• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Driver for the Conexant CX23885/7/8 PCIe bridge
3  *
4  *  CX23888 Integrated Consumer Infrared Controller
5  *
6  *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License
10  *  as published by the Free Software Foundation; either version 2
11  *  of the License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  *  02110-1301, USA.
22  */
23 
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26 
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
30 
31 #include "cx23885.h"
32 
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36 
37 #define CX23888_IR_REG_BASE 	0x170000
38 /*
39  * These CX23888 register offsets have a straightforward one to one mapping
40  * to the CX23885 register offsets of 0x200 through 0x218
41  */
42 #define CX23888_IR_CNTRL_REG	0x170000
43 #define CNTRL_WIN_3_3	0x00000000
44 #define CNTRL_WIN_4_3	0x00000001
45 #define CNTRL_WIN_3_4	0x00000002
46 #define CNTRL_WIN_4_4	0x00000003
47 #define CNTRL_WIN	0x00000003
48 #define CNTRL_EDG_NONE	0x00000000
49 #define CNTRL_EDG_FALL	0x00000004
50 #define CNTRL_EDG_RISE	0x00000008
51 #define CNTRL_EDG_BOTH	0x0000000C
52 #define CNTRL_EDG	0x0000000C
53 #define CNTRL_DMD	0x00000010
54 #define CNTRL_MOD	0x00000020
55 #define CNTRL_RFE	0x00000040
56 #define CNTRL_TFE	0x00000080
57 #define CNTRL_RXE	0x00000100
58 #define CNTRL_TXE	0x00000200
59 #define CNTRL_RIC	0x00000400
60 #define CNTRL_TIC	0x00000800
61 #define CNTRL_CPL	0x00001000
62 #define CNTRL_LBM	0x00002000
63 #define CNTRL_R		0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO	0x00008000
66 
67 #define CX23888_IR_TXCLK_REG	0x170004
68 #define TXCLK_TCD	0x0000FFFF
69 
70 #define CX23888_IR_RXCLK_REG	0x170008
71 #define RXCLK_RCD	0x0000FFFF
72 
73 #define CX23888_IR_CDUTY_REG	0x17000C
74 #define CDUTY_CDC	0x0000000F
75 
76 #define CX23888_IR_STATS_REG	0x170010
77 #define STATS_RTO	0x00000001
78 #define STATS_ROR	0x00000002
79 #define STATS_RBY	0x00000004
80 #define STATS_TBY	0x00000008
81 #define STATS_RSR	0x00000010
82 #define STATS_TSR	0x00000020
83 
84 #define CX23888_IR_IRQEN_REG	0x170014
85 #define IRQEN_RTE	0x00000001
86 #define IRQEN_ROE	0x00000002
87 #define IRQEN_RSE	0x00000010
88 #define IRQEN_TSE	0x00000020
89 
90 #define CX23888_IR_FILTR_REG	0x170018
91 #define FILTR_LPF	0x0000FFFF
92 
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG	0x170040
95 #define FIFO_RXTX	0x0000FFFF
96 #define FIFO_RXTX_LVL	0x00010000
97 #define FIFO_RXTX_RTO	0x0001FFFF
98 #define FIFO_RX_NDV	0x00020000
99 #define FIFO_RX_DEPTH	8
100 #define FIFO_TX_DEPTH	8
101 
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG	0x17001C
104 #define CX23888_IR_TIMOL_REG	0x170020
105 #define CX23888_IR_WAKE0_REG	0x170024
106 #define CX23888_IR_WAKE1_REG	0x170028
107 #define CX23888_IR_WAKE2_REG	0x17002C
108 #define CX23888_IR_MASK0_REG	0x170030
109 #define CX23888_IR_MASK1_REG	0x170034
110 #define CX23888_IR_MAKS2_REG	0x170038
111 #define CX23888_IR_DPIPG_REG	0x17003C
112 #define CX23888_IR_LEARN_REG	0x170044
113 
114 #define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
116 
117 /*
118  * We use this union internally for convenience, but callers to tx_write
119  * and rx_read will be expecting records of type struct ir_raw_event.
120  * Always ensure the size of this union is dictated by struct ir_raw_event.
121  */
122 union cx23888_ir_fifo_rec {
123 	u32 hw_fifo_data;
124 	struct ir_raw_event ir_core_data;
125 };
126 
127 #define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
129 
130 struct cx23888_ir_state {
131 	struct v4l2_subdev sd;
132 	struct cx23885_dev *dev;
133 	u32 id;
134 	u32 rev;
135 
136 	struct v4l2_subdev_ir_parameters rx_params;
137 	struct mutex rx_params_lock;
138 	atomic_t rxclk_divider;
139 	atomic_t rx_invert;
140 
141 	struct kfifo rx_kfifo;
142 	spinlock_t rx_kfifo_lock;
143 
144 	struct v4l2_subdev_ir_parameters tx_params;
145 	struct mutex tx_params_lock;
146 	atomic_t txclk_divider;
147 };
148 
to_state(struct v4l2_subdev * sd)149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150 {
151 	return v4l2_get_subdevdata(sd);
152 }
153 
154 /*
155  * IR register block read and write functions
156  */
157 static
cx23888_ir_write4(struct cx23885_dev * dev,u32 addr,u32 value)158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159 {
160 	cx_write(addr, value);
161 	return 0;
162 }
163 
cx23888_ir_read4(struct cx23885_dev * dev,u32 addr)164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165 {
166 	return cx_read(addr);
167 }
168 
cx23888_ir_and_or4(struct cx23885_dev * dev,u32 addr,u32 and_mask,u32 or_value)169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170 				     u32 and_mask, u32 or_value)
171 {
172 	cx_andor(addr, ~and_mask, or_value);
173 	return 0;
174 }
175 
176 /*
177  * Rx and Tx Clock Divider register computations
178  *
179  * Note the largest clock divider value of 0xffff corresponds to:
180  * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181  * which fits in 21 bits, so we'll use unsigned int for time arguments.
182  */
count_to_clock_divider(unsigned int d)183 static inline u16 count_to_clock_divider(unsigned int d)
184 {
185 	if (d > RXCLK_RCD + 1)
186 		d = RXCLK_RCD;
187 	else if (d < 2)
188 		d = 1;
189 	else
190 		d--;
191 	return (u16) d;
192 }
193 
ns_to_clock_divider(unsigned int ns)194 static inline u16 ns_to_clock_divider(unsigned int ns)
195 {
196 	return count_to_clock_divider(
197 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198 }
199 
clock_divider_to_ns(unsigned int divider)200 static inline unsigned int clock_divider_to_ns(unsigned int divider)
201 {
202 	/* Period of the Rx or Tx clock in ns */
203 	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204 				 CX23888_IR_REFCLK_FREQ / 1000000);
205 }
206 
carrier_freq_to_clock_divider(unsigned int freq)207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208 {
209 	return count_to_clock_divider(
210 			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
211 }
212 
clock_divider_to_carrier_freq(unsigned int divider)213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214 {
215 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216 }
217 
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)218 static inline u16 freq_to_clock_divider(unsigned int freq,
219 					unsigned int rollovers)
220 {
221 	return count_to_clock_divider(
222 		   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223 }
224 
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)225 static inline unsigned int clock_divider_to_freq(unsigned int divider,
226 						 unsigned int rollovers)
227 {
228 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229 				 (divider + 1) * rollovers);
230 }
231 
232 /*
233  * Low Pass Filter register calculations
234  *
235  * Note the largest count value of 0xffff corresponds to:
236  * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237  * which fits in 21 bits, so we'll use unsigned int for time arguments.
238  */
count_to_lpf_count(unsigned int d)239 static inline u16 count_to_lpf_count(unsigned int d)
240 {
241 	if (d > FILTR_LPF)
242 		d = FILTR_LPF;
243 	else if (d < 4)
244 		d = 0;
245 	return (u16) d;
246 }
247 
ns_to_lpf_count(unsigned int ns)248 static inline u16 ns_to_lpf_count(unsigned int ns)
249 {
250 	return count_to_lpf_count(
251 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252 }
253 
lpf_count_to_ns(unsigned int count)254 static inline unsigned int lpf_count_to_ns(unsigned int count)
255 {
256 	/* Duration of the Low Pass Filter rejection window in ns */
257 	return DIV_ROUND_CLOSEST(count * 1000,
258 				 CX23888_IR_REFCLK_FREQ / 1000000);
259 }
260 
lpf_count_to_us(unsigned int count)261 static inline unsigned int lpf_count_to_us(unsigned int count)
262 {
263 	/* Duration of the Low Pass Filter rejection window in us */
264 	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265 }
266 
267 /*
268  * FIFO register pulse width count compuations
269  */
clock_divider_to_resolution(u16 divider)270 static u32 clock_divider_to_resolution(u16 divider)
271 {
272 	/*
273 	 * Resolution is the duration of 1 tick of the readable portion of
274 	 * of the pulse width counter as read from the FIFO.  The two lsb's are
275 	 * not readable, hence the << 2.  This function returns ns.
276 	 */
277 	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
278 				 CX23888_IR_REFCLK_FREQ / 1000000);
279 }
280 
pulse_width_count_to_ns(u16 count,u16 divider)281 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282 {
283 	u64 n;
284 	u32 rem;
285 
286 	/*
287 	 * The 2 lsb's of the pulse width timer count are not readable, hence
288 	 * the (count << 2) | 0x3
289 	 */
290 	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
292 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 		n++;
294 	return n;
295 }
296 
pulse_width_count_to_us(u16 count,u16 divider)297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298 {
299 	u64 n;
300 	u32 rem;
301 
302 	/*
303 	 * The 2 lsb's of the pulse width timer count are not readable, hence
304 	 * the (count << 2) | 0x3
305 	 */
306 	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
307 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309 		n++;
310 	return (unsigned int) n;
311 }
312 
313 /*
314  * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315  *
316  * The total pulse clock count is an 18 bit pulse width timer count as the most
317  * significant part and (up to) 16 bit clock divider count as a modulus.
318  * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319  * width timer count's least significant bit.
320  */
ns_to_pulse_clocks(u32 ns)321 static u64 ns_to_pulse_clocks(u32 ns)
322 {
323 	u64 clocks;
324 	u32 rem;
325 	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
326 	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
327 	if (rem >= 1000 / 2)
328 		clocks++;
329 	return clocks;
330 }
331 
pulse_clocks_to_clock_divider(u64 count)332 static u16 pulse_clocks_to_clock_divider(u64 count)
333 {
334 	u32 rem;
335 
336 	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
337 
338 	/* net result needs to be rounded down and decremented by 1 */
339 	if (count > RXCLK_RCD + 1)
340 		count = RXCLK_RCD;
341 	else if (count < 2)
342 		count = 1;
343 	else
344 		count--;
345 	return (u16) count;
346 }
347 
348 /*
349  * IR Control Register helpers
350  */
351 enum tx_fifo_watermark {
352 	TX_FIFO_HALF_EMPTY = 0,
353 	TX_FIFO_EMPTY      = CNTRL_TIC,
354 };
355 
356 enum rx_fifo_watermark {
357 	RX_FIFO_HALF_FULL = 0,
358 	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
359 };
360 
control_tx_irq_watermark(struct cx23885_dev * dev,enum tx_fifo_watermark level)361 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
362 					    enum tx_fifo_watermark level)
363 {
364 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
365 }
366 
control_rx_irq_watermark(struct cx23885_dev * dev,enum rx_fifo_watermark level)367 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
368 					    enum rx_fifo_watermark level)
369 {
370 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
371 }
372 
control_tx_enable(struct cx23885_dev * dev,bool enable)373 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
374 {
375 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
376 			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
377 }
378 
control_rx_enable(struct cx23885_dev * dev,bool enable)379 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
380 {
381 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
382 			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
383 }
384 
control_tx_modulation_enable(struct cx23885_dev * dev,bool enable)385 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
386 						bool enable)
387 {
388 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
389 			   enable ? CNTRL_MOD : 0);
390 }
391 
control_rx_demodulation_enable(struct cx23885_dev * dev,bool enable)392 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
393 						  bool enable)
394 {
395 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
396 			   enable ? CNTRL_DMD : 0);
397 }
398 
control_rx_s_edge_detection(struct cx23885_dev * dev,u32 edge_types)399 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
400 					       u32 edge_types)
401 {
402 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
403 			   edge_types & CNTRL_EDG_BOTH);
404 }
405 
control_rx_s_carrier_window(struct cx23885_dev * dev,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)406 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
407 					unsigned int carrier,
408 					unsigned int *carrier_range_low,
409 					unsigned int *carrier_range_high)
410 {
411 	u32 v;
412 	unsigned int c16 = carrier * 16;
413 
414 	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
415 		v = CNTRL_WIN_3_4;
416 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
417 	} else {
418 		v = CNTRL_WIN_3_3;
419 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
420 	}
421 
422 	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
423 		v |= CNTRL_WIN_4_3;
424 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
425 	} else {
426 		v |= CNTRL_WIN_3_3;
427 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
428 	}
429 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
430 }
431 
control_tx_polarity_invert(struct cx23885_dev * dev,bool invert)432 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
433 					      bool invert)
434 {
435 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
436 			   invert ? CNTRL_CPL : 0);
437 }
438 
control_tx_level_invert(struct cx23885_dev * dev,bool invert)439 static inline void control_tx_level_invert(struct cx23885_dev *dev,
440 					  bool invert)
441 {
442 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
443 			   invert ? CNTRL_IVO : 0);
444 }
445 
446 /*
447  * IR Rx & Tx Clock Register helpers
448  */
txclk_tx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)449 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
450 				       unsigned int freq,
451 				       u16 *divider)
452 {
453 	*divider = carrier_freq_to_clock_divider(freq);
454 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
455 	return clock_divider_to_carrier_freq(*divider);
456 }
457 
rxclk_rx_s_carrier(struct cx23885_dev * dev,unsigned int freq,u16 * divider)458 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
459 				       unsigned int freq,
460 				       u16 *divider)
461 {
462 	*divider = carrier_freq_to_clock_divider(freq);
463 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
464 	return clock_divider_to_carrier_freq(*divider);
465 }
466 
txclk_tx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)467 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
468 				      u16 *divider)
469 {
470 	u64 pulse_clocks;
471 
472 	if (ns > IR_MAX_DURATION)
473 		ns = IR_MAX_DURATION;
474 	pulse_clocks = ns_to_pulse_clocks(ns);
475 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
476 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
477 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
478 }
479 
rxclk_rx_s_max_pulse_width(struct cx23885_dev * dev,u32 ns,u16 * divider)480 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
481 				      u16 *divider)
482 {
483 	u64 pulse_clocks;
484 
485 	if (ns > IR_MAX_DURATION)
486 		ns = IR_MAX_DURATION;
487 	pulse_clocks = ns_to_pulse_clocks(ns);
488 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
489 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
490 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
491 }
492 
493 /*
494  * IR Tx Carrier Duty Cycle register helpers
495  */
cduty_tx_s_duty_cycle(struct cx23885_dev * dev,unsigned int duty_cycle)496 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
497 					  unsigned int duty_cycle)
498 {
499 	u32 n;
500 	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
501 	if (n != 0)
502 		n--;
503 	if (n > 15)
504 		n = 15;
505 	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
506 	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
507 }
508 
509 /*
510  * IR Filter Register helpers
511  */
filter_rx_s_min_width(struct cx23885_dev * dev,u32 min_width_ns)512 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
513 {
514 	u32 count = ns_to_lpf_count(min_width_ns);
515 	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
516 	return lpf_count_to_ns(count);
517 }
518 
519 /*
520  * IR IRQ Enable Register helpers
521  */
irqenable_rx(struct cx23885_dev * dev,u32 mask)522 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
523 {
524 	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
525 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
526 			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
527 }
528 
irqenable_tx(struct cx23885_dev * dev,u32 mask)529 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
530 {
531 	mask &= IRQEN_TSE;
532 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
533 }
534 
535 /*
536  * V4L2 Subdevice IR Ops
537  */
cx23888_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)538 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
539 				  bool *handled)
540 {
541 	struct cx23888_ir_state *state = to_state(sd);
542 	struct cx23885_dev *dev = state->dev;
543 	unsigned long flags;
544 
545 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
546 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
547 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
548 
549 	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
550 	unsigned int i, j, k;
551 	u32 events, v;
552 	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
553 
554 	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
555 	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
556 	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
557 	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
558 
559 	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
560 	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
561 	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
562 	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
563 
564 	*handled = false;
565 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
566 		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
567 		 rto ? "rto" : "   ", ror ? "ror" : "   ",
568 		 stats & STATS_TBY ? "tby" : "   ",
569 		 stats & STATS_RBY ? "rby" : "   ");
570 
571 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
572 		 tse ? "tse" : "   ", rse ? "rse" : "   ",
573 		 rte ? "rte" : "   ", roe ? "roe" : "   ");
574 
575 	/*
576 	 * Transmitter interrupt service
577 	 */
578 	if (tse && tsr) {
579 		/*
580 		 * TODO:
581 		 * Check the watermark threshold setting
582 		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
583 		 * Push the data to the hardware FIFO.
584 		 * If there was nothing more to send in the tx_kfifo, disable
585 		 *	the TSR IRQ and notify the v4l2_device.
586 		 * If there was something in the tx_kfifo, check the tx_kfifo
587 		 *      level and notify the v4l2_device, if it is low.
588 		 */
589 		/* For now, inhibit TSR interrupt until Tx is implemented */
590 		irqenable_tx(dev, 0);
591 		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
592 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
593 		*handled = true;
594 	}
595 
596 	/*
597 	 * Receiver interrupt service
598 	 */
599 	kror = 0;
600 	if ((rse && rsr) || (rte && rto)) {
601 		/*
602 		 * Receive data on RSR to clear the STATS_RSR.
603 		 * Receive data on RTO, since we may not have yet hit the RSR
604 		 * watermark when we receive the RTO.
605 		 */
606 		for (i = 0, v = FIFO_RX_NDV;
607 		     (v & FIFO_RX_NDV) && !kror; i = 0) {
608 			for (j = 0;
609 			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
610 				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
611 				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
612 				i++;
613 			}
614 			if (i == 0)
615 				break;
616 			j = i * sizeof(union cx23888_ir_fifo_rec);
617 			k = kfifo_in_locked(&state->rx_kfifo,
618 				      (unsigned char *) rx_data, j,
619 				      &state->rx_kfifo_lock);
620 			if (k != j)
621 				kror++; /* rx_kfifo over run */
622 		}
623 		*handled = true;
624 	}
625 
626 	events = 0;
627 	v = 0;
628 	if (kror) {
629 		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
630 		v4l2_err(sd, "IR receiver software FIFO overrun\n");
631 	}
632 	if (roe && ror) {
633 		/*
634 		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
635 		 * the Rx FIFO Over Run status (STATS_ROR)
636 		 */
637 		v |= CNTRL_RFE;
638 		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
639 		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
640 	}
641 	if (rte && rto) {
642 		/*
643 		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
644 		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
645 		 */
646 		v |= CNTRL_RXE;
647 		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
648 	}
649 	if (v) {
650 		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
651 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
652 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
653 		*handled = true;
654 	}
655 
656 	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
657 	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
658 		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
659 	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
660 
661 	if (events)
662 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
663 	return 0;
664 }
665 
666 /* Receiver */
cx23888_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)667 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
668 			      ssize_t *num)
669 {
670 	struct cx23888_ir_state *state = to_state(sd);
671 	bool invert = (bool) atomic_read(&state->rx_invert);
672 	u16 divider = (u16) atomic_read(&state->rxclk_divider);
673 
674 	unsigned int i, n;
675 	union cx23888_ir_fifo_rec *p;
676 	unsigned u, v, w;
677 
678 	n = count / sizeof(union cx23888_ir_fifo_rec)
679 		* sizeof(union cx23888_ir_fifo_rec);
680 	if (n == 0) {
681 		*num = 0;
682 		return 0;
683 	}
684 
685 	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
686 
687 	n /= sizeof(union cx23888_ir_fifo_rec);
688 	*num = n * sizeof(union cx23888_ir_fifo_rec);
689 
690 	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
691 
692 		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
693 			/* Assume RTO was because of no IR light input */
694 			u = 0;
695 			w = 1;
696 		} else {
697 			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
698 			if (invert)
699 				u = u ? 0 : 1;
700 			w = 0;
701 		}
702 
703 		v = (unsigned) pulse_width_count_to_ns(
704 				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
705 		if (v > IR_MAX_DURATION)
706 			v = IR_MAX_DURATION;
707 
708 		init_ir_raw_event(&p->ir_core_data);
709 		p->ir_core_data.pulse = u;
710 		p->ir_core_data.duration = v;
711 		p->ir_core_data.timeout = w;
712 
713 		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
714 			 v, u ? "mark" : "space", w ? "(timed out)" : "");
715 		if (w)
716 			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
717 	}
718 	return 0;
719 }
720 
cx23888_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)721 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
722 				      struct v4l2_subdev_ir_parameters *p)
723 {
724 	struct cx23888_ir_state *state = to_state(sd);
725 	mutex_lock(&state->rx_params_lock);
726 	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
727 	mutex_unlock(&state->rx_params_lock);
728 	return 0;
729 }
730 
cx23888_ir_rx_shutdown(struct v4l2_subdev * sd)731 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
732 {
733 	struct cx23888_ir_state *state = to_state(sd);
734 	struct cx23885_dev *dev = state->dev;
735 
736 	mutex_lock(&state->rx_params_lock);
737 
738 	/* Disable or slow down all IR Rx circuits and counters */
739 	irqenable_rx(dev, 0);
740 	control_rx_enable(dev, false);
741 	control_rx_demodulation_enable(dev, false);
742 	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
743 	filter_rx_s_min_width(dev, 0);
744 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
745 
746 	state->rx_params.shutdown = true;
747 
748 	mutex_unlock(&state->rx_params_lock);
749 	return 0;
750 }
751 
cx23888_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)752 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
753 				      struct v4l2_subdev_ir_parameters *p)
754 {
755 	struct cx23888_ir_state *state = to_state(sd);
756 	struct cx23885_dev *dev = state->dev;
757 	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
758 	u16 rxclk_divider;
759 
760 	if (p->shutdown)
761 		return cx23888_ir_rx_shutdown(sd);
762 
763 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
764 		return -ENOSYS;
765 
766 	mutex_lock(&state->rx_params_lock);
767 
768 	o->shutdown = p->shutdown;
769 
770 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
771 
772 	o->bytes_per_data_element = p->bytes_per_data_element
773 				  = sizeof(union cx23888_ir_fifo_rec);
774 
775 	/* Before we tweak the hardware, we have to disable the receiver */
776 	irqenable_rx(dev, 0);
777 	control_rx_enable(dev, false);
778 
779 	control_rx_demodulation_enable(dev, p->modulation);
780 	o->modulation = p->modulation;
781 
782 	if (p->modulation) {
783 		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
784 						     &rxclk_divider);
785 
786 		o->carrier_freq = p->carrier_freq;
787 
788 		o->duty_cycle = p->duty_cycle = 50;
789 
790 		control_rx_s_carrier_window(dev, p->carrier_freq,
791 					    &p->carrier_range_lower,
792 					    &p->carrier_range_upper);
793 		o->carrier_range_lower = p->carrier_range_lower;
794 		o->carrier_range_upper = p->carrier_range_upper;
795 
796 		p->max_pulse_width =
797 			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
798 	} else {
799 		p->max_pulse_width =
800 			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
801 						       &rxclk_divider);
802 	}
803 	o->max_pulse_width = p->max_pulse_width;
804 	atomic_set(&state->rxclk_divider, rxclk_divider);
805 
806 	p->noise_filter_min_width =
807 			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
808 	o->noise_filter_min_width = p->noise_filter_min_width;
809 
810 	p->resolution = clock_divider_to_resolution(rxclk_divider);
811 	o->resolution = p->resolution;
812 
813 	/* FIXME - make this dependent on resolution for better performance */
814 	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
815 
816 	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
817 
818 	o->invert_level = p->invert_level;
819 	atomic_set(&state->rx_invert, p->invert_level);
820 
821 	o->interrupt_enable = p->interrupt_enable;
822 	o->enable = p->enable;
823 	if (p->enable) {
824 		unsigned long flags;
825 
826 		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
827 		kfifo_reset(&state->rx_kfifo);
828 		/* reset tx_fifo too if there is one... */
829 		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
830 		if (p->interrupt_enable)
831 			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
832 		control_rx_enable(dev, p->enable);
833 	}
834 
835 	mutex_unlock(&state->rx_params_lock);
836 	return 0;
837 }
838 
839 /* Transmitter */
cx23888_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)840 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
841 			       ssize_t *num)
842 {
843 	struct cx23888_ir_state *state = to_state(sd);
844 	struct cx23885_dev *dev = state->dev;
845 	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
846 	irqenable_tx(dev, IRQEN_TSE);
847 	*num = count;
848 	return 0;
849 }
850 
cx23888_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)851 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
852 				      struct v4l2_subdev_ir_parameters *p)
853 {
854 	struct cx23888_ir_state *state = to_state(sd);
855 	mutex_lock(&state->tx_params_lock);
856 	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
857 	mutex_unlock(&state->tx_params_lock);
858 	return 0;
859 }
860 
cx23888_ir_tx_shutdown(struct v4l2_subdev * sd)861 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
862 {
863 	struct cx23888_ir_state *state = to_state(sd);
864 	struct cx23885_dev *dev = state->dev;
865 
866 	mutex_lock(&state->tx_params_lock);
867 
868 	/* Disable or slow down all IR Tx circuits and counters */
869 	irqenable_tx(dev, 0);
870 	control_tx_enable(dev, false);
871 	control_tx_modulation_enable(dev, false);
872 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
873 
874 	state->tx_params.shutdown = true;
875 
876 	mutex_unlock(&state->tx_params_lock);
877 	return 0;
878 }
879 
cx23888_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)880 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
881 				      struct v4l2_subdev_ir_parameters *p)
882 {
883 	struct cx23888_ir_state *state = to_state(sd);
884 	struct cx23885_dev *dev = state->dev;
885 	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
886 	u16 txclk_divider;
887 
888 	if (p->shutdown)
889 		return cx23888_ir_tx_shutdown(sd);
890 
891 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
892 		return -ENOSYS;
893 
894 	mutex_lock(&state->tx_params_lock);
895 
896 	o->shutdown = p->shutdown;
897 
898 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
899 
900 	o->bytes_per_data_element = p->bytes_per_data_element
901 				  = sizeof(union cx23888_ir_fifo_rec);
902 
903 	/* Before we tweak the hardware, we have to disable the transmitter */
904 	irqenable_tx(dev, 0);
905 	control_tx_enable(dev, false);
906 
907 	control_tx_modulation_enable(dev, p->modulation);
908 	o->modulation = p->modulation;
909 
910 	if (p->modulation) {
911 		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
912 						     &txclk_divider);
913 		o->carrier_freq = p->carrier_freq;
914 
915 		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
916 		o->duty_cycle = p->duty_cycle;
917 
918 		p->max_pulse_width =
919 			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
920 	} else {
921 		p->max_pulse_width =
922 			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
923 						       &txclk_divider);
924 	}
925 	o->max_pulse_width = p->max_pulse_width;
926 	atomic_set(&state->txclk_divider, txclk_divider);
927 
928 	p->resolution = clock_divider_to_resolution(txclk_divider);
929 	o->resolution = p->resolution;
930 
931 	/* FIXME - make this dependent on resolution for better performance */
932 	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
933 
934 	control_tx_polarity_invert(dev, p->invert_carrier_sense);
935 	o->invert_carrier_sense = p->invert_carrier_sense;
936 
937 	control_tx_level_invert(dev, p->invert_level);
938 	o->invert_level = p->invert_level;
939 
940 	o->interrupt_enable = p->interrupt_enable;
941 	o->enable = p->enable;
942 	if (p->enable) {
943 		if (p->interrupt_enable)
944 			irqenable_tx(dev, IRQEN_TSE);
945 		control_tx_enable(dev, p->enable);
946 	}
947 
948 	mutex_unlock(&state->tx_params_lock);
949 	return 0;
950 }
951 
952 
953 /*
954  * V4L2 Subdevice Core Ops
955  */
cx23888_ir_log_status(struct v4l2_subdev * sd)956 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
957 {
958 	struct cx23888_ir_state *state = to_state(sd);
959 	struct cx23885_dev *dev = state->dev;
960 	char *s;
961 	int i, j;
962 
963 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
964 	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
965 	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
966 	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
967 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
968 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
969 	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
970 
971 	v4l2_info(sd, "IR Receiver:\n");
972 	v4l2_info(sd, "\tEnabled:                           %s\n",
973 		  cntrl & CNTRL_RXE ? "yes" : "no");
974 	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
975 		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
976 	v4l2_info(sd, "\tFIFO:                              %s\n",
977 		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
978 	switch (cntrl & CNTRL_EDG) {
979 	case CNTRL_EDG_NONE:
980 		s = "disabled";
981 		break;
982 	case CNTRL_EDG_FALL:
983 		s = "falling edge";
984 		break;
985 	case CNTRL_EDG_RISE:
986 		s = "rising edge";
987 		break;
988 	case CNTRL_EDG_BOTH:
989 		s = "rising & falling edges";
990 		break;
991 	default:
992 		s = "??? edge";
993 		break;
994 	}
995 	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
996 	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
997 		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
998 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
999 		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1000 	v4l2_info(sd, "\tLoopback mode:                     %s\n",
1001 		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1002 	if (cntrl & CNTRL_DMD) {
1003 		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1004 			  clock_divider_to_carrier_freq(rxclk));
1005 		switch (cntrl & CNTRL_WIN) {
1006 		case CNTRL_WIN_3_3:
1007 			i = 3;
1008 			j = 3;
1009 			break;
1010 		case CNTRL_WIN_4_3:
1011 			i = 4;
1012 			j = 3;
1013 			break;
1014 		case CNTRL_WIN_3_4:
1015 			i = 3;
1016 			j = 4;
1017 			break;
1018 		case CNTRL_WIN_4_4:
1019 			i = 4;
1020 			j = 4;
1021 			break;
1022 		default:
1023 			i = 0;
1024 			j = 0;
1025 			break;
1026 		}
1027 		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1028 			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1029 			  clock_divider_to_freq(rxclk, 16 + j),
1030 			  clock_divider_to_freq(rxclk, 16 - i));
1031 	}
1032 	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1033 		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1034 		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1035 	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1036 		  filtr ? "enabled" : "disabled");
1037 	if (filtr)
1038 		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1039 			  "%u ns\n",
1040 			  lpf_count_to_us(filtr),
1041 			  lpf_count_to_ns(filtr));
1042 	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1043 		  stats & STATS_RTO ? "yes" : "no");
1044 	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1045 		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1046 	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1047 		  stats & STATS_ROR ? "yes" : "no");
1048 	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1049 		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1050 	v4l2_info(sd, "\tBusy:                              %s\n",
1051 		  stats & STATS_RBY ? "yes" : "no");
1052 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1053 		  stats & STATS_RSR ? "yes" : "no");
1054 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1055 		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1056 
1057 	v4l2_info(sd, "IR Transmitter:\n");
1058 	v4l2_info(sd, "\tEnabled:                           %s\n",
1059 		  cntrl & CNTRL_TXE ? "yes" : "no");
1060 	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1061 		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1062 	v4l2_info(sd, "\tFIFO:                              %s\n",
1063 		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1064 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1065 		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1066 	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1067 		  cntrl & CNTRL_IVO ? "yes" : "no");
1068 	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1069 		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1070 				    : "space:noburst mark:burst");
1071 	if (cntrl & CNTRL_MOD) {
1072 		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1073 			  clock_divider_to_carrier_freq(txclk));
1074 		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1075 			  cduty + 1);
1076 	}
1077 	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1078 		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1079 		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1080 	v4l2_info(sd, "\tBusy:                              %s\n",
1081 		  stats & STATS_TBY ? "yes" : "no");
1082 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1083 		  stats & STATS_TSR ? "yes" : "no");
1084 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1085 		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1086 
1087 	return 0;
1088 }
1089 
cx23888_ir_dbg_match(const struct v4l2_dbg_match * match)1090 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1091 {
1092 	return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1093 }
1094 
cx23888_ir_g_chip_ident(struct v4l2_subdev * sd,struct v4l2_dbg_chip_ident * chip)1095 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1096 				   struct v4l2_dbg_chip_ident *chip)
1097 {
1098 	struct cx23888_ir_state *state = to_state(sd);
1099 
1100 	if (cx23888_ir_dbg_match(&chip->match)) {
1101 		chip->ident = state->id;
1102 		chip->revision = state->rev;
1103 	}
1104 	return 0;
1105 }
1106 
1107 #ifdef CONFIG_VIDEO_ADV_DEBUG
cx23888_ir_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1108 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1109 				 struct v4l2_dbg_register *reg)
1110 {
1111 	struct cx23888_ir_state *state = to_state(sd);
1112 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1113 
1114 	if (!cx23888_ir_dbg_match(&reg->match))
1115 		return -EINVAL;
1116 	if ((addr & 0x3) != 0)
1117 		return -EINVAL;
1118 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1119 		return -EINVAL;
1120 	if (!capable(CAP_SYS_ADMIN))
1121 		return -EPERM;
1122 	reg->size = 4;
1123 	reg->val = cx23888_ir_read4(state->dev, addr);
1124 	return 0;
1125 }
1126 
cx23888_ir_s_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)1127 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1128 				 struct v4l2_dbg_register *reg)
1129 {
1130 	struct cx23888_ir_state *state = to_state(sd);
1131 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1132 
1133 	if (!cx23888_ir_dbg_match(&reg->match))
1134 		return -EINVAL;
1135 	if ((addr & 0x3) != 0)
1136 		return -EINVAL;
1137 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1138 		return -EINVAL;
1139 	if (!capable(CAP_SYS_ADMIN))
1140 		return -EPERM;
1141 	cx23888_ir_write4(state->dev, addr, reg->val);
1142 	return 0;
1143 }
1144 #endif
1145 
1146 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1147 	.g_chip_ident = cx23888_ir_g_chip_ident,
1148 	.log_status = cx23888_ir_log_status,
1149 #ifdef CONFIG_VIDEO_ADV_DEBUG
1150 	.g_register = cx23888_ir_g_register,
1151 	.s_register = cx23888_ir_s_register,
1152 #endif
1153 	.interrupt_service_routine = cx23888_ir_irq_handler,
1154 };
1155 
1156 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1157 	.rx_read = cx23888_ir_rx_read,
1158 	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1159 	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1160 
1161 	.tx_write = cx23888_ir_tx_write,
1162 	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1163 	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1164 };
1165 
1166 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1167 	.core = &cx23888_ir_core_ops,
1168 	.ir = &cx23888_ir_ir_ops,
1169 };
1170 
1171 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1172 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1173 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1174 
1175 	.enable = false,
1176 	.interrupt_enable = false,
1177 	.shutdown = true,
1178 
1179 	.modulation = true,
1180 	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1181 
1182 	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1183 	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1184 	.noise_filter_min_width = 333333, /* ns */
1185 	.carrier_range_lower = 35000,
1186 	.carrier_range_upper = 37000,
1187 	.invert_level = false,
1188 };
1189 
1190 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1191 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1192 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1193 
1194 	.enable = false,
1195 	.interrupt_enable = false,
1196 	.shutdown = true,
1197 
1198 	.modulation = true,
1199 	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1200 	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1201 	.invert_level = false,
1202 	.invert_carrier_sense = false,
1203 };
1204 
cx23888_ir_probe(struct cx23885_dev * dev)1205 int cx23888_ir_probe(struct cx23885_dev *dev)
1206 {
1207 	struct cx23888_ir_state *state;
1208 	struct v4l2_subdev *sd;
1209 	struct v4l2_subdev_ir_parameters default_params;
1210 	int ret;
1211 
1212 	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1213 	if (state == NULL)
1214 		return -ENOMEM;
1215 
1216 	spin_lock_init(&state->rx_kfifo_lock);
1217 	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1218 		return -ENOMEM;
1219 
1220 	state->dev = dev;
1221 	state->id = V4L2_IDENT_CX23888_IR;
1222 	state->rev = 0;
1223 	sd = &state->sd;
1224 
1225 	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1226 	v4l2_set_subdevdata(sd, state);
1227 	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1228 	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1229 	sd->grp_id = CX23885_HW_888_IR;
1230 
1231 	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1232 	if (ret == 0) {
1233 		/*
1234 		 * Ensure no interrupts arrive from '888 specific conditions,
1235 		 * since we ignore them in this driver to have commonality with
1236 		 * similar IR controller cores.
1237 		 */
1238 		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1239 
1240 		mutex_init(&state->rx_params_lock);
1241 		memcpy(&default_params, &default_rx_params,
1242 		       sizeof(struct v4l2_subdev_ir_parameters));
1243 		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1244 
1245 		mutex_init(&state->tx_params_lock);
1246 		memcpy(&default_params, &default_tx_params,
1247 		       sizeof(struct v4l2_subdev_ir_parameters));
1248 		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1249 	} else {
1250 		kfifo_free(&state->rx_kfifo);
1251 	}
1252 	return ret;
1253 }
1254 
cx23888_ir_remove(struct cx23885_dev * dev)1255 int cx23888_ir_remove(struct cx23885_dev *dev)
1256 {
1257 	struct v4l2_subdev *sd;
1258 	struct cx23888_ir_state *state;
1259 
1260 	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1261 	if (sd == NULL)
1262 		return -ENODEV;
1263 
1264 	cx23888_ir_rx_shutdown(sd);
1265 	cx23888_ir_tx_shutdown(sd);
1266 
1267 	state = to_state(sd);
1268 	v4l2_device_unregister_subdev(sd);
1269 	kfifo_free(&state->rx_kfifo);
1270 	kfree(state);
1271 	/* Nothing more to free() as state held the actual v4l2_subdev object */
1272 	return 0;
1273 }
1274