1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
30
31 #include "cx23885.h"
32
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36
37 #define CX23888_IR_REG_BASE 0x170000
38 /*
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
41 */
42 #define CX23888_IR_CNTRL_REG 0x170000
43 #define CNTRL_WIN_3_3 0x00000000
44 #define CNTRL_WIN_4_3 0x00000001
45 #define CNTRL_WIN_3_4 0x00000002
46 #define CNTRL_WIN_4_4 0x00000003
47 #define CNTRL_WIN 0x00000003
48 #define CNTRL_EDG_NONE 0x00000000
49 #define CNTRL_EDG_FALL 0x00000004
50 #define CNTRL_EDG_RISE 0x00000008
51 #define CNTRL_EDG_BOTH 0x0000000C
52 #define CNTRL_EDG 0x0000000C
53 #define CNTRL_DMD 0x00000010
54 #define CNTRL_MOD 0x00000020
55 #define CNTRL_RFE 0x00000040
56 #define CNTRL_TFE 0x00000080
57 #define CNTRL_RXE 0x00000100
58 #define CNTRL_TXE 0x00000200
59 #define CNTRL_RIC 0x00000400
60 #define CNTRL_TIC 0x00000800
61 #define CNTRL_CPL 0x00001000
62 #define CNTRL_LBM 0x00002000
63 #define CNTRL_R 0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO 0x00008000
66
67 #define CX23888_IR_TXCLK_REG 0x170004
68 #define TXCLK_TCD 0x0000FFFF
69
70 #define CX23888_IR_RXCLK_REG 0x170008
71 #define RXCLK_RCD 0x0000FFFF
72
73 #define CX23888_IR_CDUTY_REG 0x17000C
74 #define CDUTY_CDC 0x0000000F
75
76 #define CX23888_IR_STATS_REG 0x170010
77 #define STATS_RTO 0x00000001
78 #define STATS_ROR 0x00000002
79 #define STATS_RBY 0x00000004
80 #define STATS_TBY 0x00000008
81 #define STATS_RSR 0x00000010
82 #define STATS_TSR 0x00000020
83
84 #define CX23888_IR_IRQEN_REG 0x170014
85 #define IRQEN_RTE 0x00000001
86 #define IRQEN_ROE 0x00000002
87 #define IRQEN_RSE 0x00000010
88 #define IRQEN_TSE 0x00000020
89
90 #define CX23888_IR_FILTR_REG 0x170018
91 #define FILTR_LPF 0x0000FFFF
92
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG 0x170040
95 #define FIFO_RXTX 0x0000FFFF
96 #define FIFO_RXTX_LVL 0x00010000
97 #define FIFO_RXTX_RTO 0x0001FFFF
98 #define FIFO_RX_NDV 0x00020000
99 #define FIFO_RX_DEPTH 8
100 #define FIFO_TX_DEPTH 8
101
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG 0x17001C
104 #define CX23888_IR_TIMOL_REG 0x170020
105 #define CX23888_IR_WAKE0_REG 0x170024
106 #define CX23888_IR_WAKE1_REG 0x170028
107 #define CX23888_IR_WAKE2_REG 0x17002C
108 #define CX23888_IR_MASK0_REG 0x170030
109 #define CX23888_IR_MASK1_REG 0x170034
110 #define CX23888_IR_MAKS2_REG 0x170038
111 #define CX23888_IR_DPIPG_REG 0x17003C
112 #define CX23888_IR_LEARN_REG 0x170044
113
114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
116
117 /*
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
121 */
122 union cx23888_ir_fifo_rec {
123 u32 hw_fifo_data;
124 struct ir_raw_event ir_core_data;
125 };
126
127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
129
130 struct cx23888_ir_state {
131 struct v4l2_subdev sd;
132 struct cx23885_dev *dev;
133 u32 id;
134 u32 rev;
135
136 struct v4l2_subdev_ir_parameters rx_params;
137 struct mutex rx_params_lock;
138 atomic_t rxclk_divider;
139 atomic_t rx_invert;
140
141 struct kfifo rx_kfifo;
142 spinlock_t rx_kfifo_lock;
143
144 struct v4l2_subdev_ir_parameters tx_params;
145 struct mutex tx_params_lock;
146 atomic_t txclk_divider;
147 };
148
to_state(struct v4l2_subdev * sd)149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150 {
151 return v4l2_get_subdevdata(sd);
152 }
153
154 /*
155 * IR register block read and write functions
156 */
157 static
cx23888_ir_write4(struct cx23885_dev * dev,u32 addr,u32 value)158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159 {
160 cx_write(addr, value);
161 return 0;
162 }
163
cx23888_ir_read4(struct cx23885_dev * dev,u32 addr)164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165 {
166 return cx_read(addr);
167 }
168
cx23888_ir_and_or4(struct cx23885_dev * dev,u32 addr,u32 and_mask,u32 or_value)169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170 u32 and_mask, u32 or_value)
171 {
172 cx_andor(addr, ~and_mask, or_value);
173 return 0;
174 }
175
176 /*
177 * Rx and Tx Clock Divider register computations
178 *
179 * Note the largest clock divider value of 0xffff corresponds to:
180 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181 * which fits in 21 bits, so we'll use unsigned int for time arguments.
182 */
count_to_clock_divider(unsigned int d)183 static inline u16 count_to_clock_divider(unsigned int d)
184 {
185 if (d > RXCLK_RCD + 1)
186 d = RXCLK_RCD;
187 else if (d < 2)
188 d = 1;
189 else
190 d--;
191 return (u16) d;
192 }
193
ns_to_clock_divider(unsigned int ns)194 static inline u16 ns_to_clock_divider(unsigned int ns)
195 {
196 return count_to_clock_divider(
197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198 }
199
clock_divider_to_ns(unsigned int divider)200 static inline unsigned int clock_divider_to_ns(unsigned int divider)
201 {
202 /* Period of the Rx or Tx clock in ns */
203 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204 CX23888_IR_REFCLK_FREQ / 1000000);
205 }
206
carrier_freq_to_clock_divider(unsigned int freq)207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208 {
209 return count_to_clock_divider(
210 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
211 }
212
clock_divider_to_carrier_freq(unsigned int divider)213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214 {
215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216 }
217
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)218 static inline u16 freq_to_clock_divider(unsigned int freq,
219 unsigned int rollovers)
220 {
221 return count_to_clock_divider(
222 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223 }
224
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)225 static inline unsigned int clock_divider_to_freq(unsigned int divider,
226 unsigned int rollovers)
227 {
228 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229 (divider + 1) * rollovers);
230 }
231
232 /*
233 * Low Pass Filter register calculations
234 *
235 * Note the largest count value of 0xffff corresponds to:
236 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237 * which fits in 21 bits, so we'll use unsigned int for time arguments.
238 */
count_to_lpf_count(unsigned int d)239 static inline u16 count_to_lpf_count(unsigned int d)
240 {
241 if (d > FILTR_LPF)
242 d = FILTR_LPF;
243 else if (d < 4)
244 d = 0;
245 return (u16) d;
246 }
247
ns_to_lpf_count(unsigned int ns)248 static inline u16 ns_to_lpf_count(unsigned int ns)
249 {
250 return count_to_lpf_count(
251 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252 }
253
lpf_count_to_ns(unsigned int count)254 static inline unsigned int lpf_count_to_ns(unsigned int count)
255 {
256 /* Duration of the Low Pass Filter rejection window in ns */
257 return DIV_ROUND_CLOSEST(count * 1000,
258 CX23888_IR_REFCLK_FREQ / 1000000);
259 }
260
lpf_count_to_us(unsigned int count)261 static inline unsigned int lpf_count_to_us(unsigned int count)
262 {
263 /* Duration of the Low Pass Filter rejection window in us */
264 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265 }
266
267 /*
268 * FIFO register pulse width count compuations
269 */
clock_divider_to_resolution(u16 divider)270 static u32 clock_divider_to_resolution(u16 divider)
271 {
272 /*
273 * Resolution is the duration of 1 tick of the readable portion of
274 * of the pulse width counter as read from the FIFO. The two lsb's are
275 * not readable, hence the << 2. This function returns ns.
276 */
277 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
278 CX23888_IR_REFCLK_FREQ / 1000000);
279 }
280
pulse_width_count_to_ns(u16 count,u16 divider)281 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282 {
283 u64 n;
284 u32 rem;
285
286 /*
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
289 */
290 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 n++;
294 return n;
295 }
296
pulse_width_count_to_us(u16 count,u16 divider)297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298 {
299 u64 n;
300 u32 rem;
301
302 /*
303 * The 2 lsb's of the pulse width timer count are not readable, hence
304 * the (count << 2) | 0x3
305 */
306 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
307 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309 n++;
310 return (unsigned int) n;
311 }
312
313 /*
314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315 *
316 * The total pulse clock count is an 18 bit pulse width timer count as the most
317 * significant part and (up to) 16 bit clock divider count as a modulus.
318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319 * width timer count's least significant bit.
320 */
ns_to_pulse_clocks(u32 ns)321 static u64 ns_to_pulse_clocks(u32 ns)
322 {
323 u64 clocks;
324 u32 rem;
325 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
326 rem = do_div(clocks, 1000); /* /1000 = cycles */
327 if (rem >= 1000 / 2)
328 clocks++;
329 return clocks;
330 }
331
pulse_clocks_to_clock_divider(u64 count)332 static u16 pulse_clocks_to_clock_divider(u64 count)
333 {
334 u32 rem;
335
336 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
337
338 /* net result needs to be rounded down and decremented by 1 */
339 if (count > RXCLK_RCD + 1)
340 count = RXCLK_RCD;
341 else if (count < 2)
342 count = 1;
343 else
344 count--;
345 return (u16) count;
346 }
347
348 /*
349 * IR Control Register helpers
350 */
351 enum tx_fifo_watermark {
352 TX_FIFO_HALF_EMPTY = 0,
353 TX_FIFO_EMPTY = CNTRL_TIC,
354 };
355
356 enum rx_fifo_watermark {
357 RX_FIFO_HALF_FULL = 0,
358 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
359 };
360
control_tx_irq_watermark(struct cx23885_dev * dev,enum tx_fifo_watermark level)361 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
362 enum tx_fifo_watermark level)
363 {
364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
365 }
366
control_rx_irq_watermark(struct cx23885_dev * dev,enum rx_fifo_watermark level)367 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
368 enum rx_fifo_watermark level)
369 {
370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
371 }
372
control_tx_enable(struct cx23885_dev * dev,bool enable)373 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
374 {
375 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
376 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
377 }
378
control_rx_enable(struct cx23885_dev * dev,bool enable)379 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
380 {
381 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
382 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
383 }
384
control_tx_modulation_enable(struct cx23885_dev * dev,bool enable)385 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
386 bool enable)
387 {
388 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
389 enable ? CNTRL_MOD : 0);
390 }
391
control_rx_demodulation_enable(struct cx23885_dev * dev,bool enable)392 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
393 bool enable)
394 {
395 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
396 enable ? CNTRL_DMD : 0);
397 }
398
control_rx_s_edge_detection(struct cx23885_dev * dev,u32 edge_types)399 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
400 u32 edge_types)
401 {
402 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
403 edge_types & CNTRL_EDG_BOTH);
404 }
405
control_rx_s_carrier_window(struct cx23885_dev * dev,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)406 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
407 unsigned int carrier,
408 unsigned int *carrier_range_low,
409 unsigned int *carrier_range_high)
410 {
411 u32 v;
412 unsigned int c16 = carrier * 16;
413
414 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
415 v = CNTRL_WIN_3_4;
416 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
417 } else {
418 v = CNTRL_WIN_3_3;
419 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
420 }
421
422 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
423 v |= CNTRL_WIN_4_3;
424 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
425 } else {
426 v |= CNTRL_WIN_3_3;
427 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
428 }
429 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
430 }
431
control_tx_polarity_invert(struct cx23885_dev * dev,bool invert)432 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
433 bool invert)
434 {
435 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
436 invert ? CNTRL_CPL : 0);
437 }
438
control_tx_level_invert(struct cx23885_dev * dev,bool invert)439 static inline void control_tx_level_invert(struct cx23885_dev *dev,
440 bool invert)
441 {
442 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
443 invert ? CNTRL_IVO : 0);
444 }
445
446 /*
447 * IR Rx & Tx Clock Register helpers
448 */
txclk_tx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)449 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
450 unsigned int freq,
451 u16 *divider)
452 {
453 *divider = carrier_freq_to_clock_divider(freq);
454 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
455 return clock_divider_to_carrier_freq(*divider);
456 }
457
rxclk_rx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)458 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
459 unsigned int freq,
460 u16 *divider)
461 {
462 *divider = carrier_freq_to_clock_divider(freq);
463 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
464 return clock_divider_to_carrier_freq(*divider);
465 }
466
txclk_tx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)467 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
468 u16 *divider)
469 {
470 u64 pulse_clocks;
471
472 if (ns > IR_MAX_DURATION)
473 ns = IR_MAX_DURATION;
474 pulse_clocks = ns_to_pulse_clocks(ns);
475 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
476 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
477 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
478 }
479
rxclk_rx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)480 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
481 u16 *divider)
482 {
483 u64 pulse_clocks;
484
485 if (ns > IR_MAX_DURATION)
486 ns = IR_MAX_DURATION;
487 pulse_clocks = ns_to_pulse_clocks(ns);
488 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
489 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
490 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
491 }
492
493 /*
494 * IR Tx Carrier Duty Cycle register helpers
495 */
cduty_tx_s_duty_cycle(struct cx23885_dev * dev,unsigned int duty_cycle)496 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
497 unsigned int duty_cycle)
498 {
499 u32 n;
500 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
501 if (n != 0)
502 n--;
503 if (n > 15)
504 n = 15;
505 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
506 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
507 }
508
509 /*
510 * IR Filter Register helpers
511 */
filter_rx_s_min_width(struct cx23885_dev * dev,u32 min_width_ns)512 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
513 {
514 u32 count = ns_to_lpf_count(min_width_ns);
515 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
516 return lpf_count_to_ns(count);
517 }
518
519 /*
520 * IR IRQ Enable Register helpers
521 */
irqenable_rx(struct cx23885_dev * dev,u32 mask)522 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
523 {
524 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
525 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
526 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
527 }
528
irqenable_tx(struct cx23885_dev * dev,u32 mask)529 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
530 {
531 mask &= IRQEN_TSE;
532 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
533 }
534
535 /*
536 * V4L2 Subdevice IR Ops
537 */
cx23888_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)538 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
539 bool *handled)
540 {
541 struct cx23888_ir_state *state = to_state(sd);
542 struct cx23885_dev *dev = state->dev;
543 unsigned long flags;
544
545 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
546 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
547 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
548
549 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
550 unsigned int i, j, k;
551 u32 events, v;
552 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
553
554 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
555 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
556 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
557 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
558
559 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
560 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
561 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
562 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
563
564 *handled = false;
565 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
566 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
567 rto ? "rto" : " ", ror ? "ror" : " ",
568 stats & STATS_TBY ? "tby" : " ",
569 stats & STATS_RBY ? "rby" : " ");
570
571 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
572 tse ? "tse" : " ", rse ? "rse" : " ",
573 rte ? "rte" : " ", roe ? "roe" : " ");
574
575 /*
576 * Transmitter interrupt service
577 */
578 if (tse && tsr) {
579 /*
580 * TODO:
581 * Check the watermark threshold setting
582 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
583 * Push the data to the hardware FIFO.
584 * If there was nothing more to send in the tx_kfifo, disable
585 * the TSR IRQ and notify the v4l2_device.
586 * If there was something in the tx_kfifo, check the tx_kfifo
587 * level and notify the v4l2_device, if it is low.
588 */
589 /* For now, inhibit TSR interrupt until Tx is implemented */
590 irqenable_tx(dev, 0);
591 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
592 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
593 *handled = true;
594 }
595
596 /*
597 * Receiver interrupt service
598 */
599 kror = 0;
600 if ((rse && rsr) || (rte && rto)) {
601 /*
602 * Receive data on RSR to clear the STATS_RSR.
603 * Receive data on RTO, since we may not have yet hit the RSR
604 * watermark when we receive the RTO.
605 */
606 for (i = 0, v = FIFO_RX_NDV;
607 (v & FIFO_RX_NDV) && !kror; i = 0) {
608 for (j = 0;
609 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
610 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
611 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
612 i++;
613 }
614 if (i == 0)
615 break;
616 j = i * sizeof(union cx23888_ir_fifo_rec);
617 k = kfifo_in_locked(&state->rx_kfifo,
618 (unsigned char *) rx_data, j,
619 &state->rx_kfifo_lock);
620 if (k != j)
621 kror++; /* rx_kfifo over run */
622 }
623 *handled = true;
624 }
625
626 events = 0;
627 v = 0;
628 if (kror) {
629 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
630 v4l2_err(sd, "IR receiver software FIFO overrun\n");
631 }
632 if (roe && ror) {
633 /*
634 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
635 * the Rx FIFO Over Run status (STATS_ROR)
636 */
637 v |= CNTRL_RFE;
638 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
639 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
640 }
641 if (rte && rto) {
642 /*
643 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
644 * the Rx Pulse Width Timer Time Out (STATS_RTO)
645 */
646 v |= CNTRL_RXE;
647 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
648 }
649 if (v) {
650 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
651 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
652 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
653 *handled = true;
654 }
655
656 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
657 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
658 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
659 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
660
661 if (events)
662 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
663 return 0;
664 }
665
666 /* Receiver */
cx23888_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)667 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
668 ssize_t *num)
669 {
670 struct cx23888_ir_state *state = to_state(sd);
671 bool invert = (bool) atomic_read(&state->rx_invert);
672 u16 divider = (u16) atomic_read(&state->rxclk_divider);
673
674 unsigned int i, n;
675 union cx23888_ir_fifo_rec *p;
676 unsigned u, v, w;
677
678 n = count / sizeof(union cx23888_ir_fifo_rec)
679 * sizeof(union cx23888_ir_fifo_rec);
680 if (n == 0) {
681 *num = 0;
682 return 0;
683 }
684
685 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
686
687 n /= sizeof(union cx23888_ir_fifo_rec);
688 *num = n * sizeof(union cx23888_ir_fifo_rec);
689
690 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
691
692 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
693 /* Assume RTO was because of no IR light input */
694 u = 0;
695 w = 1;
696 } else {
697 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
698 if (invert)
699 u = u ? 0 : 1;
700 w = 0;
701 }
702
703 v = (unsigned) pulse_width_count_to_ns(
704 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
705 if (v > IR_MAX_DURATION)
706 v = IR_MAX_DURATION;
707
708 init_ir_raw_event(&p->ir_core_data);
709 p->ir_core_data.pulse = u;
710 p->ir_core_data.duration = v;
711 p->ir_core_data.timeout = w;
712
713 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
714 v, u ? "mark" : "space", w ? "(timed out)" : "");
715 if (w)
716 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
717 }
718 return 0;
719 }
720
cx23888_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)721 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
722 struct v4l2_subdev_ir_parameters *p)
723 {
724 struct cx23888_ir_state *state = to_state(sd);
725 mutex_lock(&state->rx_params_lock);
726 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
727 mutex_unlock(&state->rx_params_lock);
728 return 0;
729 }
730
cx23888_ir_rx_shutdown(struct v4l2_subdev * sd)731 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
732 {
733 struct cx23888_ir_state *state = to_state(sd);
734 struct cx23885_dev *dev = state->dev;
735
736 mutex_lock(&state->rx_params_lock);
737
738 /* Disable or slow down all IR Rx circuits and counters */
739 irqenable_rx(dev, 0);
740 control_rx_enable(dev, false);
741 control_rx_demodulation_enable(dev, false);
742 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
743 filter_rx_s_min_width(dev, 0);
744 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
745
746 state->rx_params.shutdown = true;
747
748 mutex_unlock(&state->rx_params_lock);
749 return 0;
750 }
751
cx23888_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)752 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
753 struct v4l2_subdev_ir_parameters *p)
754 {
755 struct cx23888_ir_state *state = to_state(sd);
756 struct cx23885_dev *dev = state->dev;
757 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
758 u16 rxclk_divider;
759
760 if (p->shutdown)
761 return cx23888_ir_rx_shutdown(sd);
762
763 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
764 return -ENOSYS;
765
766 mutex_lock(&state->rx_params_lock);
767
768 o->shutdown = p->shutdown;
769
770 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
771
772 o->bytes_per_data_element = p->bytes_per_data_element
773 = sizeof(union cx23888_ir_fifo_rec);
774
775 /* Before we tweak the hardware, we have to disable the receiver */
776 irqenable_rx(dev, 0);
777 control_rx_enable(dev, false);
778
779 control_rx_demodulation_enable(dev, p->modulation);
780 o->modulation = p->modulation;
781
782 if (p->modulation) {
783 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
784 &rxclk_divider);
785
786 o->carrier_freq = p->carrier_freq;
787
788 o->duty_cycle = p->duty_cycle = 50;
789
790 control_rx_s_carrier_window(dev, p->carrier_freq,
791 &p->carrier_range_lower,
792 &p->carrier_range_upper);
793 o->carrier_range_lower = p->carrier_range_lower;
794 o->carrier_range_upper = p->carrier_range_upper;
795
796 p->max_pulse_width =
797 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
798 } else {
799 p->max_pulse_width =
800 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
801 &rxclk_divider);
802 }
803 o->max_pulse_width = p->max_pulse_width;
804 atomic_set(&state->rxclk_divider, rxclk_divider);
805
806 p->noise_filter_min_width =
807 filter_rx_s_min_width(dev, p->noise_filter_min_width);
808 o->noise_filter_min_width = p->noise_filter_min_width;
809
810 p->resolution = clock_divider_to_resolution(rxclk_divider);
811 o->resolution = p->resolution;
812
813 /* FIXME - make this dependent on resolution for better performance */
814 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
815
816 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
817
818 o->invert_level = p->invert_level;
819 atomic_set(&state->rx_invert, p->invert_level);
820
821 o->interrupt_enable = p->interrupt_enable;
822 o->enable = p->enable;
823 if (p->enable) {
824 unsigned long flags;
825
826 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
827 kfifo_reset(&state->rx_kfifo);
828 /* reset tx_fifo too if there is one... */
829 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
830 if (p->interrupt_enable)
831 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
832 control_rx_enable(dev, p->enable);
833 }
834
835 mutex_unlock(&state->rx_params_lock);
836 return 0;
837 }
838
839 /* Transmitter */
cx23888_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)840 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
841 ssize_t *num)
842 {
843 struct cx23888_ir_state *state = to_state(sd);
844 struct cx23885_dev *dev = state->dev;
845 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
846 irqenable_tx(dev, IRQEN_TSE);
847 *num = count;
848 return 0;
849 }
850
cx23888_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)851 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
852 struct v4l2_subdev_ir_parameters *p)
853 {
854 struct cx23888_ir_state *state = to_state(sd);
855 mutex_lock(&state->tx_params_lock);
856 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
857 mutex_unlock(&state->tx_params_lock);
858 return 0;
859 }
860
cx23888_ir_tx_shutdown(struct v4l2_subdev * sd)861 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
862 {
863 struct cx23888_ir_state *state = to_state(sd);
864 struct cx23885_dev *dev = state->dev;
865
866 mutex_lock(&state->tx_params_lock);
867
868 /* Disable or slow down all IR Tx circuits and counters */
869 irqenable_tx(dev, 0);
870 control_tx_enable(dev, false);
871 control_tx_modulation_enable(dev, false);
872 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
873
874 state->tx_params.shutdown = true;
875
876 mutex_unlock(&state->tx_params_lock);
877 return 0;
878 }
879
cx23888_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)880 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
881 struct v4l2_subdev_ir_parameters *p)
882 {
883 struct cx23888_ir_state *state = to_state(sd);
884 struct cx23885_dev *dev = state->dev;
885 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
886 u16 txclk_divider;
887
888 if (p->shutdown)
889 return cx23888_ir_tx_shutdown(sd);
890
891 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
892 return -ENOSYS;
893
894 mutex_lock(&state->tx_params_lock);
895
896 o->shutdown = p->shutdown;
897
898 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
899
900 o->bytes_per_data_element = p->bytes_per_data_element
901 = sizeof(union cx23888_ir_fifo_rec);
902
903 /* Before we tweak the hardware, we have to disable the transmitter */
904 irqenable_tx(dev, 0);
905 control_tx_enable(dev, false);
906
907 control_tx_modulation_enable(dev, p->modulation);
908 o->modulation = p->modulation;
909
910 if (p->modulation) {
911 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
912 &txclk_divider);
913 o->carrier_freq = p->carrier_freq;
914
915 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
916 o->duty_cycle = p->duty_cycle;
917
918 p->max_pulse_width =
919 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
920 } else {
921 p->max_pulse_width =
922 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
923 &txclk_divider);
924 }
925 o->max_pulse_width = p->max_pulse_width;
926 atomic_set(&state->txclk_divider, txclk_divider);
927
928 p->resolution = clock_divider_to_resolution(txclk_divider);
929 o->resolution = p->resolution;
930
931 /* FIXME - make this dependent on resolution for better performance */
932 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
933
934 control_tx_polarity_invert(dev, p->invert_carrier_sense);
935 o->invert_carrier_sense = p->invert_carrier_sense;
936
937 control_tx_level_invert(dev, p->invert_level);
938 o->invert_level = p->invert_level;
939
940 o->interrupt_enable = p->interrupt_enable;
941 o->enable = p->enable;
942 if (p->enable) {
943 if (p->interrupt_enable)
944 irqenable_tx(dev, IRQEN_TSE);
945 control_tx_enable(dev, p->enable);
946 }
947
948 mutex_unlock(&state->tx_params_lock);
949 return 0;
950 }
951
952
953 /*
954 * V4L2 Subdevice Core Ops
955 */
cx23888_ir_log_status(struct v4l2_subdev * sd)956 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
957 {
958 struct cx23888_ir_state *state = to_state(sd);
959 struct cx23885_dev *dev = state->dev;
960 char *s;
961 int i, j;
962
963 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
964 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
965 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
966 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
967 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
968 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
969 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
970
971 v4l2_info(sd, "IR Receiver:\n");
972 v4l2_info(sd, "\tEnabled: %s\n",
973 cntrl & CNTRL_RXE ? "yes" : "no");
974 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
975 cntrl & CNTRL_DMD ? "enabled" : "disabled");
976 v4l2_info(sd, "\tFIFO: %s\n",
977 cntrl & CNTRL_RFE ? "enabled" : "disabled");
978 switch (cntrl & CNTRL_EDG) {
979 case CNTRL_EDG_NONE:
980 s = "disabled";
981 break;
982 case CNTRL_EDG_FALL:
983 s = "falling edge";
984 break;
985 case CNTRL_EDG_RISE:
986 s = "rising edge";
987 break;
988 case CNTRL_EDG_BOTH:
989 s = "rising & falling edges";
990 break;
991 default:
992 s = "??? edge";
993 break;
994 }
995 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
996 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
997 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
998 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
999 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1000 v4l2_info(sd, "\tLoopback mode: %s\n",
1001 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1002 if (cntrl & CNTRL_DMD) {
1003 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1004 clock_divider_to_carrier_freq(rxclk));
1005 switch (cntrl & CNTRL_WIN) {
1006 case CNTRL_WIN_3_3:
1007 i = 3;
1008 j = 3;
1009 break;
1010 case CNTRL_WIN_4_3:
1011 i = 4;
1012 j = 3;
1013 break;
1014 case CNTRL_WIN_3_4:
1015 i = 3;
1016 j = 4;
1017 break;
1018 case CNTRL_WIN_4_4:
1019 i = 4;
1020 j = 4;
1021 break;
1022 default:
1023 i = 0;
1024 j = 0;
1025 break;
1026 }
1027 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1028 "-%1d/+%1d, %u to %u Hz\n", i, j,
1029 clock_divider_to_freq(rxclk, 16 + j),
1030 clock_divider_to_freq(rxclk, 16 - i));
1031 }
1032 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1033 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1034 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1035 v4l2_info(sd, "\tLow pass filter: %s\n",
1036 filtr ? "enabled" : "disabled");
1037 if (filtr)
1038 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1039 "%u ns\n",
1040 lpf_count_to_us(filtr),
1041 lpf_count_to_ns(filtr));
1042 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1043 stats & STATS_RTO ? "yes" : "no");
1044 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1045 irqen & IRQEN_RTE ? "enabled" : "disabled");
1046 v4l2_info(sd, "\tFIFO overrun: %s\n",
1047 stats & STATS_ROR ? "yes" : "no");
1048 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1049 irqen & IRQEN_ROE ? "enabled" : "disabled");
1050 v4l2_info(sd, "\tBusy: %s\n",
1051 stats & STATS_RBY ? "yes" : "no");
1052 v4l2_info(sd, "\tFIFO service requested: %s\n",
1053 stats & STATS_RSR ? "yes" : "no");
1054 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1055 irqen & IRQEN_RSE ? "enabled" : "disabled");
1056
1057 v4l2_info(sd, "IR Transmitter:\n");
1058 v4l2_info(sd, "\tEnabled: %s\n",
1059 cntrl & CNTRL_TXE ? "yes" : "no");
1060 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1061 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1062 v4l2_info(sd, "\tFIFO: %s\n",
1063 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1064 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1065 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1066 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1067 cntrl & CNTRL_IVO ? "yes" : "no");
1068 v4l2_info(sd, "\tCarrier polarity: %s\n",
1069 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1070 : "space:noburst mark:burst");
1071 if (cntrl & CNTRL_MOD) {
1072 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1073 clock_divider_to_carrier_freq(txclk));
1074 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1075 cduty + 1);
1076 }
1077 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1078 pulse_width_count_to_us(FIFO_RXTX, txclk),
1079 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1080 v4l2_info(sd, "\tBusy: %s\n",
1081 stats & STATS_TBY ? "yes" : "no");
1082 v4l2_info(sd, "\tFIFO service requested: %s\n",
1083 stats & STATS_TSR ? "yes" : "no");
1084 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1085 irqen & IRQEN_TSE ? "enabled" : "disabled");
1086
1087 return 0;
1088 }
1089
cx23888_ir_dbg_match(const struct v4l2_dbg_match * match)1090 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1091 {
1092 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1093 }
1094
cx23888_ir_g_chip_ident(struct v4l2_subdev * sd,struct v4l2_dbg_chip_ident * chip)1095 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1096 struct v4l2_dbg_chip_ident *chip)
1097 {
1098 struct cx23888_ir_state *state = to_state(sd);
1099
1100 if (cx23888_ir_dbg_match(&chip->match)) {
1101 chip->ident = state->id;
1102 chip->revision = state->rev;
1103 }
1104 return 0;
1105 }
1106
1107 #ifdef CONFIG_VIDEO_ADV_DEBUG
cx23888_ir_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1108 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1109 struct v4l2_dbg_register *reg)
1110 {
1111 struct cx23888_ir_state *state = to_state(sd);
1112 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1113
1114 if (!cx23888_ir_dbg_match(®->match))
1115 return -EINVAL;
1116 if ((addr & 0x3) != 0)
1117 return -EINVAL;
1118 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1119 return -EINVAL;
1120 if (!capable(CAP_SYS_ADMIN))
1121 return -EPERM;
1122 reg->size = 4;
1123 reg->val = cx23888_ir_read4(state->dev, addr);
1124 return 0;
1125 }
1126
cx23888_ir_s_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1127 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1128 struct v4l2_dbg_register *reg)
1129 {
1130 struct cx23888_ir_state *state = to_state(sd);
1131 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1132
1133 if (!cx23888_ir_dbg_match(®->match))
1134 return -EINVAL;
1135 if ((addr & 0x3) != 0)
1136 return -EINVAL;
1137 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1138 return -EINVAL;
1139 if (!capable(CAP_SYS_ADMIN))
1140 return -EPERM;
1141 cx23888_ir_write4(state->dev, addr, reg->val);
1142 return 0;
1143 }
1144 #endif
1145
1146 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1147 .g_chip_ident = cx23888_ir_g_chip_ident,
1148 .log_status = cx23888_ir_log_status,
1149 #ifdef CONFIG_VIDEO_ADV_DEBUG
1150 .g_register = cx23888_ir_g_register,
1151 .s_register = cx23888_ir_s_register,
1152 #endif
1153 .interrupt_service_routine = cx23888_ir_irq_handler,
1154 };
1155
1156 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1157 .rx_read = cx23888_ir_rx_read,
1158 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1159 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1160
1161 .tx_write = cx23888_ir_tx_write,
1162 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1163 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1164 };
1165
1166 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1167 .core = &cx23888_ir_core_ops,
1168 .ir = &cx23888_ir_ir_ops,
1169 };
1170
1171 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1172 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1173 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1174
1175 .enable = false,
1176 .interrupt_enable = false,
1177 .shutdown = true,
1178
1179 .modulation = true,
1180 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1181
1182 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1183 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1184 .noise_filter_min_width = 333333, /* ns */
1185 .carrier_range_lower = 35000,
1186 .carrier_range_upper = 37000,
1187 .invert_level = false,
1188 };
1189
1190 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1191 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1192 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1193
1194 .enable = false,
1195 .interrupt_enable = false,
1196 .shutdown = true,
1197
1198 .modulation = true,
1199 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1200 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1201 .invert_level = false,
1202 .invert_carrier_sense = false,
1203 };
1204
cx23888_ir_probe(struct cx23885_dev * dev)1205 int cx23888_ir_probe(struct cx23885_dev *dev)
1206 {
1207 struct cx23888_ir_state *state;
1208 struct v4l2_subdev *sd;
1209 struct v4l2_subdev_ir_parameters default_params;
1210 int ret;
1211
1212 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1213 if (state == NULL)
1214 return -ENOMEM;
1215
1216 spin_lock_init(&state->rx_kfifo_lock);
1217 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1218 return -ENOMEM;
1219
1220 state->dev = dev;
1221 state->id = V4L2_IDENT_CX23888_IR;
1222 state->rev = 0;
1223 sd = &state->sd;
1224
1225 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1226 v4l2_set_subdevdata(sd, state);
1227 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1228 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1229 sd->grp_id = CX23885_HW_888_IR;
1230
1231 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1232 if (ret == 0) {
1233 /*
1234 * Ensure no interrupts arrive from '888 specific conditions,
1235 * since we ignore them in this driver to have commonality with
1236 * similar IR controller cores.
1237 */
1238 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1239
1240 mutex_init(&state->rx_params_lock);
1241 memcpy(&default_params, &default_rx_params,
1242 sizeof(struct v4l2_subdev_ir_parameters));
1243 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1244
1245 mutex_init(&state->tx_params_lock);
1246 memcpy(&default_params, &default_tx_params,
1247 sizeof(struct v4l2_subdev_ir_parameters));
1248 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1249 } else {
1250 kfifo_free(&state->rx_kfifo);
1251 }
1252 return ret;
1253 }
1254
cx23888_ir_remove(struct cx23885_dev * dev)1255 int cx23888_ir_remove(struct cx23885_dev *dev)
1256 {
1257 struct v4l2_subdev *sd;
1258 struct cx23888_ir_state *state;
1259
1260 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1261 if (sd == NULL)
1262 return -ENODEV;
1263
1264 cx23888_ir_rx_shutdown(sd);
1265 cx23888_ir_tx_shutdown(sd);
1266
1267 state = to_state(sd);
1268 v4l2_device_unregister_subdev(sd);
1269 kfifo_free(&state->rx_kfifo);
1270 kfree(state);
1271 /* Nothing more to free() as state held the actual v4l2_subdev object */
1272 return 0;
1273 }
1274