1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
get_nr_dentry(void)123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
proc_nr_dentry(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
dentry_cmp(const unsigned char * cs,size_t scount,const unsigned char * ct,size_t tcount)156 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
157 const unsigned char *ct, size_t tcount)
158 {
159 unsigned long a,b,mask;
160
161 if (unlikely(scount != tcount))
162 return 1;
163
164 for (;;) {
165 a = load_unaligned_zeropad(cs);
166 b = load_unaligned_zeropad(ct);
167 if (tcount < sizeof(unsigned long))
168 break;
169 if (unlikely(a != b))
170 return 1;
171 cs += sizeof(unsigned long);
172 ct += sizeof(unsigned long);
173 tcount -= sizeof(unsigned long);
174 if (!tcount)
175 return 0;
176 }
177 mask = ~(~0ul << tcount*8);
178 return unlikely(!!((a ^ b) & mask));
179 }
180
181 #else
182
dentry_cmp(const unsigned char * cs,size_t scount,const unsigned char * ct,size_t tcount)183 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
184 const unsigned char *ct, size_t tcount)
185 {
186 if (scount != tcount)
187 return 1;
188
189 do {
190 if (*cs != *ct)
191 return 1;
192 cs++;
193 ct++;
194 tcount--;
195 } while (tcount);
196 return 0;
197 }
198
199 #endif
200
__d_free(struct rcu_head * head)201 static void __d_free(struct rcu_head *head)
202 {
203 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
204
205 WARN_ON(!list_empty(&dentry->d_alias));
206 if (dname_external(dentry))
207 kfree(dentry->d_name.name);
208 kmem_cache_free(dentry_cache, dentry);
209 }
210
211 /*
212 * no locks, please.
213 */
d_free(struct dentry * dentry)214 static void d_free(struct dentry *dentry)
215 {
216 BUG_ON(dentry->d_count);
217 this_cpu_dec(nr_dentry);
218 if (dentry->d_op && dentry->d_op->d_release)
219 dentry->d_op->d_release(dentry);
220
221 /* if dentry was never visible to RCU, immediate free is OK */
222 if (!(dentry->d_flags & DCACHE_RCUACCESS))
223 __d_free(&dentry->d_u.d_rcu);
224 else
225 call_rcu(&dentry->d_u.d_rcu, __d_free);
226 }
227
228 /**
229 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
230 * @dentry: the target dentry
231 * After this call, in-progress rcu-walk path lookup will fail. This
232 * should be called after unhashing, and after changing d_inode (if
233 * the dentry has not already been unhashed).
234 */
dentry_rcuwalk_barrier(struct dentry * dentry)235 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
236 {
237 assert_spin_locked(&dentry->d_lock);
238 /* Go through a barrier */
239 write_seqcount_barrier(&dentry->d_seq);
240 }
241
242 /*
243 * Release the dentry's inode, using the filesystem
244 * d_iput() operation if defined. Dentry has no refcount
245 * and is unhashed.
246 */
dentry_iput(struct dentry * dentry)247 static void dentry_iput(struct dentry * dentry)
248 __releases(dentry->d_lock)
249 __releases(dentry->d_inode->i_lock)
250 {
251 struct inode *inode = dentry->d_inode;
252 if (inode) {
253 dentry->d_inode = NULL;
254 list_del_init(&dentry->d_alias);
255 spin_unlock(&dentry->d_lock);
256 spin_unlock(&inode->i_lock);
257 if (!inode->i_nlink)
258 fsnotify_inoderemove(inode);
259 if (dentry->d_op && dentry->d_op->d_iput)
260 dentry->d_op->d_iput(dentry, inode);
261 else
262 iput(inode);
263 } else {
264 spin_unlock(&dentry->d_lock);
265 }
266 }
267
268 /*
269 * Release the dentry's inode, using the filesystem
270 * d_iput() operation if defined. dentry remains in-use.
271 */
dentry_unlink_inode(struct dentry * dentry)272 static void dentry_unlink_inode(struct dentry * dentry)
273 __releases(dentry->d_lock)
274 __releases(dentry->d_inode->i_lock)
275 {
276 struct inode *inode = dentry->d_inode;
277 dentry->d_inode = NULL;
278 list_del_init(&dentry->d_alias);
279 dentry_rcuwalk_barrier(dentry);
280 spin_unlock(&dentry->d_lock);
281 spin_unlock(&inode->i_lock);
282 if (!inode->i_nlink)
283 fsnotify_inoderemove(inode);
284 if (dentry->d_op && dentry->d_op->d_iput)
285 dentry->d_op->d_iput(dentry, inode);
286 else
287 iput(inode);
288 }
289
290 /*
291 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
292 */
dentry_lru_add(struct dentry * dentry)293 static void dentry_lru_add(struct dentry *dentry)
294 {
295 if (list_empty(&dentry->d_lru)) {
296 spin_lock(&dcache_lru_lock);
297 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
298 dentry->d_sb->s_nr_dentry_unused++;
299 dentry_stat.nr_unused++;
300 spin_unlock(&dcache_lru_lock);
301 }
302 }
303
__dentry_lru_del(struct dentry * dentry)304 static void __dentry_lru_del(struct dentry *dentry)
305 {
306 list_del_init(&dentry->d_lru);
307 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
308 dentry->d_sb->s_nr_dentry_unused--;
309 dentry_stat.nr_unused--;
310 }
311
312 /*
313 * Remove a dentry with references from the LRU.
314 */
dentry_lru_del(struct dentry * dentry)315 static void dentry_lru_del(struct dentry *dentry)
316 {
317 if (!list_empty(&dentry->d_lru)) {
318 spin_lock(&dcache_lru_lock);
319 __dentry_lru_del(dentry);
320 spin_unlock(&dcache_lru_lock);
321 }
322 }
323
324 /*
325 * Remove a dentry that is unreferenced and about to be pruned
326 * (unhashed and destroyed) from the LRU, and inform the file system.
327 * This wrapper should be called _prior_ to unhashing a victim dentry.
328 */
dentry_lru_prune(struct dentry * dentry)329 static void dentry_lru_prune(struct dentry *dentry)
330 {
331 if (!list_empty(&dentry->d_lru)) {
332 if (dentry->d_flags & DCACHE_OP_PRUNE)
333 dentry->d_op->d_prune(dentry);
334
335 spin_lock(&dcache_lru_lock);
336 __dentry_lru_del(dentry);
337 spin_unlock(&dcache_lru_lock);
338 }
339 }
340
dentry_lru_move_list(struct dentry * dentry,struct list_head * list)341 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
342 {
343 spin_lock(&dcache_lru_lock);
344 if (list_empty(&dentry->d_lru)) {
345 list_add_tail(&dentry->d_lru, list);
346 dentry->d_sb->s_nr_dentry_unused++;
347 dentry_stat.nr_unused++;
348 } else {
349 list_move_tail(&dentry->d_lru, list);
350 }
351 spin_unlock(&dcache_lru_lock);
352 }
353
354 /**
355 * d_kill - kill dentry and return parent
356 * @dentry: dentry to kill
357 * @parent: parent dentry
358 *
359 * The dentry must already be unhashed and removed from the LRU.
360 *
361 * If this is the root of the dentry tree, return NULL.
362 *
363 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
364 * d_kill.
365 */
d_kill(struct dentry * dentry,struct dentry * parent)366 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
367 __releases(dentry->d_lock)
368 __releases(parent->d_lock)
369 __releases(dentry->d_inode->i_lock)
370 {
371 list_del(&dentry->d_u.d_child);
372 /*
373 * Inform try_to_ascend() that we are no longer attached to the
374 * dentry tree
375 */
376 dentry->d_flags |= DCACHE_DENTRY_KILLED;
377 if (parent)
378 spin_unlock(&parent->d_lock);
379 dentry_iput(dentry);
380 /*
381 * dentry_iput drops the locks, at which point nobody (except
382 * transient RCU lookups) can reach this dentry.
383 */
384 d_free(dentry);
385 return parent;
386 }
387
388 /*
389 * Unhash a dentry without inserting an RCU walk barrier or checking that
390 * dentry->d_lock is locked. The caller must take care of that, if
391 * appropriate.
392 */
__d_shrink(struct dentry * dentry)393 static void __d_shrink(struct dentry *dentry)
394 {
395 if (!d_unhashed(dentry)) {
396 struct hlist_bl_head *b;
397 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
398 b = &dentry->d_sb->s_anon;
399 else
400 b = d_hash(dentry->d_parent, dentry->d_name.hash);
401
402 hlist_bl_lock(b);
403 __hlist_bl_del(&dentry->d_hash);
404 dentry->d_hash.pprev = NULL;
405 hlist_bl_unlock(b);
406 }
407 }
408
409 /**
410 * d_drop - drop a dentry
411 * @dentry: dentry to drop
412 *
413 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
414 * be found through a VFS lookup any more. Note that this is different from
415 * deleting the dentry - d_delete will try to mark the dentry negative if
416 * possible, giving a successful _negative_ lookup, while d_drop will
417 * just make the cache lookup fail.
418 *
419 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
420 * reason (NFS timeouts or autofs deletes).
421 *
422 * __d_drop requires dentry->d_lock.
423 */
__d_drop(struct dentry * dentry)424 void __d_drop(struct dentry *dentry)
425 {
426 if (!d_unhashed(dentry)) {
427 __d_shrink(dentry);
428 dentry_rcuwalk_barrier(dentry);
429 }
430 }
431 EXPORT_SYMBOL(__d_drop);
432
d_drop(struct dentry * dentry)433 void d_drop(struct dentry *dentry)
434 {
435 spin_lock(&dentry->d_lock);
436 __d_drop(dentry);
437 spin_unlock(&dentry->d_lock);
438 }
439 EXPORT_SYMBOL(d_drop);
440
441 /*
442 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
443 * @dentry: dentry to drop
444 *
445 * This is called when we do a lookup on a placeholder dentry that needed to be
446 * looked up. The dentry should have been hashed in order for it to be found by
447 * the lookup code, but now needs to be unhashed while we do the actual lookup
448 * and clear the DCACHE_NEED_LOOKUP flag.
449 */
d_clear_need_lookup(struct dentry * dentry)450 void d_clear_need_lookup(struct dentry *dentry)
451 {
452 spin_lock(&dentry->d_lock);
453 __d_drop(dentry);
454 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
455 spin_unlock(&dentry->d_lock);
456 }
457 EXPORT_SYMBOL(d_clear_need_lookup);
458
459 /*
460 * Finish off a dentry we've decided to kill.
461 * dentry->d_lock must be held, returns with it unlocked.
462 * If ref is non-zero, then decrement the refcount too.
463 * Returns dentry requiring refcount drop, or NULL if we're done.
464 */
dentry_kill(struct dentry * dentry,int ref)465 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
466 __releases(dentry->d_lock)
467 {
468 struct inode *inode;
469 struct dentry *parent;
470
471 inode = dentry->d_inode;
472 if (inode && !spin_trylock(&inode->i_lock)) {
473 relock:
474 spin_unlock(&dentry->d_lock);
475 cpu_relax();
476 return dentry; /* try again with same dentry */
477 }
478 if (IS_ROOT(dentry))
479 parent = NULL;
480 else
481 parent = dentry->d_parent;
482 if (parent && !spin_trylock(&parent->d_lock)) {
483 if (inode)
484 spin_unlock(&inode->i_lock);
485 goto relock;
486 }
487
488 if (ref)
489 dentry->d_count--;
490 /*
491 * if dentry was on the d_lru list delete it from there.
492 * inform the fs via d_prune that this dentry is about to be
493 * unhashed and destroyed.
494 */
495 dentry_lru_prune(dentry);
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
498 return d_kill(dentry, parent);
499 }
500
501 /*
502 * This is dput
503 *
504 * This is complicated by the fact that we do not want to put
505 * dentries that are no longer on any hash chain on the unused
506 * list: we'd much rather just get rid of them immediately.
507 *
508 * However, that implies that we have to traverse the dentry
509 * tree upwards to the parents which might _also_ now be
510 * scheduled for deletion (it may have been only waiting for
511 * its last child to go away).
512 *
513 * This tail recursion is done by hand as we don't want to depend
514 * on the compiler to always get this right (gcc generally doesn't).
515 * Real recursion would eat up our stack space.
516 */
517
518 /*
519 * dput - release a dentry
520 * @dentry: dentry to release
521 *
522 * Release a dentry. This will drop the usage count and if appropriate
523 * call the dentry unlink method as well as removing it from the queues and
524 * releasing its resources. If the parent dentries were scheduled for release
525 * they too may now get deleted.
526 */
dput(struct dentry * dentry)527 void dput(struct dentry *dentry)
528 {
529 if (!dentry)
530 return;
531
532 repeat:
533 if (dentry->d_count == 1)
534 might_sleep();
535 spin_lock(&dentry->d_lock);
536 BUG_ON(!dentry->d_count);
537 if (dentry->d_count > 1) {
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
540 return;
541 }
542
543 if (dentry->d_flags & DCACHE_OP_DELETE) {
544 if (dentry->d_op->d_delete(dentry))
545 goto kill_it;
546 }
547
548 /* Unreachable? Get rid of it */
549 if (d_unhashed(dentry))
550 goto kill_it;
551
552 /*
553 * If this dentry needs lookup, don't set the referenced flag so that it
554 * is more likely to be cleaned up by the dcache shrinker in case of
555 * memory pressure.
556 */
557 if (!d_need_lookup(dentry))
558 dentry->d_flags |= DCACHE_REFERENCED;
559 dentry_lru_add(dentry);
560
561 dentry->d_count--;
562 spin_unlock(&dentry->d_lock);
563 return;
564
565 kill_it:
566 dentry = dentry_kill(dentry, 1);
567 if (dentry)
568 goto repeat;
569 }
570 EXPORT_SYMBOL(dput);
571
572 /**
573 * d_invalidate - invalidate a dentry
574 * @dentry: dentry to invalidate
575 *
576 * Try to invalidate the dentry if it turns out to be
577 * possible. If there are other dentries that can be
578 * reached through this one we can't delete it and we
579 * return -EBUSY. On success we return 0.
580 *
581 * no dcache lock.
582 */
583
d_invalidate(struct dentry * dentry)584 int d_invalidate(struct dentry * dentry)
585 {
586 /*
587 * If it's already been dropped, return OK.
588 */
589 spin_lock(&dentry->d_lock);
590 if (d_unhashed(dentry)) {
591 spin_unlock(&dentry->d_lock);
592 return 0;
593 }
594 /*
595 * Check whether to do a partial shrink_dcache
596 * to get rid of unused child entries.
597 */
598 if (!list_empty(&dentry->d_subdirs)) {
599 spin_unlock(&dentry->d_lock);
600 shrink_dcache_parent(dentry);
601 spin_lock(&dentry->d_lock);
602 }
603
604 /*
605 * Somebody else still using it?
606 *
607 * If it's a directory, we can't drop it
608 * for fear of somebody re-populating it
609 * with children (even though dropping it
610 * would make it unreachable from the root,
611 * we might still populate it if it was a
612 * working directory or similar).
613 * We also need to leave mountpoints alone,
614 * directory or not.
615 */
616 if (dentry->d_count > 1 && dentry->d_inode) {
617 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
618 spin_unlock(&dentry->d_lock);
619 return -EBUSY;
620 }
621 }
622
623 __d_drop(dentry);
624 spin_unlock(&dentry->d_lock);
625 return 0;
626 }
627 EXPORT_SYMBOL(d_invalidate);
628
629 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)630 static inline void __dget_dlock(struct dentry *dentry)
631 {
632 dentry->d_count++;
633 }
634
__dget(struct dentry * dentry)635 static inline void __dget(struct dentry *dentry)
636 {
637 spin_lock(&dentry->d_lock);
638 __dget_dlock(dentry);
639 spin_unlock(&dentry->d_lock);
640 }
641
dget_parent(struct dentry * dentry)642 struct dentry *dget_parent(struct dentry *dentry)
643 {
644 struct dentry *ret;
645
646 repeat:
647 /*
648 * Don't need rcu_dereference because we re-check it was correct under
649 * the lock.
650 */
651 rcu_read_lock();
652 ret = dentry->d_parent;
653 spin_lock(&ret->d_lock);
654 if (unlikely(ret != dentry->d_parent)) {
655 spin_unlock(&ret->d_lock);
656 rcu_read_unlock();
657 goto repeat;
658 }
659 rcu_read_unlock();
660 BUG_ON(!ret->d_count);
661 ret->d_count++;
662 spin_unlock(&ret->d_lock);
663 return ret;
664 }
665 EXPORT_SYMBOL(dget_parent);
666
667 /**
668 * d_find_alias - grab a hashed alias of inode
669 * @inode: inode in question
670 * @want_discon: flag, used by d_splice_alias, to request
671 * that only a DISCONNECTED alias be returned.
672 *
673 * If inode has a hashed alias, or is a directory and has any alias,
674 * acquire the reference to alias and return it. Otherwise return NULL.
675 * Notice that if inode is a directory there can be only one alias and
676 * it can be unhashed only if it has no children, or if it is the root
677 * of a filesystem.
678 *
679 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
680 * any other hashed alias over that one unless @want_discon is set,
681 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
682 */
__d_find_alias(struct inode * inode,int want_discon)683 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
684 {
685 struct dentry *alias, *discon_alias;
686
687 again:
688 discon_alias = NULL;
689 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
690 spin_lock(&alias->d_lock);
691 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
692 if (IS_ROOT(alias) &&
693 (alias->d_flags & DCACHE_DISCONNECTED)) {
694 discon_alias = alias;
695 } else if (!want_discon) {
696 __dget_dlock(alias);
697 spin_unlock(&alias->d_lock);
698 return alias;
699 }
700 }
701 spin_unlock(&alias->d_lock);
702 }
703 if (discon_alias) {
704 alias = discon_alias;
705 spin_lock(&alias->d_lock);
706 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
707 if (IS_ROOT(alias) &&
708 (alias->d_flags & DCACHE_DISCONNECTED)) {
709 __dget_dlock(alias);
710 spin_unlock(&alias->d_lock);
711 return alias;
712 }
713 }
714 spin_unlock(&alias->d_lock);
715 goto again;
716 }
717 return NULL;
718 }
719
d_find_alias(struct inode * inode)720 struct dentry *d_find_alias(struct inode *inode)
721 {
722 struct dentry *de = NULL;
723
724 if (!list_empty(&inode->i_dentry)) {
725 spin_lock(&inode->i_lock);
726 de = __d_find_alias(inode, 0);
727 spin_unlock(&inode->i_lock);
728 }
729 return de;
730 }
731 EXPORT_SYMBOL(d_find_alias);
732
733 /*
734 * Try to kill dentries associated with this inode.
735 * WARNING: you must own a reference to inode.
736 */
d_prune_aliases(struct inode * inode)737 void d_prune_aliases(struct inode *inode)
738 {
739 struct dentry *dentry;
740 restart:
741 spin_lock(&inode->i_lock);
742 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
743 spin_lock(&dentry->d_lock);
744 if (!dentry->d_count) {
745 __dget_dlock(dentry);
746 __d_drop(dentry);
747 spin_unlock(&dentry->d_lock);
748 spin_unlock(&inode->i_lock);
749 dput(dentry);
750 goto restart;
751 }
752 spin_unlock(&dentry->d_lock);
753 }
754 spin_unlock(&inode->i_lock);
755 }
756 EXPORT_SYMBOL(d_prune_aliases);
757
758 /*
759 * Try to throw away a dentry - free the inode, dput the parent.
760 * Requires dentry->d_lock is held, and dentry->d_count == 0.
761 * Releases dentry->d_lock.
762 *
763 * This may fail if locks cannot be acquired no problem, just try again.
764 */
try_prune_one_dentry(struct dentry * dentry)765 static void try_prune_one_dentry(struct dentry *dentry)
766 __releases(dentry->d_lock)
767 {
768 struct dentry *parent;
769
770 parent = dentry_kill(dentry, 0);
771 /*
772 * If dentry_kill returns NULL, we have nothing more to do.
773 * if it returns the same dentry, trylocks failed. In either
774 * case, just loop again.
775 *
776 * Otherwise, we need to prune ancestors too. This is necessary
777 * to prevent quadratic behavior of shrink_dcache_parent(), but
778 * is also expected to be beneficial in reducing dentry cache
779 * fragmentation.
780 */
781 if (!parent)
782 return;
783 if (parent == dentry)
784 return;
785
786 /* Prune ancestors. */
787 dentry = parent;
788 while (dentry) {
789 spin_lock(&dentry->d_lock);
790 if (dentry->d_count > 1) {
791 dentry->d_count--;
792 spin_unlock(&dentry->d_lock);
793 return;
794 }
795 dentry = dentry_kill(dentry, 1);
796 }
797 }
798
shrink_dentry_list(struct list_head * list)799 static void shrink_dentry_list(struct list_head *list)
800 {
801 struct dentry *dentry;
802
803 rcu_read_lock();
804 for (;;) {
805 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
806 if (&dentry->d_lru == list)
807 break; /* empty */
808 spin_lock(&dentry->d_lock);
809 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
810 spin_unlock(&dentry->d_lock);
811 continue;
812 }
813
814 /*
815 * We found an inuse dentry which was not removed from
816 * the LRU because of laziness during lookup. Do not free
817 * it - just keep it off the LRU list.
818 */
819 if (dentry->d_count) {
820 dentry_lru_del(dentry);
821 spin_unlock(&dentry->d_lock);
822 continue;
823 }
824
825 rcu_read_unlock();
826
827 try_prune_one_dentry(dentry);
828
829 rcu_read_lock();
830 }
831 rcu_read_unlock();
832 }
833
834 /**
835 * prune_dcache_sb - shrink the dcache
836 * @sb: superblock
837 * @count: number of entries to try to free
838 *
839 * Attempt to shrink the superblock dcache LRU by @count entries. This is
840 * done when we need more memory an called from the superblock shrinker
841 * function.
842 *
843 * This function may fail to free any resources if all the dentries are in
844 * use.
845 */
prune_dcache_sb(struct super_block * sb,int count)846 void prune_dcache_sb(struct super_block *sb, int count)
847 {
848 struct dentry *dentry;
849 LIST_HEAD(referenced);
850 LIST_HEAD(tmp);
851
852 relock:
853 spin_lock(&dcache_lru_lock);
854 while (!list_empty(&sb->s_dentry_lru)) {
855 dentry = list_entry(sb->s_dentry_lru.prev,
856 struct dentry, d_lru);
857 BUG_ON(dentry->d_sb != sb);
858
859 if (!spin_trylock(&dentry->d_lock)) {
860 spin_unlock(&dcache_lru_lock);
861 cpu_relax();
862 goto relock;
863 }
864
865 if (dentry->d_flags & DCACHE_REFERENCED) {
866 dentry->d_flags &= ~DCACHE_REFERENCED;
867 list_move(&dentry->d_lru, &referenced);
868 spin_unlock(&dentry->d_lock);
869 } else {
870 list_move_tail(&dentry->d_lru, &tmp);
871 dentry->d_flags |= DCACHE_SHRINK_LIST;
872 spin_unlock(&dentry->d_lock);
873 if (!--count)
874 break;
875 }
876 cond_resched_lock(&dcache_lru_lock);
877 }
878 if (!list_empty(&referenced))
879 list_splice(&referenced, &sb->s_dentry_lru);
880 spin_unlock(&dcache_lru_lock);
881
882 shrink_dentry_list(&tmp);
883 }
884
885 /**
886 * shrink_dcache_sb - shrink dcache for a superblock
887 * @sb: superblock
888 *
889 * Shrink the dcache for the specified super block. This is used to free
890 * the dcache before unmounting a file system.
891 */
shrink_dcache_sb(struct super_block * sb)892 void shrink_dcache_sb(struct super_block *sb)
893 {
894 LIST_HEAD(tmp);
895
896 spin_lock(&dcache_lru_lock);
897 while (!list_empty(&sb->s_dentry_lru)) {
898 list_splice_init(&sb->s_dentry_lru, &tmp);
899 spin_unlock(&dcache_lru_lock);
900 shrink_dentry_list(&tmp);
901 spin_lock(&dcache_lru_lock);
902 }
903 spin_unlock(&dcache_lru_lock);
904 }
905 EXPORT_SYMBOL(shrink_dcache_sb);
906
907 /*
908 * destroy a single subtree of dentries for unmount
909 * - see the comments on shrink_dcache_for_umount() for a description of the
910 * locking
911 */
shrink_dcache_for_umount_subtree(struct dentry * dentry)912 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
913 {
914 struct dentry *parent;
915
916 BUG_ON(!IS_ROOT(dentry));
917
918 for (;;) {
919 /* descend to the first leaf in the current subtree */
920 while (!list_empty(&dentry->d_subdirs))
921 dentry = list_entry(dentry->d_subdirs.next,
922 struct dentry, d_u.d_child);
923
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
928
929 /*
930 * remove the dentry from the lru, and inform
931 * the fs that this dentry is about to be
932 * unhashed and destroyed.
933 */
934 dentry_lru_prune(dentry);
935 __d_shrink(dentry);
936
937 if (dentry->d_count != 0) {
938 printk(KERN_ERR
939 "BUG: Dentry %p{i=%lx,n=%s}"
940 " still in use (%d)"
941 " [unmount of %s %s]\n",
942 dentry,
943 dentry->d_inode ?
944 dentry->d_inode->i_ino : 0UL,
945 dentry->d_name.name,
946 dentry->d_count,
947 dentry->d_sb->s_type->name,
948 dentry->d_sb->s_id);
949 BUG();
950 }
951
952 if (IS_ROOT(dentry)) {
953 parent = NULL;
954 list_del(&dentry->d_u.d_child);
955 } else {
956 parent = dentry->d_parent;
957 parent->d_count--;
958 list_del(&dentry->d_u.d_child);
959 }
960
961 inode = dentry->d_inode;
962 if (inode) {
963 dentry->d_inode = NULL;
964 list_del_init(&dentry->d_alias);
965 if (dentry->d_op && dentry->d_op->d_iput)
966 dentry->d_op->d_iput(dentry, inode);
967 else
968 iput(inode);
969 }
970
971 d_free(dentry);
972
973 /* finished when we fall off the top of the tree,
974 * otherwise we ascend to the parent and move to the
975 * next sibling if there is one */
976 if (!parent)
977 return;
978 dentry = parent;
979 } while (list_empty(&dentry->d_subdirs));
980
981 dentry = list_entry(dentry->d_subdirs.next,
982 struct dentry, d_u.d_child);
983 }
984 }
985
986 /*
987 * destroy the dentries attached to a superblock on unmounting
988 * - we don't need to use dentry->d_lock because:
989 * - the superblock is detached from all mountings and open files, so the
990 * dentry trees will not be rearranged by the VFS
991 * - s_umount is write-locked, so the memory pressure shrinker will ignore
992 * any dentries belonging to this superblock that it comes across
993 * - the filesystem itself is no longer permitted to rearrange the dentries
994 * in this superblock
995 */
shrink_dcache_for_umount(struct super_block * sb)996 void shrink_dcache_for_umount(struct super_block *sb)
997 {
998 struct dentry *dentry;
999
1000 if (down_read_trylock(&sb->s_umount))
1001 BUG();
1002
1003 dentry = sb->s_root;
1004 sb->s_root = NULL;
1005 dentry->d_count--;
1006 shrink_dcache_for_umount_subtree(dentry);
1007
1008 while (!hlist_bl_empty(&sb->s_anon)) {
1009 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1010 shrink_dcache_for_umount_subtree(dentry);
1011 }
1012 }
1013
1014 /*
1015 * This tries to ascend one level of parenthood, but
1016 * we can race with renaming, so we need to re-check
1017 * the parenthood after dropping the lock and check
1018 * that the sequence number still matches.
1019 */
try_to_ascend(struct dentry * old,int locked,unsigned seq)1020 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1021 {
1022 struct dentry *new = old->d_parent;
1023
1024 rcu_read_lock();
1025 spin_unlock(&old->d_lock);
1026 spin_lock(&new->d_lock);
1027
1028 /*
1029 * might go back up the wrong parent if we have had a rename
1030 * or deletion
1031 */
1032 if (new != old->d_parent ||
1033 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1034 (!locked && read_seqretry(&rename_lock, seq))) {
1035 spin_unlock(&new->d_lock);
1036 new = NULL;
1037 }
1038 rcu_read_unlock();
1039 return new;
1040 }
1041
1042
1043 /*
1044 * Search for at least 1 mount point in the dentry's subdirs.
1045 * We descend to the next level whenever the d_subdirs
1046 * list is non-empty and continue searching.
1047 */
1048
1049 /**
1050 * have_submounts - check for mounts over a dentry
1051 * @parent: dentry to check.
1052 *
1053 * Return true if the parent or its subdirectories contain
1054 * a mount point
1055 */
have_submounts(struct dentry * parent)1056 int have_submounts(struct dentry *parent)
1057 {
1058 struct dentry *this_parent;
1059 struct list_head *next;
1060 unsigned seq;
1061 int locked = 0;
1062
1063 seq = read_seqbegin(&rename_lock);
1064 again:
1065 this_parent = parent;
1066
1067 if (d_mountpoint(parent))
1068 goto positive;
1069 spin_lock(&this_parent->d_lock);
1070 repeat:
1071 next = this_parent->d_subdirs.next;
1072 resume:
1073 while (next != &this_parent->d_subdirs) {
1074 struct list_head *tmp = next;
1075 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1076 next = tmp->next;
1077
1078 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1079 /* Have we found a mount point ? */
1080 if (d_mountpoint(dentry)) {
1081 spin_unlock(&dentry->d_lock);
1082 spin_unlock(&this_parent->d_lock);
1083 goto positive;
1084 }
1085 if (!list_empty(&dentry->d_subdirs)) {
1086 spin_unlock(&this_parent->d_lock);
1087 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1088 this_parent = dentry;
1089 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1090 goto repeat;
1091 }
1092 spin_unlock(&dentry->d_lock);
1093 }
1094 /*
1095 * All done at this level ... ascend and resume the search.
1096 */
1097 if (this_parent != parent) {
1098 struct dentry *child = this_parent;
1099 this_parent = try_to_ascend(this_parent, locked, seq);
1100 if (!this_parent)
1101 goto rename_retry;
1102 next = child->d_u.d_child.next;
1103 goto resume;
1104 }
1105 spin_unlock(&this_parent->d_lock);
1106 if (!locked && read_seqretry(&rename_lock, seq))
1107 goto rename_retry;
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1110 return 0; /* No mount points found in tree */
1111 positive:
1112 if (!locked && read_seqretry(&rename_lock, seq))
1113 goto rename_retry;
1114 if (locked)
1115 write_sequnlock(&rename_lock);
1116 return 1;
1117
1118 rename_retry:
1119 if (locked)
1120 goto again;
1121 locked = 1;
1122 write_seqlock(&rename_lock);
1123 goto again;
1124 }
1125 EXPORT_SYMBOL(have_submounts);
1126
1127 /*
1128 * Search the dentry child list for the specified parent,
1129 * and move any unused dentries to the end of the unused
1130 * list for prune_dcache(). We descend to the next level
1131 * whenever the d_subdirs list is non-empty and continue
1132 * searching.
1133 *
1134 * It returns zero iff there are no unused children,
1135 * otherwise it returns the number of children moved to
1136 * the end of the unused list. This may not be the total
1137 * number of unused children, because select_parent can
1138 * drop the lock and return early due to latency
1139 * constraints.
1140 */
select_parent(struct dentry * parent,struct list_head * dispose)1141 static int select_parent(struct dentry *parent, struct list_head *dispose)
1142 {
1143 struct dentry *this_parent;
1144 struct list_head *next;
1145 unsigned seq;
1146 int found = 0;
1147 int locked = 0;
1148
1149 seq = read_seqbegin(&rename_lock);
1150 again:
1151 this_parent = parent;
1152 spin_lock(&this_parent->d_lock);
1153 repeat:
1154 next = this_parent->d_subdirs.next;
1155 resume:
1156 while (next != &this_parent->d_subdirs) {
1157 struct list_head *tmp = next;
1158 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1159 next = tmp->next;
1160
1161 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1162
1163 /*
1164 * move only zero ref count dentries to the dispose list.
1165 *
1166 * Those which are presently on the shrink list, being processed
1167 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1168 * loop in shrink_dcache_parent() might not make any progress
1169 * and loop forever.
1170 */
1171 if (dentry->d_count) {
1172 dentry_lru_del(dentry);
1173 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1174 dentry_lru_move_list(dentry, dispose);
1175 dentry->d_flags |= DCACHE_SHRINK_LIST;
1176 found++;
1177 }
1178 /*
1179 * We can return to the caller if we have found some (this
1180 * ensures forward progress). We'll be coming back to find
1181 * the rest.
1182 */
1183 if (found && need_resched()) {
1184 spin_unlock(&dentry->d_lock);
1185 goto out;
1186 }
1187
1188 /*
1189 * Descend a level if the d_subdirs list is non-empty.
1190 */
1191 if (!list_empty(&dentry->d_subdirs)) {
1192 spin_unlock(&this_parent->d_lock);
1193 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1194 this_parent = dentry;
1195 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1196 goto repeat;
1197 }
1198
1199 spin_unlock(&dentry->d_lock);
1200 }
1201 /*
1202 * All done at this level ... ascend and resume the search.
1203 */
1204 if (this_parent != parent) {
1205 struct dentry *child = this_parent;
1206 this_parent = try_to_ascend(this_parent, locked, seq);
1207 if (!this_parent)
1208 goto rename_retry;
1209 next = child->d_u.d_child.next;
1210 goto resume;
1211 }
1212 out:
1213 spin_unlock(&this_parent->d_lock);
1214 if (!locked && read_seqretry(&rename_lock, seq))
1215 goto rename_retry;
1216 if (locked)
1217 write_sequnlock(&rename_lock);
1218 return found;
1219
1220 rename_retry:
1221 if (found)
1222 return found;
1223 if (locked)
1224 goto again;
1225 locked = 1;
1226 write_seqlock(&rename_lock);
1227 goto again;
1228 }
1229
1230 /**
1231 * shrink_dcache_parent - prune dcache
1232 * @parent: parent of entries to prune
1233 *
1234 * Prune the dcache to remove unused children of the parent dentry.
1235 */
shrink_dcache_parent(struct dentry * parent)1236 void shrink_dcache_parent(struct dentry * parent)
1237 {
1238 LIST_HEAD(dispose);
1239 int found;
1240
1241 while ((found = select_parent(parent, &dispose)) != 0) {
1242 shrink_dentry_list(&dispose);
1243 cond_resched();
1244 }
1245 }
1246 EXPORT_SYMBOL(shrink_dcache_parent);
1247
1248 /**
1249 * __d_alloc - allocate a dcache entry
1250 * @sb: filesystem it will belong to
1251 * @name: qstr of the name
1252 *
1253 * Allocates a dentry. It returns %NULL if there is insufficient memory
1254 * available. On a success the dentry is returned. The name passed in is
1255 * copied and the copy passed in may be reused after this call.
1256 */
1257
__d_alloc(struct super_block * sb,const struct qstr * name)1258 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1259 {
1260 struct dentry *dentry;
1261 char *dname;
1262
1263 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1264 if (!dentry)
1265 return NULL;
1266
1267 if (name->len > DNAME_INLINE_LEN-1) {
1268 dname = kmalloc(name->len + 1, GFP_KERNEL);
1269 if (!dname) {
1270 kmem_cache_free(dentry_cache, dentry);
1271 return NULL;
1272 }
1273 } else {
1274 dname = dentry->d_iname;
1275 }
1276 dentry->d_name.name = dname;
1277
1278 dentry->d_name.len = name->len;
1279 dentry->d_name.hash = name->hash;
1280 memcpy(dname, name->name, name->len);
1281 dname[name->len] = 0;
1282
1283 dentry->d_count = 1;
1284 dentry->d_flags = 0;
1285 spin_lock_init(&dentry->d_lock);
1286 seqcount_init(&dentry->d_seq);
1287 dentry->d_inode = NULL;
1288 dentry->d_parent = dentry;
1289 dentry->d_sb = sb;
1290 dentry->d_op = NULL;
1291 dentry->d_fsdata = NULL;
1292 INIT_HLIST_BL_NODE(&dentry->d_hash);
1293 INIT_LIST_HEAD(&dentry->d_lru);
1294 INIT_LIST_HEAD(&dentry->d_subdirs);
1295 INIT_LIST_HEAD(&dentry->d_alias);
1296 INIT_LIST_HEAD(&dentry->d_u.d_child);
1297 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1298
1299 this_cpu_inc(nr_dentry);
1300
1301 return dentry;
1302 }
1303
1304 /**
1305 * d_alloc - allocate a dcache entry
1306 * @parent: parent of entry to allocate
1307 * @name: qstr of the name
1308 *
1309 * Allocates a dentry. It returns %NULL if there is insufficient memory
1310 * available. On a success the dentry is returned. The name passed in is
1311 * copied and the copy passed in may be reused after this call.
1312 */
d_alloc(struct dentry * parent,const struct qstr * name)1313 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1314 {
1315 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1316 if (!dentry)
1317 return NULL;
1318
1319 spin_lock(&parent->d_lock);
1320 /*
1321 * don't need child lock because it is not subject
1322 * to concurrency here
1323 */
1324 __dget_dlock(parent);
1325 dentry->d_parent = parent;
1326 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1327 spin_unlock(&parent->d_lock);
1328
1329 return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1334 {
1335 struct dentry *dentry = __d_alloc(sb, name);
1336 if (dentry)
1337 dentry->d_flags |= DCACHE_DISCONNECTED;
1338 return dentry;
1339 }
1340 EXPORT_SYMBOL(d_alloc_pseudo);
1341
d_alloc_name(struct dentry * parent,const char * name)1342 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1343 {
1344 struct qstr q;
1345
1346 q.name = name;
1347 q.len = strlen(name);
1348 q.hash = full_name_hash(q.name, q.len);
1349 return d_alloc(parent, &q);
1350 }
1351 EXPORT_SYMBOL(d_alloc_name);
1352
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1353 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1354 {
1355 WARN_ON_ONCE(dentry->d_op);
1356 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1357 DCACHE_OP_COMPARE |
1358 DCACHE_OP_REVALIDATE |
1359 DCACHE_OP_DELETE ));
1360 dentry->d_op = op;
1361 if (!op)
1362 return;
1363 if (op->d_hash)
1364 dentry->d_flags |= DCACHE_OP_HASH;
1365 if (op->d_compare)
1366 dentry->d_flags |= DCACHE_OP_COMPARE;
1367 if (op->d_revalidate)
1368 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1369 if (op->d_delete)
1370 dentry->d_flags |= DCACHE_OP_DELETE;
1371 if (op->d_prune)
1372 dentry->d_flags |= DCACHE_OP_PRUNE;
1373
1374 }
1375 EXPORT_SYMBOL(d_set_d_op);
1376
__d_instantiate(struct dentry * dentry,struct inode * inode)1377 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1378 {
1379 spin_lock(&dentry->d_lock);
1380 if (inode) {
1381 if (unlikely(IS_AUTOMOUNT(inode)))
1382 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1383 list_add(&dentry->d_alias, &inode->i_dentry);
1384 }
1385 dentry->d_inode = inode;
1386 dentry_rcuwalk_barrier(dentry);
1387 spin_unlock(&dentry->d_lock);
1388 fsnotify_d_instantiate(dentry, inode);
1389 }
1390
1391 /**
1392 * d_instantiate - fill in inode information for a dentry
1393 * @entry: dentry to complete
1394 * @inode: inode to attach to this dentry
1395 *
1396 * Fill in inode information in the entry.
1397 *
1398 * This turns negative dentries into productive full members
1399 * of society.
1400 *
1401 * NOTE! This assumes that the inode count has been incremented
1402 * (or otherwise set) by the caller to indicate that it is now
1403 * in use by the dcache.
1404 */
1405
d_instantiate(struct dentry * entry,struct inode * inode)1406 void d_instantiate(struct dentry *entry, struct inode * inode)
1407 {
1408 BUG_ON(!list_empty(&entry->d_alias));
1409 if (inode)
1410 spin_lock(&inode->i_lock);
1411 __d_instantiate(entry, inode);
1412 if (inode)
1413 spin_unlock(&inode->i_lock);
1414 security_d_instantiate(entry, inode);
1415 }
1416 EXPORT_SYMBOL(d_instantiate);
1417
1418 /**
1419 * d_instantiate_unique - instantiate a non-aliased dentry
1420 * @entry: dentry to instantiate
1421 * @inode: inode to attach to this dentry
1422 *
1423 * Fill in inode information in the entry. On success, it returns NULL.
1424 * If an unhashed alias of "entry" already exists, then we return the
1425 * aliased dentry instead and drop one reference to inode.
1426 *
1427 * Note that in order to avoid conflicts with rename() etc, the caller
1428 * had better be holding the parent directory semaphore.
1429 *
1430 * This also assumes that the inode count has been incremented
1431 * (or otherwise set) by the caller to indicate that it is now
1432 * in use by the dcache.
1433 */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1434 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1435 struct inode *inode)
1436 {
1437 struct dentry *alias;
1438 int len = entry->d_name.len;
1439 const char *name = entry->d_name.name;
1440 unsigned int hash = entry->d_name.hash;
1441
1442 if (!inode) {
1443 __d_instantiate(entry, NULL);
1444 return NULL;
1445 }
1446
1447 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1448 struct qstr *qstr = &alias->d_name;
1449
1450 /*
1451 * Don't need alias->d_lock here, because aliases with
1452 * d_parent == entry->d_parent are not subject to name or
1453 * parent changes, because the parent inode i_mutex is held.
1454 */
1455 if (qstr->hash != hash)
1456 continue;
1457 if (alias->d_parent != entry->d_parent)
1458 continue;
1459 if (dentry_cmp(qstr->name, qstr->len, name, len))
1460 continue;
1461 __dget(alias);
1462 return alias;
1463 }
1464
1465 __d_instantiate(entry, inode);
1466 return NULL;
1467 }
1468
d_instantiate_unique(struct dentry * entry,struct inode * inode)1469 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1470 {
1471 struct dentry *result;
1472
1473 BUG_ON(!list_empty(&entry->d_alias));
1474
1475 if (inode)
1476 spin_lock(&inode->i_lock);
1477 result = __d_instantiate_unique(entry, inode);
1478 if (inode)
1479 spin_unlock(&inode->i_lock);
1480
1481 if (!result) {
1482 security_d_instantiate(entry, inode);
1483 return NULL;
1484 }
1485
1486 BUG_ON(!d_unhashed(result));
1487 iput(inode);
1488 return result;
1489 }
1490
1491 EXPORT_SYMBOL(d_instantiate_unique);
1492
d_make_root(struct inode * root_inode)1493 struct dentry *d_make_root(struct inode *root_inode)
1494 {
1495 struct dentry *res = NULL;
1496
1497 if (root_inode) {
1498 static const struct qstr name = { .name = "/", .len = 1 };
1499
1500 res = __d_alloc(root_inode->i_sb, &name);
1501 if (res)
1502 d_instantiate(res, root_inode);
1503 else
1504 iput(root_inode);
1505 }
1506 return res;
1507 }
1508 EXPORT_SYMBOL(d_make_root);
1509
__d_find_any_alias(struct inode * inode)1510 static struct dentry * __d_find_any_alias(struct inode *inode)
1511 {
1512 struct dentry *alias;
1513
1514 if (list_empty(&inode->i_dentry))
1515 return NULL;
1516 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1517 __dget(alias);
1518 return alias;
1519 }
1520
1521 /**
1522 * d_find_any_alias - find any alias for a given inode
1523 * @inode: inode to find an alias for
1524 *
1525 * If any aliases exist for the given inode, take and return a
1526 * reference for one of them. If no aliases exist, return %NULL.
1527 */
d_find_any_alias(struct inode * inode)1528 struct dentry *d_find_any_alias(struct inode *inode)
1529 {
1530 struct dentry *de;
1531
1532 spin_lock(&inode->i_lock);
1533 de = __d_find_any_alias(inode);
1534 spin_unlock(&inode->i_lock);
1535 return de;
1536 }
1537 EXPORT_SYMBOL(d_find_any_alias);
1538
1539 /**
1540 * d_obtain_alias - find or allocate a dentry for a given inode
1541 * @inode: inode to allocate the dentry for
1542 *
1543 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1544 * similar open by handle operations. The returned dentry may be anonymous,
1545 * or may have a full name (if the inode was already in the cache).
1546 *
1547 * When called on a directory inode, we must ensure that the inode only ever
1548 * has one dentry. If a dentry is found, that is returned instead of
1549 * allocating a new one.
1550 *
1551 * On successful return, the reference to the inode has been transferred
1552 * to the dentry. In case of an error the reference on the inode is released.
1553 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1554 * be passed in and will be the error will be propagate to the return value,
1555 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1556 */
d_obtain_alias(struct inode * inode)1557 struct dentry *d_obtain_alias(struct inode *inode)
1558 {
1559 static const struct qstr anonstring = { .name = "/", .len = 1 };
1560 struct dentry *tmp;
1561 struct dentry *res;
1562
1563 if (!inode)
1564 return ERR_PTR(-ESTALE);
1565 if (IS_ERR(inode))
1566 return ERR_CAST(inode);
1567
1568 res = d_find_any_alias(inode);
1569 if (res)
1570 goto out_iput;
1571
1572 tmp = __d_alloc(inode->i_sb, &anonstring);
1573 if (!tmp) {
1574 res = ERR_PTR(-ENOMEM);
1575 goto out_iput;
1576 }
1577
1578 spin_lock(&inode->i_lock);
1579 res = __d_find_any_alias(inode);
1580 if (res) {
1581 spin_unlock(&inode->i_lock);
1582 dput(tmp);
1583 goto out_iput;
1584 }
1585
1586 /* attach a disconnected dentry */
1587 spin_lock(&tmp->d_lock);
1588 tmp->d_inode = inode;
1589 tmp->d_flags |= DCACHE_DISCONNECTED;
1590 list_add(&tmp->d_alias, &inode->i_dentry);
1591 hlist_bl_lock(&tmp->d_sb->s_anon);
1592 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1593 hlist_bl_unlock(&tmp->d_sb->s_anon);
1594 spin_unlock(&tmp->d_lock);
1595 spin_unlock(&inode->i_lock);
1596 security_d_instantiate(tmp, inode);
1597
1598 return tmp;
1599
1600 out_iput:
1601 if (res && !IS_ERR(res))
1602 security_d_instantiate(res, inode);
1603 iput(inode);
1604 return res;
1605 }
1606 EXPORT_SYMBOL(d_obtain_alias);
1607
1608 /**
1609 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1610 * @inode: the inode which may have a disconnected dentry
1611 * @dentry: a negative dentry which we want to point to the inode.
1612 *
1613 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1614 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1615 * and return it, else simply d_add the inode to the dentry and return NULL.
1616 *
1617 * This is needed in the lookup routine of any filesystem that is exportable
1618 * (via knfsd) so that we can build dcache paths to directories effectively.
1619 *
1620 * If a dentry was found and moved, then it is returned. Otherwise NULL
1621 * is returned. This matches the expected return value of ->lookup.
1622 *
1623 */
d_splice_alias(struct inode * inode,struct dentry * dentry)1624 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1625 {
1626 struct dentry *new = NULL;
1627
1628 if (IS_ERR(inode))
1629 return ERR_CAST(inode);
1630
1631 if (inode && S_ISDIR(inode->i_mode)) {
1632 spin_lock(&inode->i_lock);
1633 new = __d_find_alias(inode, 1);
1634 if (new) {
1635 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1636 spin_unlock(&inode->i_lock);
1637 security_d_instantiate(new, inode);
1638 d_move(new, dentry);
1639 iput(inode);
1640 } else {
1641 /* already taking inode->i_lock, so d_add() by hand */
1642 __d_instantiate(dentry, inode);
1643 spin_unlock(&inode->i_lock);
1644 security_d_instantiate(dentry, inode);
1645 d_rehash(dentry);
1646 }
1647 } else
1648 d_add(dentry, inode);
1649 return new;
1650 }
1651 EXPORT_SYMBOL(d_splice_alias);
1652
1653 /**
1654 * d_add_ci - lookup or allocate new dentry with case-exact name
1655 * @inode: the inode case-insensitive lookup has found
1656 * @dentry: the negative dentry that was passed to the parent's lookup func
1657 * @name: the case-exact name to be associated with the returned dentry
1658 *
1659 * This is to avoid filling the dcache with case-insensitive names to the
1660 * same inode, only the actual correct case is stored in the dcache for
1661 * case-insensitive filesystems.
1662 *
1663 * For a case-insensitive lookup match and if the the case-exact dentry
1664 * already exists in in the dcache, use it and return it.
1665 *
1666 * If no entry exists with the exact case name, allocate new dentry with
1667 * the exact case, and return the spliced entry.
1668 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)1669 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1670 struct qstr *name)
1671 {
1672 int error;
1673 struct dentry *found;
1674 struct dentry *new;
1675
1676 /*
1677 * First check if a dentry matching the name already exists,
1678 * if not go ahead and create it now.
1679 */
1680 found = d_hash_and_lookup(dentry->d_parent, name);
1681 if (!found) {
1682 new = d_alloc(dentry->d_parent, name);
1683 if (!new) {
1684 error = -ENOMEM;
1685 goto err_out;
1686 }
1687
1688 found = d_splice_alias(inode, new);
1689 if (found) {
1690 dput(new);
1691 return found;
1692 }
1693 return new;
1694 }
1695
1696 /*
1697 * If a matching dentry exists, and it's not negative use it.
1698 *
1699 * Decrement the reference count to balance the iget() done
1700 * earlier on.
1701 */
1702 if (found->d_inode) {
1703 if (unlikely(found->d_inode != inode)) {
1704 /* This can't happen because bad inodes are unhashed. */
1705 BUG_ON(!is_bad_inode(inode));
1706 BUG_ON(!is_bad_inode(found->d_inode));
1707 }
1708 iput(inode);
1709 return found;
1710 }
1711
1712 /*
1713 * We are going to instantiate this dentry, unhash it and clear the
1714 * lookup flag so we can do that.
1715 */
1716 if (unlikely(d_need_lookup(found)))
1717 d_clear_need_lookup(found);
1718
1719 /*
1720 * Negative dentry: instantiate it unless the inode is a directory and
1721 * already has a dentry.
1722 */
1723 new = d_splice_alias(inode, found);
1724 if (new) {
1725 dput(found);
1726 found = new;
1727 }
1728 return found;
1729
1730 err_out:
1731 iput(inode);
1732 return ERR_PTR(error);
1733 }
1734 EXPORT_SYMBOL(d_add_ci);
1735
1736 /**
1737 * __d_lookup_rcu - search for a dentry (racy, store-free)
1738 * @parent: parent dentry
1739 * @name: qstr of name we wish to find
1740 * @seqp: returns d_seq value at the point where the dentry was found
1741 * @inode: returns dentry->d_inode when the inode was found valid.
1742 * Returns: dentry, or NULL
1743 *
1744 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1745 * resolution (store-free path walking) design described in
1746 * Documentation/filesystems/path-lookup.txt.
1747 *
1748 * This is not to be used outside core vfs.
1749 *
1750 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1751 * held, and rcu_read_lock held. The returned dentry must not be stored into
1752 * without taking d_lock and checking d_seq sequence count against @seq
1753 * returned here.
1754 *
1755 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1756 * function.
1757 *
1758 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1759 * the returned dentry, so long as its parent's seqlock is checked after the
1760 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1761 * is formed, giving integrity down the path walk.
1762 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp,struct inode ** inode)1763 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1764 const struct qstr *name,
1765 unsigned *seqp, struct inode **inode)
1766 {
1767 unsigned int len = name->len;
1768 unsigned int hash = name->hash;
1769 const unsigned char *str = name->name;
1770 struct hlist_bl_head *b = d_hash(parent, hash);
1771 struct hlist_bl_node *node;
1772 struct dentry *dentry;
1773
1774 /*
1775 * Note: There is significant duplication with __d_lookup_rcu which is
1776 * required to prevent single threaded performance regressions
1777 * especially on architectures where smp_rmb (in seqcounts) are costly.
1778 * Keep the two functions in sync.
1779 */
1780
1781 /*
1782 * The hash list is protected using RCU.
1783 *
1784 * Carefully use d_seq when comparing a candidate dentry, to avoid
1785 * races with d_move().
1786 *
1787 * It is possible that concurrent renames can mess up our list
1788 * walk here and result in missing our dentry, resulting in the
1789 * false-negative result. d_lookup() protects against concurrent
1790 * renames using rename_lock seqlock.
1791 *
1792 * See Documentation/filesystems/path-lookup.txt for more details.
1793 */
1794 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1795 unsigned seq;
1796 struct inode *i;
1797 const char *tname;
1798 int tlen;
1799
1800 if (dentry->d_name.hash != hash)
1801 continue;
1802
1803 seqretry:
1804 seq = read_seqcount_begin(&dentry->d_seq);
1805 if (dentry->d_parent != parent)
1806 continue;
1807 if (d_unhashed(dentry))
1808 continue;
1809 tlen = dentry->d_name.len;
1810 tname = dentry->d_name.name;
1811 i = dentry->d_inode;
1812 prefetch(tname);
1813 /*
1814 * This seqcount check is required to ensure name and
1815 * len are loaded atomically, so as not to walk off the
1816 * edge of memory when walking. If we could load this
1817 * atomically some other way, we could drop this check.
1818 */
1819 if (read_seqcount_retry(&dentry->d_seq, seq))
1820 goto seqretry;
1821 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1822 if (parent->d_op->d_compare(parent, *inode,
1823 dentry, i,
1824 tlen, tname, name))
1825 continue;
1826 } else {
1827 if (dentry_cmp(tname, tlen, str, len))
1828 continue;
1829 }
1830 /*
1831 * No extra seqcount check is required after the name
1832 * compare. The caller must perform a seqcount check in
1833 * order to do anything useful with the returned dentry
1834 * anyway.
1835 */
1836 *seqp = seq;
1837 *inode = i;
1838 return dentry;
1839 }
1840 return NULL;
1841 }
1842
1843 /**
1844 * d_lookup - search for a dentry
1845 * @parent: parent dentry
1846 * @name: qstr of name we wish to find
1847 * Returns: dentry, or NULL
1848 *
1849 * d_lookup searches the children of the parent dentry for the name in
1850 * question. If the dentry is found its reference count is incremented and the
1851 * dentry is returned. The caller must use dput to free the entry when it has
1852 * finished using it. %NULL is returned if the dentry does not exist.
1853 */
d_lookup(struct dentry * parent,struct qstr * name)1854 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1855 {
1856 struct dentry *dentry;
1857 unsigned seq;
1858
1859 do {
1860 seq = read_seqbegin(&rename_lock);
1861 dentry = __d_lookup(parent, name);
1862 if (dentry)
1863 break;
1864 } while (read_seqretry(&rename_lock, seq));
1865 return dentry;
1866 }
1867 EXPORT_SYMBOL(d_lookup);
1868
1869 /**
1870 * __d_lookup - search for a dentry (racy)
1871 * @parent: parent dentry
1872 * @name: qstr of name we wish to find
1873 * Returns: dentry, or NULL
1874 *
1875 * __d_lookup is like d_lookup, however it may (rarely) return a
1876 * false-negative result due to unrelated rename activity.
1877 *
1878 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1879 * however it must be used carefully, eg. with a following d_lookup in
1880 * the case of failure.
1881 *
1882 * __d_lookup callers must be commented.
1883 */
__d_lookup(struct dentry * parent,struct qstr * name)1884 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1885 {
1886 unsigned int len = name->len;
1887 unsigned int hash = name->hash;
1888 const unsigned char *str = name->name;
1889 struct hlist_bl_head *b = d_hash(parent, hash);
1890 struct hlist_bl_node *node;
1891 struct dentry *found = NULL;
1892 struct dentry *dentry;
1893
1894 /*
1895 * Note: There is significant duplication with __d_lookup_rcu which is
1896 * required to prevent single threaded performance regressions
1897 * especially on architectures where smp_rmb (in seqcounts) are costly.
1898 * Keep the two functions in sync.
1899 */
1900
1901 /*
1902 * The hash list is protected using RCU.
1903 *
1904 * Take d_lock when comparing a candidate dentry, to avoid races
1905 * with d_move().
1906 *
1907 * It is possible that concurrent renames can mess up our list
1908 * walk here and result in missing our dentry, resulting in the
1909 * false-negative result. d_lookup() protects against concurrent
1910 * renames using rename_lock seqlock.
1911 *
1912 * See Documentation/filesystems/path-lookup.txt for more details.
1913 */
1914 rcu_read_lock();
1915
1916 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1917 const char *tname;
1918 int tlen;
1919
1920 if (dentry->d_name.hash != hash)
1921 continue;
1922
1923 spin_lock(&dentry->d_lock);
1924 if (dentry->d_parent != parent)
1925 goto next;
1926 if (d_unhashed(dentry))
1927 goto next;
1928
1929 /*
1930 * It is safe to compare names since d_move() cannot
1931 * change the qstr (protected by d_lock).
1932 */
1933 tlen = dentry->d_name.len;
1934 tname = dentry->d_name.name;
1935 if (parent->d_flags & DCACHE_OP_COMPARE) {
1936 if (parent->d_op->d_compare(parent, parent->d_inode,
1937 dentry, dentry->d_inode,
1938 tlen, tname, name))
1939 goto next;
1940 } else {
1941 if (dentry_cmp(tname, tlen, str, len))
1942 goto next;
1943 }
1944
1945 dentry->d_count++;
1946 found = dentry;
1947 spin_unlock(&dentry->d_lock);
1948 break;
1949 next:
1950 spin_unlock(&dentry->d_lock);
1951 }
1952 rcu_read_unlock();
1953
1954 return found;
1955 }
1956
1957 /**
1958 * d_hash_and_lookup - hash the qstr then search for a dentry
1959 * @dir: Directory to search in
1960 * @name: qstr of name we wish to find
1961 *
1962 * On hash failure or on lookup failure NULL is returned.
1963 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)1964 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1965 {
1966 struct dentry *dentry = NULL;
1967
1968 /*
1969 * Check for a fs-specific hash function. Note that we must
1970 * calculate the standard hash first, as the d_op->d_hash()
1971 * routine may choose to leave the hash value unchanged.
1972 */
1973 name->hash = full_name_hash(name->name, name->len);
1974 if (dir->d_flags & DCACHE_OP_HASH) {
1975 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1976 goto out;
1977 }
1978 dentry = d_lookup(dir, name);
1979 out:
1980 return dentry;
1981 }
1982
1983 /**
1984 * d_validate - verify dentry provided from insecure source (deprecated)
1985 * @dentry: The dentry alleged to be valid child of @dparent
1986 * @dparent: The parent dentry (known to be valid)
1987 *
1988 * An insecure source has sent us a dentry, here we verify it and dget() it.
1989 * This is used by ncpfs in its readdir implementation.
1990 * Zero is returned in the dentry is invalid.
1991 *
1992 * This function is slow for big directories, and deprecated, do not use it.
1993 */
d_validate(struct dentry * dentry,struct dentry * dparent)1994 int d_validate(struct dentry *dentry, struct dentry *dparent)
1995 {
1996 struct dentry *child;
1997
1998 spin_lock(&dparent->d_lock);
1999 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2000 if (dentry == child) {
2001 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2002 __dget_dlock(dentry);
2003 spin_unlock(&dentry->d_lock);
2004 spin_unlock(&dparent->d_lock);
2005 return 1;
2006 }
2007 }
2008 spin_unlock(&dparent->d_lock);
2009
2010 return 0;
2011 }
2012 EXPORT_SYMBOL(d_validate);
2013
2014 /*
2015 * When a file is deleted, we have two options:
2016 * - turn this dentry into a negative dentry
2017 * - unhash this dentry and free it.
2018 *
2019 * Usually, we want to just turn this into
2020 * a negative dentry, but if anybody else is
2021 * currently using the dentry or the inode
2022 * we can't do that and we fall back on removing
2023 * it from the hash queues and waiting for
2024 * it to be deleted later when it has no users
2025 */
2026
2027 /**
2028 * d_delete - delete a dentry
2029 * @dentry: The dentry to delete
2030 *
2031 * Turn the dentry into a negative dentry if possible, otherwise
2032 * remove it from the hash queues so it can be deleted later
2033 */
2034
d_delete(struct dentry * dentry)2035 void d_delete(struct dentry * dentry)
2036 {
2037 struct inode *inode;
2038 int isdir = 0;
2039 /*
2040 * Are we the only user?
2041 */
2042 again:
2043 spin_lock(&dentry->d_lock);
2044 inode = dentry->d_inode;
2045 isdir = S_ISDIR(inode->i_mode);
2046 if (dentry->d_count == 1) {
2047 if (inode && !spin_trylock(&inode->i_lock)) {
2048 spin_unlock(&dentry->d_lock);
2049 cpu_relax();
2050 goto again;
2051 }
2052 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2053 dentry_unlink_inode(dentry);
2054 fsnotify_nameremove(dentry, isdir);
2055 return;
2056 }
2057
2058 if (!d_unhashed(dentry))
2059 __d_drop(dentry);
2060
2061 spin_unlock(&dentry->d_lock);
2062
2063 fsnotify_nameremove(dentry, isdir);
2064 }
2065 EXPORT_SYMBOL(d_delete);
2066
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2067 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2068 {
2069 BUG_ON(!d_unhashed(entry));
2070 hlist_bl_lock(b);
2071 entry->d_flags |= DCACHE_RCUACCESS;
2072 hlist_bl_add_head_rcu(&entry->d_hash, b);
2073 hlist_bl_unlock(b);
2074 }
2075
_d_rehash(struct dentry * entry)2076 static void _d_rehash(struct dentry * entry)
2077 {
2078 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2079 }
2080
2081 /**
2082 * d_rehash - add an entry back to the hash
2083 * @entry: dentry to add to the hash
2084 *
2085 * Adds a dentry to the hash according to its name.
2086 */
2087
d_rehash(struct dentry * entry)2088 void d_rehash(struct dentry * entry)
2089 {
2090 spin_lock(&entry->d_lock);
2091 _d_rehash(entry);
2092 spin_unlock(&entry->d_lock);
2093 }
2094 EXPORT_SYMBOL(d_rehash);
2095
2096 /**
2097 * dentry_update_name_case - update case insensitive dentry with a new name
2098 * @dentry: dentry to be updated
2099 * @name: new name
2100 *
2101 * Update a case insensitive dentry with new case of name.
2102 *
2103 * dentry must have been returned by d_lookup with name @name. Old and new
2104 * name lengths must match (ie. no d_compare which allows mismatched name
2105 * lengths).
2106 *
2107 * Parent inode i_mutex must be held over d_lookup and into this call (to
2108 * keep renames and concurrent inserts, and readdir(2) away).
2109 */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2110 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2111 {
2112 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2113 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2114
2115 spin_lock(&dentry->d_lock);
2116 write_seqcount_begin(&dentry->d_seq);
2117 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2118 write_seqcount_end(&dentry->d_seq);
2119 spin_unlock(&dentry->d_lock);
2120 }
2121 EXPORT_SYMBOL(dentry_update_name_case);
2122
switch_names(struct dentry * dentry,struct dentry * target)2123 static void switch_names(struct dentry *dentry, struct dentry *target)
2124 {
2125 if (dname_external(target)) {
2126 if (dname_external(dentry)) {
2127 /*
2128 * Both external: swap the pointers
2129 */
2130 swap(target->d_name.name, dentry->d_name.name);
2131 } else {
2132 /*
2133 * dentry:internal, target:external. Steal target's
2134 * storage and make target internal.
2135 */
2136 memcpy(target->d_iname, dentry->d_name.name,
2137 dentry->d_name.len + 1);
2138 dentry->d_name.name = target->d_name.name;
2139 target->d_name.name = target->d_iname;
2140 }
2141 } else {
2142 if (dname_external(dentry)) {
2143 /*
2144 * dentry:external, target:internal. Give dentry's
2145 * storage to target and make dentry internal
2146 */
2147 memcpy(dentry->d_iname, target->d_name.name,
2148 target->d_name.len + 1);
2149 target->d_name.name = dentry->d_name.name;
2150 dentry->d_name.name = dentry->d_iname;
2151 } else {
2152 /*
2153 * Both are internal. Just copy target to dentry
2154 */
2155 memcpy(dentry->d_iname, target->d_name.name,
2156 target->d_name.len + 1);
2157 dentry->d_name.len = target->d_name.len;
2158 return;
2159 }
2160 }
2161 swap(dentry->d_name.len, target->d_name.len);
2162 }
2163
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2164 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2165 {
2166 /*
2167 * XXXX: do we really need to take target->d_lock?
2168 */
2169 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2170 spin_lock(&target->d_parent->d_lock);
2171 else {
2172 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2173 spin_lock(&dentry->d_parent->d_lock);
2174 spin_lock_nested(&target->d_parent->d_lock,
2175 DENTRY_D_LOCK_NESTED);
2176 } else {
2177 spin_lock(&target->d_parent->d_lock);
2178 spin_lock_nested(&dentry->d_parent->d_lock,
2179 DENTRY_D_LOCK_NESTED);
2180 }
2181 }
2182 if (target < dentry) {
2183 spin_lock_nested(&target->d_lock, 2);
2184 spin_lock_nested(&dentry->d_lock, 3);
2185 } else {
2186 spin_lock_nested(&dentry->d_lock, 2);
2187 spin_lock_nested(&target->d_lock, 3);
2188 }
2189 }
2190
dentry_unlock_parents_for_move(struct dentry * dentry,struct dentry * target)2191 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2192 struct dentry *target)
2193 {
2194 if (target->d_parent != dentry->d_parent)
2195 spin_unlock(&dentry->d_parent->d_lock);
2196 if (target->d_parent != target)
2197 spin_unlock(&target->d_parent->d_lock);
2198 }
2199
2200 /*
2201 * When switching names, the actual string doesn't strictly have to
2202 * be preserved in the target - because we're dropping the target
2203 * anyway. As such, we can just do a simple memcpy() to copy over
2204 * the new name before we switch.
2205 *
2206 * Note that we have to be a lot more careful about getting the hash
2207 * switched - we have to switch the hash value properly even if it
2208 * then no longer matches the actual (corrupted) string of the target.
2209 * The hash value has to match the hash queue that the dentry is on..
2210 */
2211 /*
2212 * __d_move - move a dentry
2213 * @dentry: entry to move
2214 * @target: new dentry
2215 *
2216 * Update the dcache to reflect the move of a file name. Negative
2217 * dcache entries should not be moved in this way. Caller must hold
2218 * rename_lock, the i_mutex of the source and target directories,
2219 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2220 */
__d_move(struct dentry * dentry,struct dentry * target)2221 static void __d_move(struct dentry * dentry, struct dentry * target)
2222 {
2223 if (!dentry->d_inode)
2224 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2225
2226 BUG_ON(d_ancestor(dentry, target));
2227 BUG_ON(d_ancestor(target, dentry));
2228
2229 dentry_lock_for_move(dentry, target);
2230
2231 write_seqcount_begin(&dentry->d_seq);
2232 write_seqcount_begin(&target->d_seq);
2233
2234 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2235
2236 /*
2237 * Move the dentry to the target hash queue. Don't bother checking
2238 * for the same hash queue because of how unlikely it is.
2239 */
2240 __d_drop(dentry);
2241 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2242
2243 /* Unhash the target: dput() will then get rid of it */
2244 __d_drop(target);
2245
2246 list_del(&dentry->d_u.d_child);
2247 list_del(&target->d_u.d_child);
2248
2249 /* Switch the names.. */
2250 switch_names(dentry, target);
2251 swap(dentry->d_name.hash, target->d_name.hash);
2252
2253 /* ... and switch the parents */
2254 if (IS_ROOT(dentry)) {
2255 dentry->d_parent = target->d_parent;
2256 target->d_parent = target;
2257 INIT_LIST_HEAD(&target->d_u.d_child);
2258 } else {
2259 swap(dentry->d_parent, target->d_parent);
2260
2261 /* And add them back to the (new) parent lists */
2262 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2263 }
2264
2265 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2266
2267 write_seqcount_end(&target->d_seq);
2268 write_seqcount_end(&dentry->d_seq);
2269
2270 dentry_unlock_parents_for_move(dentry, target);
2271 spin_unlock(&target->d_lock);
2272 fsnotify_d_move(dentry);
2273 spin_unlock(&dentry->d_lock);
2274 }
2275
2276 /*
2277 * d_move - move a dentry
2278 * @dentry: entry to move
2279 * @target: new dentry
2280 *
2281 * Update the dcache to reflect the move of a file name. Negative
2282 * dcache entries should not be moved in this way. See the locking
2283 * requirements for __d_move.
2284 */
d_move(struct dentry * dentry,struct dentry * target)2285 void d_move(struct dentry *dentry, struct dentry *target)
2286 {
2287 write_seqlock(&rename_lock);
2288 __d_move(dentry, target);
2289 write_sequnlock(&rename_lock);
2290 }
2291 EXPORT_SYMBOL(d_move);
2292
2293 /**
2294 * d_ancestor - search for an ancestor
2295 * @p1: ancestor dentry
2296 * @p2: child dentry
2297 *
2298 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2299 * an ancestor of p2, else NULL.
2300 */
d_ancestor(struct dentry * p1,struct dentry * p2)2301 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2302 {
2303 struct dentry *p;
2304
2305 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2306 if (p->d_parent == p1)
2307 return p;
2308 }
2309 return NULL;
2310 }
2311
2312 /*
2313 * This helper attempts to cope with remotely renamed directories
2314 *
2315 * It assumes that the caller is already holding
2316 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2317 *
2318 * Note: If ever the locking in lock_rename() changes, then please
2319 * remember to update this too...
2320 */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2321 static struct dentry *__d_unalias(struct inode *inode,
2322 struct dentry *dentry, struct dentry *alias)
2323 {
2324 struct mutex *m1 = NULL, *m2 = NULL;
2325 struct dentry *ret;
2326
2327 /* If alias and dentry share a parent, then no extra locks required */
2328 if (alias->d_parent == dentry->d_parent)
2329 goto out_unalias;
2330
2331 /* See lock_rename() */
2332 ret = ERR_PTR(-EBUSY);
2333 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2334 goto out_err;
2335 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2336 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2337 goto out_err;
2338 m2 = &alias->d_parent->d_inode->i_mutex;
2339 out_unalias:
2340 __d_move(alias, dentry);
2341 ret = alias;
2342 out_err:
2343 spin_unlock(&inode->i_lock);
2344 if (m2)
2345 mutex_unlock(m2);
2346 if (m1)
2347 mutex_unlock(m1);
2348 return ret;
2349 }
2350
2351 /*
2352 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2353 * named dentry in place of the dentry to be replaced.
2354 * returns with anon->d_lock held!
2355 */
__d_materialise_dentry(struct dentry * dentry,struct dentry * anon)2356 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2357 {
2358 struct dentry *dparent, *aparent;
2359
2360 dentry_lock_for_move(anon, dentry);
2361
2362 write_seqcount_begin(&dentry->d_seq);
2363 write_seqcount_begin(&anon->d_seq);
2364
2365 dparent = dentry->d_parent;
2366 aparent = anon->d_parent;
2367
2368 switch_names(dentry, anon);
2369 swap(dentry->d_name.hash, anon->d_name.hash);
2370
2371 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2372 list_del(&dentry->d_u.d_child);
2373 if (!IS_ROOT(dentry))
2374 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2375 else
2376 INIT_LIST_HEAD(&dentry->d_u.d_child);
2377
2378 anon->d_parent = (dparent == dentry) ? anon : dparent;
2379 list_del(&anon->d_u.d_child);
2380 if (!IS_ROOT(anon))
2381 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2382 else
2383 INIT_LIST_HEAD(&anon->d_u.d_child);
2384
2385 write_seqcount_end(&dentry->d_seq);
2386 write_seqcount_end(&anon->d_seq);
2387
2388 dentry_unlock_parents_for_move(anon, dentry);
2389 spin_unlock(&dentry->d_lock);
2390
2391 /* anon->d_lock still locked, returns locked */
2392 anon->d_flags &= ~DCACHE_DISCONNECTED;
2393 }
2394
2395 /**
2396 * d_materialise_unique - introduce an inode into the tree
2397 * @dentry: candidate dentry
2398 * @inode: inode to bind to the dentry, to which aliases may be attached
2399 *
2400 * Introduces an dentry into the tree, substituting an extant disconnected
2401 * root directory alias in its place if there is one. Caller must hold the
2402 * i_mutex of the parent directory.
2403 */
d_materialise_unique(struct dentry * dentry,struct inode * inode)2404 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2405 {
2406 struct dentry *actual;
2407
2408 BUG_ON(!d_unhashed(dentry));
2409
2410 if (!inode) {
2411 actual = dentry;
2412 __d_instantiate(dentry, NULL);
2413 d_rehash(actual);
2414 goto out_nolock;
2415 }
2416
2417 spin_lock(&inode->i_lock);
2418
2419 if (S_ISDIR(inode->i_mode)) {
2420 struct dentry *alias;
2421
2422 /* Does an aliased dentry already exist? */
2423 alias = __d_find_alias(inode, 0);
2424 if (alias) {
2425 actual = alias;
2426 write_seqlock(&rename_lock);
2427
2428 if (d_ancestor(alias, dentry)) {
2429 /* Check for loops */
2430 actual = ERR_PTR(-ELOOP);
2431 spin_unlock(&inode->i_lock);
2432 } else if (IS_ROOT(alias)) {
2433 /* Is this an anonymous mountpoint that we
2434 * could splice into our tree? */
2435 __d_materialise_dentry(dentry, alias);
2436 write_sequnlock(&rename_lock);
2437 __d_drop(alias);
2438 goto found;
2439 } else {
2440 /* Nope, but we must(!) avoid directory
2441 * aliasing. This drops inode->i_lock */
2442 actual = __d_unalias(inode, dentry, alias);
2443 }
2444 write_sequnlock(&rename_lock);
2445 if (IS_ERR(actual)) {
2446 if (PTR_ERR(actual) == -ELOOP)
2447 pr_warn_ratelimited(
2448 "VFS: Lookup of '%s' in %s %s"
2449 " would have caused loop\n",
2450 dentry->d_name.name,
2451 inode->i_sb->s_type->name,
2452 inode->i_sb->s_id);
2453 dput(alias);
2454 }
2455 goto out_nolock;
2456 }
2457 }
2458
2459 /* Add a unique reference */
2460 actual = __d_instantiate_unique(dentry, inode);
2461 if (!actual)
2462 actual = dentry;
2463 else
2464 BUG_ON(!d_unhashed(actual));
2465
2466 spin_lock(&actual->d_lock);
2467 found:
2468 _d_rehash(actual);
2469 spin_unlock(&actual->d_lock);
2470 spin_unlock(&inode->i_lock);
2471 out_nolock:
2472 if (actual == dentry) {
2473 security_d_instantiate(dentry, inode);
2474 return NULL;
2475 }
2476
2477 iput(inode);
2478 return actual;
2479 }
2480 EXPORT_SYMBOL_GPL(d_materialise_unique);
2481
prepend(char ** buffer,int * buflen,const char * str,int namelen)2482 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2483 {
2484 *buflen -= namelen;
2485 if (*buflen < 0)
2486 return -ENAMETOOLONG;
2487 *buffer -= namelen;
2488 memcpy(*buffer, str, namelen);
2489 return 0;
2490 }
2491
prepend_name(char ** buffer,int * buflen,struct qstr * name)2492 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2493 {
2494 return prepend(buffer, buflen, name->name, name->len);
2495 }
2496
2497 /**
2498 * prepend_path - Prepend path string to a buffer
2499 * @path: the dentry/vfsmount to report
2500 * @root: root vfsmnt/dentry
2501 * @buffer: pointer to the end of the buffer
2502 * @buflen: pointer to buffer length
2503 *
2504 * Caller holds the rename_lock.
2505 */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2506 static int prepend_path(const struct path *path,
2507 const struct path *root,
2508 char **buffer, int *buflen)
2509 {
2510 struct dentry *dentry = path->dentry;
2511 struct vfsmount *vfsmnt = path->mnt;
2512 struct mount *mnt = real_mount(vfsmnt);
2513 bool slash = false;
2514 int error = 0;
2515
2516 br_read_lock(&vfsmount_lock);
2517 while (dentry != root->dentry || vfsmnt != root->mnt) {
2518 struct dentry * parent;
2519
2520 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2521 /* Global root? */
2522 if (!mnt_has_parent(mnt))
2523 goto global_root;
2524 dentry = mnt->mnt_mountpoint;
2525 mnt = mnt->mnt_parent;
2526 vfsmnt = &mnt->mnt;
2527 continue;
2528 }
2529 parent = dentry->d_parent;
2530 prefetch(parent);
2531 spin_lock(&dentry->d_lock);
2532 error = prepend_name(buffer, buflen, &dentry->d_name);
2533 spin_unlock(&dentry->d_lock);
2534 if (!error)
2535 error = prepend(buffer, buflen, "/", 1);
2536 if (error)
2537 break;
2538
2539 slash = true;
2540 dentry = parent;
2541 }
2542
2543 if (!error && !slash)
2544 error = prepend(buffer, buflen, "/", 1);
2545
2546 out:
2547 br_read_unlock(&vfsmount_lock);
2548 return error;
2549
2550 global_root:
2551 /*
2552 * Filesystems needing to implement special "root names"
2553 * should do so with ->d_dname()
2554 */
2555 if (IS_ROOT(dentry) &&
2556 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2557 WARN(1, "Root dentry has weird name <%.*s>\n",
2558 (int) dentry->d_name.len, dentry->d_name.name);
2559 }
2560 if (!slash)
2561 error = prepend(buffer, buflen, "/", 1);
2562 if (!error)
2563 error = is_mounted(vfsmnt) ? 1 : 2;
2564 goto out;
2565 }
2566
2567 /**
2568 * __d_path - return the path of a dentry
2569 * @path: the dentry/vfsmount to report
2570 * @root: root vfsmnt/dentry
2571 * @buf: buffer to return value in
2572 * @buflen: buffer length
2573 *
2574 * Convert a dentry into an ASCII path name.
2575 *
2576 * Returns a pointer into the buffer or an error code if the
2577 * path was too long.
2578 *
2579 * "buflen" should be positive.
2580 *
2581 * If the path is not reachable from the supplied root, return %NULL.
2582 */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)2583 char *__d_path(const struct path *path,
2584 const struct path *root,
2585 char *buf, int buflen)
2586 {
2587 char *res = buf + buflen;
2588 int error;
2589
2590 prepend(&res, &buflen, "\0", 1);
2591 write_seqlock(&rename_lock);
2592 error = prepend_path(path, root, &res, &buflen);
2593 write_sequnlock(&rename_lock);
2594
2595 if (error < 0)
2596 return ERR_PTR(error);
2597 if (error > 0)
2598 return NULL;
2599 return res;
2600 }
2601
d_absolute_path(const struct path * path,char * buf,int buflen)2602 char *d_absolute_path(const struct path *path,
2603 char *buf, int buflen)
2604 {
2605 struct path root = {};
2606 char *res = buf + buflen;
2607 int error;
2608
2609 prepend(&res, &buflen, "\0", 1);
2610 write_seqlock(&rename_lock);
2611 error = prepend_path(path, &root, &res, &buflen);
2612 write_sequnlock(&rename_lock);
2613
2614 if (error > 1)
2615 error = -EINVAL;
2616 if (error < 0)
2617 return ERR_PTR(error);
2618 return res;
2619 }
2620
2621 /*
2622 * same as __d_path but appends "(deleted)" for unlinked files.
2623 */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)2624 static int path_with_deleted(const struct path *path,
2625 const struct path *root,
2626 char **buf, int *buflen)
2627 {
2628 prepend(buf, buflen, "\0", 1);
2629 if (d_unlinked(path->dentry)) {
2630 int error = prepend(buf, buflen, " (deleted)", 10);
2631 if (error)
2632 return error;
2633 }
2634
2635 return prepend_path(path, root, buf, buflen);
2636 }
2637
prepend_unreachable(char ** buffer,int * buflen)2638 static int prepend_unreachable(char **buffer, int *buflen)
2639 {
2640 return prepend(buffer, buflen, "(unreachable)", 13);
2641 }
2642
2643 /**
2644 * d_path - return the path of a dentry
2645 * @path: path to report
2646 * @buf: buffer to return value in
2647 * @buflen: buffer length
2648 *
2649 * Convert a dentry into an ASCII path name. If the entry has been deleted
2650 * the string " (deleted)" is appended. Note that this is ambiguous.
2651 *
2652 * Returns a pointer into the buffer or an error code if the path was
2653 * too long. Note: Callers should use the returned pointer, not the passed
2654 * in buffer, to use the name! The implementation often starts at an offset
2655 * into the buffer, and may leave 0 bytes at the start.
2656 *
2657 * "buflen" should be positive.
2658 */
d_path(const struct path * path,char * buf,int buflen)2659 char *d_path(const struct path *path, char *buf, int buflen)
2660 {
2661 char *res = buf + buflen;
2662 struct path root;
2663 int error;
2664
2665 /*
2666 * We have various synthetic filesystems that never get mounted. On
2667 * these filesystems dentries are never used for lookup purposes, and
2668 * thus don't need to be hashed. They also don't need a name until a
2669 * user wants to identify the object in /proc/pid/fd/. The little hack
2670 * below allows us to generate a name for these objects on demand:
2671 */
2672 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2673 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2674
2675 get_fs_root(current->fs, &root);
2676 write_seqlock(&rename_lock);
2677 error = path_with_deleted(path, &root, &res, &buflen);
2678 if (error < 0)
2679 res = ERR_PTR(error);
2680 write_sequnlock(&rename_lock);
2681 path_put(&root);
2682 return res;
2683 }
2684 EXPORT_SYMBOL(d_path);
2685
2686 /**
2687 * d_path_with_unreachable - return the path of a dentry
2688 * @path: path to report
2689 * @buf: buffer to return value in
2690 * @buflen: buffer length
2691 *
2692 * The difference from d_path() is that this prepends "(unreachable)"
2693 * to paths which are unreachable from the current process' root.
2694 */
d_path_with_unreachable(const struct path * path,char * buf,int buflen)2695 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2696 {
2697 char *res = buf + buflen;
2698 struct path root;
2699 int error;
2700
2701 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2702 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2703
2704 get_fs_root(current->fs, &root);
2705 write_seqlock(&rename_lock);
2706 error = path_with_deleted(path, &root, &res, &buflen);
2707 if (error > 0)
2708 error = prepend_unreachable(&res, &buflen);
2709 write_sequnlock(&rename_lock);
2710 path_put(&root);
2711 if (error)
2712 res = ERR_PTR(error);
2713
2714 return res;
2715 }
2716
2717 /*
2718 * Helper function for dentry_operations.d_dname() members
2719 */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)2720 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2721 const char *fmt, ...)
2722 {
2723 va_list args;
2724 char temp[64];
2725 int sz;
2726
2727 va_start(args, fmt);
2728 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2729 va_end(args);
2730
2731 if (sz > sizeof(temp) || sz > buflen)
2732 return ERR_PTR(-ENAMETOOLONG);
2733
2734 buffer += buflen - sz;
2735 return memcpy(buffer, temp, sz);
2736 }
2737
2738 /*
2739 * Write full pathname from the root of the filesystem into the buffer.
2740 */
__dentry_path(struct dentry * dentry,char * buf,int buflen)2741 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2742 {
2743 char *end = buf + buflen;
2744 char *retval;
2745
2746 prepend(&end, &buflen, "\0", 1);
2747 if (buflen < 1)
2748 goto Elong;
2749 /* Get '/' right */
2750 retval = end-1;
2751 *retval = '/';
2752
2753 while (!IS_ROOT(dentry)) {
2754 struct dentry *parent = dentry->d_parent;
2755 int error;
2756
2757 prefetch(parent);
2758 spin_lock(&dentry->d_lock);
2759 error = prepend_name(&end, &buflen, &dentry->d_name);
2760 spin_unlock(&dentry->d_lock);
2761 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2762 goto Elong;
2763
2764 retval = end;
2765 dentry = parent;
2766 }
2767 return retval;
2768 Elong:
2769 return ERR_PTR(-ENAMETOOLONG);
2770 }
2771
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)2772 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2773 {
2774 char *retval;
2775
2776 write_seqlock(&rename_lock);
2777 retval = __dentry_path(dentry, buf, buflen);
2778 write_sequnlock(&rename_lock);
2779
2780 return retval;
2781 }
2782 EXPORT_SYMBOL(dentry_path_raw);
2783
dentry_path(struct dentry * dentry,char * buf,int buflen)2784 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2785 {
2786 char *p = NULL;
2787 char *retval;
2788
2789 write_seqlock(&rename_lock);
2790 if (d_unlinked(dentry)) {
2791 p = buf + buflen;
2792 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2793 goto Elong;
2794 buflen++;
2795 }
2796 retval = __dentry_path(dentry, buf, buflen);
2797 write_sequnlock(&rename_lock);
2798 if (!IS_ERR(retval) && p)
2799 *p = '/'; /* restore '/' overriden with '\0' */
2800 return retval;
2801 Elong:
2802 return ERR_PTR(-ENAMETOOLONG);
2803 }
2804
2805 /*
2806 * NOTE! The user-level library version returns a
2807 * character pointer. The kernel system call just
2808 * returns the length of the buffer filled (which
2809 * includes the ending '\0' character), or a negative
2810 * error value. So libc would do something like
2811 *
2812 * char *getcwd(char * buf, size_t size)
2813 * {
2814 * int retval;
2815 *
2816 * retval = sys_getcwd(buf, size);
2817 * if (retval >= 0)
2818 * return buf;
2819 * errno = -retval;
2820 * return NULL;
2821 * }
2822 */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)2823 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2824 {
2825 int error;
2826 struct path pwd, root;
2827 char *page = (char *) __get_free_page(GFP_USER);
2828
2829 if (!page)
2830 return -ENOMEM;
2831
2832 get_fs_root_and_pwd(current->fs, &root, &pwd);
2833
2834 error = -ENOENT;
2835 write_seqlock(&rename_lock);
2836 if (!d_unlinked(pwd.dentry)) {
2837 unsigned long len;
2838 char *cwd = page + PAGE_SIZE;
2839 int buflen = PAGE_SIZE;
2840
2841 prepend(&cwd, &buflen, "\0", 1);
2842 error = prepend_path(&pwd, &root, &cwd, &buflen);
2843 write_sequnlock(&rename_lock);
2844
2845 if (error < 0)
2846 goto out;
2847
2848 /* Unreachable from current root */
2849 if (error > 0) {
2850 error = prepend_unreachable(&cwd, &buflen);
2851 if (error)
2852 goto out;
2853 }
2854
2855 error = -ERANGE;
2856 len = PAGE_SIZE + page - cwd;
2857 if (len <= size) {
2858 error = len;
2859 if (copy_to_user(buf, cwd, len))
2860 error = -EFAULT;
2861 }
2862 } else {
2863 write_sequnlock(&rename_lock);
2864 }
2865
2866 out:
2867 path_put(&pwd);
2868 path_put(&root);
2869 free_page((unsigned long) page);
2870 return error;
2871 }
2872
2873 /*
2874 * Test whether new_dentry is a subdirectory of old_dentry.
2875 *
2876 * Trivially implemented using the dcache structure
2877 */
2878
2879 /**
2880 * is_subdir - is new dentry a subdirectory of old_dentry
2881 * @new_dentry: new dentry
2882 * @old_dentry: old dentry
2883 *
2884 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2885 * Returns 0 otherwise.
2886 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2887 */
2888
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)2889 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2890 {
2891 int result;
2892 unsigned seq;
2893
2894 if (new_dentry == old_dentry)
2895 return 1;
2896
2897 do {
2898 /* for restarting inner loop in case of seq retry */
2899 seq = read_seqbegin(&rename_lock);
2900 /*
2901 * Need rcu_readlock to protect against the d_parent trashing
2902 * due to d_move
2903 */
2904 rcu_read_lock();
2905 if (d_ancestor(old_dentry, new_dentry))
2906 result = 1;
2907 else
2908 result = 0;
2909 rcu_read_unlock();
2910 } while (read_seqretry(&rename_lock, seq));
2911
2912 return result;
2913 }
2914
d_genocide(struct dentry * root)2915 void d_genocide(struct dentry *root)
2916 {
2917 struct dentry *this_parent;
2918 struct list_head *next;
2919 unsigned seq;
2920 int locked = 0;
2921
2922 seq = read_seqbegin(&rename_lock);
2923 again:
2924 this_parent = root;
2925 spin_lock(&this_parent->d_lock);
2926 repeat:
2927 next = this_parent->d_subdirs.next;
2928 resume:
2929 while (next != &this_parent->d_subdirs) {
2930 struct list_head *tmp = next;
2931 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2932 next = tmp->next;
2933
2934 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2935 if (d_unhashed(dentry) || !dentry->d_inode) {
2936 spin_unlock(&dentry->d_lock);
2937 continue;
2938 }
2939 if (!list_empty(&dentry->d_subdirs)) {
2940 spin_unlock(&this_parent->d_lock);
2941 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2942 this_parent = dentry;
2943 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2944 goto repeat;
2945 }
2946 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2947 dentry->d_flags |= DCACHE_GENOCIDE;
2948 dentry->d_count--;
2949 }
2950 spin_unlock(&dentry->d_lock);
2951 }
2952 if (this_parent != root) {
2953 struct dentry *child = this_parent;
2954 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2955 this_parent->d_flags |= DCACHE_GENOCIDE;
2956 this_parent->d_count--;
2957 }
2958 this_parent = try_to_ascend(this_parent, locked, seq);
2959 if (!this_parent)
2960 goto rename_retry;
2961 next = child->d_u.d_child.next;
2962 goto resume;
2963 }
2964 spin_unlock(&this_parent->d_lock);
2965 if (!locked && read_seqretry(&rename_lock, seq))
2966 goto rename_retry;
2967 if (locked)
2968 write_sequnlock(&rename_lock);
2969 return;
2970
2971 rename_retry:
2972 if (locked)
2973 goto again;
2974 locked = 1;
2975 write_seqlock(&rename_lock);
2976 goto again;
2977 }
2978
2979 /**
2980 * find_inode_number - check for dentry with name
2981 * @dir: directory to check
2982 * @name: Name to find.
2983 *
2984 * Check whether a dentry already exists for the given name,
2985 * and return the inode number if it has an inode. Otherwise
2986 * 0 is returned.
2987 *
2988 * This routine is used to post-process directory listings for
2989 * filesystems using synthetic inode numbers, and is necessary
2990 * to keep getcwd() working.
2991 */
2992
find_inode_number(struct dentry * dir,struct qstr * name)2993 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2994 {
2995 struct dentry * dentry;
2996 ino_t ino = 0;
2997
2998 dentry = d_hash_and_lookup(dir, name);
2999 if (dentry) {
3000 if (dentry->d_inode)
3001 ino = dentry->d_inode->i_ino;
3002 dput(dentry);
3003 }
3004 return ino;
3005 }
3006 EXPORT_SYMBOL(find_inode_number);
3007
3008 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3009 static int __init set_dhash_entries(char *str)
3010 {
3011 if (!str)
3012 return 0;
3013 dhash_entries = simple_strtoul(str, &str, 0);
3014 return 1;
3015 }
3016 __setup("dhash_entries=", set_dhash_entries);
3017
dcache_init_early(void)3018 static void __init dcache_init_early(void)
3019 {
3020 unsigned int loop;
3021
3022 /* If hashes are distributed across NUMA nodes, defer
3023 * hash allocation until vmalloc space is available.
3024 */
3025 if (hashdist)
3026 return;
3027
3028 dentry_hashtable =
3029 alloc_large_system_hash("Dentry cache",
3030 sizeof(struct hlist_bl_head),
3031 dhash_entries,
3032 13,
3033 HASH_EARLY,
3034 &d_hash_shift,
3035 &d_hash_mask,
3036 0);
3037
3038 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3039 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3040 }
3041
dcache_init(void)3042 static void __init dcache_init(void)
3043 {
3044 unsigned int loop;
3045
3046 /*
3047 * A constructor could be added for stable state like the lists,
3048 * but it is probably not worth it because of the cache nature
3049 * of the dcache.
3050 */
3051 dentry_cache = KMEM_CACHE(dentry,
3052 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3053
3054 /* Hash may have been set up in dcache_init_early */
3055 if (!hashdist)
3056 return;
3057
3058 dentry_hashtable =
3059 alloc_large_system_hash("Dentry cache",
3060 sizeof(struct hlist_bl_head),
3061 dhash_entries,
3062 13,
3063 0,
3064 &d_hash_shift,
3065 &d_hash_mask,
3066 0);
3067
3068 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3069 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3070 }
3071
3072 /* SLAB cache for __getname() consumers */
3073 struct kmem_cache *names_cachep __read_mostly;
3074 EXPORT_SYMBOL(names_cachep);
3075
3076 EXPORT_SYMBOL(d_genocide);
3077
vfs_caches_init_early(void)3078 void __init vfs_caches_init_early(void)
3079 {
3080 dcache_init_early();
3081 inode_init_early();
3082 }
3083
vfs_caches_init(unsigned long mempages)3084 void __init vfs_caches_init(unsigned long mempages)
3085 {
3086 unsigned long reserve;
3087
3088 /* Base hash sizes on available memory, with a reserve equal to
3089 150% of current kernel size */
3090
3091 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3092 mempages -= reserve;
3093
3094 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3095 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3096
3097 dcache_init();
3098 inode_init();
3099 files_init(mempages);
3100 mnt_init();
3101 bdev_cache_init();
3102 chrdev_init();
3103 }
3104