2584 out1:
2585 path_put(&new);
2586 out0:
2587 return error;
2588 }
2589
init_mount_tree(void)2590 static void __init init_mount_tree(void)
2591 {
2592 struct vfsmount *mnt;
2593 struct mnt_namespace *ns;
2594 struct path root;
2595 struct file_system_type *type;
2596
2597 type = get_fs_type("rootfs");
2598 if (!type)
2599 panic("Can't find rootfs type");
2600 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2601 put_filesystem(type);
2602 if (IS_ERR(mnt))
2603 panic("Can't create rootfs");
2604
2605 ns = create_mnt_ns(mnt);
2606 if (IS_ERR(ns))
2607 panic("Can't allocate initial namespace");
2608
2609 init_task.nsproxy->mnt_ns = ns;
2610 get_mnt_ns(ns);
2611
2612 root.mnt = mnt;
2613 root.dentry = mnt->mnt_root;
2614
2615 set_fs_pwd(current->fs, &root);
2616 set_fs_root(current->fs, &root);
2617 }
2618
mnt_init(void)2619 void __init mnt_init(void)
2620 {
2621 unsigned u;
2622 int err;
2623
2624 init_rwsem(&namespace_sem);
2625
2626 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2627 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2628
2629 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2630
2631 if (!mount_hashtable)
2632 panic("Failed to allocate mount hash table\n");
2633
2634 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2635
2636 for (u = 0; u < HASH_SIZE; u++)
2637 INIT_LIST_HEAD(&mount_hashtable[u]);
2638
2639 br_lock_init(&vfsmount_lock);
2640
2641 err = sysfs_init();
2642 if (err)
2643 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2644 __func__, err);
2645 fs_kobj = kobject_create_and_add("fs", NULL);
2646 if (!fs_kobj)
2647 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2648 init_rootfs();
2649 init_mount_tree();
2650 }
2651
put_mnt_ns(struct mnt_namespace * ns)2652 void put_mnt_ns(struct mnt_namespace *ns)
2653 {
2654 LIST_HEAD(umount_list);
2655
2656 if (!atomic_dec_and_test(&ns->count))
2657 return;
2658 down_write(&namespace_sem);
2659 br_write_lock(&vfsmount_lock);
2660 umount_tree(ns->root, 0, &umount_list);
2661 br_write_unlock(&vfsmount_lock);
2662 up_write(&namespace_sem);
2663 release_mounts(&umount_list);
2664 free_mnt_ns(ns);
2665 }
2666
kern_mount_data(struct file_system_type * type,void * data)2667 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2668 {
2669 struct vfsmount *mnt;
2670 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2671 if (!IS_ERR(mnt)) {
2672 /*
2673 * it is a longterm mount, don't release mnt until
2674 * we unmount before file sys is unregistered
2675 */
2676 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2677 }
2678 return mnt;
2679 }
2680 EXPORT_SYMBOL_GPL(kern_mount_data);
2681
kern_unmount(struct vfsmount * mnt)2682 void kern_unmount(struct vfsmount *mnt)
2683 {
2684 /* release long term mount so mount point can be released */
2685 if (!IS_ERR_OR_NULL(mnt)) {
2686 br_write_lock(&vfsmount_lock);
2687 real_mount(mnt)->mnt_ns = NULL;
2688 br_write_unlock(&vfsmount_lock);
2689 mntput(mnt);
2690 }
2691 }
2692 EXPORT_SYMBOL(kern_unmount);
2693
our_mnt(struct vfsmount * mnt)2694 bool our_mnt(struct vfsmount *mnt)
2695 {
2696 return check_mnt(real_mount(mnt));
2697 }
2698
mntns_get(struct task_struct * task)2699 static void *mntns_get(struct task_struct *task)
2700 {
2701 struct mnt_namespace *ns = NULL;
2702 struct nsproxy *nsproxy;
2703
2704 rcu_read_lock();
2705 nsproxy = task_nsproxy(task);
2706 if (nsproxy) {
2707 ns = nsproxy->mnt_ns;
2708 get_mnt_ns(ns);
2709 }
2710 rcu_read_unlock();
2711
2712 return ns;
2713 }
2714
mntns_put(void * ns)2715 static void mntns_put(void *ns)
2716 {
2717 put_mnt_ns(ns);
2718 }
2719
mntns_install(struct nsproxy * nsproxy,void * ns)2720 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2721 {
2722 struct fs_struct *fs = current->fs;
2723 struct mnt_namespace *mnt_ns = ns;
2724 struct path root;
2725
2726 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2727 !nsown_capable(CAP_SYS_CHROOT))
2728 return -EINVAL;
2729
2730 if (fs->users != 1)
2731 return -EINVAL;
2732
2733 get_mnt_ns(mnt_ns);
2734 put_mnt_ns(nsproxy->mnt_ns);
2735 nsproxy->mnt_ns = mnt_ns;
2736
2737 /* Find the root */
2738 root.mnt = &mnt_ns->root->mnt;
2739 root.dentry = mnt_ns->root->mnt.mnt_root;
2740 path_get(&root);
2741 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2742 ;
2743
2744 /* Update the pwd and root */
2745 set_fs_pwd(fs, &root);
2746 set_fs_root(fs, &root);
2747
2748 path_put(&root);
2749 return 0;
2750 }
2751
mntns_inum(void * ns)2752 static unsigned int mntns_inum(void *ns)
2753 {
2754 struct mnt_namespace *mnt_ns = ns;
2755 return mnt_ns->proc_inum;
2756 }
2757
2758 const struct proc_ns_operations mntns_operations = {
2759 .name = "mnt",
2760 .type = CLONE_NEWNS,
2761 .get = mntns_get,
2762 .put = mntns_put,
2763 .install = mntns_install,
2764 .inum = mntns_inum,
2765 };
2766