• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/proc_fs.h>
35 #include <linux/pci.h>
36 #include <linux/pci_hotplug.h>
37 #include "../pci.h"
38 #include "cpqphp.h"
39 #include "cpqphp_nvram.h"
40 
41 
42 u8 cpqhp_nic_irq;
43 u8 cpqhp_disk_irq;
44 
45 static u16 unused_IRQ;
46 
47 /*
48  * detect_HRT_floating_pointer
49  *
50  * find the Hot Plug Resource Table in the specified region of memory.
51  *
52  */
detect_HRT_floating_pointer(void __iomem * begin,void __iomem * end)53 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54 {
55 	void __iomem *fp;
56 	void __iomem *endp;
57 	u8 temp1, temp2, temp3, temp4;
58 	int status = 0;
59 
60 	endp = (end - sizeof(struct hrt) + 1);
61 
62 	for (fp = begin; fp <= endp; fp += 16) {
63 		temp1 = readb(fp + SIG0);
64 		temp2 = readb(fp + SIG1);
65 		temp3 = readb(fp + SIG2);
66 		temp4 = readb(fp + SIG3);
67 		if (temp1 == '$' &&
68 		    temp2 == 'H' &&
69 		    temp3 == 'R' &&
70 		    temp4 == 'T') {
71 			status = 1;
72 			break;
73 		}
74 	}
75 
76 	if (!status)
77 		fp = NULL;
78 
79 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 	return fp;
81 }
82 
83 
cpqhp_configure_device(struct controller * ctrl,struct pci_func * func)84 int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85 {
86 	unsigned char bus;
87 	struct pci_bus *child;
88 	int num;
89 
90 	if (func->pci_dev == NULL)
91 		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
92 
93 	/* No pci device, we need to create it then */
94 	if (func->pci_dev == NULL) {
95 		dbg("INFO: pci_dev still null\n");
96 
97 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
98 		if (num)
99 			pci_bus_add_devices(ctrl->pci_dev->bus);
100 
101 		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
102 		if (func->pci_dev == NULL) {
103 			dbg("ERROR: pci_dev still null\n");
104 			return 0;
105 		}
106 	}
107 
108 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
109 		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
110 		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
111 		pci_do_scan_bus(child);
112 	}
113 
114 	pci_dev_put(func->pci_dev);
115 
116 	return 0;
117 }
118 
119 
cpqhp_unconfigure_device(struct pci_func * func)120 int cpqhp_unconfigure_device(struct pci_func* func)
121 {
122 	int j;
123 
124 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
125 
126 	for (j=0; j<8 ; j++) {
127 		struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
128 		if (temp) {
129 			pci_dev_put(temp);
130 			pci_stop_and_remove_bus_device(temp);
131 		}
132 	}
133 	return 0;
134 }
135 
PCI_RefinedAccessConfig(struct pci_bus * bus,unsigned int devfn,u8 offset,u32 * value)136 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
137 {
138 	u32 vendID = 0;
139 
140 	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
141 		return -1;
142 	if (vendID == 0xffffffff)
143 		return -1;
144 	return pci_bus_read_config_dword (bus, devfn, offset, value);
145 }
146 
147 
148 /*
149  * cpqhp_set_irq
150  *
151  * @bus_num: bus number of PCI device
152  * @dev_num: device number of PCI device
153  * @slot: pointer to u8 where slot number will be returned
154  */
cpqhp_set_irq(u8 bus_num,u8 dev_num,u8 int_pin,u8 irq_num)155 int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
156 {
157 	int rc = 0;
158 
159 	if (cpqhp_legacy_mode) {
160 		struct pci_dev *fakedev;
161 		struct pci_bus *fakebus;
162 		u16 temp_word;
163 
164 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
165 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
166 		if (!fakedev || !fakebus) {
167 			kfree(fakedev);
168 			kfree(fakebus);
169 			return -ENOMEM;
170 		}
171 
172 		fakedev->devfn = dev_num << 3;
173 		fakedev->bus = fakebus;
174 		fakebus->number = bus_num;
175 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
176 		    __func__, dev_num, bus_num, int_pin, irq_num);
177 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
178 		kfree(fakedev);
179 		kfree(fakebus);
180 		dbg("%s: rc %d\n", __func__, rc);
181 		if (!rc)
182 			return !rc;
183 
184 		/* set the Edge Level Control Register (ELCR) */
185 		temp_word = inb(0x4d0);
186 		temp_word |= inb(0x4d1) << 8;
187 
188 		temp_word |= 0x01 << irq_num;
189 
190 		/* This should only be for x86 as it sets the Edge Level
191 		 * Control Register
192 		 */
193 		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
194 		0xFF00) >> 8), 0x4d1); rc = 0; }
195 
196 	return rc;
197 }
198 
199 
PCI_ScanBusForNonBridge(struct controller * ctrl,u8 bus_num,u8 * dev_num)200 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
201 {
202 	u16 tdevice;
203 	u32 work;
204 	u8 tbus;
205 
206 	ctrl->pci_bus->number = bus_num;
207 
208 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
209 		/* Scan for access first */
210 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
211 			continue;
212 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
213 		/* Yep we got one. Not a bridge ? */
214 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
215 			*dev_num = tdevice;
216 			dbg("found it !\n");
217 			return 0;
218 		}
219 	}
220 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
221 		/* Scan for access first */
222 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
223 			continue;
224 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
225 		/* Yep we got one. bridge ? */
226 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
227 			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
228 			/* XXX: no recursion, wtf? */
229 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
230 			return 0;
231 		}
232 	}
233 
234 	return -1;
235 }
236 
237 
PCI_GetBusDevHelper(struct controller * ctrl,u8 * bus_num,u8 * dev_num,u8 slot,u8 nobridge)238 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
239 {
240 	int loop, len;
241 	u32 work;
242 	u8 tbus, tdevice, tslot;
243 
244 	len = cpqhp_routing_table_length();
245 	for (loop = 0; loop < len; ++loop) {
246 		tbus = cpqhp_routing_table->slots[loop].bus;
247 		tdevice = cpqhp_routing_table->slots[loop].devfn;
248 		tslot = cpqhp_routing_table->slots[loop].slot;
249 
250 		if (tslot == slot) {
251 			*bus_num = tbus;
252 			*dev_num = tdevice;
253 			ctrl->pci_bus->number = tbus;
254 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
255 			if (!nobridge || (work == 0xffffffff))
256 				return 0;
257 
258 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
259 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
260 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
261 
262 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
263 				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
264 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
265 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
266 					*bus_num = tbus;
267 					return 0;
268 				}
269 			} else
270 				return 0;
271 		}
272 	}
273 	return -1;
274 }
275 
276 
cpqhp_get_bus_dev(struct controller * ctrl,u8 * bus_num,u8 * dev_num,u8 slot)277 int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
278 {
279 	/* plain (bridges allowed) */
280 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
281 }
282 
283 
284 /* More PCI configuration routines; this time centered around hotplug
285  * controller
286  */
287 
288 
289 /*
290  * cpqhp_save_config
291  *
292  * Reads configuration for all slots in a PCI bus and saves info.
293  *
294  * Note:  For non-hot plug busses, the slot # saved is the device #
295  *
296  * returns 0 if success
297  */
cpqhp_save_config(struct controller * ctrl,int busnumber,int is_hot_plug)298 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
299 {
300 	long rc;
301 	u8 class_code;
302 	u8 header_type;
303 	u32 ID;
304 	u8 secondary_bus;
305 	struct pci_func *new_slot;
306 	int sub_bus;
307 	int FirstSupported;
308 	int LastSupported;
309 	int max_functions;
310 	int function;
311 	u8 DevError;
312 	int device = 0;
313 	int cloop = 0;
314 	int stop_it;
315 	int index;
316 
317 	/* Decide which slots are supported */
318 
319 	if (is_hot_plug) {
320 		/*
321 		 * is_hot_plug is the slot mask
322 		 */
323 		FirstSupported = is_hot_plug >> 4;
324 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
325 	} else {
326 		FirstSupported = 0;
327 		LastSupported = 0x1F;
328 	}
329 
330 	/* Save PCI configuration space for all devices in supported slots */
331 	ctrl->pci_bus->number = busnumber;
332 	for (device = FirstSupported; device <= LastSupported; device++) {
333 		ID = 0xFFFFFFFF;
334 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
335 
336 		if (ID == 0xFFFFFFFF) {
337 			if (is_hot_plug) {
338 				/* Setup slot structure with entry for empty
339 				 * slot
340 				 */
341 				new_slot = cpqhp_slot_create(busnumber);
342 				if (new_slot == NULL)
343 					return 1;
344 
345 				new_slot->bus = (u8) busnumber;
346 				new_slot->device = (u8) device;
347 				new_slot->function = 0;
348 				new_slot->is_a_board = 0;
349 				new_slot->presence_save = 0;
350 				new_slot->switch_save = 0;
351 			}
352 			continue;
353 		}
354 
355 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
356 		if (rc)
357 			return rc;
358 
359 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
360 		if (rc)
361 			return rc;
362 
363 		/* If multi-function device, set max_functions to 8 */
364 		if (header_type & 0x80)
365 			max_functions = 8;
366 		else
367 			max_functions = 1;
368 
369 		function = 0;
370 
371 		do {
372 			DevError = 0;
373 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
374 				/* Recurse the subordinate bus
375 				 * get the subordinate bus number
376 				 */
377 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
378 				if (rc) {
379 					return rc;
380 				} else {
381 					sub_bus = (int) secondary_bus;
382 
383 					/* Save secondary bus cfg spc
384 					 * with this recursive call.
385 					 */
386 					rc = cpqhp_save_config(ctrl, sub_bus, 0);
387 					if (rc)
388 						return rc;
389 					ctrl->pci_bus->number = busnumber;
390 				}
391 			}
392 
393 			index = 0;
394 			new_slot = cpqhp_slot_find(busnumber, device, index++);
395 			while (new_slot &&
396 			       (new_slot->function != (u8) function))
397 				new_slot = cpqhp_slot_find(busnumber, device, index++);
398 
399 			if (!new_slot) {
400 				/* Setup slot structure. */
401 				new_slot = cpqhp_slot_create(busnumber);
402 				if (new_slot == NULL)
403 					return 1;
404 			}
405 
406 			new_slot->bus = (u8) busnumber;
407 			new_slot->device = (u8) device;
408 			new_slot->function = (u8) function;
409 			new_slot->is_a_board = 1;
410 			new_slot->switch_save = 0x10;
411 			/* In case of unsupported board */
412 			new_slot->status = DevError;
413 			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
414 
415 			for (cloop = 0; cloop < 0x20; cloop++) {
416 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
417 				if (rc)
418 					return rc;
419 			}
420 
421 			pci_dev_put(new_slot->pci_dev);
422 
423 			function++;
424 
425 			stop_it = 0;
426 
427 			/* this loop skips to the next present function
428 			 * reading in Class Code and Header type.
429 			 */
430 			while ((function < max_functions) && (!stop_it)) {
431 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
432 				if (ID == 0xFFFFFFFF) {
433 					function++;
434 					continue;
435 				}
436 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
437 				if (rc)
438 					return rc;
439 
440 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
441 				if (rc)
442 					return rc;
443 
444 				stop_it++;
445 			}
446 
447 		} while (function < max_functions);
448 	}			/* End of FOR loop */
449 
450 	return 0;
451 }
452 
453 
454 /*
455  * cpqhp_save_slot_config
456  *
457  * Saves configuration info for all PCI devices in a given slot
458  * including subordinate busses.
459  *
460  * returns 0 if success
461  */
cpqhp_save_slot_config(struct controller * ctrl,struct pci_func * new_slot)462 int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
463 {
464 	long rc;
465 	u8 class_code;
466 	u8 header_type;
467 	u32 ID;
468 	u8 secondary_bus;
469 	int sub_bus;
470 	int max_functions;
471 	int function = 0;
472 	int cloop = 0;
473 	int stop_it;
474 
475 	ID = 0xFFFFFFFF;
476 
477 	ctrl->pci_bus->number = new_slot->bus;
478 	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
479 
480 	if (ID == 0xFFFFFFFF)
481 		return 2;
482 
483 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
484 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
485 
486 	if (header_type & 0x80)	/* Multi-function device */
487 		max_functions = 8;
488 	else
489 		max_functions = 1;
490 
491 	while (function < max_functions) {
492 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
493 			/*  Recurse the subordinate bus */
494 			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
495 
496 			sub_bus = (int) secondary_bus;
497 
498 			/* Save the config headers for the secondary
499 			 * bus.
500 			 */
501 			rc = cpqhp_save_config(ctrl, sub_bus, 0);
502 			if (rc)
503 				return(rc);
504 			ctrl->pci_bus->number = new_slot->bus;
505 
506 		}
507 
508 		new_slot->status = 0;
509 
510 		for (cloop = 0; cloop < 0x20; cloop++)
511 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
512 
513 		function++;
514 
515 		stop_it = 0;
516 
517 		/* this loop skips to the next present function
518 		 * reading in the Class Code and the Header type.
519 		 */
520 		while ((function < max_functions) && (!stop_it)) {
521 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
522 
523 			if (ID == 0xFFFFFFFF)
524 				function++;
525 			else {
526 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
527 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
528 				stop_it++;
529 			}
530 		}
531 
532 	}
533 
534 	return 0;
535 }
536 
537 
538 /*
539  * cpqhp_save_base_addr_length
540  *
541  * Saves the length of all base address registers for the
542  * specified slot.  this is for hot plug REPLACE
543  *
544  * returns 0 if success
545  */
cpqhp_save_base_addr_length(struct controller * ctrl,struct pci_func * func)546 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
547 {
548 	u8 cloop;
549 	u8 header_type;
550 	u8 secondary_bus;
551 	u8 type;
552 	int sub_bus;
553 	u32 temp_register;
554 	u32 base;
555 	u32 rc;
556 	struct pci_func *next;
557 	int index = 0;
558 	struct pci_bus *pci_bus = ctrl->pci_bus;
559 	unsigned int devfn;
560 
561 	func = cpqhp_slot_find(func->bus, func->device, index++);
562 
563 	while (func != NULL) {
564 		pci_bus->number = func->bus;
565 		devfn = PCI_DEVFN(func->device, func->function);
566 
567 		/* Check for Bridge */
568 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
569 
570 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
571 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
572 
573 			sub_bus = (int) secondary_bus;
574 
575 			next = cpqhp_slot_list[sub_bus];
576 
577 			while (next != NULL) {
578 				rc = cpqhp_save_base_addr_length(ctrl, next);
579 				if (rc)
580 					return rc;
581 
582 				next = next->next;
583 			}
584 			pci_bus->number = func->bus;
585 
586 			/* FIXME: this loop is duplicated in the non-bridge
587 			 * case.  The two could be rolled together Figure out
588 			 * IO and memory base lengths
589 			 */
590 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
591 				temp_register = 0xFFFFFFFF;
592 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
593 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
594 				/* If this register is implemented */
595 				if (base) {
596 					if (base & 0x01L) {
597 						/* IO base
598 						 * set base = amount of IO space
599 						 * requested
600 						 */
601 						base = base & 0xFFFFFFFE;
602 						base = (~base) + 1;
603 
604 						type = 1;
605 					} else {
606 						/* memory base */
607 						base = base & 0xFFFFFFF0;
608 						base = (~base) + 1;
609 
610 						type = 0;
611 					}
612 				} else {
613 					base = 0x0L;
614 					type = 0;
615 				}
616 
617 				/* Save information in slot structure */
618 				func->base_length[(cloop - 0x10) >> 2] =
619 				base;
620 				func->base_type[(cloop - 0x10) >> 2] = type;
621 
622 			}	/* End of base register loop */
623 
624 		} else if ((header_type & 0x7F) == 0x00) {
625 			/* Figure out IO and memory base lengths */
626 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
627 				temp_register = 0xFFFFFFFF;
628 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
629 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
630 
631 				/* If this register is implemented */
632 				if (base) {
633 					if (base & 0x01L) {
634 						/* IO base
635 						 * base = amount of IO space
636 						 * requested
637 						 */
638 						base = base & 0xFFFFFFFE;
639 						base = (~base) + 1;
640 
641 						type = 1;
642 					} else {
643 						/* memory base
644 						 * base = amount of memory
645 						 * space requested
646 						 */
647 						base = base & 0xFFFFFFF0;
648 						base = (~base) + 1;
649 
650 						type = 0;
651 					}
652 				} else {
653 					base = 0x0L;
654 					type = 0;
655 				}
656 
657 				/* Save information in slot structure */
658 				func->base_length[(cloop - 0x10) >> 2] = base;
659 				func->base_type[(cloop - 0x10) >> 2] = type;
660 
661 			}	/* End of base register loop */
662 
663 		} else {	  /* Some other unknown header type */
664 		}
665 
666 		/* find the next device in this slot */
667 		func = cpqhp_slot_find(func->bus, func->device, index++);
668 	}
669 
670 	return(0);
671 }
672 
673 
674 /*
675  * cpqhp_save_used_resources
676  *
677  * Stores used resource information for existing boards.  this is
678  * for boards that were in the system when this driver was loaded.
679  * this function is for hot plug ADD
680  *
681  * returns 0 if success
682  */
cpqhp_save_used_resources(struct controller * ctrl,struct pci_func * func)683 int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
684 {
685 	u8 cloop;
686 	u8 header_type;
687 	u8 secondary_bus;
688 	u8 temp_byte;
689 	u8 b_base;
690 	u8 b_length;
691 	u16 command;
692 	u16 save_command;
693 	u16 w_base;
694 	u16 w_length;
695 	u32 temp_register;
696 	u32 save_base;
697 	u32 base;
698 	int index = 0;
699 	struct pci_resource *mem_node;
700 	struct pci_resource *p_mem_node;
701 	struct pci_resource *io_node;
702 	struct pci_resource *bus_node;
703 	struct pci_bus *pci_bus = ctrl->pci_bus;
704 	unsigned int devfn;
705 
706 	func = cpqhp_slot_find(func->bus, func->device, index++);
707 
708 	while ((func != NULL) && func->is_a_board) {
709 		pci_bus->number = func->bus;
710 		devfn = PCI_DEVFN(func->device, func->function);
711 
712 		/* Save the command register */
713 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
714 
715 		/* disable card */
716 		command = 0x00;
717 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
718 
719 		/* Check for Bridge */
720 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
721 
722 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
723 			/* Clear Bridge Control Register */
724 			command = 0x00;
725 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
726 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
727 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
728 
729 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
730 			if (!bus_node)
731 				return -ENOMEM;
732 
733 			bus_node->base = secondary_bus;
734 			bus_node->length = temp_byte - secondary_bus + 1;
735 
736 			bus_node->next = func->bus_head;
737 			func->bus_head = bus_node;
738 
739 			/* Save IO base and Limit registers */
740 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
741 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
742 
743 			if ((b_base <= b_length) && (save_command & 0x01)) {
744 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
745 				if (!io_node)
746 					return -ENOMEM;
747 
748 				io_node->base = (b_base & 0xF0) << 8;
749 				io_node->length = (b_length - b_base + 0x10) << 8;
750 
751 				io_node->next = func->io_head;
752 				func->io_head = io_node;
753 			}
754 
755 			/* Save memory base and Limit registers */
756 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
757 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
758 
759 			if ((w_base <= w_length) && (save_command & 0x02)) {
760 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
761 				if (!mem_node)
762 					return -ENOMEM;
763 
764 				mem_node->base = w_base << 16;
765 				mem_node->length = (w_length - w_base + 0x10) << 16;
766 
767 				mem_node->next = func->mem_head;
768 				func->mem_head = mem_node;
769 			}
770 
771 			/* Save prefetchable memory base and Limit registers */
772 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
773 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
774 
775 			if ((w_base <= w_length) && (save_command & 0x02)) {
776 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
777 				if (!p_mem_node)
778 					return -ENOMEM;
779 
780 				p_mem_node->base = w_base << 16;
781 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
782 
783 				p_mem_node->next = func->p_mem_head;
784 				func->p_mem_head = p_mem_node;
785 			}
786 			/* Figure out IO and memory base lengths */
787 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
788 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
789 
790 				temp_register = 0xFFFFFFFF;
791 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
792 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
793 
794 				temp_register = base;
795 
796 				/* If this register is implemented */
797 				if (base) {
798 					if (((base & 0x03L) == 0x01)
799 					    && (save_command & 0x01)) {
800 						/* IO base
801 						 * set temp_register = amount
802 						 * of IO space requested
803 						 */
804 						temp_register = base & 0xFFFFFFFE;
805 						temp_register = (~temp_register) + 1;
806 
807 						io_node = kmalloc(sizeof(*io_node),
808 								GFP_KERNEL);
809 						if (!io_node)
810 							return -ENOMEM;
811 
812 						io_node->base =
813 						save_base & (~0x03L);
814 						io_node->length = temp_register;
815 
816 						io_node->next = func->io_head;
817 						func->io_head = io_node;
818 					} else
819 						if (((base & 0x0BL) == 0x08)
820 						    && (save_command & 0x02)) {
821 						/* prefetchable memory base */
822 						temp_register = base & 0xFFFFFFF0;
823 						temp_register = (~temp_register) + 1;
824 
825 						p_mem_node = kmalloc(sizeof(*p_mem_node),
826 								GFP_KERNEL);
827 						if (!p_mem_node)
828 							return -ENOMEM;
829 
830 						p_mem_node->base = save_base & (~0x0FL);
831 						p_mem_node->length = temp_register;
832 
833 						p_mem_node->next = func->p_mem_head;
834 						func->p_mem_head = p_mem_node;
835 					} else
836 						if (((base & 0x0BL) == 0x00)
837 						    && (save_command & 0x02)) {
838 						/* prefetchable memory base */
839 						temp_register = base & 0xFFFFFFF0;
840 						temp_register = (~temp_register) + 1;
841 
842 						mem_node = kmalloc(sizeof(*mem_node),
843 								GFP_KERNEL);
844 						if (!mem_node)
845 							return -ENOMEM;
846 
847 						mem_node->base = save_base & (~0x0FL);
848 						mem_node->length = temp_register;
849 
850 						mem_node->next = func->mem_head;
851 						func->mem_head = mem_node;
852 					} else
853 						return(1);
854 				}
855 			}	/* End of base register loop */
856 		/* Standard header */
857 		} else if ((header_type & 0x7F) == 0x00) {
858 			/* Figure out IO and memory base lengths */
859 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
860 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
861 
862 				temp_register = 0xFFFFFFFF;
863 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
864 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
865 
866 				temp_register = base;
867 
868 				/* If this register is implemented */
869 				if (base) {
870 					if (((base & 0x03L) == 0x01)
871 					    && (save_command & 0x01)) {
872 						/* IO base
873 						 * set temp_register = amount
874 						 * of IO space requested
875 						 */
876 						temp_register = base & 0xFFFFFFFE;
877 						temp_register = (~temp_register) + 1;
878 
879 						io_node = kmalloc(sizeof(*io_node),
880 								GFP_KERNEL);
881 						if (!io_node)
882 							return -ENOMEM;
883 
884 						io_node->base = save_base & (~0x01L);
885 						io_node->length = temp_register;
886 
887 						io_node->next = func->io_head;
888 						func->io_head = io_node;
889 					} else
890 						if (((base & 0x0BL) == 0x08)
891 						    && (save_command & 0x02)) {
892 						/* prefetchable memory base */
893 						temp_register = base & 0xFFFFFFF0;
894 						temp_register = (~temp_register) + 1;
895 
896 						p_mem_node = kmalloc(sizeof(*p_mem_node),
897 								GFP_KERNEL);
898 						if (!p_mem_node)
899 							return -ENOMEM;
900 
901 						p_mem_node->base = save_base & (~0x0FL);
902 						p_mem_node->length = temp_register;
903 
904 						p_mem_node->next = func->p_mem_head;
905 						func->p_mem_head = p_mem_node;
906 					} else
907 						if (((base & 0x0BL) == 0x00)
908 						    && (save_command & 0x02)) {
909 						/* prefetchable memory base */
910 						temp_register = base & 0xFFFFFFF0;
911 						temp_register = (~temp_register) + 1;
912 
913 						mem_node = kmalloc(sizeof(*mem_node),
914 								GFP_KERNEL);
915 						if (!mem_node)
916 							return -ENOMEM;
917 
918 						mem_node->base = save_base & (~0x0FL);
919 						mem_node->length = temp_register;
920 
921 						mem_node->next = func->mem_head;
922 						func->mem_head = mem_node;
923 					} else
924 						return(1);
925 				}
926 			}	/* End of base register loop */
927 		}
928 
929 		/* find the next device in this slot */
930 		func = cpqhp_slot_find(func->bus, func->device, index++);
931 	}
932 
933 	return 0;
934 }
935 
936 
937 /*
938  * cpqhp_configure_board
939  *
940  * Copies saved configuration information to one slot.
941  * this is called recursively for bridge devices.
942  * this is for hot plug REPLACE!
943  *
944  * returns 0 if success
945  */
cpqhp_configure_board(struct controller * ctrl,struct pci_func * func)946 int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
947 {
948 	int cloop;
949 	u8 header_type;
950 	u8 secondary_bus;
951 	int sub_bus;
952 	struct pci_func *next;
953 	u32 temp;
954 	u32 rc;
955 	int index = 0;
956 	struct pci_bus *pci_bus = ctrl->pci_bus;
957 	unsigned int devfn;
958 
959 	func = cpqhp_slot_find(func->bus, func->device, index++);
960 
961 	while (func != NULL) {
962 		pci_bus->number = func->bus;
963 		devfn = PCI_DEVFN(func->device, func->function);
964 
965 		/* Start at the top of config space so that the control
966 		 * registers are programmed last
967 		 */
968 		for (cloop = 0x3C; cloop > 0; cloop -= 4)
969 			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
970 
971 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
972 
973 		/* If this is a bridge device, restore subordinate devices */
974 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
975 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
976 
977 			sub_bus = (int) secondary_bus;
978 
979 			next = cpqhp_slot_list[sub_bus];
980 
981 			while (next != NULL) {
982 				rc = cpqhp_configure_board(ctrl, next);
983 				if (rc)
984 					return rc;
985 
986 				next = next->next;
987 			}
988 		} else {
989 
990 			/* Check all the base Address Registers to make sure
991 			 * they are the same.  If not, the board is different.
992 			 */
993 
994 			for (cloop = 16; cloop < 40; cloop += 4) {
995 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
996 
997 				if (temp != func->config_space[cloop >> 2]) {
998 					dbg("Config space compare failure!!! offset = %x\n", cloop);
999 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1000 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1001 					return 1;
1002 				}
1003 			}
1004 		}
1005 
1006 		func->configured = 1;
1007 
1008 		func = cpqhp_slot_find(func->bus, func->device, index++);
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 
1015 /*
1016  * cpqhp_valid_replace
1017  *
1018  * this function checks to see if a board is the same as the
1019  * one it is replacing.  this check will detect if the device's
1020  * vendor or device id's are the same
1021  *
1022  * returns 0 if the board is the same nonzero otherwise
1023  */
cpqhp_valid_replace(struct controller * ctrl,struct pci_func * func)1024 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1025 {
1026 	u8 cloop;
1027 	u8 header_type;
1028 	u8 secondary_bus;
1029 	u8 type;
1030 	u32 temp_register = 0;
1031 	u32 base;
1032 	u32 rc;
1033 	struct pci_func *next;
1034 	int index = 0;
1035 	struct pci_bus *pci_bus = ctrl->pci_bus;
1036 	unsigned int devfn;
1037 
1038 	if (!func->is_a_board)
1039 		return(ADD_NOT_SUPPORTED);
1040 
1041 	func = cpqhp_slot_find(func->bus, func->device, index++);
1042 
1043 	while (func != NULL) {
1044 		pci_bus->number = func->bus;
1045 		devfn = PCI_DEVFN(func->device, func->function);
1046 
1047 		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1048 
1049 		/* No adapter present */
1050 		if (temp_register == 0xFFFFFFFF)
1051 			return(NO_ADAPTER_PRESENT);
1052 
1053 		if (temp_register != func->config_space[0])
1054 			return(ADAPTER_NOT_SAME);
1055 
1056 		/* Check for same revision number and class code */
1057 		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1058 
1059 		/* Adapter not the same */
1060 		if (temp_register != func->config_space[0x08 >> 2])
1061 			return(ADAPTER_NOT_SAME);
1062 
1063 		/* Check for Bridge */
1064 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1065 
1066 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1067 			/* In order to continue checking, we must program the
1068 			 * bus registers in the bridge to respond to accesses
1069 			 * for its subordinate bus(es)
1070 			 */
1071 
1072 			temp_register = func->config_space[0x18 >> 2];
1073 			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1074 
1075 			secondary_bus = (temp_register >> 8) & 0xFF;
1076 
1077 			next = cpqhp_slot_list[secondary_bus];
1078 
1079 			while (next != NULL) {
1080 				rc = cpqhp_valid_replace(ctrl, next);
1081 				if (rc)
1082 					return rc;
1083 
1084 				next = next->next;
1085 			}
1086 
1087 		}
1088 		/* Check to see if it is a standard config header */
1089 		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1090 			/* Check subsystem vendor and ID */
1091 			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1092 
1093 			if (temp_register != func->config_space[0x2C >> 2]) {
1094 				/* If it's a SMART-2 and the register isn't
1095 				 * filled in, ignore the difference because
1096 				 * they just have an old rev of the firmware
1097 				 */
1098 				if (!((func->config_space[0] == 0xAE100E11)
1099 				      && (temp_register == 0x00L)))
1100 					return(ADAPTER_NOT_SAME);
1101 			}
1102 			/* Figure out IO and memory base lengths */
1103 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1104 				temp_register = 0xFFFFFFFF;
1105 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1106 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1107 
1108 				/* If this register is implemented */
1109 				if (base) {
1110 					if (base & 0x01L) {
1111 						/* IO base
1112 						 * set base = amount of IO
1113 						 * space requested
1114 						 */
1115 						base = base & 0xFFFFFFFE;
1116 						base = (~base) + 1;
1117 
1118 						type = 1;
1119 					} else {
1120 						/* memory base */
1121 						base = base & 0xFFFFFFF0;
1122 						base = (~base) + 1;
1123 
1124 						type = 0;
1125 					}
1126 				} else {
1127 					base = 0x0L;
1128 					type = 0;
1129 				}
1130 
1131 				/* Check information in slot structure */
1132 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1133 					return(ADAPTER_NOT_SAME);
1134 
1135 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1136 					return(ADAPTER_NOT_SAME);
1137 
1138 			}	/* End of base register loop */
1139 
1140 		}		/* End of (type 0 config space) else */
1141 		else {
1142 			/* this is not a type 0 or 1 config space header so
1143 			 * we don't know how to do it
1144 			 */
1145 			return(DEVICE_TYPE_NOT_SUPPORTED);
1146 		}
1147 
1148 		/* Get the next function */
1149 		func = cpqhp_slot_find(func->bus, func->device, index++);
1150 	}
1151 
1152 
1153 	return 0;
1154 }
1155 
1156 
1157 /*
1158  * cpqhp_find_available_resources
1159  *
1160  * Finds available memory, IO, and IRQ resources for programming
1161  * devices which may be added to the system
1162  * this function is for hot plug ADD!
1163  *
1164  * returns 0 if success
1165  */
cpqhp_find_available_resources(struct controller * ctrl,void __iomem * rom_start)1166 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1167 {
1168 	u8 temp;
1169 	u8 populated_slot;
1170 	u8 bridged_slot;
1171 	void __iomem *one_slot;
1172 	void __iomem *rom_resource_table;
1173 	struct pci_func *func = NULL;
1174 	int i = 10, index;
1175 	u32 temp_dword, rc;
1176 	struct pci_resource *mem_node;
1177 	struct pci_resource *p_mem_node;
1178 	struct pci_resource *io_node;
1179 	struct pci_resource *bus_node;
1180 
1181 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1182 	dbg("rom_resource_table = %p\n", rom_resource_table);
1183 
1184 	if (rom_resource_table == NULL)
1185 		return -ENODEV;
1186 
1187 	/* Sum all resources and setup resource maps */
1188 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1189 	dbg("unused_IRQ = %x\n", unused_IRQ);
1190 
1191 	temp = 0;
1192 	while (unused_IRQ) {
1193 		if (unused_IRQ & 1) {
1194 			cpqhp_disk_irq = temp;
1195 			break;
1196 		}
1197 		unused_IRQ = unused_IRQ >> 1;
1198 		temp++;
1199 	}
1200 
1201 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1202 	unused_IRQ = unused_IRQ >> 1;
1203 	temp++;
1204 
1205 	while (unused_IRQ) {
1206 		if (unused_IRQ & 1) {
1207 			cpqhp_nic_irq = temp;
1208 			break;
1209 		}
1210 		unused_IRQ = unused_IRQ >> 1;
1211 		temp++;
1212 	}
1213 
1214 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1215 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1216 
1217 	temp = 0;
1218 
1219 	if (!cpqhp_nic_irq)
1220 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1221 
1222 	if (!cpqhp_disk_irq)
1223 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1224 
1225 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1226 
1227 	rc = compaq_nvram_load(rom_start, ctrl);
1228 	if (rc)
1229 		return rc;
1230 
1231 	one_slot = rom_resource_table + sizeof (struct hrt);
1232 
1233 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1234 	dbg("number_of_entries = %d\n", i);
1235 
1236 	if (!readb(one_slot + SECONDARY_BUS))
1237 		return 1;
1238 
1239 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1240 
1241 	while (i && readb(one_slot + SECONDARY_BUS)) {
1242 		u8 dev_func = readb(one_slot + DEV_FUNC);
1243 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1244 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1245 		u8 max_bus = readb(one_slot + MAX_BUS);
1246 		u16 io_base = readw(one_slot + IO_BASE);
1247 		u16 io_length = readw(one_slot + IO_LENGTH);
1248 		u16 mem_base = readw(one_slot + MEM_BASE);
1249 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1250 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1251 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1252 
1253 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1254 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1255 		    primary_bus, secondary_bus, max_bus);
1256 
1257 		/* If this entry isn't for our controller's bus, ignore it */
1258 		if (primary_bus != ctrl->bus) {
1259 			i--;
1260 			one_slot += sizeof (struct slot_rt);
1261 			continue;
1262 		}
1263 		/* find out if this entry is for an occupied slot */
1264 		ctrl->pci_bus->number = primary_bus;
1265 		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1266 		dbg("temp_D_word = %x\n", temp_dword);
1267 
1268 		if (temp_dword != 0xFFFFFFFF) {
1269 			index = 0;
1270 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1271 
1272 			while (func && (func->function != (dev_func & 0x07))) {
1273 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1274 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1275 			}
1276 
1277 			/* If we can't find a match, skip this table entry */
1278 			if (!func) {
1279 				i--;
1280 				one_slot += sizeof (struct slot_rt);
1281 				continue;
1282 			}
1283 			/* this may not work and shouldn't be used */
1284 			if (secondary_bus != primary_bus)
1285 				bridged_slot = 1;
1286 			else
1287 				bridged_slot = 0;
1288 
1289 			populated_slot = 1;
1290 		} else {
1291 			populated_slot = 0;
1292 			bridged_slot = 0;
1293 		}
1294 
1295 
1296 		/* If we've got a valid IO base, use it */
1297 
1298 		temp_dword = io_base + io_length;
1299 
1300 		if ((io_base) && (temp_dword < 0x10000)) {
1301 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1302 			if (!io_node)
1303 				return -ENOMEM;
1304 
1305 			io_node->base = io_base;
1306 			io_node->length = io_length;
1307 
1308 			dbg("found io_node(base, length) = %x, %x\n",
1309 					io_node->base, io_node->length);
1310 			dbg("populated slot =%d \n", populated_slot);
1311 			if (!populated_slot) {
1312 				io_node->next = ctrl->io_head;
1313 				ctrl->io_head = io_node;
1314 			} else {
1315 				io_node->next = func->io_head;
1316 				func->io_head = io_node;
1317 			}
1318 		}
1319 
1320 		/* If we've got a valid memory base, use it */
1321 		temp_dword = mem_base + mem_length;
1322 		if ((mem_base) && (temp_dword < 0x10000)) {
1323 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1324 			if (!mem_node)
1325 				return -ENOMEM;
1326 
1327 			mem_node->base = mem_base << 16;
1328 
1329 			mem_node->length = mem_length << 16;
1330 
1331 			dbg("found mem_node(base, length) = %x, %x\n",
1332 					mem_node->base, mem_node->length);
1333 			dbg("populated slot =%d \n", populated_slot);
1334 			if (!populated_slot) {
1335 				mem_node->next = ctrl->mem_head;
1336 				ctrl->mem_head = mem_node;
1337 			} else {
1338 				mem_node->next = func->mem_head;
1339 				func->mem_head = mem_node;
1340 			}
1341 		}
1342 
1343 		/* If we've got a valid prefetchable memory base, and
1344 		 * the base + length isn't greater than 0xFFFF
1345 		 */
1346 		temp_dword = pre_mem_base + pre_mem_length;
1347 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1348 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1349 			if (!p_mem_node)
1350 				return -ENOMEM;
1351 
1352 			p_mem_node->base = pre_mem_base << 16;
1353 
1354 			p_mem_node->length = pre_mem_length << 16;
1355 			dbg("found p_mem_node(base, length) = %x, %x\n",
1356 					p_mem_node->base, p_mem_node->length);
1357 			dbg("populated slot =%d \n", populated_slot);
1358 
1359 			if (!populated_slot) {
1360 				p_mem_node->next = ctrl->p_mem_head;
1361 				ctrl->p_mem_head = p_mem_node;
1362 			} else {
1363 				p_mem_node->next = func->p_mem_head;
1364 				func->p_mem_head = p_mem_node;
1365 			}
1366 		}
1367 
1368 		/* If we've got a valid bus number, use it
1369 		 * The second condition is to ignore bus numbers on
1370 		 * populated slots that don't have PCI-PCI bridges
1371 		 */
1372 		if (secondary_bus && (secondary_bus != primary_bus)) {
1373 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1374 			if (!bus_node)
1375 				return -ENOMEM;
1376 
1377 			bus_node->base = secondary_bus;
1378 			bus_node->length = max_bus - secondary_bus + 1;
1379 			dbg("found bus_node(base, length) = %x, %x\n",
1380 					bus_node->base, bus_node->length);
1381 			dbg("populated slot =%d \n", populated_slot);
1382 			if (!populated_slot) {
1383 				bus_node->next = ctrl->bus_head;
1384 				ctrl->bus_head = bus_node;
1385 			} else {
1386 				bus_node->next = func->bus_head;
1387 				func->bus_head = bus_node;
1388 			}
1389 		}
1390 
1391 		i--;
1392 		one_slot += sizeof (struct slot_rt);
1393 	}
1394 
1395 	/* If all of the following fail, we don't have any resources for
1396 	 * hot plug add
1397 	 */
1398 	rc = 1;
1399 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1400 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1401 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1402 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1403 
1404 	return rc;
1405 }
1406 
1407 
1408 /*
1409  * cpqhp_return_board_resources
1410  *
1411  * this routine returns all resources allocated to a board to
1412  * the available pool.
1413  *
1414  * returns 0 if success
1415  */
cpqhp_return_board_resources(struct pci_func * func,struct resource_lists * resources)1416 int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1417 {
1418 	int rc = 0;
1419 	struct pci_resource *node;
1420 	struct pci_resource *t_node;
1421 	dbg("%s\n", __func__);
1422 
1423 	if (!func)
1424 		return 1;
1425 
1426 	node = func->io_head;
1427 	func->io_head = NULL;
1428 	while (node) {
1429 		t_node = node->next;
1430 		return_resource(&(resources->io_head), node);
1431 		node = t_node;
1432 	}
1433 
1434 	node = func->mem_head;
1435 	func->mem_head = NULL;
1436 	while (node) {
1437 		t_node = node->next;
1438 		return_resource(&(resources->mem_head), node);
1439 		node = t_node;
1440 	}
1441 
1442 	node = func->p_mem_head;
1443 	func->p_mem_head = NULL;
1444 	while (node) {
1445 		t_node = node->next;
1446 		return_resource(&(resources->p_mem_head), node);
1447 		node = t_node;
1448 	}
1449 
1450 	node = func->bus_head;
1451 	func->bus_head = NULL;
1452 	while (node) {
1453 		t_node = node->next;
1454 		return_resource(&(resources->bus_head), node);
1455 		node = t_node;
1456 	}
1457 
1458 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1459 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1460 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1461 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1462 
1463 	return rc;
1464 }
1465 
1466 
1467 /*
1468  * cpqhp_destroy_resource_list
1469  *
1470  * Puts node back in the resource list pointed to by head
1471  */
cpqhp_destroy_resource_list(struct resource_lists * resources)1472 void cpqhp_destroy_resource_list (struct resource_lists * resources)
1473 {
1474 	struct pci_resource *res, *tres;
1475 
1476 	res = resources->io_head;
1477 	resources->io_head = NULL;
1478 
1479 	while (res) {
1480 		tres = res;
1481 		res = res->next;
1482 		kfree(tres);
1483 	}
1484 
1485 	res = resources->mem_head;
1486 	resources->mem_head = NULL;
1487 
1488 	while (res) {
1489 		tres = res;
1490 		res = res->next;
1491 		kfree(tres);
1492 	}
1493 
1494 	res = resources->p_mem_head;
1495 	resources->p_mem_head = NULL;
1496 
1497 	while (res) {
1498 		tres = res;
1499 		res = res->next;
1500 		kfree(tres);
1501 	}
1502 
1503 	res = resources->bus_head;
1504 	resources->bus_head = NULL;
1505 
1506 	while (res) {
1507 		tres = res;
1508 		res = res->next;
1509 		kfree(tres);
1510 	}
1511 }
1512 
1513 
1514 /*
1515  * cpqhp_destroy_board_resources
1516  *
1517  * Puts node back in the resource list pointed to by head
1518  */
cpqhp_destroy_board_resources(struct pci_func * func)1519 void cpqhp_destroy_board_resources (struct pci_func * func)
1520 {
1521 	struct pci_resource *res, *tres;
1522 
1523 	res = func->io_head;
1524 	func->io_head = NULL;
1525 
1526 	while (res) {
1527 		tres = res;
1528 		res = res->next;
1529 		kfree(tres);
1530 	}
1531 
1532 	res = func->mem_head;
1533 	func->mem_head = NULL;
1534 
1535 	while (res) {
1536 		tres = res;
1537 		res = res->next;
1538 		kfree(tres);
1539 	}
1540 
1541 	res = func->p_mem_head;
1542 	func->p_mem_head = NULL;
1543 
1544 	while (res) {
1545 		tres = res;
1546 		res = res->next;
1547 		kfree(tres);
1548 	}
1549 
1550 	res = func->bus_head;
1551 	func->bus_head = NULL;
1552 
1553 	while (res) {
1554 		tres = res;
1555 		res = res->next;
1556 		kfree(tres);
1557 	}
1558 }
1559 
1560