1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/proc_fs.h>
35 #include <linux/pci.h>
36 #include <linux/pci_hotplug.h>
37 #include "../pci.h"
38 #include "cpqphp.h"
39 #include "cpqphp_nvram.h"
40
41
42 u8 cpqhp_nic_irq;
43 u8 cpqhp_disk_irq;
44
45 static u16 unused_IRQ;
46
47 /*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
detect_HRT_floating_pointer(void __iomem * begin,void __iomem * end)53 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54 {
55 void __iomem *fp;
56 void __iomem *endp;
57 u8 temp1, temp2, temp3, temp4;
58 int status = 0;
59
60 endp = (end - sizeof(struct hrt) + 1);
61
62 for (fp = begin; fp <= endp; fp += 16) {
63 temp1 = readb(fp + SIG0);
64 temp2 = readb(fp + SIG1);
65 temp3 = readb(fp + SIG2);
66 temp4 = readb(fp + SIG3);
67 if (temp1 == '$' &&
68 temp2 == 'H' &&
69 temp3 == 'R' &&
70 temp4 == 'T') {
71 status = 1;
72 break;
73 }
74 }
75
76 if (!status)
77 fp = NULL;
78
79 dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 return fp;
81 }
82
83
cpqhp_configure_device(struct controller * ctrl,struct pci_func * func)84 int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85 {
86 unsigned char bus;
87 struct pci_bus *child;
88 int num;
89
90 if (func->pci_dev == NULL)
91 func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
92
93 /* No pci device, we need to create it then */
94 if (func->pci_dev == NULL) {
95 dbg("INFO: pci_dev still null\n");
96
97 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
98 if (num)
99 pci_bus_add_devices(ctrl->pci_dev->bus);
100
101 func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
102 if (func->pci_dev == NULL) {
103 dbg("ERROR: pci_dev still null\n");
104 return 0;
105 }
106 }
107
108 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
109 pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
110 child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
111 pci_do_scan_bus(child);
112 }
113
114 pci_dev_put(func->pci_dev);
115
116 return 0;
117 }
118
119
cpqhp_unconfigure_device(struct pci_func * func)120 int cpqhp_unconfigure_device(struct pci_func* func)
121 {
122 int j;
123
124 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
125
126 for (j=0; j<8 ; j++) {
127 struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
128 if (temp) {
129 pci_dev_put(temp);
130 pci_stop_and_remove_bus_device(temp);
131 }
132 }
133 return 0;
134 }
135
PCI_RefinedAccessConfig(struct pci_bus * bus,unsigned int devfn,u8 offset,u32 * value)136 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
137 {
138 u32 vendID = 0;
139
140 if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
141 return -1;
142 if (vendID == 0xffffffff)
143 return -1;
144 return pci_bus_read_config_dword (bus, devfn, offset, value);
145 }
146
147
148 /*
149 * cpqhp_set_irq
150 *
151 * @bus_num: bus number of PCI device
152 * @dev_num: device number of PCI device
153 * @slot: pointer to u8 where slot number will be returned
154 */
cpqhp_set_irq(u8 bus_num,u8 dev_num,u8 int_pin,u8 irq_num)155 int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
156 {
157 int rc = 0;
158
159 if (cpqhp_legacy_mode) {
160 struct pci_dev *fakedev;
161 struct pci_bus *fakebus;
162 u16 temp_word;
163
164 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
165 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
166 if (!fakedev || !fakebus) {
167 kfree(fakedev);
168 kfree(fakebus);
169 return -ENOMEM;
170 }
171
172 fakedev->devfn = dev_num << 3;
173 fakedev->bus = fakebus;
174 fakebus->number = bus_num;
175 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
176 __func__, dev_num, bus_num, int_pin, irq_num);
177 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
178 kfree(fakedev);
179 kfree(fakebus);
180 dbg("%s: rc %d\n", __func__, rc);
181 if (!rc)
182 return !rc;
183
184 /* set the Edge Level Control Register (ELCR) */
185 temp_word = inb(0x4d0);
186 temp_word |= inb(0x4d1) << 8;
187
188 temp_word |= 0x01 << irq_num;
189
190 /* This should only be for x86 as it sets the Edge Level
191 * Control Register
192 */
193 outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
194 0xFF00) >> 8), 0x4d1); rc = 0; }
195
196 return rc;
197 }
198
199
PCI_ScanBusForNonBridge(struct controller * ctrl,u8 bus_num,u8 * dev_num)200 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
201 {
202 u16 tdevice;
203 u32 work;
204 u8 tbus;
205
206 ctrl->pci_bus->number = bus_num;
207
208 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
209 /* Scan for access first */
210 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
211 continue;
212 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
213 /* Yep we got one. Not a bridge ? */
214 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
215 *dev_num = tdevice;
216 dbg("found it !\n");
217 return 0;
218 }
219 }
220 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
221 /* Scan for access first */
222 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
223 continue;
224 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
225 /* Yep we got one. bridge ? */
226 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
227 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
228 /* XXX: no recursion, wtf? */
229 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
230 return 0;
231 }
232 }
233
234 return -1;
235 }
236
237
PCI_GetBusDevHelper(struct controller * ctrl,u8 * bus_num,u8 * dev_num,u8 slot,u8 nobridge)238 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
239 {
240 int loop, len;
241 u32 work;
242 u8 tbus, tdevice, tslot;
243
244 len = cpqhp_routing_table_length();
245 for (loop = 0; loop < len; ++loop) {
246 tbus = cpqhp_routing_table->slots[loop].bus;
247 tdevice = cpqhp_routing_table->slots[loop].devfn;
248 tslot = cpqhp_routing_table->slots[loop].slot;
249
250 if (tslot == slot) {
251 *bus_num = tbus;
252 *dev_num = tdevice;
253 ctrl->pci_bus->number = tbus;
254 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
255 if (!nobridge || (work == 0xffffffff))
256 return 0;
257
258 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
259 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
260 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
261
262 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
263 pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
264 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
265 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
266 *bus_num = tbus;
267 return 0;
268 }
269 } else
270 return 0;
271 }
272 }
273 return -1;
274 }
275
276
cpqhp_get_bus_dev(struct controller * ctrl,u8 * bus_num,u8 * dev_num,u8 slot)277 int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
278 {
279 /* plain (bridges allowed) */
280 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
281 }
282
283
284 /* More PCI configuration routines; this time centered around hotplug
285 * controller
286 */
287
288
289 /*
290 * cpqhp_save_config
291 *
292 * Reads configuration for all slots in a PCI bus and saves info.
293 *
294 * Note: For non-hot plug busses, the slot # saved is the device #
295 *
296 * returns 0 if success
297 */
cpqhp_save_config(struct controller * ctrl,int busnumber,int is_hot_plug)298 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
299 {
300 long rc;
301 u8 class_code;
302 u8 header_type;
303 u32 ID;
304 u8 secondary_bus;
305 struct pci_func *new_slot;
306 int sub_bus;
307 int FirstSupported;
308 int LastSupported;
309 int max_functions;
310 int function;
311 u8 DevError;
312 int device = 0;
313 int cloop = 0;
314 int stop_it;
315 int index;
316
317 /* Decide which slots are supported */
318
319 if (is_hot_plug) {
320 /*
321 * is_hot_plug is the slot mask
322 */
323 FirstSupported = is_hot_plug >> 4;
324 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
325 } else {
326 FirstSupported = 0;
327 LastSupported = 0x1F;
328 }
329
330 /* Save PCI configuration space for all devices in supported slots */
331 ctrl->pci_bus->number = busnumber;
332 for (device = FirstSupported; device <= LastSupported; device++) {
333 ID = 0xFFFFFFFF;
334 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
335
336 if (ID == 0xFFFFFFFF) {
337 if (is_hot_plug) {
338 /* Setup slot structure with entry for empty
339 * slot
340 */
341 new_slot = cpqhp_slot_create(busnumber);
342 if (new_slot == NULL)
343 return 1;
344
345 new_slot->bus = (u8) busnumber;
346 new_slot->device = (u8) device;
347 new_slot->function = 0;
348 new_slot->is_a_board = 0;
349 new_slot->presence_save = 0;
350 new_slot->switch_save = 0;
351 }
352 continue;
353 }
354
355 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
356 if (rc)
357 return rc;
358
359 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
360 if (rc)
361 return rc;
362
363 /* If multi-function device, set max_functions to 8 */
364 if (header_type & 0x80)
365 max_functions = 8;
366 else
367 max_functions = 1;
368
369 function = 0;
370
371 do {
372 DevError = 0;
373 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
374 /* Recurse the subordinate bus
375 * get the subordinate bus number
376 */
377 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
378 if (rc) {
379 return rc;
380 } else {
381 sub_bus = (int) secondary_bus;
382
383 /* Save secondary bus cfg spc
384 * with this recursive call.
385 */
386 rc = cpqhp_save_config(ctrl, sub_bus, 0);
387 if (rc)
388 return rc;
389 ctrl->pci_bus->number = busnumber;
390 }
391 }
392
393 index = 0;
394 new_slot = cpqhp_slot_find(busnumber, device, index++);
395 while (new_slot &&
396 (new_slot->function != (u8) function))
397 new_slot = cpqhp_slot_find(busnumber, device, index++);
398
399 if (!new_slot) {
400 /* Setup slot structure. */
401 new_slot = cpqhp_slot_create(busnumber);
402 if (new_slot == NULL)
403 return 1;
404 }
405
406 new_slot->bus = (u8) busnumber;
407 new_slot->device = (u8) device;
408 new_slot->function = (u8) function;
409 new_slot->is_a_board = 1;
410 new_slot->switch_save = 0x10;
411 /* In case of unsupported board */
412 new_slot->status = DevError;
413 new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
414
415 for (cloop = 0; cloop < 0x20; cloop++) {
416 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
417 if (rc)
418 return rc;
419 }
420
421 pci_dev_put(new_slot->pci_dev);
422
423 function++;
424
425 stop_it = 0;
426
427 /* this loop skips to the next present function
428 * reading in Class Code and Header type.
429 */
430 while ((function < max_functions) && (!stop_it)) {
431 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
432 if (ID == 0xFFFFFFFF) {
433 function++;
434 continue;
435 }
436 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
437 if (rc)
438 return rc;
439
440 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
441 if (rc)
442 return rc;
443
444 stop_it++;
445 }
446
447 } while (function < max_functions);
448 } /* End of FOR loop */
449
450 return 0;
451 }
452
453
454 /*
455 * cpqhp_save_slot_config
456 *
457 * Saves configuration info for all PCI devices in a given slot
458 * including subordinate busses.
459 *
460 * returns 0 if success
461 */
cpqhp_save_slot_config(struct controller * ctrl,struct pci_func * new_slot)462 int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
463 {
464 long rc;
465 u8 class_code;
466 u8 header_type;
467 u32 ID;
468 u8 secondary_bus;
469 int sub_bus;
470 int max_functions;
471 int function = 0;
472 int cloop = 0;
473 int stop_it;
474
475 ID = 0xFFFFFFFF;
476
477 ctrl->pci_bus->number = new_slot->bus;
478 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
479
480 if (ID == 0xFFFFFFFF)
481 return 2;
482
483 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
484 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
485
486 if (header_type & 0x80) /* Multi-function device */
487 max_functions = 8;
488 else
489 max_functions = 1;
490
491 while (function < max_functions) {
492 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
493 /* Recurse the subordinate bus */
494 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
495
496 sub_bus = (int) secondary_bus;
497
498 /* Save the config headers for the secondary
499 * bus.
500 */
501 rc = cpqhp_save_config(ctrl, sub_bus, 0);
502 if (rc)
503 return(rc);
504 ctrl->pci_bus->number = new_slot->bus;
505
506 }
507
508 new_slot->status = 0;
509
510 for (cloop = 0; cloop < 0x20; cloop++)
511 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
512
513 function++;
514
515 stop_it = 0;
516
517 /* this loop skips to the next present function
518 * reading in the Class Code and the Header type.
519 */
520 while ((function < max_functions) && (!stop_it)) {
521 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
522
523 if (ID == 0xFFFFFFFF)
524 function++;
525 else {
526 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
527 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
528 stop_it++;
529 }
530 }
531
532 }
533
534 return 0;
535 }
536
537
538 /*
539 * cpqhp_save_base_addr_length
540 *
541 * Saves the length of all base address registers for the
542 * specified slot. this is for hot plug REPLACE
543 *
544 * returns 0 if success
545 */
cpqhp_save_base_addr_length(struct controller * ctrl,struct pci_func * func)546 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
547 {
548 u8 cloop;
549 u8 header_type;
550 u8 secondary_bus;
551 u8 type;
552 int sub_bus;
553 u32 temp_register;
554 u32 base;
555 u32 rc;
556 struct pci_func *next;
557 int index = 0;
558 struct pci_bus *pci_bus = ctrl->pci_bus;
559 unsigned int devfn;
560
561 func = cpqhp_slot_find(func->bus, func->device, index++);
562
563 while (func != NULL) {
564 pci_bus->number = func->bus;
565 devfn = PCI_DEVFN(func->device, func->function);
566
567 /* Check for Bridge */
568 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
569
570 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
571 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
572
573 sub_bus = (int) secondary_bus;
574
575 next = cpqhp_slot_list[sub_bus];
576
577 while (next != NULL) {
578 rc = cpqhp_save_base_addr_length(ctrl, next);
579 if (rc)
580 return rc;
581
582 next = next->next;
583 }
584 pci_bus->number = func->bus;
585
586 /* FIXME: this loop is duplicated in the non-bridge
587 * case. The two could be rolled together Figure out
588 * IO and memory base lengths
589 */
590 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
591 temp_register = 0xFFFFFFFF;
592 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
593 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
594 /* If this register is implemented */
595 if (base) {
596 if (base & 0x01L) {
597 /* IO base
598 * set base = amount of IO space
599 * requested
600 */
601 base = base & 0xFFFFFFFE;
602 base = (~base) + 1;
603
604 type = 1;
605 } else {
606 /* memory base */
607 base = base & 0xFFFFFFF0;
608 base = (~base) + 1;
609
610 type = 0;
611 }
612 } else {
613 base = 0x0L;
614 type = 0;
615 }
616
617 /* Save information in slot structure */
618 func->base_length[(cloop - 0x10) >> 2] =
619 base;
620 func->base_type[(cloop - 0x10) >> 2] = type;
621
622 } /* End of base register loop */
623
624 } else if ((header_type & 0x7F) == 0x00) {
625 /* Figure out IO and memory base lengths */
626 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
627 temp_register = 0xFFFFFFFF;
628 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
629 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
630
631 /* If this register is implemented */
632 if (base) {
633 if (base & 0x01L) {
634 /* IO base
635 * base = amount of IO space
636 * requested
637 */
638 base = base & 0xFFFFFFFE;
639 base = (~base) + 1;
640
641 type = 1;
642 } else {
643 /* memory base
644 * base = amount of memory
645 * space requested
646 */
647 base = base & 0xFFFFFFF0;
648 base = (~base) + 1;
649
650 type = 0;
651 }
652 } else {
653 base = 0x0L;
654 type = 0;
655 }
656
657 /* Save information in slot structure */
658 func->base_length[(cloop - 0x10) >> 2] = base;
659 func->base_type[(cloop - 0x10) >> 2] = type;
660
661 } /* End of base register loop */
662
663 } else { /* Some other unknown header type */
664 }
665
666 /* find the next device in this slot */
667 func = cpqhp_slot_find(func->bus, func->device, index++);
668 }
669
670 return(0);
671 }
672
673
674 /*
675 * cpqhp_save_used_resources
676 *
677 * Stores used resource information for existing boards. this is
678 * for boards that were in the system when this driver was loaded.
679 * this function is for hot plug ADD
680 *
681 * returns 0 if success
682 */
cpqhp_save_used_resources(struct controller * ctrl,struct pci_func * func)683 int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
684 {
685 u8 cloop;
686 u8 header_type;
687 u8 secondary_bus;
688 u8 temp_byte;
689 u8 b_base;
690 u8 b_length;
691 u16 command;
692 u16 save_command;
693 u16 w_base;
694 u16 w_length;
695 u32 temp_register;
696 u32 save_base;
697 u32 base;
698 int index = 0;
699 struct pci_resource *mem_node;
700 struct pci_resource *p_mem_node;
701 struct pci_resource *io_node;
702 struct pci_resource *bus_node;
703 struct pci_bus *pci_bus = ctrl->pci_bus;
704 unsigned int devfn;
705
706 func = cpqhp_slot_find(func->bus, func->device, index++);
707
708 while ((func != NULL) && func->is_a_board) {
709 pci_bus->number = func->bus;
710 devfn = PCI_DEVFN(func->device, func->function);
711
712 /* Save the command register */
713 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
714
715 /* disable card */
716 command = 0x00;
717 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
718
719 /* Check for Bridge */
720 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
721
722 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
723 /* Clear Bridge Control Register */
724 command = 0x00;
725 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
726 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
727 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
728
729 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
730 if (!bus_node)
731 return -ENOMEM;
732
733 bus_node->base = secondary_bus;
734 bus_node->length = temp_byte - secondary_bus + 1;
735
736 bus_node->next = func->bus_head;
737 func->bus_head = bus_node;
738
739 /* Save IO base and Limit registers */
740 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
741 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
742
743 if ((b_base <= b_length) && (save_command & 0x01)) {
744 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
745 if (!io_node)
746 return -ENOMEM;
747
748 io_node->base = (b_base & 0xF0) << 8;
749 io_node->length = (b_length - b_base + 0x10) << 8;
750
751 io_node->next = func->io_head;
752 func->io_head = io_node;
753 }
754
755 /* Save memory base and Limit registers */
756 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
757 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
758
759 if ((w_base <= w_length) && (save_command & 0x02)) {
760 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
761 if (!mem_node)
762 return -ENOMEM;
763
764 mem_node->base = w_base << 16;
765 mem_node->length = (w_length - w_base + 0x10) << 16;
766
767 mem_node->next = func->mem_head;
768 func->mem_head = mem_node;
769 }
770
771 /* Save prefetchable memory base and Limit registers */
772 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
773 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
774
775 if ((w_base <= w_length) && (save_command & 0x02)) {
776 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
777 if (!p_mem_node)
778 return -ENOMEM;
779
780 p_mem_node->base = w_base << 16;
781 p_mem_node->length = (w_length - w_base + 0x10) << 16;
782
783 p_mem_node->next = func->p_mem_head;
784 func->p_mem_head = p_mem_node;
785 }
786 /* Figure out IO and memory base lengths */
787 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
788 pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
789
790 temp_register = 0xFFFFFFFF;
791 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
792 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
793
794 temp_register = base;
795
796 /* If this register is implemented */
797 if (base) {
798 if (((base & 0x03L) == 0x01)
799 && (save_command & 0x01)) {
800 /* IO base
801 * set temp_register = amount
802 * of IO space requested
803 */
804 temp_register = base & 0xFFFFFFFE;
805 temp_register = (~temp_register) + 1;
806
807 io_node = kmalloc(sizeof(*io_node),
808 GFP_KERNEL);
809 if (!io_node)
810 return -ENOMEM;
811
812 io_node->base =
813 save_base & (~0x03L);
814 io_node->length = temp_register;
815
816 io_node->next = func->io_head;
817 func->io_head = io_node;
818 } else
819 if (((base & 0x0BL) == 0x08)
820 && (save_command & 0x02)) {
821 /* prefetchable memory base */
822 temp_register = base & 0xFFFFFFF0;
823 temp_register = (~temp_register) + 1;
824
825 p_mem_node = kmalloc(sizeof(*p_mem_node),
826 GFP_KERNEL);
827 if (!p_mem_node)
828 return -ENOMEM;
829
830 p_mem_node->base = save_base & (~0x0FL);
831 p_mem_node->length = temp_register;
832
833 p_mem_node->next = func->p_mem_head;
834 func->p_mem_head = p_mem_node;
835 } else
836 if (((base & 0x0BL) == 0x00)
837 && (save_command & 0x02)) {
838 /* prefetchable memory base */
839 temp_register = base & 0xFFFFFFF0;
840 temp_register = (~temp_register) + 1;
841
842 mem_node = kmalloc(sizeof(*mem_node),
843 GFP_KERNEL);
844 if (!mem_node)
845 return -ENOMEM;
846
847 mem_node->base = save_base & (~0x0FL);
848 mem_node->length = temp_register;
849
850 mem_node->next = func->mem_head;
851 func->mem_head = mem_node;
852 } else
853 return(1);
854 }
855 } /* End of base register loop */
856 /* Standard header */
857 } else if ((header_type & 0x7F) == 0x00) {
858 /* Figure out IO and memory base lengths */
859 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
860 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
861
862 temp_register = 0xFFFFFFFF;
863 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
864 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
865
866 temp_register = base;
867
868 /* If this register is implemented */
869 if (base) {
870 if (((base & 0x03L) == 0x01)
871 && (save_command & 0x01)) {
872 /* IO base
873 * set temp_register = amount
874 * of IO space requested
875 */
876 temp_register = base & 0xFFFFFFFE;
877 temp_register = (~temp_register) + 1;
878
879 io_node = kmalloc(sizeof(*io_node),
880 GFP_KERNEL);
881 if (!io_node)
882 return -ENOMEM;
883
884 io_node->base = save_base & (~0x01L);
885 io_node->length = temp_register;
886
887 io_node->next = func->io_head;
888 func->io_head = io_node;
889 } else
890 if (((base & 0x0BL) == 0x08)
891 && (save_command & 0x02)) {
892 /* prefetchable memory base */
893 temp_register = base & 0xFFFFFFF0;
894 temp_register = (~temp_register) + 1;
895
896 p_mem_node = kmalloc(sizeof(*p_mem_node),
897 GFP_KERNEL);
898 if (!p_mem_node)
899 return -ENOMEM;
900
901 p_mem_node->base = save_base & (~0x0FL);
902 p_mem_node->length = temp_register;
903
904 p_mem_node->next = func->p_mem_head;
905 func->p_mem_head = p_mem_node;
906 } else
907 if (((base & 0x0BL) == 0x00)
908 && (save_command & 0x02)) {
909 /* prefetchable memory base */
910 temp_register = base & 0xFFFFFFF0;
911 temp_register = (~temp_register) + 1;
912
913 mem_node = kmalloc(sizeof(*mem_node),
914 GFP_KERNEL);
915 if (!mem_node)
916 return -ENOMEM;
917
918 mem_node->base = save_base & (~0x0FL);
919 mem_node->length = temp_register;
920
921 mem_node->next = func->mem_head;
922 func->mem_head = mem_node;
923 } else
924 return(1);
925 }
926 } /* End of base register loop */
927 }
928
929 /* find the next device in this slot */
930 func = cpqhp_slot_find(func->bus, func->device, index++);
931 }
932
933 return 0;
934 }
935
936
937 /*
938 * cpqhp_configure_board
939 *
940 * Copies saved configuration information to one slot.
941 * this is called recursively for bridge devices.
942 * this is for hot plug REPLACE!
943 *
944 * returns 0 if success
945 */
cpqhp_configure_board(struct controller * ctrl,struct pci_func * func)946 int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
947 {
948 int cloop;
949 u8 header_type;
950 u8 secondary_bus;
951 int sub_bus;
952 struct pci_func *next;
953 u32 temp;
954 u32 rc;
955 int index = 0;
956 struct pci_bus *pci_bus = ctrl->pci_bus;
957 unsigned int devfn;
958
959 func = cpqhp_slot_find(func->bus, func->device, index++);
960
961 while (func != NULL) {
962 pci_bus->number = func->bus;
963 devfn = PCI_DEVFN(func->device, func->function);
964
965 /* Start at the top of config space so that the control
966 * registers are programmed last
967 */
968 for (cloop = 0x3C; cloop > 0; cloop -= 4)
969 pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
970
971 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
972
973 /* If this is a bridge device, restore subordinate devices */
974 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
975 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
976
977 sub_bus = (int) secondary_bus;
978
979 next = cpqhp_slot_list[sub_bus];
980
981 while (next != NULL) {
982 rc = cpqhp_configure_board(ctrl, next);
983 if (rc)
984 return rc;
985
986 next = next->next;
987 }
988 } else {
989
990 /* Check all the base Address Registers to make sure
991 * they are the same. If not, the board is different.
992 */
993
994 for (cloop = 16; cloop < 40; cloop += 4) {
995 pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
996
997 if (temp != func->config_space[cloop >> 2]) {
998 dbg("Config space compare failure!!! offset = %x\n", cloop);
999 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001 return 1;
1002 }
1003 }
1004 }
1005
1006 func->configured = 1;
1007
1008 func = cpqhp_slot_find(func->bus, func->device, index++);
1009 }
1010
1011 return 0;
1012 }
1013
1014
1015 /*
1016 * cpqhp_valid_replace
1017 *
1018 * this function checks to see if a board is the same as the
1019 * one it is replacing. this check will detect if the device's
1020 * vendor or device id's are the same
1021 *
1022 * returns 0 if the board is the same nonzero otherwise
1023 */
cpqhp_valid_replace(struct controller * ctrl,struct pci_func * func)1024 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025 {
1026 u8 cloop;
1027 u8 header_type;
1028 u8 secondary_bus;
1029 u8 type;
1030 u32 temp_register = 0;
1031 u32 base;
1032 u32 rc;
1033 struct pci_func *next;
1034 int index = 0;
1035 struct pci_bus *pci_bus = ctrl->pci_bus;
1036 unsigned int devfn;
1037
1038 if (!func->is_a_board)
1039 return(ADD_NOT_SUPPORTED);
1040
1041 func = cpqhp_slot_find(func->bus, func->device, index++);
1042
1043 while (func != NULL) {
1044 pci_bus->number = func->bus;
1045 devfn = PCI_DEVFN(func->device, func->function);
1046
1047 pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048
1049 /* No adapter present */
1050 if (temp_register == 0xFFFFFFFF)
1051 return(NO_ADAPTER_PRESENT);
1052
1053 if (temp_register != func->config_space[0])
1054 return(ADAPTER_NOT_SAME);
1055
1056 /* Check for same revision number and class code */
1057 pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058
1059 /* Adapter not the same */
1060 if (temp_register != func->config_space[0x08 >> 2])
1061 return(ADAPTER_NOT_SAME);
1062
1063 /* Check for Bridge */
1064 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065
1066 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067 /* In order to continue checking, we must program the
1068 * bus registers in the bridge to respond to accesses
1069 * for its subordinate bus(es)
1070 */
1071
1072 temp_register = func->config_space[0x18 >> 2];
1073 pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074
1075 secondary_bus = (temp_register >> 8) & 0xFF;
1076
1077 next = cpqhp_slot_list[secondary_bus];
1078
1079 while (next != NULL) {
1080 rc = cpqhp_valid_replace(ctrl, next);
1081 if (rc)
1082 return rc;
1083
1084 next = next->next;
1085 }
1086
1087 }
1088 /* Check to see if it is a standard config header */
1089 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090 /* Check subsystem vendor and ID */
1091 pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092
1093 if (temp_register != func->config_space[0x2C >> 2]) {
1094 /* If it's a SMART-2 and the register isn't
1095 * filled in, ignore the difference because
1096 * they just have an old rev of the firmware
1097 */
1098 if (!((func->config_space[0] == 0xAE100E11)
1099 && (temp_register == 0x00L)))
1100 return(ADAPTER_NOT_SAME);
1101 }
1102 /* Figure out IO and memory base lengths */
1103 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104 temp_register = 0xFFFFFFFF;
1105 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107
1108 /* If this register is implemented */
1109 if (base) {
1110 if (base & 0x01L) {
1111 /* IO base
1112 * set base = amount of IO
1113 * space requested
1114 */
1115 base = base & 0xFFFFFFFE;
1116 base = (~base) + 1;
1117
1118 type = 1;
1119 } else {
1120 /* memory base */
1121 base = base & 0xFFFFFFF0;
1122 base = (~base) + 1;
1123
1124 type = 0;
1125 }
1126 } else {
1127 base = 0x0L;
1128 type = 0;
1129 }
1130
1131 /* Check information in slot structure */
1132 if (func->base_length[(cloop - 0x10) >> 2] != base)
1133 return(ADAPTER_NOT_SAME);
1134
1135 if (func->base_type[(cloop - 0x10) >> 2] != type)
1136 return(ADAPTER_NOT_SAME);
1137
1138 } /* End of base register loop */
1139
1140 } /* End of (type 0 config space) else */
1141 else {
1142 /* this is not a type 0 or 1 config space header so
1143 * we don't know how to do it
1144 */
1145 return(DEVICE_TYPE_NOT_SUPPORTED);
1146 }
1147
1148 /* Get the next function */
1149 func = cpqhp_slot_find(func->bus, func->device, index++);
1150 }
1151
1152
1153 return 0;
1154 }
1155
1156
1157 /*
1158 * cpqhp_find_available_resources
1159 *
1160 * Finds available memory, IO, and IRQ resources for programming
1161 * devices which may be added to the system
1162 * this function is for hot plug ADD!
1163 *
1164 * returns 0 if success
1165 */
cpqhp_find_available_resources(struct controller * ctrl,void __iomem * rom_start)1166 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167 {
1168 u8 temp;
1169 u8 populated_slot;
1170 u8 bridged_slot;
1171 void __iomem *one_slot;
1172 void __iomem *rom_resource_table;
1173 struct pci_func *func = NULL;
1174 int i = 10, index;
1175 u32 temp_dword, rc;
1176 struct pci_resource *mem_node;
1177 struct pci_resource *p_mem_node;
1178 struct pci_resource *io_node;
1179 struct pci_resource *bus_node;
1180
1181 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182 dbg("rom_resource_table = %p\n", rom_resource_table);
1183
1184 if (rom_resource_table == NULL)
1185 return -ENODEV;
1186
1187 /* Sum all resources and setup resource maps */
1188 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189 dbg("unused_IRQ = %x\n", unused_IRQ);
1190
1191 temp = 0;
1192 while (unused_IRQ) {
1193 if (unused_IRQ & 1) {
1194 cpqhp_disk_irq = temp;
1195 break;
1196 }
1197 unused_IRQ = unused_IRQ >> 1;
1198 temp++;
1199 }
1200
1201 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202 unused_IRQ = unused_IRQ >> 1;
1203 temp++;
1204
1205 while (unused_IRQ) {
1206 if (unused_IRQ & 1) {
1207 cpqhp_nic_irq = temp;
1208 break;
1209 }
1210 unused_IRQ = unused_IRQ >> 1;
1211 temp++;
1212 }
1213
1214 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216
1217 temp = 0;
1218
1219 if (!cpqhp_nic_irq)
1220 cpqhp_nic_irq = ctrl->cfgspc_irq;
1221
1222 if (!cpqhp_disk_irq)
1223 cpqhp_disk_irq = ctrl->cfgspc_irq;
1224
1225 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226
1227 rc = compaq_nvram_load(rom_start, ctrl);
1228 if (rc)
1229 return rc;
1230
1231 one_slot = rom_resource_table + sizeof (struct hrt);
1232
1233 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234 dbg("number_of_entries = %d\n", i);
1235
1236 if (!readb(one_slot + SECONDARY_BUS))
1237 return 1;
1238
1239 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240
1241 while (i && readb(one_slot + SECONDARY_BUS)) {
1242 u8 dev_func = readb(one_slot + DEV_FUNC);
1243 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245 u8 max_bus = readb(one_slot + MAX_BUS);
1246 u16 io_base = readw(one_slot + IO_BASE);
1247 u16 io_length = readw(one_slot + IO_LENGTH);
1248 u16 mem_base = readw(one_slot + MEM_BASE);
1249 u16 mem_length = readw(one_slot + MEM_LENGTH);
1250 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252
1253 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1254 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255 primary_bus, secondary_bus, max_bus);
1256
1257 /* If this entry isn't for our controller's bus, ignore it */
1258 if (primary_bus != ctrl->bus) {
1259 i--;
1260 one_slot += sizeof (struct slot_rt);
1261 continue;
1262 }
1263 /* find out if this entry is for an occupied slot */
1264 ctrl->pci_bus->number = primary_bus;
1265 pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266 dbg("temp_D_word = %x\n", temp_dword);
1267
1268 if (temp_dword != 0xFFFFFFFF) {
1269 index = 0;
1270 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271
1272 while (func && (func->function != (dev_func & 0x07))) {
1273 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275 }
1276
1277 /* If we can't find a match, skip this table entry */
1278 if (!func) {
1279 i--;
1280 one_slot += sizeof (struct slot_rt);
1281 continue;
1282 }
1283 /* this may not work and shouldn't be used */
1284 if (secondary_bus != primary_bus)
1285 bridged_slot = 1;
1286 else
1287 bridged_slot = 0;
1288
1289 populated_slot = 1;
1290 } else {
1291 populated_slot = 0;
1292 bridged_slot = 0;
1293 }
1294
1295
1296 /* If we've got a valid IO base, use it */
1297
1298 temp_dword = io_base + io_length;
1299
1300 if ((io_base) && (temp_dword < 0x10000)) {
1301 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302 if (!io_node)
1303 return -ENOMEM;
1304
1305 io_node->base = io_base;
1306 io_node->length = io_length;
1307
1308 dbg("found io_node(base, length) = %x, %x\n",
1309 io_node->base, io_node->length);
1310 dbg("populated slot =%d \n", populated_slot);
1311 if (!populated_slot) {
1312 io_node->next = ctrl->io_head;
1313 ctrl->io_head = io_node;
1314 } else {
1315 io_node->next = func->io_head;
1316 func->io_head = io_node;
1317 }
1318 }
1319
1320 /* If we've got a valid memory base, use it */
1321 temp_dword = mem_base + mem_length;
1322 if ((mem_base) && (temp_dword < 0x10000)) {
1323 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324 if (!mem_node)
1325 return -ENOMEM;
1326
1327 mem_node->base = mem_base << 16;
1328
1329 mem_node->length = mem_length << 16;
1330
1331 dbg("found mem_node(base, length) = %x, %x\n",
1332 mem_node->base, mem_node->length);
1333 dbg("populated slot =%d \n", populated_slot);
1334 if (!populated_slot) {
1335 mem_node->next = ctrl->mem_head;
1336 ctrl->mem_head = mem_node;
1337 } else {
1338 mem_node->next = func->mem_head;
1339 func->mem_head = mem_node;
1340 }
1341 }
1342
1343 /* If we've got a valid prefetchable memory base, and
1344 * the base + length isn't greater than 0xFFFF
1345 */
1346 temp_dword = pre_mem_base + pre_mem_length;
1347 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349 if (!p_mem_node)
1350 return -ENOMEM;
1351
1352 p_mem_node->base = pre_mem_base << 16;
1353
1354 p_mem_node->length = pre_mem_length << 16;
1355 dbg("found p_mem_node(base, length) = %x, %x\n",
1356 p_mem_node->base, p_mem_node->length);
1357 dbg("populated slot =%d \n", populated_slot);
1358
1359 if (!populated_slot) {
1360 p_mem_node->next = ctrl->p_mem_head;
1361 ctrl->p_mem_head = p_mem_node;
1362 } else {
1363 p_mem_node->next = func->p_mem_head;
1364 func->p_mem_head = p_mem_node;
1365 }
1366 }
1367
1368 /* If we've got a valid bus number, use it
1369 * The second condition is to ignore bus numbers on
1370 * populated slots that don't have PCI-PCI bridges
1371 */
1372 if (secondary_bus && (secondary_bus != primary_bus)) {
1373 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374 if (!bus_node)
1375 return -ENOMEM;
1376
1377 bus_node->base = secondary_bus;
1378 bus_node->length = max_bus - secondary_bus + 1;
1379 dbg("found bus_node(base, length) = %x, %x\n",
1380 bus_node->base, bus_node->length);
1381 dbg("populated slot =%d \n", populated_slot);
1382 if (!populated_slot) {
1383 bus_node->next = ctrl->bus_head;
1384 ctrl->bus_head = bus_node;
1385 } else {
1386 bus_node->next = func->bus_head;
1387 func->bus_head = bus_node;
1388 }
1389 }
1390
1391 i--;
1392 one_slot += sizeof (struct slot_rt);
1393 }
1394
1395 /* If all of the following fail, we don't have any resources for
1396 * hot plug add
1397 */
1398 rc = 1;
1399 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403
1404 return rc;
1405 }
1406
1407
1408 /*
1409 * cpqhp_return_board_resources
1410 *
1411 * this routine returns all resources allocated to a board to
1412 * the available pool.
1413 *
1414 * returns 0 if success
1415 */
cpqhp_return_board_resources(struct pci_func * func,struct resource_lists * resources)1416 int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417 {
1418 int rc = 0;
1419 struct pci_resource *node;
1420 struct pci_resource *t_node;
1421 dbg("%s\n", __func__);
1422
1423 if (!func)
1424 return 1;
1425
1426 node = func->io_head;
1427 func->io_head = NULL;
1428 while (node) {
1429 t_node = node->next;
1430 return_resource(&(resources->io_head), node);
1431 node = t_node;
1432 }
1433
1434 node = func->mem_head;
1435 func->mem_head = NULL;
1436 while (node) {
1437 t_node = node->next;
1438 return_resource(&(resources->mem_head), node);
1439 node = t_node;
1440 }
1441
1442 node = func->p_mem_head;
1443 func->p_mem_head = NULL;
1444 while (node) {
1445 t_node = node->next;
1446 return_resource(&(resources->p_mem_head), node);
1447 node = t_node;
1448 }
1449
1450 node = func->bus_head;
1451 func->bus_head = NULL;
1452 while (node) {
1453 t_node = node->next;
1454 return_resource(&(resources->bus_head), node);
1455 node = t_node;
1456 }
1457
1458 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462
1463 return rc;
1464 }
1465
1466
1467 /*
1468 * cpqhp_destroy_resource_list
1469 *
1470 * Puts node back in the resource list pointed to by head
1471 */
cpqhp_destroy_resource_list(struct resource_lists * resources)1472 void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473 {
1474 struct pci_resource *res, *tres;
1475
1476 res = resources->io_head;
1477 resources->io_head = NULL;
1478
1479 while (res) {
1480 tres = res;
1481 res = res->next;
1482 kfree(tres);
1483 }
1484
1485 res = resources->mem_head;
1486 resources->mem_head = NULL;
1487
1488 while (res) {
1489 tres = res;
1490 res = res->next;
1491 kfree(tres);
1492 }
1493
1494 res = resources->p_mem_head;
1495 resources->p_mem_head = NULL;
1496
1497 while (res) {
1498 tres = res;
1499 res = res->next;
1500 kfree(tres);
1501 }
1502
1503 res = resources->bus_head;
1504 resources->bus_head = NULL;
1505
1506 while (res) {
1507 tres = res;
1508 res = res->next;
1509 kfree(tres);
1510 }
1511 }
1512
1513
1514 /*
1515 * cpqhp_destroy_board_resources
1516 *
1517 * Puts node back in the resource list pointed to by head
1518 */
cpqhp_destroy_board_resources(struct pci_func * func)1519 void cpqhp_destroy_board_resources (struct pci_func * func)
1520 {
1521 struct pci_resource *res, *tres;
1522
1523 res = func->io_head;
1524 func->io_head = NULL;
1525
1526 while (res) {
1527 tres = res;
1528 res = res->next;
1529 kfree(tres);
1530 }
1531
1532 res = func->mem_head;
1533 func->mem_head = NULL;
1534
1535 while (res) {
1536 tres = res;
1537 res = res->next;
1538 kfree(tres);
1539 }
1540
1541 res = func->p_mem_head;
1542 func->p_mem_head = NULL;
1543
1544 while (res) {
1545 tres = res;
1546 res = res->next;
1547 kfree(tres);
1548 }
1549
1550 res = func->bus_head;
1551 func->bus_head = NULL;
1552
1553 while (res) {
1554 tres = res;
1555 res = res->next;
1556 kfree(tres);
1557 }
1558 }
1559
1560